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Abstract 

Infection with Helicobacter pylori (H.pylori) is estimated to persist in approximately 50% of the human 

population. This bacterium has been commonly linked to gastrointestinal diseases such as gastritis and 

peptic ulcers. Current observational studies have also suggested an association with cardiovascular 

disease and cancer. However, there has been discordance in these findings potentially influenced by 

confounding. This study aims to identify single nucleotide polymorphisms (SNPs) associated with 

H.pylori, estimate the causal association of H.pylori with cardiovascular disease and cancer traits, and 

examine the direction of causality. These objectives were explored using the Avon Longitudinal Study of 

Parents and Children (ALSPAC) and Caerphilly Prospective Study (CaPS) cohorts. The use of genome-

wide association meta-analysis was employed, and four highly suggestive SNPs possibly associated with 

H.pylori were identified. Two genome-wide significant SNPs identified in a previous published H.pylori 

genome-wide association study were used as instruments in two-sample Mendelian randomization (MR), 

with the four suggestive SNPs identified in the meta-analysis being excluded from analysis as they would 

not qualify as valid instruments, potentially violating MR assumptions. There was evidence of a causal 

effect of H. Pylori on LDL-cholesterol, hip circumference, breast cancer, and heart rate. However, the 

causal estimates suggested that H.pylori might be associated with a decrease in these traits which is in 

contrast to observational findings. Bidirectional MR revealed little evidence of causal effects of the 

outcomes on H.pylori and sensitivity analyses did not identify directional pleiotropy across instruments 

for each trait or heterogeneity between instruments. Overall, this study extends the scope of MR to 

infections and does not suffer from the limitations of observational studies, such as confounding, 

selection biases and reverse causation. These findings contribute to the understanding of the role of 

H.pylori in cardiovascular disease and cancer.     
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1. Introduction  

Since the discovery of Helicobacter pylori (H.pylori) by Marshall and Warren in 1983(1, 2) by 

successfully isolating and culturing the bacterium, gastric colonisation with H.pylori has been linked to 

various gastrointestinal diseases(3-5). In particular, strong evidence from observational studies have 

suggested H.pylori to be a disease risk factor for gastric cancer(6-8), and have postulated a potential 

association with cardiovascular disease(9-11) (Table 1). Interestingly, despite the increasing number of 

observational epidemiological studies investigating the relationship between both cardiovascular disease 

and gastric cancer with H.pylori, studies have not examined whether H.pylori is causally associated with 

cardiovascular disease and cancer using other methodological approaches.  

Table 1. Cardiovascular disease outcomes and gastric cancer subtypes that have been investigated in 

observational studies in association with Helicobacter pylori infection  

Disease  Disease subtype  References  

Cardiovascular disease Atherosclerosis (12), (13), (14), (15) 

Coronary heart disease  (16), (17) 

Stroke  (18), (19), (20) 

Myocardial infarction  (21), (22), (23), (24) 

Cancer  Non-cardia gastric cancer  (25), (26), (27) 

Cardia gastric cancer  (28), (29) 

 

Observational studies can be potentially hindered by confounding, reverse causation, selection biases and 

regression dilution bias(30). Results from observational studies do not always replicate in randomised 

controlled trials (RCTs), as seen in trials investigating beta carotene supplementation and risk of lung 

cancer(31), and the protective effects of various vitamin supplements and hormone replacement therapies 

on cardiovascular disease(32-35). In order to overcome these limitations, genetic epidemiological 

methodologies such as Mendelian randomization (MR) can be employed. The basic principle of this 

approach is that common genetic polymorphisms can be used to proxy for a modifiable exposure (e.g. 
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LDL cholesterol, blood pressure, C-reactive protein), or influence exposure patterns (e.g. propensity to 

smoke) without suffering from confounding and reverse causation(36) .  

The current management approach to mitigate the effects of H.pylori-induced diseases has been 

eradication treatment(37). However, increasing H.pylori resistance to once effective combined antibiotic 

treatments have challenged the feasibility and efficacy of this approach, as studies have shown failed 

H.pylori elimination or reinfection(38, 39). Therefore, the implications of findings using Mendelian 

randomization can be useful in informing novel public health policies to improve population health 

through population-level interventions. In a broader sense, this research could contribute to lessening the 

public health burden of these two diseases, as recent statistics have shown that gastric cancer is the fourth 

most common cancer(40) and second leading cause of cancer death, with cardiovascular disease as the 

leading cause of morbidity and mortality(41).  

Additionally, with the development of recent genome-wide association studies identifying genetic 

variants associated with common infections, such as H.pylori(42), using Mendelian randomization is a 

timely approach. The main objective of this study will be to use Mendelian randomization to assess the 

causal association of H.pylori with cardiovascular disease and cancer. This approach can help consolidate 

research findings from observational studies, and provide a more robust understanding of the potential 

causal pathways that may exist.  

2. Helicobacter pylori  

2.1 Prevalence of bacterium  

The prevalence of H.pylori infection is estimated to persist in at least 50% of the world’s human 

population(43, 44). However, the overall prevalence in developed countries is lower than developing 

countries(45, 46). The acquisition of H.pylori infection is predominantly in childhood, with modes of 

transmission hypothesised to be via person-to-person transmission by familial exposure of large 

intrafamilial household clustering , oral-to-oral route or faecal-oral route, or by waterborne or zoonotic 

transmission(47-49). Unless this bacterium is eradicated due to the pathogenesis of H.pylori-related 

diseases such as gastritis and duodenal ulcerations in childhood, it can persist as the child grows into an 

adult(50-52). The prevalence of H.pylori in children in developed countries is approximately 10-40% 

while it ranges from 80-100% for children in developing countries (53, 54).   

This difference in prevalence between developed and developing regions worldwide can be exemplified 

in a recent systematic review performed by Zamani et al. 2018(55) (Figure 1). Between continents, 

H.pylori showed greater prevalence in Africa (56.7%, 95% confidence interval (CI): 43.6-69.9), Latin 

America and the Caribbean (59.3%, 95% CI: 52.9-65.6), and Asia (44.7%, 95% CI: 49.4-50.0). This is in 
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contrast to Northern America (28.5%, 95% CI: 20.7-36.3) and Europe (35.3%, 95% CI: 29.5-41.2) which 

showed a noticeably lower H.pylori prevalence. Large variations between countries within a continent 

were also observed, for example in Asia between Kazakhstan (79.5%, 95% CI: 74.8-84.2) and Taiwan 

(22.4%, 95% CI: 16.3-28.4). This association between the prevalence of H.pylori infection and the 

developmental status of countries has been considered to be attributable to socioeconomic factors such as 

high household density(56, 57), low income(58, 59), and the level of education of the child and 

parents(58, 60). 

Figure 1. Global prevalence of H.pylori infection(55) 

 

Interestingly, declining trends in H.pylori prevalence have been observed since around the 1950s and have 

been suggested to be related to the decrease in gastric cancer incidence and mortality rates(61). This decline 

is thought to reflect the increase in sanitation, level of urbanisation, decrease in household overcrowding, 

and higher socioeconomic status of countries(62, 63). For example, in Japan gastric cancer has been the 

leading type of cancer and cancer-related deaths(64). However, due to improved sanitation H.pylori 

prevalence has decreased(65). Children born before 1950 were measured to have a H.pylori seroprevalence 

of approximately 80-90% in contrast to those born after 2000 who have a seroprevalence of less than 

2%(65).However, it is important to note that despite the declining trends in H.pylori prevalence, H.pylori 

infection and its related disease outcomes still remain an important public health issue(17, 66-68). Its burden 
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on public health can be highlighted in its role in the pathogenesis of cancer, with chronic H.pylori infection 

estimated to account for 90% of non-cardia gastric cancer cases worldwide(69).   

2.2 Observational studies: Associations with cardiovascular disease and cancer  

2.2.1 Cardiovascular disease 

H.pylori infection has been postulated to be a risk factor for cardiovascular disease. However, an 

accumulation of inconsistent evidence has put into question the etiological role of H. pylori. Mechanisms 

have been hypothesised to elucidate how H.pylori infection increases the risk of cardiovascular disease, 

with observational epidemiological studies investigating its possible association with atherosclerosis(14, 

15, 70), myocardial infarction(18, 71), coronary heart disease(16, 72, 73), strokes(19, 74, 75), and risk 

factors for cardiovascular diseases(76-78). To highlight the discordance in findings, atherosclerosis, 

coronary heart disease and stroke have been selected.  

2.2.1.1 Atherosclerosis 

H.pylori has been hypothesised to be involved in the pathophysiological pathways leading to the 

development of atherosclerosis(15, 70, 79). It has been observed to be more prevalent in subjects with 

systemic atherosclerosis(80-82), and studies have suggested that infection may trigger ischemic events 

such as myocardial and cerebral infarction(18, 21, 23, 74) (Figure 2).  

Figure 2. Hypothesised biological mechanisms for the association of H. pylori infection with 

atherosclerosis 
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One possible pathway that H.pylori is proposed to encourage atherosclerosis is by affecting lipid 

metabolism(83). Hoffmeister et al. 2001(84) observed an atherogenic lipid profile in H.pylori-positive 

subjects. These subjects presented with low HDL-cholesterol levels, considerably lower HDL-cholesterol 

to total cholesterol, higher apolipoprotein B levels, and lower serum apolipoprotein A1 levels, in 

comparison to the control group who were H.pylori seronegative. The observation of lower HDL 

cholesterol levels could be  important as HDL-cholesterol is considered to be antiatherogenic(85, 86), 

possesses anti-inflammatory and antioxidant properties(87-89), and has the capacity to impede endothelial 

cell damage(90, 91). A decrease in levels of HDL cholesterol could therefore potentially allow for the 

development of atherosclerosis. However, other studies investigating this same association have shown 

small to no notable differences in lipid fractions in H.pylori-positive participants(92, 93). Similarly, 

Mendelian randomization showed limited evidence of HDL cholesterol having a causal effect on 

atherosclerotic-related diseases such as myocardial infarction (Odds ratio (OR): 0.93; 95% CI:  0.68 – 

1.26)(94) and coronary heart disease (OR: 0.81; 95% CI: 0.44 – 1.46)(95). The simplistic pathway of 

lowered HDL cholesterol driving the development of atherosclerosis has also been challenged, with 

recent literature arguing that it is a more complex biological mechanism(96).  

Chronic H.pylori infection has also been implicated in the development of atherosclerosis through 

systemic and vascular inflammation and endothelial dysfunction(97-99). Oshima et al. 2005(81) 

supported this hypothesis through the measurement of high-sensitivity C-reactive protein (CRP), a marker 

of systemic inflammation, and flow-mediated vasodilation. This study illustrated elevated CRP levels in 

H.pylori seropositive subjects greater than the normal reference laboratory value of <1.3 mg/L. 

Furthermore, flow-mediated vasodilation in H.pylori-seropositive subjects was attenuated in comparison 

to H.pylori seronegative subjects. These findings were also similarly observed in a study by Gen et al. 

2010(78). However, Mendelian randomization findings challenge the causal association between CRP 

and coronary heart disease, a disease outcome promoted by the build-up of atherosclerotic plaque. A 

Mendelian randomization meta-analysis using 47 epidemiological studies showed limited evidence of a 

causal association with a risk ratio for coronary heart disease of 1.00 (95% CI: 0.90 – 1.13) per one 

standard deviation (SD) of genetically higher natural log concentration of CRP(100). The interpretation 

from this study would therefore suggest that CRP does not causally affect coronary heart disease. 

The colonisation of H.pylori in human carotid atherosclerotic plaque has also been demonstrated in 

various studies(12, 101-103). Ameriso et al. 2001(14) found H.pylori present in 53% of carotid 

atherosclerotic plaques, and found no trace of H.pylori in carotid arteries without atherosclerosis. 

Additionally, expression of intercellular adhesion module-1 (ICAM-1), a marker of increased endothelial 

inflammatory activity, was present in 75% of patients with H.pylori DNA. However, although this study 
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supports the notion that direct arterial invasion could encourage the pathogenesis of atherosclerosis and 

atherosclerotic diseases, other studies have not found any evidence of H.pylori presence in atherosclerotic 

plaque(104-106).   

In a recent systematic review(13), the relationship between H.pylori infection and atherosclerosis was put 

into question. This review meta-analysed four included studies investigating the presence of H.pylori in 

the atherosclerotic plaque of patients with atherosclerotic-related vascular disease. In a fixed effects 

model, the pooled odds ratio was 4.65 (95% CI: 1.99 – 10.85; I2 = 67.6%)(13). These findings showed 

limited evidence that H.pylori is a risk factor for atherosclerosis, but also strong evidence of heterogeneity 

between studies. In this study, the power to detect and association was inadequate due to the limited 

number of included studies, each study was constrained by a small sample size, and sampling methods 

varied between each study. Therefore, due to lack of concordance between study designs and a need for 

large sample sizes, the association between H.pylori and atherosclerosis still remains unclear. 

 2.2.1.2 Coronary heart disease 

Since a pilot study conducted by Mendall et al. 1994(17) reported a higher prevalence of H.pylori 

infection in patients with coronary heart disease than healthy controls, subsequent studies have 

investigated the association between H.pylori infection and coronary heart disease with contradicting 

results.  

Positive associations with H.pylori infection were observed by Pellicano et al. 1999(24), Kinjo et al. 

2002(21), Kahan et al. 2000(107), and Khodaii et al. 2011(23). These studies observed that H.pylori 

infection was more prevalent in patients diagnosed with myocardial infarction than the control groups. 

Similarly, it was also observed that higher seropositivity of H.pylori was found in patients diagnosed with 

unstable angina in comparison to the matched control group(24). Building on these observational 

findings, Tabata et al. 2016(22) reported that Japanese patients burdened by the H.pylori pathogen and 

polymorphisms of the proinflammatory cytokine interleukin-1 (IL-1) beta had substantially higher levels 

of high sensitivity CRP, and a greater risk of  ST-segment elevation myocardial infarction.  

In larger studies investigating H.pylori seropositivity and coronary heart disease, some evidence or 

limited evidence of an association were shown(73, 108-112). In all included studies, analyses were 

adjusted for age, sex, markers of socioeconomic status (e.g. age of ended full time education, estimated 

household income, region of residence), smoking history, blood pressure, lipid profile, and measures of 

height and weight (e.g. body mass index). In addition, these studies used similar methods of measuring 

H.pylori from plasma samples and measuring H.pylori specific IgG titres by enzyme-linked 

immunosorbent assay (ELISA) . These studies  benefitted from a larger sample size, with the power to 
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detect an association, and adjustment of related risk factors that could otherwise confound and inflate 

results. However, although these methods overcome some of the limitations that hinder small 

observational study findings, these studies could still be biased from unadjusted or unknown confounders.  

Similar findings from systematic reviews over the last 12 years illustrated some evidence of an 

association with coronary heart disease. The most recent systematic review performed by Yu et al. 

2017(113) showed some evidence of an association with an odds ratio of 1.96 (95% CI: 1.47 – 2.63). 

Previous systematic reviews revealed comparable findings with odds ratios of 2.11 (95% CI: 1.70 – 

2.62)(79) and 1.87 (95% CI: 1.46 – 2.40)(114).  

2.2.1.3 Stroke 

The hypothesis that chronic H.pylori infection is associated with the pathogenesis of ischemic stroke was 

first investigated by Markus and Mendall in 1998(74). They reported that, after adjusting for 

socioeconomic status and cardiovascular disease risk factors, H.pylori seropositivity showed a positive 

association with cerebrovascular disease. Additionally, this study also found that for different ischemic 

stroke subtypes H.pylori infection showed a positive association with large vessel disease and small artery 

occlusion, but was not associated with stroke subtypes caused by cardioembolism. Similarly, in a small 

case-control study(115) and in a large Taiwanese nationwide population-based retrospective cohort 

study(20), non-embolic ischemic strokes were shown to be positively associated with H.pylori infection.  

Three separate systematic reviews using case-control studies estimated the association of H.pylori 

infection on the risk of ischemic stroke, and findings from all showed some evidence of an association 

with odds ratios of 1.87 (95% CI: 1.46 – 2.40)(114), 1.49 (95% CI: 1.24 – 1.81)(116), and 1.60 (95% CI: 

1.21 – 2.11)(117), respectively. These reviews however were limited by the included studies which 

consisted of small case-control study designs that might have increased small study bias. In a more recent 

systematic review using large prospective studies, the pooled odds ratio was 0.96 (95% CI: 0.78 – 

1.14)(118). 

2.2.2 Cancer 

In light of increasing evidence from seroepidemiological and nested case-control studies supporting the 

association of H.pylori infection with gastric cancer, the International Agency for Research on Cancer and 

the World Health Organisation in 1994 classified Helicobacter pylori as a group 1 carcinogen (119). 

Studies investigating the role of H.pylori infection with various types of cancers, such as those 

subsequently discussed, contributed to this evidence.  

The acquisition of H.pylori has been attributed to the development of gastric adenocarcinoma and gastric 

mucosa-associated lymphoid tissue (MALT) lymphoma(120-123). It has been observed that amongst 
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H.pylori infected individuals, approximately 10% will develop peptic ulcers, 1-3% will be diagnosed with 

gastric adenocarcinoma, and <0.1% will be identified to have MALT lymphoma(124). In addition to 

bacterial infection, influence from host susceptibility, genetic susceptibility and immune response as well 

as environmental factors also contribute to the multifactorial aetiology of gastric cancer(125, 126). This 

then could increase risk to transition to atrophic gastritis, to metaplasia then dysplasia and finally 

adenocarcinoma(47, 127).  

H.pylori infection has been strongly associated with the development of non-cardia gastric cancer(25, 27, 

128). In the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, Kamangar et al. 

2006(128) reported that in Finnish males (Cases = 234; Age-matched controls = 234) there was a 7.9 fold 

increased risk of non-cardia gastric cancer (95%CI: 3.0-20.9) after adjustment for age, sex, 

socioeconomic status, gastric cancer risk factors, and host nutrition. These findings are in agreement with 

a previous meta-analysis conducted by the Helicobacter and Cancer Collaborative Group(129) in 2001 

that concluded that H.pylori seropositivity increased the risk of non-cardia gastric cancer (OR: 5.9, 95% 

CI: 3.4-10.3). Additionally, they suggested that H.pylori serology collected at least ten years or more 

before patient cancer diagnosis was a better indicator of the magnitude of H.pylori association with non-

cardia cancer. This is because retrospective studies tend to underestimate its association due to the loss of 

H.pylori infection in cases with the onset of cancer. This absence of infection can occur as precancerous 

lesions can modify the environment in the stomach destroying niches in which H.pylori colonies thrived. 

The study also found that infection with H.pylori was restricted to non-cardia gastric cancer, and did not 

increase risk to cardia gastric cancer. This observation has been similarly shown in most studies within 

Western populations(26, 130-133). However, studies in East-Asian cohorts have shown a positive 

association between H.pylori seropositivity and cardia gastric adenocarcinomas(134, 135). 

To understand the discordant findings, Cavaleiro-Pinto et al. 2011(6) performed a meta-analysis to 

investigate the association between H.pylori infection and both non-cardia gastric cancer and cardia 

gastric cancer in low risk gastric cancer settings (Australia, Germany, Finland, Norway, USA) and 

countries with a high risk of gastric cancer (China, Japan, Korea). They found that high-risk countries 

showed a greater positive association with cardia gastric cancer (Relative risk (RR): 1.98, 95% CI: 1.38-

2.83) and non-cardia gastric cancer (RR: 3.02, 95% CI: 1.92-4.74) in comparison to low-risk countries. 

These findings may contribute to the difference in findings, supporting the hypothesis of a heterogenous 

distribution of cardia gastric cancer that are etiologically distinct from one another(28, 29). Another 

suggestion for the conflicting findings is the range of definitions for cardia gastric cancer in different 

countries in terms of its pathological and clinical classification(136, 137).  
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In addition, the association of H.pylori infection and the pathogenesis of cancer has also been suggested 

to be attributable to the high genetic diversity between H.pylori strains with strain-specific genotypes 

conferring different levels of virulence(138, 139). Since the complete genome sequencing of H.pylori in 

1997(140), high rates of mutation and intraspecies recombination have been observed showing a 

divergence of H.pylori strains(141). Bacterial colonisation of virulent H.pylori strains have been seen to 

be associated with the geographical location of individuals and their ancestral origin (142, 143), and this 

will be discussed in further detail later. In particular, virulence factors cytotoxin-associated gene A 

(cagA), located in the 40kb chromosomal region known as the cag pathogenicity island, and the 

vacuolating cytotoxin gene A (vacA) have been intensely studied based on their presence or absence in 

H.pylori strains(144). Polymorphisms of these genes have shown different levels of cytotoxin activity, 

with the subsequent chapters, 2.2.2.1 Cytotoxin-associated gene A and 2.2.2.2 Vacuolating cytotoxin 

gene A, discussing studies investigating the association of these genes with the development of cancer. 

2.2.2.1 Cytotoxin-associated gene A 

The link between cytotoxin-associated gene A (cagA) antigen and its ability to confer malignancy has 

been investigated, with numerous studies showing an increased risk of gastric cancer. This bacterium-

derived oncoprotein has also been shown to trigger the development of tumours and gastric carcinomas in 

transgenic mouse models and in a Mongolian gerbil model(145-149).  

The mechanism by which CagA infiltrates host cells is important as the sequence diversity among cagA 

genes influences pathogenicity(150-154). In the carboxyl-terminal regions of CagA antigens are EPIYA 

(glutamic acid-proline-isoleucine-tyrosine-alanine) motifs which are sites where tyrosine phosphorylation 

occur(151, 155). These EPIYA motifs can be defined as EPIYA-A, EPIYA-B, EPIYA-C, EPIYA-D, with 

EPIYA-A and EPIYA-B motifs presents in almost all CagA sequences(156, 157). Interestingly, the 

addition of the EPIYA-C motif is observed in Western strains, and the EPIYA-D motif is seen in East-

Asian strains(143, 156, 158) (Figure 3). Studies have shown that the East-Asian CagA subtype is more 

virulent than the Western subtype as it is more effective at binding to SHP-2 to cause deregulation and 

morphological transformations in host cells to activate oncogenic pathways(150, 151, 158). The East-

Asian CagA sequence is also shown to induce the production of a greater level of the inflammatory 

cytokine interleukin-8 (IL-8) than the Western subtype(152, 159), and can act to potentiate oncogenic cell 

proliferation(160). These findings complement clinical studies that reported a greater association between 

the East-Asian subtype and chronic active inflammation, atrophic gastritis, and increased risk of gastric 

cancer in comparison to the Western CagA subtype(153, 154, 161). 
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Figure 3. Structural diversity of the H.pylori cytotoxin-associated gene A (adapted from Hatakeyama et 

al. (162)) 

 

These differences in virulence between the East-Asian CagA sequence (EPIYA motif ABD type) and the 

Western CagA sequence (EPIYA motif ABC type) could potentially contribute to explaining the pattern 

in prevalence of gastric cancer. Despite the frequency of H.pylori infection decreasing in East-Asian 

countries(93, 163, 164), studies have reported a higher prevalence of gastric cancer in these countries 

compared to Western countries(165-167). This could potentially be due to the occurrence of the cagA 

gene in Western populations (e.g. Europe, North America, Australia) to only be present in approximately 

60% or less of H.pylori strains(168-171). In contrast, East-Asian populations (i.e. Japan, Korea, China) 

have shown a prevalence of 80% to 100% of CagA-positive H.pylori strains(172-174).  
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2.2.2.2 Vacuolating cytotoxin gene A 

Polymorphisms among the vacuolating cytotoxin gene A (vacA) genotypes have been demonstrated to 

contribute to different degrees of cytotoxicity and are possibly associated with different levels of 

gastrointestinal diseases from peptic ulcers to gastric cancer(175-178) (Figure 4).  

 

 

Figure 4. Genetic structure of H.pylori vacuolating cytotoxin gene A (adapted from Palframan et al. 

(179)) 

 

The signal (s) region which occurs as either s1 or s2 allelic types can be further subtyped into s1a or 

s1b(180, 181). Studies have shown vacA s1 strains to be associated with enhanced and chronic gastric 

mucosal inflammation to cause epithelial cell damage, possibly due to its increased virulence potential to 

produce a greater proportion of vacuolating cytotoxin(178, 182, 183). It has also been associated with 

producing higher levels of IL-8 and intestinal metaplasia(184, 185). Furthermore, s1a allelic types have 

shown a correlation with increased mucosal neutrophil activity and lymphocyte infiltration in comparison 

to the s1b and s2 strains(178). Studies such as these have led to the notion that H.pylori strains bearing the 

s1 allele could increase risk to gastric cancer more than those H.pylori strains containing the s2 allele. 

Interestingly, many of these studies also investigated the associated of cagA and gastric cancer, as most 

strains of H.pylori that carry the cagA-positive genotypes also present the more cytotoxic form of the 

vacA allele, s1(183, 184, 186). This contrasts with cagA-negative strains which are commonly present 

with the non-cytotoxic vacA s2 allele(187). Although the interplay between CagA and VacA is still not 

fully known, functional antagonism has been observed that could affect signal transduction in host cells, 

and this interaction is postulated to have an effect on the severity of disease manifestation(188-190).  

The mid (m) region, categorised as m1 or m2, is responsible for determining the cell specificity of the 

cytotoxin with the different subtypes differing in their receptor binding domains(191-193). In vivo, 
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Atherton et al. 1997(178) reported that epithelial injury showed the strongest association with the vacA 

mid region genotype, with m1 strains associated with a greater propensity to cause injury in the antrum 

and corpus of the stomach compared to m2 strains. The m1 strains have also been shown to be cytotoxic 

to a wider range of host epithelial cells(193, 194). When coupled with other vacA genotypes, Western 

population studies have shown that the vacA s1/m1 genotype are associated with gastric ulcers and gastric 

carcinoma(183, 195, 196). However, the s2/m2 strains have been shown to be almost non-cytotoxic(197). 

Interestingly, East-Asian strains of H.pylori have been observed to carry the vacA s1 allele and 

predominantly the m1 allele(167, 198, 199). This observation is noteworthy as the East-Asian countries of 

Japan and Korea have been reported to have high incidences of gastric cancer(200, 201). In South Asia 

and southern regions of East Asia the m2 allele is becoming more prevalent, and in these areas incidences 

of gastric cancer are shown to be lower(202, 203).  

Furthermore, the intermediate (i) region, subtyped into i1,i2 and i3, have been suggested to be a 

determinant for virulence and pathogenicity(204, 205). Rhead et al. 2007(206) reported that within 

Western countries, the s1/m1 strains consistently presented type i1 and displayed vacuolating activity. 

Whilst s2/m2 strains were subtype i2 and did not display vacuolating activity(207). Similar to i2, the rare 

type i3 was shown to not exhibit vacuolating properties(207). It was also observed that s1/m2 strains 

varied in their intermediate region and were shown to have either the i1 or i2 allele(206). vacA s1/i1/m1 

genotype have been strongly associated with the increased risk of gastric cancer and peptic ulcers in 

Iranian and Italian populations(186, 208). However these studies are discordant to findings from Ogiwara 

et al. 2009(209). They reported that in Western and Asian populations, there was no increased virulence 

in strains of the s1/i1/m1 genotype compared to strains of the s1/i1/m2 genotype when looking at their 

influence on the risk of developing peptic ulcers and gastric cancer.  

2.3 Genetic studies 

The genome-wide association meta-analysis published by Mayerle et al. 2013(42) was the first genetic 

study to identify genetic variants associated with Helicobacter pylori infection. This study used 10,938 

participants of European ancestry from two independent population-based cohorts, the Study of Health in 

Pomerania (SHIP) and the Rotterdam Study (RS). Findings from the meta-analysis revealed two genetic 

variants strongly associated with H.pylori seroprevalence: rs10004195 (OR: 0.70; 95% CI: 0.65 - 0.76) 

located on the toll-like receptor (TLR) gene on 4p14, and rs368433 (OR: 0.73; 95% CI: 0.65 - 0.81) found 

in an intron of the Fc Fragment Of IgG Receptor IIa (FCGR2A) gene on 1q23.3. Genes encoded on the 

4p14 region were identified as TLR1, TLR6, and TLR10, with TLR1 identified to be the gene with the 

most plausible biological pathway associated with H.pylori seroprevalence. The protein encoded by TLR1 

is an innate immune response receptor which forms a heterodimer with TLR2 to stimulate immune 
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responses when lipopeptides, present on a wide range of pathogens such bacteria and viruses, are 

recognised(210-212). To explore the function of TLR1 further, Mayerle et al. 2013(42) recruited 

additional participants to investigate gene expression levels of TLR1, TLR6 and TLR10 on the 4p14 region 

using whole blood samples. Findings showed that rs10004195, the SNP strongly associated with H.pylori 

seroprevalence on TLR, showed evidence of an association with mRNA levels of TLR1 in SHIP (P = 2.1 x 

10-4) and RS (P = 3.2 x 10-17)(42). In addition, TLR1 was the only gene that was differentially expressed 

per copy number of the minor rs10004195-A allele (β: -0.23; 95% CI: -0.34 - -0.11)(42). An 

interpretation of these results suggest that a lower expression of TLR1 may be associated with a 

protective effect against the acquisition of H.pylori infection(213). Conversely, an increased expression of 

TLR1 may suggest an increased likelihood of acquiring H.pylori infection and persistence(213). 

However, the biological mechanism of TLR1 and H.pylori infection has not been defined, and further 

research is required to elucidate the pathways. In addition, the effect of the different H.pylori strains was 

not examined. Replication of this study would also be required in other ethnic groups which are observed 

to have a higher prevalence of virulent H.pylori strains(167, 214, 215).  

To date, this is the only genetic study to investigate the genetic basis of H.pylori seroprevalence. This lack 

of genetic studies highlights the challenges attributable to performing a GWAS on bacterial infections, 

such as H.pylori(216, 217). H.pylori has a high genetic diversity and some strains have been suggested to 

be asymptomatic while others can result in disease development(139, 141, 153, 181). Classifying 

individuals as seropositive for cases and seronegative for controls could be an oversimplification of the 

different H.pylori phenotypes that confer different levels of disease risk. Delineating between H.pylori 

phenotypes (e.g. individuals infected with H.pylori with presence of cagA) could provide a more accurate 

classification of individuals who are seropositive and have a putative H.pylori virulence marker that has 

been shown to encourage disease development. However, a caveat to this suggestion is that individuals 

can be infected by multiple strains of H.pylori(195, 218, 219). This can result in different strains 

colonizing different anatomic regions of the gastric mucosa, resulting in different disease outcomes 

depending on where H.pylori colonizes. Therefore, these limitations illustrate some of the challenges that 

can arise when performing bacterial GWASs. 

3. Limitations of observational studies  

Although numerous observational studies, both retrospective and prospective, provide evidence of 

associations between H.pylori seropositivity and both cardiovascular disease and cancer, these studies are 

prone to confounding, reverse causation, selection biases and regression dilution bias(30). The failures of 

some of the findings from observational study to replicate in RCTs investigating the same hypotheses is a 

major concern as research costs to implement RCTs are high.  
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Confounding can affect the findings of observational studies as unadjusted or unknown factors can 

influence the apparent effect of the exposure on the outcome(220). For example, failure to include factors 

like socioeconomic status as a covariate and appropriately controlling for its effect can bias findings and 

result in an overestimated positive association between H.pylori infection and coronary heart disease. 

This can be seen in a study by Ponzetto et al. 1996(221) who reported a fourfold increased risk of 

coronary heart disease when not accounting for social class and cardiovascular disease risk factors. 

Similarly, Aceti et al. 1996(222) reported a fivefold increased risk in coronary heart disease. These 

accentuated disease risks can be attributable to low socioeconomic status not being adjusted for, as this 

factor is strongly correlated with coronary heart disease and H.pylori infection(73, 76).  

Moreover, observational findings can be biased by reverse causation which can generate spurious 

associations with exposures that have been found to be non-causal when investigated using RCTs. 

Reverse causation can occur when the disease outcome influences the exposure of interest. For example, a 

hypothetical situation could be that H.pylori IgG titers rise after a myocardial infarction event. This would 

then suggest that myocardial infarctions drive an increase in H.pylori infection, and not the reverse 

pathway which is the proposed biological mechanism.   

Associations in observational studies can also become biased due to selection(30). Study settings can  

cause selection bias as selected cases and controls may not be representative of the general population. 

For example, studies conducted in specific workplaces, such as hospitals, or selection according to a 

specific lifestyle choice, such as participants who are vegan. Selection bias can be exemplified in a study 

performed by Mendall et al. 1994(17). The study was observed to not be representative of the general 

population, with the included participants consisting of only white British men aged 45-65 years old from 

a single general practice clinic. This study showed some evidence of H.pylori infection having a positive 

association with coronary heart disease (OR: 2.15; 95% CI: 1.07 – 4.29). However, these results can be 

said to be biased due to the selection of participants from only one gender type, one type of ethnicity, 

from a specific age group, and a small geographical setting. Therefore, to interpret these results as 

applicable to the general population would be misleading. 

Attenuation by error, later renamed ‘regression dilution bias’, is also a limitation that can hinder 

observational study findings(223). This occurs when random imprecision in measurements of an exposure 

variable causes an attenuation of the regression slope towards the null. This bias will then result in an 

underestimation of the regression slope (i.e. beta coefficient) as estimates of the association between an 

exposure and disease outcome are biased in a downward bias(224). For example, when blood pressure is 

measured by a sphygmomanometer, random error due to rounding error or variation in day-to-day blood 

pressure may result in imprecise measurement.  
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Therefore, although observational studies report associations on H.pylori with cardiovascular disease and 

cancer, evidence of causal associations from these studies can be hindered by the limitations mentioned 

above. Well-designed randomised controlled trials (RCT) are considered the gold standard to infer causal 

associations between an exposure and outcome of interest. However, the use of this method can be limited 

by ethical restraints, feasibility, high cost, and are known to be very time consuming(225, 226). For 

example, infecting people with H.pylori would be unethical given the risk of developing cancer and 

cardiovascular disease. In addition, vaccinating children against H.pylori infection could be performed in 

a RCT setting, however to see the benefits of vaccination would take years and this would be too costly.  

Thus, Mendelian randomization provides an alternative approach to infer causality using germline 

genetics that overcome limitations that are observed in observational studies.  

4. Mendelian randomization  

Mendelian randomization uses germline genetic variants as instrumental variables (“proxies”) for 

exposures of interest (e.g. biological traits, environmental factors) to estimate the causal effects of these 

exposures on disease outcomes(227).  

The framework of Mendelian randomization can be intuitively likened to randomized controlled trials as a 

natural analogue to infer causality(228). Instead of randomizing participants into different levels of 

treatment as in RCTs, genotypes in Mendelian randomization randomize individuals into different levels 

of exposure in order to avoid confounding and determine causality. It is important, however, to be 

mindful that although this analogy allows for a better understanding of Mendelian randomization, this 

analogy is not perfect(229).  

To infer causality using Mendelian randomization methodologies, core assumptions must be met for the 

results to be valid (Figure 5). These core assumptions are: 

1. The genetic variant must be associated with the exposure of interest. 

2. The genetic variant should not be associated with confounders of the exposure-outcome 

association.  

3. The genetic variant must be associated with the outcome of interest through the exposure of 

interest.  
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Figure 5. Causal directed acyclic graph (DAG) of Mendelian randomization methodology. Genetic 

variants (G) are used as proxies for a modifiable exposure of interest (E) to examine the causal 

association between E and an outcome of interest (O), without the limitations of reverse causation and 

confounding (C). 

 

Mendelian randomization can be used to help overcome the limitations of observational epidemiological 

studies. Firstly, as germline genetic variants are randomly allocated and independently assorted at 

conception, genotypes are largely independent of biological, socioeconomic and physiological factors 

minimizing confounding. Secondly, since germline genetic variants are fixed at conception, they are non-

modifiable and cannot be influenced by reverse causation. Thirdly, as the associations of germline genetic 

variants with modifiable (non-genetic) exposures are normally thought to persist through the lifecourse, 

associations cannot be attenuated by random imprecision in measurement of the exposure which reduces 

regression dilution bias. Finally, genetic variants are not generally influenced by factors which determine 

how participants are selected in a study, overcoming selection bias. This approach therefore allows for 

more reliable estimates of the causal effects of exposures on outcomes, as compared to conventional 

observational epidemiological studies(230).  

4.1 Mendelian randomization limitations 

Mendelian randomization has its downfalls and estimates of the causal effect can become biased as a 

result of limitations such as pleiotropy, confounding due to linkage disequilibrium and population 

stratification, sample size, lack of robust genetic variants associated with the exposure of interest, and trait 

heterogeneity in genetic variants, which can lead to misleading findings(30). To mitigate potential pitfalls, 

suggestions have been discussed in greater depth in other papers to address these issues in order to 
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provide more reliable, precise causal estimates(227, 229). Limitations specific to examining the causal 

association of H.pylori infection with cardiovascular disease and cancer that must be considered are the 

lack of robust genetic instruments as proxies for H.pylori infection as the exposure of interest, and the 

limited biological understanding of the genetic variants used as instrumental variables. These limitations 

can affect both the robustness of the causal inference and the interpretation of MR findings.  

4.1.1 Lack of robust genetic instruments 

To date, only two SNPs have been identified that show strong evidence of an association with H.pylori 

seroprevalence: rs10004196 (OR: 0.7; 95% CI: 0.65 – 0.76) and rs368433 (OR: 0.73; 95% CI: 0.65 – 

0.81)(42). These SNPs were identified in a GWAS meta-analysis by Mayerle et al. 2013(42) which 

consisted of 10,938 participants in total from the Study of Health in Pomerania cohort and the Rotterdam 

Study cohort (Studies discussed in detail in Chapter 7 Mendelian randomization). Using a small number 

of SNPs as proxies for H.pylori infection in MR analysis can result in low statistical power to detect a 

causal effect and imprecision in causal estimates due to large confidence intervals(229). This is because 

each SNP will only explain a small amount of variance in H.pylori as the exposure of interest, and power 

is a function of sample size, variance explained by the SNP, strength of confounding, causal effect size, 

and type 1 error rate. The H.pylori GWAS meta-analysis performed in this study using  the ALSPAC and 

CaPS cohorts will be implemented in order to identify more SNPs to be used as proxies for H.pylori 

infection in MR analysis. However, these SNPs will need to satisfy the core MR assumptions in order to 

qualify as valid instruments for causal inference.  

4.1.2 Limited biological understanding of the instrumental variables 

The limited understanding of the biological function of the H.pylori genetic variants used as instrumental 

variables can be problematic as horizontal pleiotropy can bias the causal inference. This can occur if the 

H.pylori genetic variants affect the disease outcome (i.e. cardiovascular disease and cancer) via an 

independent biological pathway not through the exposure of interest, therefore violating the ‘exclusion 

restriction criterion’. In order to mitigate against this limitation, measures such as assessing heterogeneity 

between genetic instruments, as well as tests for pleiotropy using MR-Egger regression, weight median, 

and weighted mode approaches, can indicate the strength of bias from horizontal pleiotropy(229, 231) 

(MR methods discussed in detail in Chapter 4.2 Mendelian randomization methods to estimate the causal 

effect). Furthermore, the complexity of the underlying biological mechanisms in the association between 

H.pylori infection and cardiovascular disease and cancer, respectively, can be misleading if MR 

interpretations are overly simplified. An improved understanding of the function of H.pylori genetic 

instruments used in MR analysis through molecular biology approaches would be required in order to 

elucidate the exact mechanisms involved. 
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4.2 Mendelian randomization study designs 

Extensions to the standard one-sample Mendelian randomization design have been developed. These 

approaches extend the scope of standard MR and are used when one-sample MR might not applicable or 

appropriate method to infer causality. These extensions include two-sample MR, bidirectional MR, 

multivariable MR, and factorial MR. Two-sample MR and bidirectional MR are discussed in further 

detail as these approaches have been utilized in this study. 

4.2.1 Two-sample Mendelian randomization  

The implementation of two-sample MR has become increasingly common practice as this approach uses 

summary statistics on gene-exposure and gene-outcome estimates(232-234). The advantage of this 

method is that individual-level data from a single sample is not necessary, thus making studies possible in 

cases where individual level data are not available or cannot be shared (235). Instead, two-sample MR, as 

the name suggests, uses summary statistics from two independent samples for the exposure and outcome 

variables (Figure 6). In addition, this approach benefits from the impact of weak instrument bias being in 

the direction of the null which is conservative and will not lead to inflated Type 1 error rates(236), 

compared to one-sample MR which is biased towards the confounded observational estimate(237). 

Figure 6. DAG of two-sample Mendelian randomization paradigm. The causal association between the 

exposure variable and outcome variable are obtained from separate non-overlapping samples  

The main advantage over standard MR is the use of the increasing amount of publicly available summary 

data from large GWAS consortia(235). By using two independent samples rather than one, the statistical 

power to detect a causal effect is increased as a result of increasing the overall sample size, and this can 

lead to a greater precision of the causal estimate. This is particularly advantageous when assessing the 

causal effects on dichotomous disease outcomes which require larger sample sizes than continuous 

outcomes(238, 239). The likelihood of ‘winner’s curse’ bias (i.e. chance correlation between genetic 

variants and confounders in the GWAS discovery stage, generally leading to an overestimation of the 

SNP-exposure effect) is also likely to be reduced due to increased statistical power(240). Furthermore, 
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violations to the core MR assumptions can be better detected using sensitivity analyses such as MR-Egger 

regression, weighted mode and weighted median approaches (Discussed in further detail in Chapter 4.3 

Mendelian randomization methods to estimate the causal effect).  

In addition to the core MR assumption, additional criteria must be met which require the samples from the 

gene-exposure and the gene-outcome associations to not overlap(241). However, overlap can occur if 

cohorts contribute to GWAS analysis of the exposure of interest and outcome of interest. If samples do 

overlap, the extent of the overlap is important(235). If the overlap is large the causal effect estimates will 

be biased in the direction of the observational estimate. Furthermore, it is important to consider whether 

the two samples are homogenous and representative of the same underlying population. For example, 

ethnicity, age and sex should be checked to ensure that both samples represent the same population. 

 4.2.2 Bidirectional Mendelian randomization  

To determine the direction of causality, bidirectional two-sample MR can be employed using robust 

genetic instruments from independent GWASs, for both the exposure of interest and outcome of interest. 

This method evaluates whether the “exposure” variable causally influences the “outcome”, or whether the 

“outcome” variable causally influences the “exposure”(242). Figure 7 illustrates that if trait A is causally 

associated with trait B, then the genetic instrument GA is associated with trait A and trait B. However, as 

shown with the orange arrow, the genetic instrument GB which is associated with trait B will not be 

associated with trait A.  

Figure 7. DAG of bidirectional Mendelian randomization design strategy 
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Implementation of bidirectional MR can be demonstrated with a study performed by Timpson et al. 

2011(243) examining  the causal direction between measured BMI and circulating CRP to evaluate 

discordant findings in observational studies. Some studies suggested that CRP promotes the development 

of elevated adiposity, whilst others proposed that obesity is a determinant of an inflammatory state of the 

body and subsequently a marker of inflammation that includes CRP levels(244-246). This study inferred 

that the direction of causation was likely to be driven by BMI, with elevated CRP being an inflammatory 

marker(243). However, there are caveats to this approach as it assumes that a single causal direction 

underlies the biological mechanism for the causal association(229). This can be an oversimplification of 

complex biological pathways and may result in misleading interpretations.  

4.3 Mendelian randomization methods to estimate the causal effect 

4.3.1 Inverse-variance weighted  

The inverse-variance weighted (IVW) method is the traditional MR method to estimate causal effect. For 

this method to calculate a consistent estimate of the causal effect either: 1)  All genetic variants (i.e. 

SNPs) must satisfy the instrumental variable assumptions or; 2) The sum of the horizontal pleiotropic 

effects of each instrument must be zero (i.e. balanced horizontal pleiotropy) and pleiotropic effects are 

independent in magnitude of the instrument strength across all instruments (i.e. the Instrument Strength 

Independent of Direct Effect (InSIDE) assumption) (247, 248). When multiple genetic instruments are 

utilized in MR analysis, this method is essentially a meta-analysis of the Wald ratio estimates of the 

causal effect from each genetic instrument to provide an overall causal estimate (i.e. IVW estimate)(229). 

This IVW causal estimate assumes that the Wald ratio estimates from the genetic instruments are 

uncorrelated, and therefore provide independent evidence on the causal effect(249). The same IVW 

causal estimate can be obtained using a weighted linear regression of SNP-outcome associations on SNP-

exposure associations(249).  

To detect and adjust for heterogeneity, the Cochran’s Q statistic can be employed when using the IVW 

method. This test can be applied as it requires the same assumptions to hold that are required to estimate 

the IVW causal estimate(248). If the Q statistic is observed to be much larger than the degrees of freedom 

minus one, this is indicative of heterogeneity(250, 251). This could suggest horizontal pleiotropy between 

genetic instruments and a violation to the exclusion restriction assumption (i.e. The genetic variant is only 

associated with the outcome of interest through the exposure of interest).  

4.3.2 MR-Egger regression 

MR-Egger regression provides a useful sensitivity analysis to the IVW method as it does not assume that 

pleiotropic effects of the SNP-outcome association is zero(252). Under the InSIDE assumption, 
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mentioned previously, MR-Egger regression is able to test for directional pleiotropy, test for a causal 

effect, and provide an estimation of the causal effect(249). If the InSIDE assumption holds, this method 

can provide a consistent causal effect estimate calculated by a genotype-outcome dose response 

relationship(229, 252). The slope estimate, if the assumption holds, then provides an unbiased estimate 

for the causal effect. Directional pleiotropy can also be detected as the intercept estimate can be 

interpreted as the average pleiotropic effect across all genetic instruments(249). Unlike the IVW method, 

the intercept is not constrained to zero(249). A non-zero intercept can either (or in addition to directional 

pleiotropy) demonstrate a violation of the InSIDE assumption, highlighting a potential bias to the IVW 

estimate(249).  

The Rucker’s Q’ statistic is an extension of the Cochran’s Q statistic used in the IVW method to assess 

heterogeneity. If the Q-Q’ value is large, this is suggestive of heterogeneity and indicates that there may 

be directional horizontal pleiotropy between genetic variants(250, 253).  

4.3.3 Weighted median  

 Median-based approaches are a beneficial analysis method as, unlike IVW method, they does not require 

all instruments to be valid(254). In an unweighted median-based analysis, the causal estimates for each 

genetic variant is calculated, and the median of the causal estimates is the estimation of the causal 

effect(249). A consistent causal estimate can be estimated using this approach if at least 50% of the causal 

estimates provided come from valid instruments(229). However the unweighted median-estimator can 

result in bias of the causal effect estimate when the precision of the causal estimates from the genetic 

instruments vary(254). The use of the weighted median approach can therefore be a more suitable method 

to estimate the causal effect. The method proposes that genetic instruments with more precise causal 

estimates will then contribute more weight to the MR analysis(249). This approach can then consistently 

estimate the causal effect if at least 50% of the weight come from valid genetic instruments(254).  

4.3.4 Weighted mode 

Mode-based approaches provide another sensitivity analysis in addition to MR-Egger regression and 

weighted median methods. This approach is based on the concept that genetic instruments of similar 

causal effects will be grouped together, with the group with the largest number of genetic instrument 

providing the causal effect estimate(255). This method can consistently estimate the causal effect if the 

Zero Modal Pleiotropy Assumption (ZEMPA) holds(256). This assumption holds if the most common 

causal estimate comes from valid instruments. 

 Mode-based approaches can be categorized into simple and weighted. Simple mode is unweighted and is 

the mode of the empirical density function of causal estimates(255). Weighted modes, however, are 
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weighted by the inverse variance of the SNP-outcome association(255). For a weighted mode-based 

approach, varying the weight given to each Wald ratio estimate and giving more weighting to valid 

instruments will satisfy the ZEMPA assumption and return a consistent causal effect estimate(256).  

4.4 MR-Base 

To take advantage of the increasing amount of publicly available published GWAS summary statistics, 

MR-Base(257) (http://www.mrbase.org/) was developed with the aim to 1) Curate complete summary 

statistics from published genome-wide association studies into a centralized database and 2) become an 

analytical platform that uses these GWAS summary statistics and, through automation, perform two-

sample MR association tests and sensitivity analyses. Currently, the database consists of 1673 GWAS 

from which include 11 billion SNP-trait associations(258). These GWAS summary data comprise of 

various complex traits and diseases and allows for millions of potential causal associations to be 

evaluated.  

Another application that MR-Base supports is the use of phenome-wide association studies (PheWAS) to 

identify if certain genetic instruments (i.e. SNPs) are a source of horizontal pleiotropy(258). MR-Base 

PheWAS allows users to input a reference SNP ID number (rsID) for a given genetic instrument, and it 

returns a list of traits (starting from the trait with the smallest P-value) identified from genome-wide 

association studies that show an association with the genetic instrument.  

Researchers can benefit from the use of MR-Base through its automation of two-sample MR(258). This 

increases the efficiency and practicality of performing the analysis, as steps such as harmonization of 

GWAS summary data, LD clumping to retain independent instruments for the exposure of interest, and 

sensitivity analyses, such as MR-Egger regression and heterogeneity tests across genetic instruments, can 

be performed(250, 252, 259). Furthermore, as MR-Base comprises of both a curated, centralized database 

and an analytical platform, results that are generated from MR-Base can be easily reproduced.  

However, findings from MR-Base can be limited by issues such as multiple testing and issues concerning 

the interpretation of complex MR results as a result of performing a hypothesis-free study(258). 

Considerations into presenting all results should be performed to avoid the potential for selecting results 

from analyses based on subjective p-value thresholds, and generating a well-defined analysis plan can 

mitigate against such biases(258).  

4.5 LD Hub 

To exploit the use of publicly available GWAS summary statistics and tackle the questions regarding the 

underlying genetic contribution of complex disease risk factors and outcomes, LD Hub 

(http://ldsc.broadinstitute.org/ldhub/)(260) was developed as a centralised database and web interface. 

http://www.mrbase.org/
http://ldsc.broadinstitute.org/ldhub/
http://ldsc.broadinstitute.org/ldhub/
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The LD Hub web interface consists of: 1) A ‘Lookup Centre’ that allows users to search for existing LD 

Score regression findings; 2) Access of the centralised GWAS summary statistics database; 3) 

Automation of cross-trait LD Score regression analysis utilising the GWAS summary statistics in the 

centralised database. Currently, this database consists of cleaned and harmonised summary data from 36 

GWAS consortia, 173 traits with GWAS data, and approximately 1.5 million individuals of European 

ancestry(260). 

The cross-trait LD Score regression analysis (i.e. LD Score correlation analysis) performed in LD Hub is 

an extension of single-trait LD Score regression which requires individual-level genotype data(261). In 

brief, the concept behind single-trait LD Score regression is that genetic variants that have high LD scores 

will have a greater probability of tagging causal variants and have elevated test statistics(262). 

Conversely, genetic variants with low LD scores will have a smaller probability of tagging causal variants 

and attenuated test statistics. Single-trait LD Score regression calculates the SNP-trait correlation as a 

function of the LD Score (i.e. sum of linkage disequilibrium (r2) measured with all other SNPs)(262). 

This approach allows polygenicity to be distinguished from confounding (e.g. population stratification, 

cryptic relatedness). However, flexibility in this approach allows the use of GWAS summary statistics to 

be employed in cross-trait LD Score regression analysis to estimate the genetic correlation between 

different complex disease outcomes and traits of interest (Discussed in further detail in Chapter 4.5.1 LD 

Score correlation analysis). Automation of the cross-trait LD Score regression analysis pipeline allows 

users in LD Hub to upload their GWAS summary data, perform quality control checks on their GWAS 

summary data, perform SNP heritability analysis, and then implement genetic correlation analysis(260).  

The benefits of using LD Hub is primarily its accessibility to all users, even individuals who do not a 

computational background(260). The centralised database minimises the time researchers spend cleaning 

and harmonising GWAS summary statistics, and the user-friendly web interface guides users into how to 

upload their GWAS summary data. However, a limitation of this software is that currently the centralised 

database only includes GWAS studies with individuals of European ancestry(260).  

4.5.1 LD Score correlation analysis 

The method of LD Score regression analysis can be applied to estimate genetic correlations between traits 

or disease outcomes(261). An understanding of genetic correlation is important as it assesses the shared 

genetic architecture of complex disease traits and outcomes. Studies have used the LD Score correlation 

approach to determine the genetic overlap between traits, with studies investigating the genetic correlation 

between autism spectrum disorders and neuropsychiatric variation(263), and years of education and age at 

first childbirth(264).  
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LD Score correlation analysis estimates the genetic correlation (rg) by regressing the trait-trait correlation 

(i.e. product of two z-scores obtained from separate GWASs each investigating a specific trait) as a 

function of the LD Score(261). The slope of the LD Score correlation analysis estimates genetic 

covariance (i.e. per-SNP heritability), with the intercept of the LD Score correlation measuring the degree 

of sample overlap between the two GWASs.  

5. Helicobacter pylori genome-wide association meta-analysis and genetic 

correlation analysis 

5.1 Objectives 

To identify genetic variants that are strongly associated with Helicobacter pylori infection using two 

independent prospective cohorts, and subsequently use the GWAS summary statistics to perform an 

exploratory genetic correlation analysis of phenotypes associated with cardiometabolic diseases and 

cancer. 

5.2 Methods 

5.2.1 Study samples 

ALSPAC is a transgenerational prospective study which initially included over 13,000 women and their 

children recruited in 1990-1992 in the Bristol region of the United Kingdom(265, 266).  The study 

consists of comprehensively measured genetic, phenotypic, epigenetic and metabolomic data on mothers, 

fathers and children, with ongoing follow-up data(267). In this analysis, we used children from the 

“Focus@7” Clinic whose blood samples were collected between September 1998 and October 2000. 

These participants were part of a 10% randomly selection subsample of the ALSPAC cohort (also known 

as the “Children in Focus”), born between June 1992 to December 1992, and invited to attend 

clinics(268). The sample included for analysis with H.pylori phenotype data consisted of 4651 

individuals.   

The Caerphilly Prospective Study is a population-based cohort study consisting of unrelated men 

recruited between 1979 and 1983 when the participants were aged 45-59 years old(269). The study 

defined the area of selection as men residing in the town of Caerphilly in Wales and five adjacent 

villages(270).  At initial enrolment (Phase 1), the sample size included 2512 participants. Further follow-

up data was collected from this cohort every 5 years, resulting in Phase 2 (1984-1988), Phase 3 (1989-

1993) and Phase 4 (1993-1997). At each phase ischaemic heart disease outcomes, lifestyle factors, 

clinical factors and bloods were extensively measured, with additions at Phase 2 of psycho-social factors 
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and at Phase 3 of cognitive function measurements. The current analysis included 868 Caucasian men 

with H.pylori phenotype data. 

 5.2.2 Phenotype measurement 

Whole blood samples from ALSPAC Focus@7 participants were processed by firstly centrifuging at 

3500rpm at 4-5ºC for 10 minutes(268). These samples were then aliquoted and temporarily stored at -

20ºC before being stored at -70/80ºC for long-term storage(268). When ready for analysis, EDTA plasma 

samples were plated out into 96 well plates. Helicobacter pylori whole lysate antigen (Meridian Life 

Sciences, catalogue number: RS2101) was used as an IgG antibody titer and measured using ELISA 

methods to measure H.pylori IgG antibodies in the plasma samples(268, 271). In brief, the assays were 

implemented by reacting the microtiter plates coated with the H.pylori antigen with a sequence of diluted 

aliquots of human plasma, enzyme-labelled anti-human IgG and enzyme substrate, with each reaction 

followed by a plate wash. Subsequently, the enzyme-substrate reaction was quantified using a microplate 

colourimeter to measure optical density. H.pylori measurements were recorded in three ways: the 

measurement of optical density directly read from the ELISA plate; the ratio to standards obtained from 

the standards measured on each ELISA plate; the standardised z-score from each ratio to standard 

measure. In the analysis, the last method was selected and these values were calculated by subtracting the 

ratio to standard and the mean ratio to standard and then dividing by the standard deviation per plate and 

adding 2(268).  

Similarly, frozen plasma samples stored at -20ºC were collected from CaPS participants and measured by 

commercial ELISA (Helicobacter pylori HM-CAP, Sigma Diagnostics, St Louis, Missouri, USA)(108, 

272).  

5.2.3 Genotyping and imputation 

ALSPAC Focus@7 participants were genotyped using the Illumina HumanHap 550 quad chip genome-

wide SNP genotyping platform (Illumina, Inc., San Diego, CA) by 23andMe subcontracting from the 

Wellcome Trust Sanger Institute, Cambridge, UK and the Laboratory Corporation of America, 

Burlington, NC, US, and called with Illumina GenomeStudio. PLINK(273)(v1.07) was used to carry out 

quality control measures on an initial set of 9,912 children, which includes Focus@7 individuals, and 

609,203 directly genotyped SNPs. SNPs were removed if they exhibited more than 5% missingness or a 

Hardy-Weinberg equilibrium P values of less than 5x10-7.  Furthermore, SNPs were removed if they had a 

minor allele frequency less than 3% and a call rate of <95%. Samples were excluded if they had more 

than 5% missingness, extreme autosomal heterozygosity, and undetermined X chromosome 

heterozygosity. Additionally, to determine if the sample displayed evidence of population stratification, 

multidimensional scaling of genome-wide identity-by-state pairwise distances that clustered outside the 
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CEU HapMap 2 population were excluded. Additionally, cryptic relatedness was identified using an 

identity-by-decent estimate 0.1, which approximately corresponds to 10% or more alleles shared identical 

by decent or relatedness at the level of first cousins.  

After quality control, a total of 8,365 unrelated individuals and 500,527 SNPs passed these filters. 

Autosomal SNPs were imputed against the HapMap(274) CEU population (Residents of Utah with 

Northern and Western ancestry; release 22) using MACH(275) (v1.0.16). Out of the total 8,365 

individuals with genotype data, 4,651 individuals from Focus@7 had H.pylori phenotype data, and these 

individuals were used in the GWAS.  

CaPs genotype data was acquired using the Illumina CardioMetabochip(276) which includes 

approximately 200,000 SNPs from loci that had been identified in previous GWASs investigating various 

cardiometabolic disease risk factors and outcomes (e.g. blood pressure, lipid levels, type 2 diabetes and 

myocardial infarction) to have promising associations with the disease risk factor or outcome. Rare 

variants were also imputed using the 1000 Genomes Project(277) as a template, and genotype data was 

called with Illumina GenomeStudio(v2010.3). Quality control measures were carried out on an initial set 

of 1411 individuals and 196,725 directly genotyped SNPs. These measures included removing samples if 

they had gender ambiguity, a call rate of <95%, sample mix-up, replicate concordance, discordance 

between reported and genetically-determined ethnicity and cryptic relatedness(278). Furthermore, SNPs 

were excluded if they had a call rate of <95%. 

A total of 1349 individuals passed the quality control measures, and the genome covered by the 

Metabochip was augmented through imputation using the 1000 Genomes European ancestry reference 

panel(277). Analyses was limited to 1 million SNPs with imputed R2 ≥ 0.8 covering a dense coverage of 

loci related to cardiometabolic disease, and after imputation 1,309,437 SNPs remained. Out of the total 

1349 individuals with genotype data, 868 individuals had H.pylori phenotype data, and these individuals 

were used for analysis.  

5.2.4 Association testing 

In the ALSPAC cohort, H.pylori measures were transformed to SD units. PLINK(273)(v.1.09) was used 

to carry out the GWAS, with age, sex and the first 10 principal components, to adjust for confounding by 

population stratification, included in the linear regression model.  

In the CaPS cohort, PLINK(v1.09) was used to carry out the GWAS, with age, batch number and the first 

10 PCs included in the logistic regression model. LiftOver (http://genome.ucsc.edu/cgi-bin/hgLiftOver) 

was used to standardise genomic coordinates to be reported on the NCBI build 37 (hg 19), with alleles on 

http://genome.ucsc.edu/cgi-bin/hgLiftOver
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the forward strand.  The Haplotype Reference Consortium 1KG reference panel was then used to convert 

chromosomal coordinates to rsIDs.   

In addition, the ALSPAC GWAS included an exclusion list which consisted of a list of individuals who 

must be excluded from the analysis due to reasons such as withdrawal of consent and loss to follow-up.  

5.2.5 Meta-analysis 

METAL(279) was employed for meta-analysis to combine the results from the ALSPAC and CaPS 

GWAS. This analysis used fixed effects model, and only allowed for variants with a high imputation 

quality score (Rsq < 0.8). The threshold to define genome-wide significant associations was P < 5 x 10-8. 

Furthermore, as ALSPAC H.pylori phenotype data consisted of continuous variables and CaPS H.pylori 

data consisted of binary variables, associations were interpreted based on the P-value.  

5.2.6 LD Score correlation analysis 

LD Hub(260)(http://ldsc.broadinstitute.org/), a web interface and centralised database for GWAS 

summary statistics of individuals with European ancestry, was used to perform LD Score correlation 

analysis. Disease outcomes and risk factors used in the genetic correlation analysis consisted of 

cardiometabolic outcomes, cancer types and anthropometric traits. This approach used the summary 

results from my H.pylori GWAS meta-analysis previously performed. Quality control measures were then 

implemented. To standardise the GWAS summary statistics, QC checks such as removal of SNPs with 

minor allele frequency greater than 1%, removal of strand-ambiguous SNPs, removal of SNPs that show 

mismatch to SNPs in the 1000 Genomes dataset, and removal SNPs with large effect sizes, were 

implemented(260). Genetic correlation analysis was subsequently performed. This analysis measures the 

proportion of genetic overlap between trait A (i.e. H.pylori) and trait B (e.g. LDL cholesterol, coronary 

heart disease).   

5.3 Results 

5.3.1 Genome-wide association meta-analysis 

After applying quality control measures, a total of 8,172,101 SNPs were tested for association with 

H.pylori based on phenotype data from 4513 individuals (ALSPAC = 3645; CaPS = 868). ALSPAC 

phenotype data consisted of continuous values of standardised z-scores from each ratio to standard 

measure of H.pylori IgG antibodies, whilst CaPS phenotype data (580 cases and 288 controls) consisted 

of binary values. Therefore, in order interpret GWAS meta-analysis findings when combining the two 

studies, results were interpreted based on P-values. 

http://ldsc.broadinstitute.org/
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No SNPs reached genome-wide significance (P < 5 x 10-8), however the meta-analysis did yield four 

highly suggestive SNPs (P < 10-7)(Table 2) (Figure 8) (Figure 9). The SNP with the smallest P-value, 

rs366337 (P-value = 1.27 x 10-7) is located on chromosome 19 in the LILRB2 locus encoding the 

leukocyte immunoglobulin-like receptor B2. The second leading SNP, rs2177192 (β = 0.475; 95%CI = 

0.296 to 0.653; P-value = 1.86 x 10-7) is located on chromosome 1 in the intron of ST6GALNAC5, a gene 

encoding the protein ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 5. The other suggestive 

SNPs comprised of rs17502937 (β = -0.443; 95%CI = -0.614 to -0.271; P-value = 4.31 x 10-7) located in 

chromosome 13 but not linked to any specific gene, and rs74884614 (β = -0.344; 95%CI = -0.478 to -

0.209; P-value = 5.84 x 10-7) is located on chromosome 2 in the intron of WIPF1, which encodes for 

WAS/WASL interacting protein family member 1. 

Table 2. Suggestive SNPs identified in Helicobacter pylori GWAS meta-analysis. The meta-analysis 

used both continuous and binary H.pylori outcomes, and therefore interpretation of findings were 

compared using only the P-values  

SNP Gene  EA OA β (95% CI) se Weight (N) p  

rs366337 LILRB2  A G NA NA 868 1.266x10-7  

rs2177192 ST6GALNAC5 C G 0.475 (0.296 to 0.653) 0.091 3645 1.861x10-7 

rs17502937  - T G -0.443 (-0.614 to -0.271) 0.088 3645 4.313x10-7 

rs74884614 WIPF1  C G -0.344 (-0.478 to -0.209) 0.069 3645 5.839x10-7 
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Figure 8. H.pylori GWAS meta-analysis results illustrated in a Manhattan plot. This plot is showing the 

association of all SNPs with H.pylori infection. The x-axis illustrates all the available SNPs in the two 

cohorts used for analysis according to their chromosomal position, against the y-axis (i.e. -log10(p)) 

demonstrating the association with H.pylori infection. The green dots highlight the four highly suggestive 

SNPs. The solid red line indicates the threshold for genome-wide significance (P-value = 5 x 10-8). 
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Figure 9.  Q-Q plot of H.pylori GWAS meta-analysis results. The Q-Q plot shows the distribution of 

expected P-values (x-axis) compared to the distribution of the observed P-values (y-axis). The plot 

suggests limited evidence of genetic variants strongly associated with H.pylori infection. 

5.3.2 LD Score correlation analysis 

LD Score regression used 38 anthropometric, cardiometabolic and cancer traits with a Bonferroni 

correction threshold of P < 0.0013. Results shown in Appendix Table 1 illustrated low SNP heritability Z 

scores (i.e. Z score < 4) and therefore no strong signals as a result of the limited sample size from the 

GWAS meta-analysis summary statistics provided (N = 3645).  

6. Mendelian randomization  

The recent development in genome-wide association studies have extended the scope of Mendelian 

randomization by providing an opportunity to utilize the identified genetic variants associated with 

bacterial infection such as H.pylori(42), and gut microbiota of various genera such as Acidaminococcus, 

Escherichia,  Lactobacillus, Bifidobacterium and Oscillibacter(280, 281). 

Prior to the first published H.pylori GWAS meta-analysis in 2013(42), there were no genetic studies 

investigating the genetic basis of H.pylori seroprevalence. This study identified two genetic variants 
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strong associated with H.pylori, rs10004195 (OR: 0.70; 95% CI: 0.65 - 0.76; P: 1.42 x 10-18) located on 

the TLR locus, and rs368433 (OR: 0.73; 95% CI: 0.65 - 0.81) located in an intron of FCGR2A. Both these 

variants suggest a plausible biological pathway, as discussed in Chapter 2.3 Genetic studies.  

To my knowledge, no MR study has been performed to examine the causal association of H.pylori with 

cardiovascular disease and cancer. Therefore, in the absence of studies definitively outlining the causal 

effect of H.pylori on the disease outcomes of interest, Mendelian randomization is a novel and timely 

approach to traditional observational studies. This study will perform two-sample MR using published 

genetic variants as proxies for H.pylori infection to examine the association of H.pylori infection with 

cardiovascular disease outcomes and cancer types (Figure 10). 

Figure 10. DAG of causal associations tested using the two-sample MR paradigm: 1) Causal association 

between exposure, H.pylori, and outcome, cardiovascular disease (CVD) traits, estimated using H.pylori 

single nucleotide polymorphisms (SNPs) as proxies; 2) Causal association between exposure, H.pylori, 

and outcome, cancer types, estimated using H.pylori SNPs as proxies for the exposure of interest.  

 

6.1 Objectives 

To examine the causal association of Helicobacter pylori with cardiovascular disease traits and cancer, 

respectively.  

6.2 Methods 

6.2.1 Instrument selection  

To generate a genetic instrument for H.pylori seroprevalence, we used the results from a published 

H.pylori GWAS meta-analysis(24). To categorise individuals as H.pylori seropositive (case) or 

seronegative (control), seroprevalence was classified as an anti-H.pylori IgG titer equal to or greater than 

20 U/mL(282).  Individual participant data from the Study of Health in Pomerania (SHIP) (n = 3830), and 
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two cohorts from the Rotterdam Study (RS), RS-I (n = 4542) and RS-II (n = 2566), were included in the 

GWAS meta-analysis(42). 

The SHIP study comprises of two independent population-based cohorts, SHIP and SHIP-TREND, in 

West Pomerania, north-east of Germany(283). The study design of these two cohorts consists of a two-

stage cluster sample of individuals aged 20 to 79 years(283). Participants in the SHIP cohort were 

recruited from October 1997 to May 2001. Overall, this cohort included 6265 eligible participants(283). 

Recruitment and  baseline measurements for the SHIP-TREND cohort were performed between 2008 and 

2012 and consisted of 4420 participants(284).   

The Rotterdam Study is a prospective population-based cohort based in Rotterdam, the Netherlands(285). 

This study consists of 3 cohorts (RS-I, RS-II, RS-III), with eligible participants aged 55 years and 

over(286). Participant recruitment and baseline data for RS-I (n = 7983) were acquired from 1990-1993, 

RS-II (n = 3011) obtained between 2000-2001, and RS-III (n = 3932) collected from 2006-2008(286). 

Using a fixed-effects meta-analysis model, they identified rs10004195 (p = 1.42 x 10-18) located on TLR 

and rs368433 (p = 2.1 x 10-8) located in the intron of FCGR2A, showing evidence of genome-wide 

significance (p  = 5x10-8)(42). The location of these loci in the TLR and FCGR2A gene complement the 

context of H.pylori as an infection which triggers an immune response, as TLR plays a role in the innate 

immune system(287) and FCGR2A is  found on the surface of many immune response 

cells(288)(Function of genes discussed in detail in 6.2 Genetic studies). Table 3 demonstrates the 

mentioned genetic variants used as proxies for H.pylori as the exposure of interest in two-sample 

Mendelian randomization analysis. 

Linkage disequilibrium clumping was then employed using European samples from the 1000 Genomes 

Project to remove highly-correlated genetic variants (289). The genetic variants were pruned and clumped 

using R version 3.5.1 and measured using r2, a measure of linkage disequilibrium, at a threshold of 0.001 

to ensure that the H.pylori genetic variants used were independent from one another.   

Table 3. H.pylori genetic instruments for two-sample MR analysis. 

Phenotype SNP β  se eaf EA OA p Gene 

H.pylori rs10004195 -0.357 0.05 0.247 A T 1.42x10-18  TLR 

H.pylori rs368433 -0.315 0.08 0.16 G A 2.1x10-8  FCGR2A 
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6.2.2 Outcome selection 

MR-Base (http://www.mrbase.org/), a centralised database of harmonised summary data from 1094 

genome-wide association studies examining various diseases and complex traits, was used to generate a 

list of traits related to cardiovascular disease and cancers(257). In total, 87 traits were selected and used as 

outcome data for the two-sample MR analysis using traits from the MR-Base centralised database that 

were identified in the subcategories ‘Anthropometric’, ‘Cardiovascular’, and ‘Cancer’ (Appendix Table 

2). The majority of populations that the GWAS were derived from were homogenous, consisting of 

Caucasian European ancestry. However, for some traits GWAS data from populations of other ancestry, 

such as South-East Asian, were included. Principal components were used to mitigate the effect on the 

causal estimates.  

6.2.3 Two-sample Mendelian randomization method 

Two-sample MR analysis was performed to estimate the causal effect of H.pylori on cardiovascular 

disease traits and cancers using summary statistics from the Mayerle et al. 2013(42) genome-wide 

association meta-analysis. R version 3.5.1 was utilised to access the MR-Base centralised database and 

perform two-sample MR.  

In order to perform two-sample MR, specific information from the summary statistics from the H.pylori 

GWAS(42) needed to be extracted. The data frame of the H.pylori genetic instruments included: rsID of 

single-nucleotide polymorphisms (SNPs), beta values, standard error values, effect allele, other allele, 

effect allele frequency, phenotype, p values and gene name.  

Harmonisation of datasets from instrument-exposure and instrument-outcome was then performed. This 

stage is essential and must be completed correctly to ensure that the causal effect is not biased due to data 

harmonisation error.  The first step in harmonisation was to standardise the direction in the exposure 

dataset. This included ensuring that the exposure was coded in the same forward (5’-3’) positive strand 

direction, meaning that the exposure-increasing allele is noted as the effect allele(259). If this was not the 

case, the genetic variant would then need to be ‘flipped’ (i.e. effect allele, effect estimates and effect 

allele frequencies) in order to conform to the same direction as the other genetic variants(259). The 

outcome data (i.e. data of included traits from MR Base) was also required to be coded from the same 

strand as the exposure dataset. This then ensured that alleles in the outcome dataset matched the alleles in 

the exposure dataset. Without the proper data harmonisation, effect allele mismatches can result in the 

causal effect estimate becoming distorted, and interpretation of findings can become misleading(259).  

Two-sample MR was then performed to calculate the estimates of the causal effect of the exposure 

(H.pylori) on the cardiovascular disease outcomes and cancer outcomes using Wald ratio and inverse 

http://www.mrbase.org/
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variance weighted method. Other MR methods such as MR-Egger regression, weighted mode and 

weighted median could not be used as sensitivity analyses as the genetic instrument consisted of only two 

genetic variants (rs10004195 and rs368433). More genetic variants are required to perform these MR 

methods. Wald ratio estimates were calculated for each genetic instrument to estimate the causal effect of 

H.pylori on the outcome variables. IVW method was used when ratio estimates from multiple 

instrumental variables could be meta-analysed to estimate the causal effect. Sensitivity analyses to test for 

heterogeneity using Cochran’s Q statistic and single SNP analysis were also performed.  

PhenoSpD(290) was then implemented as an appropriate method to correct for multiple testing and avoid 

overcorrecting due to correlated datasets of cardiovascular disease traits and cancer. As the phenotypic 

correlation matrix from LD Hub(260) was provided, the steps of GWAS data harmonisation and 

phenotypic correlation estimation was already previously performed to obtain the phenotypic correlation 

matrix. In brief, GWAS summary statistics of cardiovascular disease outcomes and cancer types were 

used from MR-Base(257). For each disease traits, included GWASs were selected by largest sample size 

or largest number of cases for binary traits. All included summary statistics were then harmonised, with 

all datasets containing ‘SNP’, ‘Effect allele’, ‘Other allele’, ‘Z-score’, ‘P-value’, and ‘Sample size (N)’.  

Phenotypic correlation estimation is then calculated in LD Hub(260) by performing bivariate LD score 

regression, adjusting for sample overlap(290). The regression intercepts, which are the phenotypic 

correlation between two traits (e.g. phenotypic correlation between LDL cholesterol and coronary heart 

disease), then form the phenotypic correlation matrix. Spectral decomposition (SpD) approach(291, 292) 

is then applied to estimate of the number of independent variables among the selected outcome traits 

using the phenotypic correlation matrix, estimate the number of independent tests, and calculate a more 

appropriate significance threshold than using Bonferroni correction(290). 

An illustrative plot was then generated using a forest plot to illustrate the two-sample MR results. Two-

sample MR analysis was performed using the R package of MR-Base 

(257)(https://github.com/MRCIEU/TwoSampleMR).  

Finally, MR-Base PheWAS (http://phewas.mrbase.org/) was employed to determine potential pleiotropic 

pathways associated with the selected SNPs. This was used to examine if the SNPs were linked to 

cardiovascular and cancer traits that could violate the “no pleiotropy” assumption.   

https://github.com/MRCIEU/TwoSampleMR
http://phewas.mrbase.org/
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6.2.4 Sensitivity analyses 

6.2.4.1 Bidirectional Mendelian randomization 

To explore the traits (i.e. heart rate, hip circumference, LDL-cholesterol, and breast cancer) that reached 

the experiment-wide significance threshold (P < 0.0007547) in the preliminary MR analysis, bidirectional 

MR was employed to examine the direction of causality.  

Genetic instruments to act as proxies for these selected exposures of interest were extracted from MR 

Base(257)(http://www.mrbase.org/) (Appendix Table 3). For heart rate, instruments from the Heart Rate 

consortium (HRgene) were extracted. 15 robust SNPs (P value > 5 x 10-8) were obtained from a sample 

size of 92,355 individuals of predominantly European ancestry (European = 92%, Other = 8%). The UK 

Biobank(293) cohort was used to obtain genetic instruments for hip circumference and breast cancer. In 

total, this large, population-based prospective study consists of 500,000 participants aged 40-69 years, 

with extensive genetic and phenotypic data collection between 2006 to 2010(294). 285 robust SNPs 

associated with hip circumference were included in the analysis, with these genetic instruments acquired 

from an all European cohort with a sample size of 336,601 individuals. Similarly, an all European sample 

of 308,780 participants was used to obtain the 11 robust SNPs associated with breast cancer. The GLGC 

was employed to obtain the 80 robust SNPs associated with LDL-cholesterol used in the analysis. The 

sample size used to obtain these genetic variants consisted of 173,082 individuals of mixed ancestry, with 

this consortium made up of cohorts from Europe, East Asia, South Asia and Africa. 

Outcome data was obtained from the H.pylori GWAS meta-analysis, using the ALSPAC(266) and 

CaPS(108) cohorts, performed prior to this bidirectional MR(108). 

Similar to two-sample MR, LD clumping and harmonisation of the instrument-exposure and instrument-

outcome datasets, and MR analysis were performed as described before.  

Bidirectional MR was applied to test the hypothesis that the traits of interest (i.e. exposure of interest) 

would not be in the direction of H.pylori, and therefore would not show strong evidence of reverse 

causation. This MR analysis was able to benefit from all the genetic instruments for each trait having 

more than two SNPs which therefore allowed the use of MR-Egger regression, weighted median 

approach, and weighted mode approach to be used for sensitivity analyses. As previously discussed in 

Chapter 4.2 Mendelian randomization methods to estimate the causal effect, these methods are useful in 

determining if the IVW causal effect estimate is biased and if the genetic instruments violate instrumental 

variable assumptions due to limitations such as horizontal pleiotropy.  

http://www.mrbase.org/)%20(Appendix%20Table
http://www.mrbase.org/)%20(Appendix%20Table
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6.2.4.2 Test for heterogeneity 

Cochran’s Q statistic (IVW) and Rucker’s Q’ statistic (MR-Egger) (previously discussed in Chapter 4.2 

Mendelian randomization methods to estimate the causal effect) were utilised to measure heterogeneity 

between genetic instruments as sensitivity analyses to detect pleiotropic effects. 

6.2.4.3 Test for directional pleiotropy  

The MR-Egger intercept was used to test for directional pleiotropy by measuring how far the intercept 

value deviated from zero (i.e. no pleiotropic effect or balanced horizontal pleiotropy). Across all genetic 

instruments, this value captures the average pleiotropic effect.  

6.2.4.4 Single-SNP analysis 

The single-SNP analysis used the Wald method(295) to estimate the causal effect of the exposure (i.e. 

H.pylori) on the disease outcome (i.e. CVD traits or cancer types) from each single genetic instrument.  

6.3 Results 

6.3.1 Two-sample Mendelian randomization analysis 

A total of 87 outcomes of interest were analysed to determine which traits were causally associated with 

H.pylori infection. As some of the traits were observed to be corelated, the PhenoSpD approach was 

employed. PhenoSpD determined that 78 traits out of the 87 were independent of each other, with an 

experiment-wide significance threshold of P > 0.0007. Using this threshold, four traits were identified to 

be causally associated with H.pylori: LDL cholesterol (β = -0.113; 95% CI = -0.170 to -0.056; P-value = 

0.0001), Hip circumference (β = -0.032; 95% CI = -0.049 to -0.016; P-value = 0.0001), Breast cancer (β = 

-0.008; 95% CI = -0.013 to -0.004), and Heart rate (β = -0.485; 95% CI = -0.767 to -0.203; P-value = 

0.0007) (Figure 11) (Appendix Table 4).  
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Figure 11. Forest plot illustrating findings from two-sample MR analysis. The plot shows the causal 

association of H.pylori infection with different cardiovascular disease outcomes and cancer types by 

plotting causal effect estimates and 95% confidence intervals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, MR single SNP analysis demonstrated that for heart rate, rs10004195 (β = -0.455; 95% CI = 

-0.783 to -0.127; P-value = 0.007) and rs368433 (β = -0.570; 95% CI = -1.121 to -0.020; P-value = 0.042) 

showed some evidence of causality separately, however the IVW causal effect estimate illustrated that 

together these SNPs showed stronger evidence of a causal association with H.pylori in the same direction 
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(β = -0.485; 95% CI = -0.767 to -0.203; P-value = 0.001)(Figure 12). Sensitivity analysis for heart rate 

using Cochran’s Q test showed limited evidence of heterogeneity between genetic instruments and limited 

evidence of pleiotropic effects (Q = 0.125; Q P-value = 0.723). 

Figure 12.  Forest plot of two-sample MR single-SNP analysis: Heart rate results. This analysis illustrates 

the causal effect estimate of H.pylori infection on heart rate for each genetic instruments, and then a 

combined IVW causal effect estimate 

 

6.3.2 Bidirectional Mendelian randomization analysis 

Using the traits that reached the experiment-wide significance threshold in the two-sample MR analysis 

(i.e. LDL-cholesterol, breast cancer, hip circumference, and heart rate), bidirectional MR was performed 

to examine the direction of causality.  

The odds ratio for one standard deviation unit change of H.pylori per one standard deviation (SD) unit 

change of LDL-cholesterol was 1.036 (95% CI = -0.064 to 0.135) (Appendix Table 5). Similarly, MR-

Egger, weighted median and weighted mode methods concurred with this result. Additionally, sensitivity 

analysis showed little evidence of directional pleiotropy with an MR-Egger intercept estimate of -0.003 
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(95% CI = -0.012 to 0.006; P-value = 0.569) and the Cochran’s Q (Q = 66.336; P-value of Q = 0.696) and 

Rucker’s Q (Q = 66.664; P-value of Q = 0.715) statistics showing little evidence of heterogeneity 

between genetic instruments. Furthermore, as shown in Appendix Table 6, the single SNP analysis 

displayed little evidence of association for each SNP separately.  

Analysis of hip circumference demonstrated an OR of 1.054 (95% CI = -0.106 to 0.212) for one SD unit 

change of H.pylori per one SD unit change of hip circumference (Appendix Table 5). This is in agreeance 

with the MR-Egger, weighted median and weighted mode approach (Table 6). The single SNP analysis 

displayed in Appendix Table 7 showing little evidence of association for each SNP separately. The MR-

Egger intercept estimate yielded a value of 0.011 (95% CI: 0.002 to 0.021; P-value = 0.023) suggesting 

no strong evidence of pleiotropic effects across the genetic instruments. Cochran’s Q (Q = 209.486; P-

value of Q = 0.748) and Rucker’s Q (Q = 204.226; P-value of Q = 0.811) statistics also showed limited 

evidence of heterogeneity.  

Under the assumptions of the IVW method, the OR for one SD unit of change of H.pylori per SD unit of 

change for heart rate was 1.008 (95% CI = -0.020 to 0.037) (Appendix Table 5). This coincides with OR 

using MR-Egger, weighted median, and weighted mode (Appendix Table 5). Similar to LDL-cholesterol 

and hip circumference findings, the MR-Egger intercept estimate suggested little evidence of directional 

pleiotropy (MR-Egger intercept =  -0.026; 95% CI = -0.081 to 0.028; P-value = 0.364) or heterogeneity 

(Cochran’s Q: Q = 14.272; P-value of Q = 0.430; Rucker’s Q: Q = 13.363; P-value of Q = 0.420). 

Additionally, in Table 4 single SNP analysis displayed little evidence of association for each SNP 

separately.  

Table 4. Bidirectional MR: Heart rate single-SNP analysis results. The analysis estimated the causal 

effect of heart rate (exposure of interest) on H.pylori infection (outcome of interest) for each genetic 

instrument 

SNP β se p Lower 95% CI Upper 95% CI 

rs1015451 0.041 0.053 0.437 -0.062 0.144 

rs11153730 0.078 0.055 0.152 -0.029 0.185 

rs11578508 -0.016 0.057 0.781 -0.128 0.096 

rs13030174 0.120 0.078 0.125 -0.033 0.274 

rs13245899 0.011 0.052 0.828 -0.091 0.113 

rs17287293 -0.018 0.066 0.781 -0.148 0.111 

rs17362588 0.062 0.054 0.247 -0.043 0.167 

rs174549 0.035 0.058 0.553 -0.080 0.149 
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rs17796783 -0.030 0.076 0.688 -0.178 0.118 

rs2029213 -0.051 0.078 0.514 -0.204 0.102 

rs365990 0.011 0.038 0.767 -0.063 0.086 

rs3729992 -0.026 0.085 0.763 -0.192 0.141 

rs4489968 0.026 0.061 0.673 -0.093 0.145 

rs6127471 0.009 0.043 0.838 -0.075 0.093 

rs7980799 -0.136 0.053 0.009 -0.239 -0.033 

 

The variable of interest, maternal family history of breast cancer yielded an OR of  0.470 (95% CI = -

3.526 to 2.017) for H.pylori per one SD higher genetically raised natural log (ln) of breast cancer 

(Appendix Table 5). Weighted median and weighted mode displayed similar ORs with each other of 

0.274 (95% CI = -4.905 to 2.317) and 0.237 (95% CI = -5.770 to 2.891), respectively. Dissimilarly, MR-

Egger calculated an OR of 29.93(95% CI = -4.059 to 10.857). Sensitivity analyses illustrated no strong 

evidence of directional pleiotropy (MR-Egger intercept = -0.029; 95% CI = -0.077 to 0.019; P-value = 

0.278) and heterogeneity (Cochran’s Q: Q = 7.281; P-value of Q = 0.507; Rucker’s Q: Q = 5.898; P-value 

of Q = 0.552) across and between genetic instruments. Additionally, single SNP analysis did not yield 

strong evidence of a causal association for any single genetic instrument (Table 5).  

Table 5. Bidirectional MR: Breast cancer single-SNP analysis results. The analysis estimated the causal 

effect of breast cancer (exposure of interest) on H.pylori infection (outcome of interest) for each genetic 

instrument  

SNP β se p Lower 95% CI Upper 95% CI 

rs1078806 0.287 2.842 0.920 -5.283 5.857 

rs11836367 -6.383 5.123 0.213 -16.424 3.658 

rs1269867 -1.346 5.386 0.803 -11.902 9.210 

rs4442975 -3.989 5.413 0.461 -14.598 6.620 

rs4784227 -2.528 3.192 0.428 -8.785 3.729 

rs58952190 12.253 6.402 0.056 -0.294 24.800 

rs78540526 -3.325 4.085 0.416 -11.332 4.681 

rs7976725 0.377 5.162 0.942 -9.741 10.495 

rs9397437 2.976 4.495 0.508 -5.834 11.785 
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7. Discussion 

7.1 Objectives and major findings 

Helicobacter pylori infection has been intensely investigated for its association with various 

gastrointestinal diseases(296-298), with observational studies also suggesting a link to cardiovascular 

disease and cancer. However, discordance in observational studies, limited by issues such as confounding, 

have led to no strong body of evidence definitively supporting a causal association of this bacterium with 

cardiovascular disease and cancer. I used GWAS to identify genetic variants associated with H.pylori 

seroprevalence using the ALSPAC and CaPs cohorts, LD score correlation analysis to identify genetic 

correlations between H.pylori infection and cardiovascular disease traits and cancer, and used published 

H.pylori genetic variants as proxies for Mendelian randomization to examine the causal association of 

H.pylori infection with cardiovascular disease and cancer.  

Results from the GWAS meta-analysis identified four highly suggestive SNPs showing some evidence of 

an association with H.pylori infection. The SNP with the lowest P-value is located on LILRB2, and the 

second leading SNP is located on ST6GALNAC5. In addition, LD Score correlation analysis was 

employed but did not yield any reliable estimates of genetic correlation between H.pylori and disease 

traits and outcomes of interest.  

My MR findings indicated evidence that an increase in H.pylori infection is causally associated with a 

decrease in LDL cholesterol, hip circumference, breast cancer, and heart rate, respectively. Sensitivity 

analyses also showed limited evidence of causality in the direction of the identified disease traits to 

H.pylori infection, and no strong evidence of directional pleiotropy and heterogeneity.  

7.2 Genome-wide association meta-analysis findings  

The identification of rs366337 as the SNP with the smallest P-value in the GWAS meta-analysis is 

potentially of interest due to its location on LILRB2. Although this SNP did not reach the genome-wide 

significance threshold, the function of this gene could suggest a biologically plausible pathway for 

H.pylori infection. Generally, the leukocyte immunoglobulin-like receptor (LILR) family are found 

among many cell populations in the immune system and are known to regulate immune cell activation 

induced by external stimuli that encourage innate and adaptive immune responses(299). The 

immunoregulatory properties of LILBR2 are specifically in monocytes and dendritic cell functions (i.e. 

antigen presentation to T cells and pro-inflammatory cytokine production), where it encodes the LILBR2 

inhibitory receptor protein(300). Studies have shown the presence of LILBR2 expression in active 

rheumatoid arthritis (301, 302) and in multiple cancer types such as leukaemia, breast cancer, non-small 

cell lung cancer and colorectal cancer(303-306). Furthermore, studies have shown evidence that LILBR2 
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is involved in the propagation of cancer cells(304, 307-309). The role of LILBR2 in infection has also 

been explored by Brown et al. 2009(310) suggesting that expression of LILBR2 at a lower level as a 

response to toll-like receptor signalling could be an interesting interplay of immunostimulatory and 

immunoinhibitory responses to bacterial infection. Through potential modulation of TLR stimulating 

LILR expression, and the suppression of TLR through LILR activity, this balance to induce inflammation 

could shed light on a possible biological mechanism for H.pylori disease outcomes. Furthermore, the 

interaction of TLR with LILBR2 and their expression on the same cell types is interesting as TLR was 

identified in the Mayerele et al. 2013(42) H.pylori GWAS meta-analysis. This study showed strong 

evidence of genome-wide significance with a genetic variant located on the TLR locus (as discussed in 

Chapter 2.3 Genetic studies).   

Furthermore, the identification of a highly suggestive SNP on ST6GALNAC5 is also potentially relevant 

and could be explored further as literature has shown evidence of this gene associated with cardiovascular 

disease and cancer(311-313). This gene encodes sialyltransferase 7e and, although the function of 

sialyltransferases are not clearly defined, its interaction with glycosylation patterns suggest that its role 

includes recognition, proliferation, adhesion and differentiation of cells(314-316). The elevation of 

sialyltransferase activity has been shown to be associated with atherosclerosis and coronary artery disease 

in blood cells and serum sialic acid levels(317-320). Additionally, in an inbred Iranian population, two 

mutations in ST6GALNAC5 were suggested to drive the pathogenesis of coronary artery disease(311). 

ST6GALNAC5 has also been proposed to be a mediator of cancer cell passage from breast cancer 

metastasis to the brain resulting in increased adhesion of cancer cells to the brain endothelial cells, with 

cancer cells also able to across the blood-brain barrier(313).  

Given the lack of defined biological mechanisms associating H.pylori infection with the identified genetic 

variants on LILRB2 and ST6GALNAC5, the relevance of these findings are only suggestive. The use of 

animal modelling and cell biology methods to elucidate the potential biological pathways of these gene 

with H.pylori infection would be required.  

7.2.1 Strengths and limitations 

The strength of the GWAS meta-analysis was the overall sample size. It enabled me to identify genetic 

variants associated with H.pylori infection by increasing statistical power. In addition, it provided the 

opportunity to collaborate with researchers of a large consortium on GWAS of H.pylori infection and 

make plans to include the GWAS that I performed in their meta-analysis. This collaboration is going to 

lead to a dramatic increase in sample size and provide new insights into the genetics of H.pylori infection. 



 

56 

 

However, this meta-analysis that I performed was limited by the use of continuous variables (i.e. 

ALSPAC) and binary variables (i.e. CaPS). This is due to the differences in units used in each phenotype 

dataset as the continuous trait was measured in SD units and the binary trait was measured in log odds 

ratio. To transform the ALSPAC data from continuous to binary would have been preferable for analysis, 

however there is currently no internationally defined cut-off for H.pylori IgG antibodies measured from 

plasma samples that can standardise individuals as H.pylori seropositive (case) and H.pylori seronegative 

(control). Studies have demonstrated highly varied thresholds with non-consistent cut-off threshold(4, 42, 

321-323).  

In contrast, when implementing LD Score correlation analysis, the overall sample size was considered to 

be a limitation as the analysis did not have enough statistical power to identify genetic correlations. By 

repeating this analysis in a large sample size, this would increase statistical power to detect genetic 

correlations between H.pylori infection and disease outcomes of interest.  

7.2.2 Implications 

The implications of the GWAS meta-analysis findings is that it provide new insight into the genetic 

contribution of H.pylori infection, and provide evidence about the biological mechanisms that may 

underlie disease pathogenesis. The evidence supporting LILBR2 and its association with cancer(303, 307, 

309), and the correlation of ST6GALNAC5 with coronary artery disease and cancer, respectively, could 

suggest a genetic basis for these diseases(311, 313). Furthermore, if further research supports the role of 

these genetic variants in disease development, the implementation of genetic testing and H.pylori 

eradication therapy could be used to identify individuals at risk and treat them accordingly.  

7.3 Mendelian randomization findings 

Mendelian randomization findings showed no direct causal relationship with cardiovascular disease 

outcomes such as coronary heart disease and stroke. However, H.pylori infection was shown to have a 

negative causal association with LDL cholesterol, hip circumference, heart rate and maternal history of 

breast cancer. These findings challenge the current literature as they are not in agreement with the 

biological pathway proposed by observational studies as they suggest that chronic H.pylori infection 

encourages cardiovascular disease outcomes(17, 18, 76, 103) and cancer(3, 43, 124, 138). These MR 

results therefore put into question the role of H.pylori infection in the development of cardiovascular 

disease and cancer.  

One explanation for these findings could be that, due to the limited number of robust genetic instruments 

used in the analysis, these causal effect estimates are not representative of the true underlying biological 

mechanisms. Limitations due to this issue are discussed in further detail. In brief, two genetic instruments 
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can result in a lack of statistical power to detect causal associations between H.pylori infection and 

disease outcomes of interest. In addition, violations to instrumental variable assumptions cannot be tested 

using sensitivity analyses and, as a result, issues such as horizontal pleiotropy could be biasing MR 

findings.  

Another explanation could suggest that the MR findings are true causal effect estimates. Although 

observational studies have shown positive associations linking H.pylori infection to cardiovascular 

disease and cancer, heterogeneity in these findings could reflect the limitations that hinder these study 

designs. A major limitation of observational studies is the inadequate adjustment of factors that can 

influence H.pylori infection and bias findings, resulting in spurious associations or inflated estimates of 

the real association that may exist. For example, observational studies investigating H.pylori infection 

have shown inflated positive associations with cardiovascular disease outcomes as a result of 

confounding(221, 222). The inability to make appropriate adjustments for unknown confounders are also 

a limitation for observational studies. Furthermore, studies with small samples sizes can also distort 

findings(17, 74, 324). An interpretation of these MR findings could suggest that H.pylori could play a 

beneficial role as a gastric pathogen. Literature investigating allergies, asthma and celiac disease have 

observationally shown an inverse association with chronic H.pylori infection, highlighting its potential as 

a useful bacterium(325-328).    

7.3.1 Strengths and limitations 

This method benefitted from a combination of different strengths. Firstly, the main advantage of 

performing MR analysis is its ability to overcome the limitations that hinder observational studies. As 

discussed in Chapter 4 Mendelian randomization, the use of germline genetic variants as proxies for an 

exposure of interest (in this case, H.pylori) minimises the potential for confounding, and avoids reverse 

causation, regression dilution bias and selection bias of participants recruited into a study(36). Secondly, 

the use of summary statistics from large GWAS consortia available on MR-Base(257) in a two-sample 

setting increases the sample size of the disease outcome sample enhancing the statistical power to detect 

causal associations.  

The main limitation of the analysis was the lack of robust genetic variants associated with H.pylori 

infection. Unfortunately the four highly suggestive SNPs identified in the GWAS meta-analysis did not 

show strong enough evidence of an association with H.pylori infection, and were not used in MR. To 

utilise these SNPs as genetic instruments in the MR analysis could have resulted in violations to the 

instrumental variable assumptions. Thus, only two SNPs from a published GWAS meta-analysis were 

used as proxies for H.pylori infection as the exposure of interest and this decreased the statistical power to 

detect causal associations. In addition, sensitivity analyses such as MR-Egger regression, mode-based 
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approaches, and median-based approaches, were unable to be employed due to the limited number of 

instruments. These approaches would have been beneficial to test for directional horizontal pleiotropy 

across genetic instruments, and heterogeneity between instruments. As a consequence, violations to the 

instrumental variable assumptions and bias of the causal effect estimates could  not be tested. Therefore 

the Wald ratio estimates and IVW causal effect estimates should be interpreted cautiously.   

7.3.2 Implications 

The importance of these MR findings can be highlighted in the possible benefit of H.pylori as a common 

flora. This challenges the current clinical guidelines of treating individuals with various H.pylori 

eradication therapies to prevent diseases associated with H.pylori(329, 330). This is especially the case 

with prescribing eradication therapies to individuals identified as at risk to developing cancer(331). In a 

RCT in a region that has a high risk of developing gastric cancer, the trial found that after a follow-up of 

7.5 years incidence of gastric cancer development was similar between participants randomised to 

different H.pylori eradication treatments and participants randomised to the placebo group(332). This 

study example illustrates that using other study designs that are more robust at inferring causality, instead 

of relying on observational studies as evidence to justify the clinical relevance of eliminating H.pylori 

infection, is necessary. A reassessment of clinical guidelines may be required to determine which 

individuals may benefit from chronic H.pylori infection and those that would benefit from eradication 

therapy.  

7.4 Conclusion 

In summary, I found highly suggestive genetic variants that showed evidence of association with H.pylori 

infection, and MR findings that indicated that an increase in H.pylori infection is causally associated with 

a decrease in some cardiovascular traits and cancer. Further investigation is required to provide a greater 

understanding of the underlying biological pathways, so that appropriate H.pylori interventions can be 

implemented that benefit individuals infected with H.pylori.  

. 
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Appendix 

Table 1. LD Score correlation results using the LD Hub web interface and centralised database for disease outcomes. The analysis used my 

H.pylori GWAS meta-analysis result and summary-level GWAS statistics for disease outcomes of interest (i.e. cardiometabolic, cancer and 

anthropometric traits). 

Trait 1  Trait 2 rg se z p 

H.pylori Fasting proinsulin -0.390 0.510 -0.764 0.445 

H.pylori Lung cancer -0.379 0.460 -0.823 0.410 

H.pylori Body fat -0.339 0.306 -1.108 0.268 

H.pylori Child birth length -0.307 0.403 -0.764 0.445 

H.pylori Lung cancer (all) -0.249 0.463 -0.537 0.591 

H.pylori Lung cancer (squamous cell) -0.202 0.631 -0.320 0.749 

H.pylori Lung adenocarcinoma -0.182 0.573 -0.318 0.750 

H.pylori Squamous cell lung cancer -0.147 0.435 -0.339 0.735 

H.pylori HbA1C -0.117 0.334 -0.349 0.727 

H.pylori HOMA-IR -0.109 0.381 -0.285 0.776 

H.pylori Childhood obesity -0.030 0.220 -0.136 0.892 

H.pylori Waist-to-hip ratio -0.024 0.184 -0.130 0.897 

H.pylori Adiponectin 0.011 0.626 0.018 0.986 

H.pylori Fasting glucose main effect 0.033 0.265 0.125 0.900 

H.pylori Child birth weight 0.039 0.354 0.110 0.912 

H.pylori Body mass index 0.082 0.193 0.423 0.672 

H.pylori Difference in height between adolescence and adulthood; age 14 0.088 0.565 0.156 0.876 

H.pylori Waist circumference 0.100 0.202 0.495 0.621 
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H.pylori Type 2 Diabetes 0.102 0.307 0.334 0.739 

H.pylori Hip circumference 0.118 0.193 0.610 0.542 

H.pylori Fasting insulin main effect 0.118 0.326 0.362 0.717 

H.pylori Birth weight 0.166 0.289 0.574 0.566 

H.pylori HOMA-B 0.174 0.299 0.582 0.561 

H.pylori Obesity class 1 0.183 0.395 0.464 0.642 

H.pylori Coronary artery disease 0.213 0.285 0.746 0.456 

H.pylori Height_2010 0.222 0.237 0.934 0.350 

H.pylori Overweight 0.282 0.390 0.723 0.470 

H.pylori Infant head circumference 0.326 0.501 0.651 0.515 

H.pylori Difference in height between childhood and adulthood; age 8 0.342 0.530 0.646 0.518 

H.pylori 2hr glucose adjusted for BMI 0.570 0.671 0.849 0.396 

H.pylori Height; Females at age 10 and males at age 12 0.610 0.940 0.648 0.517 

 

Table 2. List of outcome traits from MR-Base used in two-sample MR analysis  

Consortium Number of 

SNPs 

Population Sample size Sex Trait 

ADIPOGen 2,675,209 Mixed 39,883 M/F Adiponectin 

BioBank Japan Project 2,178,019 Japanese 10,112 M/F C-reactive protein 

MESA 2,390,490 European 2,431 M/F Percent emphysema 

HRgene consortium 2,516,790 Mixed 92,355 M/F Heart rate 

NA 425,707 East Asian 907 M/F Gallbladder cancer 

GIANT 2,760,790 European 60,586 M Weight 
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EGG 2,442,739 European 13,848 M/F Childhood obesity 

ISGC 2,421,920 Mixed 29,633 M/F Ischemic stroke 

ISGC 2,421,920 Mixed 21,185 M/F Cardioembolic stroke 

ISGC 2,421,920 Mixed 21,143 M/F Large vessel disease 

ISGC 2,421,920 Mixed 20,675 M/F Small vessel disease 

DIAGRAM 2,915,012 Mixed 110,452 M/F Type 2 diabetes 

GLGC 2,447,442 Mixed 187,167 M/F HDL cholesterol 

GLGC 2,437,752 Mixed 173,082 M/F LDL cholesterol 

GLGC 2,439,433 Mixed 177,861 M/F Triglycerides 

GIANT 2,547,573 Mixed 245,746 M/F Waist circumference 

CARDIoGRAMplusC4D 9,455,779 Mixed 184,305 M/F Coronary heart disease 

GIANT 2,562,516 Mixed 224,459 M/F Waist-to-hip ratio 

MAGIC 2,401,709 European 15,234 M/F 2hr glucose 

MAGIC 2,576,680 European 46,368 M/F HbA1C 

MAGIC 2,434,142 European 4,213 M/F AUCins/AUCglu 

MAGIC 2,433,997 European 4,324 M/F AUCins 

MAGIC 2,425,234 European 5,318 M/F Corrected insulin response 

MAGIC 2,426,095 European 5,130 M/F Insulin disposition index 

MAGIC 2,427,303 European 4,447 M/F Incremental insulin at 30 minutes 

MAGIC 2,432,136 European 4,409 M/F Insulin at 30 minutes 

MAGIC 2,418,000 European 4,769 M/F Insulin sensitivity index 

MAGIC 2,496,074 European 10,701 M/F Fasting proinsulin 

MAGIC 2,456,946 European 46,186 M/F HOMA-B 

MAGIC 2,458,074 European 46,186 M/F HOMA-IR 
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MAGIC 2.635.762 European 58,074 M/F Fasting glucose 

MAGIC 2,634,889 European 51,750 M/F Fasting insulin 

MAGIC 63,984 European 42,854 M/F 2hr glucose 

MDACC 818,978 European 2,830 M/F Melanoma 

CARDIoGRAMplusC4D 9,289,492 Mixed 171,875 M/F Myocardial infarction 

NA 468,788 European 4,881 M/F Neuroblastoma 

PanScan1 521,863 European 3,835 M/F Pancreatic cancer 

NA 11,760,646 European 20,687 M/F Apolipoprotein A-I 

NA 11,813,266 European 20,690 M/F Apolipoprotein B 

GIANT 19,848,14 European 16,068 M/F Extreme body mass index 

GIANT 1,939,901 European 10,255 M/F Extreme waist-to-hip ratio 

GIANT 2,331,456 European 72,546 M/F Obesity class 2 

GIANT 2,250,779 European 50,364 M/F Obesity class 3 

GIANT 2,435,045 European 158,855 M/F Overweight 

ILCCO 8,881,354 European 18,336 M/F Lung adenocarcinoma 

ILCCO 8,945,893 European 27,209 M/F Lung cancer 

ILCCO 8,893,750 European 18,313 M/F Squamous cell lung cancer 

NA 3,228,665 European 100,716 M/F Body fat 

Neale Lab 10,894,596 European 337,159 M/F Non-cancer illness code self-reported: high cholesterol 

Neale Lab 10,894,596 European 337,030 M/F Current tobacco smoking 

Neale Lab 10,894,596 European 337,159 M/F Treatment/medication code: warfarin 

Neale Lab 10,894,596 European 310,749 M/F Past tobacco smoking 

Neale Lab 10,894,596 European 305,723 M/F Exposure to tobacco smoke at home 
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Neale Lab 10,894,596 European 292,053 M/F Illnesses of father: Heart disease 

Neale Lab 10,894,596 European 292,053 M/F Illnesses of father: Prostate cancer 

Neale Lab 10,894,596 European 292,053 M/F Illnesses of father: Lung cancer 

Neale Lab 10,894,596 European 292,053 M/F Illnesses of father: Chronic bronchitis/emphysema 

Neale Lab 10,894,596 European 292,053 M/F Illnesses of father: High blood pressure 

Neale Lab 10,894,596 European 292,053 M/F Illnesses of father: Diabetes 

Neale Lab 10,894,596 European 308,780 M/F Illnesses of mother: Heart disease 

Neale Lab 10,894,596 European 337,154 M/F Number of self-reported cancers 

Neale Lab 10,894,596 European 308,780 M/F Illnesses of mother: Breast cancer 

Neale Lab 10,894,596 European 308,780 M/F Illnesses of mother: Chronic bronchitis/emphysema 

Neale Lab 10,894,596 European 308,780 M/F Illnesses of mother: High blood pressure 

Neale Lab 10,894,596 European 308,780 M/F Illnesses of mother: Diabetes 

Neale Lab 10,894,596 European 259,921 M/F Illnesses of siblings: Heart disease 

Neale Lab 10,894,596 European 259,921 M/F Illnesses of siblings: Stroke 

Neale Lab 10,894,596 European 259,921 M/F Illnesses of siblings: High blood pressure 

Neale Lab 10,894,596 European 259,921 M/F Illnesses of siblings: Diabetes 

Neale Lab 10,894,596 European 336,024 M/F Smoking status: Previous 

Neale Lab 10,894,596 European 336,067 M/F Ever smoked 

Neale Lab 10,894,596 European 101,726 M/F Pack years of smoking  

Neale Lab 10,894,596 European 336,107 M/F Body mass index (BMI) 

Neale Lab 10,894,596 European 83,133 M/F Tobacco smoking: Ex-smoker 

Neale Lab 10,894,596 European 331,117 M/F Body fat percentage 
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Neale Lab 10,894,596 European 330,762 M/F Whole body fat mass 

Neale Lab 10,894,596 European 331,291 M/F Whole body fat-free mass 

Neale Lab 10,894,596 European 331,315 M/F Whole body water mass 

Neale Lab 10,894,596 European 23,205 M/F Number of cigarettes currently smoked daily (current cigarette 

smokers) 

Neale Lab 10,894,596 European 317,756 M/F Diastolic blood pressure automated reading 

Neale Lab 10,894,596 European 317,754 M/F Systolic blood pressure automated reading 

Neale Lab 10,894,596 European 336,601 M/F Hip circumference 

Neale Lab 10,894,596 European 336,683 M/F Vascular/heart problems diagnosed by doctor: High blood pressure 

Neale Lab 10,894,596 European 336,782 M/F Blood clot DVT bronchitis emphysema asthma rhinitis eczema 

allergy diagnosed by doctor: Emphysema/chronic bronchitis 

Neale Lab 10,894,596 European 180,203 M/F Medication for cholesterol blood pressure diabetes or take exogenous 

hormones: Cholesterol lowering medication 

Neale Lab 10,894,596 European 180,203 M/F Medication for cholesterol blood pressure diabetes or take exogenous 

hormones: None of the above 

Neale Lab 10,894,596 European 180,203 M/F Medication for cholesterol blood pressure diabetes or take exogenous 

hormones: Blood pressure medication 

Neale Lab 10,894,596 European 180,203 M/F Medication for cholesterol blood pressure diabetes or take exogenous 

hormones: Hormone replacement therapy 
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Neale Lab 10,894,596 European 154,702 M/F Medication for cholesterol blood pressure or diabetes: Cholesterol 

lowering medication 

Neale Lab 10,894,596 European 154,702 M/F Medication for cholesterol blood pressure or diabetes: None of the 

above 

Neale Lab 10,894,596 European 154,702 M/F Medication for cholesterol blood pressure or diabetes: Blood 

pressure medication 

Neale Lab 10,894,596 European 154,702 M/F Medication for cholesterol blood pressure or diabetes: Insulin 

Neale Lab 10894596 European 337,159 M/F Non-cancer illness code self-reported: emphysema/chronic bronchitis 

 

Table 3. H.pylori genetic instruments for bidirectional MR analysis 

Phenotype SNP β se eaf EA OA 

LDL cholesterol (N = 173,082) rs2419604 0.030 0.004 0.318 A G 

rs646776 0.160 0.004 0.788 T C 

rs10893499 0.052 0.005 0.144 A G 

rs10832962 0.032 0.004 0.719 T C 

rs267733 0.033 0.005 0.863 A G 

rs174583 0.052 0.004 0.625 C T 

rs3184504 0.027 0.004 0.534 C T 

rs1169288 0.038 0.004 0.334 C A 

rs2642438 0.035 0.004 0.745 G A 

rs2587534 0.039 0.004 0.528 A G 
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rs10903129 0.033 0.004 0.537 G A 

rs12748152 0.050 0.007 0.071 T C 

rs4942486 0.024 0.004 0.462 T C 

rs8017377 0.030 0.004 0.459 A G 

rs2495495 0.034 0.006 0.135 T C 

rs11591147 0.497 0.018 0.983 G T 

rs7551981 0.047 0.004 0.595 T G 

rs12066643 0.039 0.006 0.881 C T 

rs7534572 0.041 0.006 0.690 G C 

rs247616 0.055 0.004 0.707 C T 

rs2000999 0.065 0.005 0.185 A G 

rs6504872 0.027 0.004 0.472 T C 

rs1801689 0.103 0.014 0.037 C A 

rs2886232 0.045 0.006 0.120 T C 

rs314253 0.024 0.004 0.665 T C 

rs6511720 0.221 0.006 0.902 G T 

rs2738459 0.053 0.006 0.555 A C 

rs2228603 0.104 0.007 0.929 C T 

rs4970712 0.034 0.004 0.806 C A 

rs2965157 0.189 0.011 0.979 T C 

rs7254892 0.485 0.012 0.968 G A 

rs75687619 0.174 0.016 0.024 T G 

rs12721109 0.446 0.018 0.983 G A 

rs676388 0.027 0.004 0.463 C T 
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rs364585 0.025 0.004 0.633 G A 

rs2328223 0.030 0.005 0.249 C A 

rs6016373 0.035 0.004 0.627 A G 

rs6065311 0.042 0.004 0.460 C T 

rs1800961 0.069 0.011 0.966 C T 

rs10490626 0.051 0.007 0.921 G A 

rs2030746 0.021 0.004 0.398 T C 

rs16831243 0.038 0.006 0.181 T C 

rs10195252 0.024 0.004 0.582 T C 

rs1367117 0.119 0.004 0.288 A G 

rs72902576 0.093 0.013 0.963 T G 

rs1250229 0.024 0.004 0.789 C T 

rs5763662 0.077 0.012 0.025 T C 

rs11563251 0.035 0.006 0.125 T C 

rs4253776 0.031 0.006 0.124 G A 

rs6544713 0.081 0.004 0.294 T C 

rs6709904 0.055 0.009 0.887 A G 

rs2710642 0.024 0.004 0.619 A G 

rs9875338 0.027 0.004 0.612 G A 

rs17404153 0.034 0.005 0.856 G T 

rs7640978 0.039 0.007 0.895 C T 

rs6818397 0.022 0.004 0.413 T G 

rs4530754 0.028 0.004 0.582 A G 

rs6882076 0.046 0.004 0.666 C T 
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rs12916 0.073 0.004 0.431 C T 

rs6909746 0.026 0.004 0.608 C T 

rs112201728 0.068 0.010 0.058 T C 

rs1564348 0.048 0.005 0.145 C T 

rs16891156 0.097 0.017 0.018 C A 

rs2315065 0.110 0.016 0.087 A C 

rs3757354 0.038 0.004 0.790 C T 

rs13206249 0.038 0.006 0.784 G A 

rs1408272 0.052 0.008 0.947 T G 

rs10947332 0.050 0.006 0.132 A G 

rs2390536 0.022 0.004 0.368 A G 

rs4722551 0.039 0.005 0.170 C T 

rs2073547 0.049 0.005 0.194 G A 

rs2737252 0.031 0.004 0.744 G A 

rs2954029 0.056 0.004 0.532 A T 

rs7832643 0.034 0.004 0.405 T G 

rs13277801 0.034 0.004 0.347 C T 

rs9987289 0.071 0.007 0.925 G A 

rs1883025 0.030 0.004 0.757 C T 

rs579459 0.067 0.005 0.215 C T 

rs3780181 0.045 0.007 0.947 A G 

rs964184 0.086 0.008 1.000 G C 

Hip circumference (N = 336,601) rs9378684 0.020 0.003 0.201 T C 

rs4467770 0.017 0.003 0.731 A G 



 

95 

 

rs76040172 -0.034 0.005 0.054 A G 

rs10887571 0.015 0.002 0.453 T C 

rs1182199 -0.028 0.003 0.305 A C 

rs7442885 -0.020 0.003 0.210 G C 

rs66679256 0.016 0.002 0.446 T C 

rs55650227 -0.020 0.003 0.190 C G 

rs1294437 0.019 0.003 0.355 T C 

rs10144067 0.017 0.002 0.592 T C 

rs1727901 0.019 0.003 0.735 T C 

rs28479795 0.024 0.003 0.222 T C 

rs4872142 -0.021 0.003 0.186 G C 

rs41271299 0.041 0.005 0.052 T C 

rs57636386 -0.037 0.004 0.083 C T 

rs1449630 0.014 0.002 0.570 G A 

rs72656010 -0.024 0.004 0.131 C T 

rs12300276 0.016 0.003 0.237 A G 

rs845084 0.018 0.003 0.258 A G 

rs13389219 0.026 0.002 0.394 T C 

rs34373881 -0.015 0.003 0.278 A G 

rs12607512 0.013 0.002 0.448 G A 

rs34517439 0.043 0.004 0.126 A C 

rs252749 -0.023 0.003 0.247 A G 

rs1127100 0.015 0.003 0.648 C T 

rs6080646 -0.013 0.002 0.497 A G 
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rs7707394 -0.019 0.003 0.354 A G 

rs543874 0.044 0.003 0.208 G A 

rs2814943 0.055 0.003 0.140 A G 

rs4776970 -0.020 0.003 0.357 T A 

rs12619178 -0.016 0.002 0.403 T C 

rs3807566 -0.016 0.002 0.438 T G 

rs7982447 0.016 0.003 0.206 C T 

rs7516554 0.016 0.002 0.400 T C 

rs7116641 0.022 0.003 0.317 G T 

rs62396185 -0.037 0.003 0.256 C G 

rs34811474 -0.021 0.003 0.232 A G 

rs2737250 -0.021 0.003 0.351 G A 

rs9808900 0.027 0.003 0.199 T G 

rs1955695 -0.019 0.002 0.625 G A 

rs675162 0.018 0.002 0.481 G A 

rs588660 0.019 0.002 0.586 A G 

rs390192 -0.014 0.002 0.522 G A 

rs3803286 -0.018 0.003 0.666 G A 

rs35057083 0.014 0.003 0.687 T C 

rs28366156 -0.030 0.004 0.131 C T 

rs34769775 -0.017 0.003 0.298 T C 

rs962554 -0.022 0.003 0.284 C T 

rs13264909 -0.016 0.002 0.428 T A 

rs113866544 0.033 0.005 0.068 C T 
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rs2129869 -0.021 0.003 0.218 T A 

rs79969674 0.027 0.005 0.074 T C 

rs2187449 0.016 0.003 0.767 A G 

rs11109097 -0.016 0.003 0.697 T C 

rs4660586 -0.020 0.003 0.738 T C 

rs1014291 -0.016 0.002 0.426 T G 

rs6567160 0.050 0.003 0.234 C T 

rs40071 -0.017 0.003 0.179 C T 

rs6707036 -0.015 0.003 0.338 G A 

rs28377268 0.025 0.004 0.108 T G 

rs894347 -0.018 0.002 0.395 G A 

rs4430895 0.024 0.002 0.480 T C 

rs6907872 0.015 0.003 0.302 T C 

rs1428120 -0.014 0.002 0.574 T G 

rs4482463 -0.030 0.005 0.924 A C 

rs750090 -0.017 0.003 0.356 C T 

rs4741546 -0.018 0.002 0.397 T C 

rs11150461 -0.015 0.003 0.728 G C 

rs2861690 -0.017 0.002 0.389 G C 

rs2034768 -0.017 0.002 0.512 G A 

rs2897968 0.014 0.002 0.605 A G 

rs1296328 -0.016 0.002 0.560 C A 

rs62425398 0.024 0.004 0.107 A C 

rs6973656 0.019 0.002 0.397 G A 
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rs245775 0.015 0.003 0.729 G A 

rs2244786 0.014 0.003 0.357 A G 

rs1285997 0.023 0.003 0.709 G C 

rs8192675 0.017 0.003 0.287 C T 

rs2307111 -0.028 0.002 0.393 C T 

rs4843158 0.020 0.003 0.683 C G 

rs41284816 0.079 0.009 0.020 T G 

rs12254441 -0.015 0.003 0.373 T C 

rs12877270 0.015 0.002 0.438 A G 

rs12519997 -0.014 0.002 0.560 A G 

rs1528450 0.017 0.002 0.597 C T 

rs10938397 0.023 0.002 0.434 G A 

rs10236214 0.018 0.003 0.641 T C 

rs2102278 0.016 0.003 0.322 G A 

rs12140153 -0.025 0.004 0.097 T G 

rs4777541 0.019 0.003 0.765 T C 

rs4966012 0.015 0.003 0.677 G C 

rs3746759 -0.017 0.003 0.202 G T 

rs9788550 -0.021 0.003 0.248 C G 

rs10118701 0.018 0.003 0.317 G A 

rs2013002 0.018 0.002 0.587 C T 

rs9512696 0.018 0.003 0.662 G A 

rs8023263 0.015 0.002 0.529 T G 

rs72892910 0.036 0.003 0.170 T G 
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rs1918249 0.016 0.003 0.760 A T 

rs6470771 -0.018 0.003 0.169 C A 

rs62246314 0.025 0.004 0.101 A G 

rs10237317 0.014 0.002 0.417 G A 

rs7145337 -0.016 0.003 0.710 T C 

rs1118151 0.017 0.003 0.722 G T 

rs6739755 -0.015 0.002 0.603 G A 

rs7740107 -0.023 0.003 0.736 A T 

rs4722398 0.022 0.004 0.136 T C 

rs4240326 -0.028 0.002 0.550 G A 

rs2371767 0.020 0.003 0.273 C G 

rs12680342 -0.019 0.003 0.229 G T 

rs113364497 -0.016 0.003 0.251 T C 

rs10100245 0.020 0.002 0.566 A G 

rs74749286 0.031 0.004 0.108 A G 

rs1458156 0.013 0.002 0.488 T C 

rs12209223 0.022 0.004 0.102 A C 

rs55932154 -0.024 0.004 0.115 G A 

rs6821305 0.015 0.002 0.397 C A 

rs6840236 0.017 0.002 0.462 C T 

rs6601527 -0.016 0.002 0.588 A C 

rs10756798 -0.015 0.003 0.645 T C 

rs12528644 0.023 0.003 0.283 A C 

rs9323375 0.016 0.003 0.232 A T 
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rs2253310 0.021 0.002 0.628 G C 

rs2318543 -0.018 0.003 0.782 G A 

rs2236519 -0.021 0.002 0.377 A G 

rs9415106 -0.015 0.003 0.715 A G 

rs140201358 -0.064 0.010 0.014 G C 

rs9967367 -0.016 0.003 0.295 T C 

rs10103997 0.016 0.003 0.225 G C 

rs62243489 -0.015 0.003 0.257 G T 

rs11766945 -0.020 0.003 0.201 A G 

rs6535240 0.014 0.003 0.313 G A 

rs815335 0.018 0.003 0.371 T C 

rs4670612 0.016 0.003 0.656 G A 

rs1618069 0.016 0.003 0.750 G A 

rs28418580 -0.017 0.002 0.460 T C 

rs76798800 0.025 0.003 0.267 T G 

rs756717 -0.016 0.002 0.399 A G 

rs10269774 0.023 0.003 0.324 A G 

rs73175572 0.026 0.004 0.112 G A 

rs73213484 -0.020 0.003 0.139 T A 

rs143384 0.028 0.002 0.403 G A 

rs2494196 0.032 0.003 0.288 A C 

rs7460093 0.015 0.002 0.536 A G 

rs17770336 0.021 0.003 0.324 T C 

rs8064502 -0.017 0.002 0.439 A C 
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rs2678204 0.022 0.003 0.342 G T 

rs6539064 -0.019 0.003 0.253 G C 

rs9814633 0.015 0.003 0.344 A G 

rs3943933 0.013 0.002 0.480 A T 

rs35779991 0.014 0.002 0.531 C T 

rs11882409 0.018 0.003 0.286 A C 

rs1477290 0.028 0.004 0.135 C T 

rs982692 0.014 0.003 0.361 C T 

rs11245480 0.016 0.003 0.325 G C 

rs6867299 0.021 0.003 0.373 C T 

rs13107325 0.043 0.005 0.075 T C 

rs17024393 0.057 0.008 0.026 C T 

rs7226064 -0.015 0.002 0.429 G A 

rs7124681 0.020 0.002 0.408 A C 

rs6669341 -0.015 0.002 0.582 G A 

rs12714415 -0.049 0.003 0.167 C T 

rs2479958 -0.015 0.002 0.515 G A 

rs12096864 0.022 0.004 0.118 C T 

rs55886426 -0.034 0.006 0.055 G C 

rs968379 -0.021 0.003 0.231 T C 

rs6999725 -0.040 0.007 0.033 T C 

rs6585201 -0.021 0.002 0.454 A G 

rs11862944 -0.016 0.003 0.355 C A 

rs35874463 0.033 0.005 0.058 G A 
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rs11944291 -0.014 0.002 0.474 G T 

rs6575340 0.020 0.003 0.637 A G 

rs8133137 0.015 0.003 0.666 G A 

rs11839227 -0.018 0.003 0.184 C T 

rs4630170 -0.017 0.003 0.733 G A 

rs1441264 0.017 0.002 0.592 A G 

rs75543804 -0.041 0.007 0.033 T G 

rs3845344 0.015 0.002 0.392 T C 

rs7426945 0.016 0.002 0.546 G A 

rs1662185 0.017 0.003 0.709 G A 

rs75949361 0.044 0.007 0.033 T C 

rs10883553 0.016 0.002 0.447 A C 

rs138767 0.015 0.003 0.651 C T 

rs35099456 -0.041 0.005 0.064 C G 

rs56288810 0.018 0.003 0.214 G A 

rs10777859 -0.015 0.002 0.529 G A 

rs7845090 -0.023 0.003 0.711 A G 

rs724016 0.026 0.002 0.447 G A 

rs72801854 0.018 0.003 0.302 A G 

rs13410783 0.015 0.002 0.368 G A 

rs12765337 0.016 0.003 0.343 C G 

rs10153248 -0.017 0.002 0.444 G A 

rs72959041 -0.070 0.006 0.051 A G 

rs11915747 -0.019 0.003 0.354 G C 



 

103 

 

rs2715439 0.016 0.002 0.545 T C 

rs1396513 0.018 0.002 0.514 T C 

rs77165542 -0.086 0.007 0.036 T C 

rs17245511 -0.020 0.003 0.149 A G 

rs7957774 -0.016 0.003 0.244 T G 

rs10404726 -0.017 0.002 0.467 T C 

rs56094641 0.061 0.002 0.403 G A 

rs4794222 -0.017 0.003 0.744 G A 

rs6142059 0.016 0.002 0.494 C T 

rs12805742 -0.019 0.003 0.230 T C 

rs4982753 -0.016 0.003 0.256 T C 

rs10820852 -0.016 0.003 0.274 A C 

rs12701265 0.015 0.002 0.395 A G 

rs2270894 -0.020 0.003 0.205 G C 

rs1293395 -0.027 0.005 0.076 T G 

rs1964599 -0.023 0.003 0.344 T C 

rs2499468 0.014 0.003 0.653 A C 

rs9843653 0.021 0.002 0.515 C T 

rs4297095 -0.022 0.004 0.108 A G 

rs35882248 0.017 0.003 0.315 T C 

rs7915723 -0.014 0.002 0.559 A C 

rs1582931 -0.020 0.002 0.472 A G 

rs879620 0.027 0.002 0.615 T C 

rs7274811 -0.021 0.003 0.258 T G 
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rs12883788 0.015 0.002 0.459 T C 

rs12779865 0.023 0.003 0.330 C T 

rs2439823 0.019 0.002 0.548 G A 

rs112646560 0.021 0.003 0.218 T C 

rs8011368 -0.016 0.003 0.724 T C 

rs7978353 -0.017 0.002 0.405 G A 

rs10210468 -0.015 0.002 0.467 C T 

rs8042404 0.017 0.003 0.271 A G 

rs34049648 0.018 0.003 0.336 A G 

rs2954021 0.018 0.002 0.506 G A 

rs11030119 0.031 0.003 0.309 A G 

rs998584 -0.021 0.002 0.482 A C 

rs1979440 -0.015 0.002 0.402 C T 

rs11584359 -0.021 0.003 0.175 T C 

rs7548408 0.015 0.002 0.517 C T 

rs7238896 0.021 0.003 0.141 G A 

rs1320903 0.020 0.003 0.318 A G 

rs147730268 -0.052 0.004 0.091 T G 

rs731758 -0.018 0.002 0.616 G C 

rs60984707 -0.018 0.003 0.183 T C 

rs58551145 0.024 0.003 0.195 G A 

rs3218036 0.019 0.003 0.327 A G 

rs35880697 -0.026 0.003 0.167 T C 

rs869400 0.020 0.003 0.816 G T 
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rs59738707 -0.023 0.004 0.128 A G 

rs4402589 0.030 0.002 0.553 G T 

rs1618725 -0.021 0.002 0.496 T C 

rs60226453 0.018 0.003 0.175 T C 

rs3811951 0.015 0.003 0.282 G A 

rs7930275 0.019 0.003 0.221 T C 

rs1569497 0.015 0.002 0.441 G A 

rs9496567 0.022 0.003 0.242 A G 

rs34629844 0.022 0.004 0.129 G A 

rs1231281 -0.014 0.002 0.499 A G 

rs12475388 -0.013 0.002 0.487 A G 

rs4790292 -0.028 0.003 0.154 A C 

rs3810291 0.023 0.003 0.677 A G 

rs273505 0.015 0.002 0.420 C T 

rs11664106 0.015 0.003 0.374 T A 

rs4985407 0.015 0.002 0.497 G A 

rs6501601 -0.019 0.002 0.382 A G 

rs34013042 0.015 0.003 0.258 T C 

rs12561919 0.020 0.003 0.148 T C 

rs11803990 0.025 0.004 0.082 G C 

rs34748838 0.020 0.002 0.490 T C 

rs12467963 -0.014 0.002 0.403 T A 

rs25849 0.020 0.003 0.287 G C 

rs7893571 0.016 0.003 0.663 T G 
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rs55726687 0.021 0.003 0.211 A G 

rs882378 0.015 0.003 0.309 C A 

rs78470967 0.036 0.006 0.043 A T 

rs12375196 0.017 0.002 0.424 A C 

rs2802774 0.017 0.002 0.546 A C 

rs3826408 0.015 0.002 0.457 T C 

rs667515 -0.014 0.002 0.386 C G 

rs12972720 0.018 0.002 0.535 C G 

rs76895963 0.096 0.009 0.019 G T 

rs33955687 -0.016 0.003 0.292 A C 

rs13333747 -0.024 0.003 0.182 C T 

rs62037365 0.032 0.002 0.402 G C 

rs12920259 -0.016 0.002 0.612 A G 

rs141622900 0.032 0.006 0.052 A G 

rs2815753 0.022 0.002 0.599 A G 

rs7132908 0.025 0.002 0.384 A G 

rs10953513 -0.019 0.002 0.420 G A 

rs62473743 -0.019 0.003 0.844 G A 

rs58584712 0.020 0.003 0.210 A G 

Heart rate (N = 92,355) rs1015451 -0.741 0.081 0.890 T C 

rs11153730 0.393 0.051 0.515 T C 

rs11578508 0.407 0.054 0.665 A G 

rs13030174 0.337 0.059 0.726 A C 

rs13245899 -0.520 0.065 0.802 A G 
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rs17287293 0.491 0.072 0.849 A G 

rs17362588 0.779 0.090 0.116 A G 

rs174549 0.394 0.055 0.318 A G 

rs17796783 0.344 0.057 0.722 T C 

rs2029213 -0.296 0.052 0.362 T C 

rs365990 -0.606 0.055 0.658 A G 

rs3729992 0.548 0.099 0.085 A C 

rs4489968 0.529 0.068 0.833 T G 

rs6127471 -0.509 0.052 0.457 T C 

rs7980799 0.405 0.054 0.402 A C 

Maternal history of breast cancer rs9397437 0.010 0.001 0.070 A G 

rs4442975 -0.004 0.001 0.512 T G 

rs7976725 -0.005 0.001 0.224 G A 

rs78540526 0.012 0.001 0.071 T C 

rs4784227 0.009 0.001 0.239 T C 

rs1078806 0.008 0.001 0.404 G A 

rs58952190 0.013 0.002 0.021 C T 

rs1269867 -0.004 0.001 0.492 T C 

rs10941679 0.005 0.001 0.255 G A 

rs11879798 0.004 0.001 0.377 A G 

rs11836367 -0.005 0.001 0.352 T C 
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Table 4. Two-sample MR analysis results  

Outcome Exposure Method Number of SNPs β se p Lower 95% CI Upper 95% CI 

LDL cholesterol H.pylori Wald ratio 1 -0.113 0.029 0.0001 -0.170 -0.056 

Hip circumference  H.pylori Wald ratio 1 -0.032 0.008 0.0001 -0.049 -0.016 

Illnesses of mother: Breast 

cancer  

H.pylori Wald ratio 1 -0.008 0.002 0.0005 -0.013 -0.004 

Heart rate  H.pylori IVW 2 -0.485 0.144 0.0007 -0.767 -0.203 

Systolic blood pressure 

(automated reading)  

H.pylori Wald ratio 1 0.024 0.009 0.0061 0.007 0.040 

HOMA-IR  H.pylori IVW 2 -0.030 0.011 0.0068 -0.052 -0.008 

Ischemic stroke  H.pylori IVW 2 0.123 0.047 0.0084 0.032 0.215 

Obesity class 3  H.pylori IVW 2 -0.251 0.100 0.0125 -0.448 -0.054 

HOMA-B  H.pylori IVW 2 -0.022 0.009 0.0182 -0.041 -0.004 

Illnesses of mother H.pylori Wald ratio 1 0.008 0.004 0.0270 0.001 0.015 

Whole body fat mass  H.pylori Wald ratio 1 -0.018 0.008 0.0275 -0.035 -0.002 

Number of self-reported 

cancers  

H.pylori Wald ratio 1 -0.006 0.003 0.0380 -0.011 0.000 

Obesity class 2  H.pylori IVW 2 -0.105 0.053 0.0492 -0.209 0.000 

Whole body water mass  H.pylori Wald ratio 1 -0.011 0.005 0.0496 -0.021 0.000 

Body fat percentage  H.pylori Wald ratio 1 -0.013 0.007 0.0544 -0.025 0.000 

Body mass index (BMI)  H.pylori Wald ratio 1 -0.016 0.008 0.0598 -0.032 0.001 

Whole body fat-free mass  H.pylori Wald ratio 1 -0.010 0.005 0.0668 -0.020 0.001 

Overweight  H.pylori IVW 2 -0.040 0.024 0.1011 -0.087 0.008 
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Cardioembolic stroke  H.pylori IVW 2 0.156 0.095 0.1018 -0.031 0.343 

Illnesses of father: Prostate 

cancer  

H.pylori Wald ratio 1 0.004 0.002 0.1071 -0.001 0.009 

2hr glucose  H.pylori IVW 2 0.083 0.055 0.1288 -0.024 0.190 

Diastolic blood pressure  

automated reading  

H.pylori Wald ratio 1 0.013 0.009 0.1300 -0.004 0.030 

Medication for cholesterol  

blood pressure  diabetes  or 

take exogenous hormones: 

Cholesterol lowering 

medication  

H.pylori Wald ratio 1 0.006 0.004 0.1407 -0.002 0.013 

Large vessel disease  H.pylori IVW 2 0.220 0.167 0.1891 -0.108 0.547 

Illnesses of father: Lung 

cancer  

H.pylori Wald ratio 1 -0.003 0.003 0.1932 -0.008 0.002 

Fasting glucose  H.pylori IVW 2 -0.003 0.002 0.2015 -0.007 0.002 

Body fat  H.pylori IVW 2 -0.019 0.015 0.2045 -0.049 0.010 

Corrected insulin response  H.pylori IVW 2 0.079 0.062 0.2049 -0.043 0.200 

Extreme waist-to-hip ratio  H.pylori IVW 2 -0.116 0.094 0.2168 -0.299 0.068 

Childhood obesity  H.pylori Wald ratio 1 -0.162 0.144 0.2583 -0.444 0.119 

Illnesses of mother: Diabetes  H.pylori Wald ratio 1 0.003 0.003 0.2585 -0.002 0.008 

Insulin disposition index  H.pylori IVW 2 0.095 0.085 0.2651 -0.072 0.261 

Extreme body mass index  H.pylori IVW 2 -0.104 0.098 0.2891 -0.297 0.089 

Medication for cholesterol  

blood pressure  diabetes  or 

H.pylori Wald ratio 1 0.005 0.004 0.2903 -0.004 0.013 
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take exogenous hormones: 

Blood pressure medication  

Fasting proinsulin  H.pylori IVW 2 0.025 0.024 0.3065 -0.023 0.072 

Weight  H.pylori IVW 2 -0.018 0.018 0.3152 -0.053 0.017 

Lung adenocarcinoma  H.pylori Wald ratio 1 -0.089 0.091 0.3283 -0.269 0.090 

HDL cholesterol  H.pylori Wald ratio 1 -0.026 0.026 0.3291 -0.077 0.026 

Non-cancer illness code  

self-reported: high 

cholesterol  

H.pylori Wald ratio 1 0.003 0.003 0.3483 -0.003 0.008 

Illnesses of mother: Chronic 

bronchitis/emphysema  

H.pylori Wald ratio 1 0.002 0.002 0.3545 -0.002 0.006 

Illnesses of siblings: 

Diabetes  

H.pylori Wald ratio 1 -0.002 0.003 0.3801 -0.007 0.003 

Lung cancer  H.pylori Wald ratio 1 -0.048 0.060 0.4234 -0.166 0.070 

Exposure to tobacco smoke 

at home  

H.pylori Wald ratio 1 -0.002 0.003 0.4785 -0.009 0.004 

Medication for cholesterol  

blood pressure or diabetes: 

Blood pressure medication  

H.pylori Wald ratio 1 0.004 0.005 0.4895 -0.007 0.014 

Illnesses of father: High 

blood pressure  

H.pylori Wald ratio 1 0.003 0.004 0.4966 -0.005 0.010 

Pack years of smoking  H.pylori Wald ratio 1 -0.010 0.015 0.5001 -0.041 0.020 

Illnesses of siblings: Stroke  H.pylori Wald ratio 1 0.001 0.002 0.5049 -0.002 0.004 

Adiponectin  H.pylori IVW 2 0.014 0.022 0.5141 -0.029 0.058 
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Waist circumference  H.pylori IVW 2 -0.008 0.012 0.5146 -0.031 0.016 

Insulin sensitivity index  H.pylori IVW 2 0.042 0.066 0.5281 -0.088 0.172 

Tobacco smoking: Ex-

smoker  

H.pylori Wald ratio 1 0.005 0.008 0.5298 -0.011 0.021 

Illnesses of siblings: High 

blood pressure  

H.pylori Wald ratio 1 0.002 0.004 0.5379 -0.005 0.010 

Number of cigarettes 

currently smoked daily 

(current cigarette smokers)  

H.pylori Wald ratio 1 0.013 0.024 0.5840 -0.033 0.059 

Apolipoprotein B  H.pylori IVW 2 -0.018 0.033 0.5887 -0.082 0.047 

Blood clot  DVT  bronchitis  

emphysema  asthma  rhinitis  

eczema  allergy diagnosed 

by doctor: 

Emphysema/chronic 

bronchitis  

H.pylori Wald ratio 1 0.001 0.001 0.6022 -0.002 0.003 

Medication for cholesterol  

blood pressure  diabetes  or 

take exogenous hormones: 

Hormone replacement 

therapy  

H.pylori Wald ratio 1 0.002 0.003 0.6133 -0.004 0.008 

Small vessel disease  H.pylori IVW 2 -0.053 0.106 0.6147 -0.260 0.154 

AUCins/AUCglu  H.pylori IVW 2 0.034 0.068 0.6239 -0.101 0.168 
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Incremental insulin at 30 

minutes  

H.pylori IVW 2 -0.030 0.065 0.6371 -0.157 0.096 

Triglycerides  H.pylori Wald ratio 1 -0.012 0.026 0.6431 -0.063 0.039 

Illnesses of father: Diabetes  H.pylori Wald ratio 1 -0.001 0.003 0.6435 -0.006 0.004 

Illnesses of father: Chronic 

bronchitis/emphysema  

H.pylori Wald ratio 1 -0.001 0.003 0.6452 -0.007 0.004 

Illnesses of siblings: Heart 

disease  

H.pylori Wald ratio 1 -0.001 0.003 0.6643 -0.007 0.004 

Current tobacco smoking  H.pylori Wald ratio 1 -0.002 0.005 0.6759 -0.011 0.007 

Waist-to-hip ratio  H.pylori IVW 2 0.005 0.012 0.7010 -0.019 0.028 

Squamous cell lung cancer  H.pylori Wald ratio 1 0.034 0.091 0.7070 -0.143 0.212 

Type 2 diabetes  H.pylori Wald ratio 1 -0.032 0.089 0.7218 -0.206 0.142 

Treatment/medication code: 

warfarin  

H.pylori Wald ratio 1 0.000 0.001 0.7278 -0.002 0.001 

Insulin at 30 minutes  H.pylori IVW 2 0.025 0.076 0.7364 -0.123 0.174 

Illnesses of mother: High 

blood pressure  

H.pylori Wald ratio 1 0.001 0.004 0.7555 -0.007 0.009 

Smoking status: Previous  H.pylori Wald ratio 1 0.001 0.004 0.7631 -0.007 0.009 

Ever smoked  H.pylori Wald ratio 1 -0.001 0.004 0.7710 -0.009 0.007 

Medication for cholesterol  

blood pressure  diabetes  or 

take exogenous hormones: 

None of the above  

H.pylori Wald ratio 1 -0.002 0.005 0.7769 -0.012 0.009 
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Vascular/heart problems 

diagnosed by doctor: High 

blood pressure  

H.pylori Wald ratio 1 -0.001 0.004 0.8332 -0.008 0.007 

Percent emphysema  H.pylori Wald ratio 1 -0.011 0.054 0.8402 -0.117 0.095 

Coronary heart disease  H.pylori IVW 2 0.009 0.045 0.8427 -0.078 0.096 

Illnesses of father: Heart 

disease  

H.pylori Wald ratio 1 0.001 0.004 0.8597 -0.008 0.009 

AUCins  H.pylori IVW 2 -0.010 0.067 0.8854 -0.141 0.121 

Past tobacco smoking  H.pylori Wald ratio 1 -0.001 0.011 0.8984 -0.023 0.020 

Medication for cholesterol,  

blood pressure or diabetes: 

Cholesterol lowering 

medication  

H.pylori Wald ratio 1 -0.001 0.005 0.9005 -0.011 0.010 

Medication for cholesterol,  

blood pressure or diabetes: 

Insulin  

H.pylori Wald ratio 1 0.000 0.001 0.9021 -0.003 0.003 

Non-cancer illness code  

self-reported: 

emphysema/chronic 

bronchitis  

H.pylori Wald ratio 1 0.000 0.001 0.9312 -0.002 0.002 

Fasting insulin  H.pylori IVW 2 0.000 0.002 0.9511 -0.004 0.004 

HbA1C  H.pylori IVW 2 0.001 0.011 0.9525 -0.021 0.022 
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Medication for cholesterol  

blood pressure or diabetes: 

None of the above  

H.pylori Wald ratio 1 0.000 0.006 0.9651 -0.011 0.012 

Myocardial infarction  H.pylori IVW 2 -0.002 0.054 0.9673 -0.108 0.103 

Apolipoprotein A-I  H.pylori IVW 2 -0.003 0.074 0.9704 -0.147 0.142 

 

Table 5. H.pylori bidirectional Mendelian randomisation results 

LDL cholesterol  Method SNPs Odds ratio Lower 95% CI Upper 95% CI se p 

MR Egger 75 1.069 -0.080 0.214 0.075 0.376 

Weighted median 75 1.077 -0.071 0.219 0.074 0.318 

Inverse variance weighted 75 1.036 -0.064 0.135 0.051 0.489 

Simple mode 75 0.941 -0.329 0.207 0.137 0.657 

Weighted mode 75 1.039 -0.096 0.172 0.069 0.580 

Hip circumference  MR Egger 225 0.64 -0.901 0.009 0.232 0.056 

Weighted median 225 0.942 -0.315 0.195 0.130 0.644 

Inverse variance weighted 225 1.054 -0.106 0.212 0.081 0.516 

Simple mode 225 0.974 -0.644 0.591 0.315 0.932 

Weighted mode 225 0.932 -0.504 0.362 0.221 0.748 

Heart rate  MR Egger 15 1.065 -0.054 0.179 0.060 0.311 

Weighted median 15 1.011 -0.026 0.049 0.019 0.555 

Inverse variance weighted 15 1.008 -0.020 0.037 0.015 0.564 

Simple mode 15 1.007 -0.054 0.068 0.031 0.823 

Weighted mode 15 1.013 -0.037 0.063 0.026 0.614 
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Breast cancer MR Egger 9 29.928 -4.059 10.857 3.805 0.401 

Weighted median 9 0.274 -4.905 2.317 1.842 0.482 

Inverse variance weighted 9 0.47 -3.526 2.017 1.414 0.594 

Simple mode 9 0.114 -7.425 3.078 2.680 0.441 

Weighted mode 9 0.237 -5.770 2.891 2.209 0.533 

 

Table 6. Bidirectional MR: LDL cholesterol single-SNP analysis results. The analysis estimated the causal effect of LDL cholesterol (exposure of 

interest) on H.pylori infection (outcome of interest) for each genetic instrument in a sample size of 173,082 participants.  

SNP β se p Lower 95% CI Upper 95% CI 

rs10195252 -0.207 0.900 0.818 -1.971 1.557 

rs10490626 -0.675 0.757 0.373 -2.159 0.809 

rs10832962 -0.603 0.758 0.427 -2.088 0.883 

rs10893499 -0.263 0.595 0.658 -1.429 0.902 

rs10903129 -0.394 0.646 0.543 -1.660 0.873 

rs10947332 -0.275 1.473 0.852 -3.162 2.611 

rs112201728 0.253 0.657 0.699 -1.033 1.540 

rs11563251 -0.462 0.983 0.638 -2.390 1.465 

rs11591147 0.193 0.361 0.593 -0.515 0.901 

rs1169288 0.928 0.607 0.126 -0.262 2.118 

rs12066643 0.571 0.915 0.533 -1.223 2.366 

rs1250229 -0.391 0.993 0.694 -2.337 1.555 

rs12721109 0.083 0.170 0.624 -0.250 0.417 

rs12748152 0.011 0.783 0.989 -1.524 1.546 
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rs12916 -0.143 0.292 0.626 -0.715 0.430 

rs13206249 0.246 0.742 0.740 -1.207 1.700 

rs13277801 1.177 0.660 0.075 -0.117 2.470 

rs1367117 0.062 0.189 0.743 -0.309 0.433 

rs1408272 0.004 0.790 0.996 -1.544 1.552 

rs1564348 -0.306 0.585 0.600 -1.453 0.840 

rs16831243 0.043 0.916 0.963 -1.753 1.839 

rs16891156 0.669 0.797 0.401 -0.892 2.231 

rs17404153 -1.074 0.955 0.261 -2.946 0.797 

rs174583 -0.325 0.451 0.472 -1.209 0.559 

rs1800961 0.755 0.922 0.413 -1.052 2.562 

rs1801689 -0.199 0.730 0.785 -1.629 1.231 

rs1883025 -0.943 0.818 0.249 -2.546 0.660 

rs2000999 0.080 0.407 0.845 -0.719 0.878 

rs2030746 -0.399 0.999 0.690 -2.358 1.560 

rs2073547 -0.240 0.613 0.695 -1.442 0.962 

rs2228603 0.706 0.415 0.089 -0.108 1.520 

rs2328223 1.338 0.910 0.142 -0.446 3.122 

rs2390536 -3.038 0.984 0.002 -4.967 -1.109 

rs2419604 0.588 0.774 0.447 -0.929 2.105 

rs2495495 1.439 2.132 0.500 -2.740 5.619 

rs2587534 0.513 0.539 0.341 -0.543 1.568 

rs2642438 -0.090 1.471 0.951 -2.974 2.794 

rs267733 0.628 0.887 0.479 -1.110 2.366 
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rs2710642 0.395 0.944 0.675 -1.454 2.245 

rs2737252 -0.236 0.745 0.751 -1.696 1.224 

rs2738459 -0.457 0.410 0.265 -1.260 0.346 

rs2886232 0.610 0.741 0.410 -0.842 2.063 

rs2965157 -0.186 0.337 0.582 -0.847 0.475 

rs314253 1.850 0.912 0.043 0.062 3.638 

rs3184504 -0.984 0.787 0.211 -2.526 0.559 

rs364585 0.479 0.868 0.581 -1.222 2.180 

rs3757354 -0.519 0.682 0.447 -1.855 0.817 

rs3780181 -0.539 0.933 0.563 -2.367 1.289 

rs4253776 2.111 1.074 0.049 0.006 4.215 

rs4530754 -0.521 0.768 0.498 -2.025 0.984 

rs4722551 0.345 0.742 0.642 -1.110 1.800 

rs4942486 0.876 0.868 0.312 -0.824 2.577 

rs4970712 1.554 1.756 0.376 -1.888 4.997 

rs5763662 -0.707 0.966 0.464 -2.601 1.186 

rs579459 0.025 0.383 0.947 -0.726 0.776 

rs6016373 -1.533 0.614 0.013 -2.736 -0.330 

rs6065311 -0.636 0.505 0.208 -1.626 0.354 

rs646776 0.074 0.160 0.642 -0.239 0.387 

rs6504872 1.450 0.768 0.059 -0.055 2.956 

rs6511720 -0.112 0.147 0.447 -0.399 0.176 

rs6544713 0.089 0.279 0.749 -0.458 0.636 

rs6709904 0.254 0.676 0.707 -1.071 1.579 
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rs676388 0.348 0.795 0.661 -1.210 1.907 

rs6818397 0.028 0.964 0.977 -1.862 1.918 

rs6882076 -0.249 0.479 0.603 -1.187 0.689 

rs6909746 0.236 0.810 0.770 -1.351 1.823 

rs7254892 0.103 0.130 0.428 -0.152 0.359 

rs72902576 0.292 0.661 0.659 -1.005 1.588 

rs7551981 0.201 0.460 0.662 -0.700 1.102 

rs75687619 1.239 0.555 0.025 0.153 2.326 

rs7640978 -0.136 0.960 0.887 -2.018 1.746 

rs7832643 -0.228 0.634 0.719 -1.471 1.014 

rs8017377 0.021 0.695 0.976 -1.342 1.383 

rs9875338 -0.107 0.834 0.898 -1.742 1.529 

rs9987289 -0.007 0.510 0.990 -1.006 0.993 

 

Table 7. Bidirectional MR: Hip circumference single-SNP analysis results. The analysis estimated the causal effect of hip circumference 

(exposure of interest) on H.pylori infection (outcome of interest) for each genetic instrument in a sample size of 336,601 participants.  

SNP β se p Lower 95% CI Upper 95% CI 

rs10100245 0.302 1.073 0.779 -1.802 2.405 

rs10118701 -1.050 1.304 0.421 -3.606 1.506 

rs1014291 0.802 1.383 0.562 -1.909 3.514 

rs10153248 -0.301 1.282 0.814 -2.814 2.211 

rs10236214 2.339 1.216 0.054 -0.044 4.722 

rs10237317 -4.464 3.418 0.192 -11.164 2.236 
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rs10269774 -0.058 1.018 0.955 -2.054 1.938 

rs10404726 -0.762 1.305 0.559 -3.319 1.795 

rs10756798 -2.901 1.516 0.056 -5.873 0.070 

rs10777859 -0.763 1.399 0.586 -3.505 1.980 

rs10820852 -1.954 1.653 0.237 -5.194 1.286 

rs10887571 -0.488 1.616 0.763 -3.656 2.680 

rs10938397 -0.136 0.919 0.882 -1.938 1.666 

rs11030119 -0.352 0.721 0.625 -1.765 1.060 

rs11109097 -0.952 1.624 0.558 -4.136 2.232 

rs1118151 -1.165 1.512 0.441 -4.128 1.797 

rs112646560 -1.019 1.325 0.442 -3.616 1.578 

rs1127100 0.283 1.564 0.856 -2.783 3.349 

rs113866544 0.322 1.412 0.820 -2.446 3.090 

rs11584359 -1.069 1.461 0.464 -3.932 1.794 

rs11766945 -0.026 1.461 0.986 -2.889 2.836 

rs11839227 -0.226 1.638 0.890 -3.437 2.985 

rs11862944 -0.650 1.477 0.660 -3.544 2.245 

rs11882409 -0.105 1.369 0.939 -2.789 2.578 

rs11944291 3.351 1.529 0.028 0.353 6.349 

rs12096864 1.577 1.702 0.354 -1.758 4.912 

rs12140153 -0.959 1.723 0.578 -4.336 2.417 

rs12209223 -0.763 1.681 0.650 -4.059 2.532 

rs12254441 -0.008 1.534 0.996 -3.013 2.998 

rs12300276 -0.706 1.672 0.673 -3.984 2.572 
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rs1231281 0.269 1.535 0.861 -2.739 3.276 

rs12375196 0.630 1.334 0.637 -1.985 3.244 

rs12475388 0.189 1.606 0.906 -2.958 3.337 

rs12519997 -0.254 1.538 0.869 -3.269 2.761 

rs12528644 -1.063 1.092 0.331 -3.203 1.078 

rs12561919 4.110 1.653 0.013 0.870 7.350 

rs12607512 -0.603 1.603 0.707 -3.744 2.538 

rs12619178 -1.011 1.432 0.480 -3.817 1.795 

rs12680342 -0.077 1.502 0.959 -3.020 2.866 

rs12701265 2.966 1.637 0.070 -0.242 6.174 

rs12714415 -0.059 0.632 0.926 -1.297 1.179 

rs12779865 0.569 1.042 0.585 -1.473 2.611 

rs12805742 0.401 1.458 0.783 -2.457 3.259 

rs12877270 0.825 1.461 0.572 -2.038 3.688 

rs12883788 1.876 1.400 0.180 -0.868 4.619 

rs12920259 0.860 1.393 0.537 -1.871 3.590 

rs1293395 -0.538 1.616 0.739 -3.706 2.630 

rs1296328 -0.723 1.413 0.609 -3.492 2.046 

rs13107325 -0.552 0.907 0.543 -2.330 1.227 

rs1320903 -0.501 1.198 0.676 -2.848 1.847 

rs13333747 -0.815 1.287 0.527 -3.338 1.708 

rs13389219 0.353 0.858 0.681 -1.329 2.034 

rs13410783 1.379 1.575 0.381 -1.707 4.465 

rs138767 -1.596 1.610 0.322 -4.751 1.560 
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rs1396513 0.641 1.178 0.586 -1.668 2.949 

rs141622900 -3.138 1.976 0.112 -7.010 0.735 

rs1428120 -0.988 1.625 0.543 -4.172 2.197 

rs143384 -1.888 0.764 0.013 -3.386 -0.391 

rs1441264 0.395 1.277 0.757 -2.109 2.898 

rs1449630 -1.951 1.692 0.249 -5.267 1.365 

rs1458156 1.719 1.618 0.288 -1.451 4.890 

rs1477290 -1.671 1.213 0.168 -4.048 0.706 

rs147730268 0.310 0.800 0.698 -1.258 1.878 

rs1528450 0.610 1.303 0.640 -1.944 3.163 

rs1569497 1.306 1.426 0.360 -1.489 4.101 

rs1582931 -1.074 1.103 0.330 -3.237 1.088 

rs1618069 1.563 1.603 0.330 -1.579 4.705 

rs1618725 -0.452 1.017 0.657 -2.445 1.542 

rs1662185 -0.561 1.457 0.700 -3.416 2.294 

rs17024393 0.064 1.184 0.957 -2.258 2.386 

rs17245511 0.091 1.649 0.956 -3.142 3.323 

rs1727901 1.277 1.365 0.349 -1.397 3.952 

rs17770336 -1.582 1.175 0.178 -3.885 0.721 

rs1955695 3.126 1.197 0.009 0.779 5.473 

rs1979440 1.085 1.502 0.470 -1.860 4.029 

rs2013002 -1.160 1.231 0.346 -3.573 1.253 

rs2034768 -0.059 1.304 0.964 -2.614 2.497 

rs2102278 1.505 1.553 0.333 -1.539 4.550 
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rs2187449 2.404 1.693 0.156 -0.914 5.721 

rs2236519 -1.309 1.095 0.232 -3.456 0.838 

rs2244786 -1.873 1.657 0.258 -5.122 1.376 

rs2307111 -0.025 0.763 0.974 -1.520 1.469 

rs2318543 0.337 1.530 0.826 -2.662 3.335 

rs2439823 0.330 1.161 0.776 -1.946 2.606 

rs245775 -2.414 1.668 0.148 -5.683 0.856 

rs2494196 -0.179 0.777 0.818 -1.702 1.345 

rs2499468 -0.138 1.643 0.933 -3.359 3.083 

rs252749 -1.400 1.135 0.217 -3.624 0.824 

rs2678204 -0.506 1.088 0.642 -2.637 1.626 

rs2715439 1.115 1.382 0.420 -1.593 3.823 

rs273505 -0.329 1.507 0.827 -3.283 2.626 

rs2737250 0.128 1.092 0.907 -2.012 2.267 

rs2814943 -1.073 0.541 0.047 -2.134 -0.012 

rs2815753 -0.044 1.025 0.966 -2.053 1.965 

rs28377268 -0.534 1.535 0.728 -3.543 2.475 

rs28418580 0.214 1.249 0.864 -2.234 2.661 

rs28479795 -0.259 1.130 0.819 -2.474 1.956 

rs2897968 0.622 1.650 0.706 -2.612 3.856 

rs2954021 0.856 1.210 0.480 -1.516 3.228 

rs3218036 -1.648 1.161 0.156 -3.924 0.627 

rs33955687 2.960 1.545 0.055 -0.068 5.988 

rs34013042 -1.377 1.675 0.411 -4.661 1.907 
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rs34049648 -1.757 1.336 0.189 -4.377 0.862 

rs34373881 -0.908 1.690 0.591 -4.221 2.405 

rs34517439 0.970 0.808 0.230 -0.613 2.553 

rs34629844 -2.039 1.599 0.202 -5.174 1.095 

rs34748838 0.346 1.050 0.742 -1.713 2.405 

rs34769775 -1.016 1.521 0.504 -3.998 1.966 

rs35779991 2.592 1.513 0.087 -0.372 5.557 

rs35874463 0.734 1.969 0.709 -3.125 4.594 

rs35882248 -1.256 1.422 0.377 -4.043 1.531 

rs3746759 -1.809 1.689 0.284 -5.120 1.502 

rs3803286 3.333 1.334 0.012 0.718 5.949 

rs3807566 1.635 1.383 0.237 -1.076 4.345 

rs3810291 -1.540 0.981 0.116 -3.462 0.382 

rs3811951 1.726 1.689 0.307 -1.584 5.036 

rs3826408 -0.758 1.391 0.586 -3.484 1.968 

rs3845344 1.969 1.471 0.181 -0.915 4.853 

rs390192 -0.767 1.537 0.618 -3.780 2.246 

rs40071 0.500 1.744 0.774 -2.917 3.918 

rs41284816 0.983 1.047 0.348 -1.069 3.035 

rs4240326 0.162 0.787 0.837 -1.380 1.704 

rs4297095 1.662 1.783 0.351 -1.833 5.157 

rs4402589 0.010 0.737 0.990 -1.435 1.454 

rs4430895 -0.634 0.893 0.478 -2.384 1.116 

rs4467770 3.029 1.522 0.047 0.046 6.013 
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rs4482463 2.565 1.458 0.079 -0.293 5.423 

rs4630170 -1.079 1.539 0.483 -4.094 1.937 

rs4660586 0.153 1.312 0.907 -2.417 2.724 

rs4670612 1.275 1.444 0.377 -1.555 4.105 

rs4722398 -1.523 1.539 0.322 -4.539 1.493 

rs4741546 0.479 1.281 0.708 -2.032 2.990 

rs4777541 2.711 1.412 0.055 -0.056 5.479 

rs4790292 0.099 1.166 0.932 -2.187 2.385 

rs4794222 -1.241 1.538 0.420 -4.255 1.773 

rs4982753 0.159 1.641 0.923 -3.057 3.375 

rs4985407 1.861 1.529 0.224 -1.136 4.858 

rs543874 -0.124 0.589 0.833 -1.279 1.031 

rs55726687 -1.047 1.353 0.439 -3.700 1.605 

rs55932154 2.077 1.562 0.184 -0.984 5.138 

rs56094641 -0.143 0.367 0.697 -0.863 0.577 

rs56288810 2.317 1.555 0.136 -0.731 5.366 

rs57636386 0.144 1.125 0.898 -2.061 2.349 

rs58551145 0.892 1.199 0.457 -1.458 3.242 

rs588660 1.652 1.187 0.164 -0.674 3.978 

rs59738707 -0.644 1.530 0.674 -3.642 2.354 

rs6080646 1.781 1.602 0.266 -1.358 4.921 

rs60984707 1.198 1.669 0.473 -2.073 4.470 

rs6142059 0.571 1.340 0.670 -2.056 3.198 

rs62243489 0.854 1.711 0.618 -2.500 4.208 
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rs62246314 -0.045 1.559 0.977 -3.100 3.010 

rs62425398 1.297 1.702 0.446 -2.039 4.633 

rs6470771 1.554 1.721 0.367 -1.819 4.927 

rs6501601 0.180 1.268 0.887 -2.306 2.666 

rs6535240 -1.160 1.676 0.489 -4.444 2.125 

rs6567160 -0.006 0.501 0.991 -0.987 0.976 

rs6575340 -0.735 1.125 0.514 -2.940 1.471 

rs6585201 0.009 1.045 0.993 -2.038 2.057 

rs6601527 0.565 1.445 0.696 -2.267 3.397 

rs66679256 1.228 1.503 0.414 -1.718 4.174 

rs6669341 -0.426 1.517 0.779 -3.400 2.548 

rs6707036 -1.306 1.629 0.423 -4.499 1.886 

rs6739755 0.470 1.487 0.752 -2.444 3.384 

rs675162 0.452 1.203 0.707 -1.906 2.811 

rs6821305 2.073 1.505 0.169 -0.878 5.023 

rs6840236 0.276 1.308 0.833 -2.287 2.839 

rs6867299 -1.405 1.181 0.234 -3.720 0.911 

rs6907872 0.169 1.670 0.920 -3.104 3.442 

rs6973656 -0.044 1.199 0.970 -2.395 2.306 

rs6999725 0.247 1.626 0.879 -2.940 3.434 

rs7116641 -0.623 1.025 0.543 -2.632 1.386 

rs7124681 0.487 1.076 0.651 -1.621 2.596 

rs7132908 1.103 0.922 0.232 -0.704 2.910 

rs7145337 -1.546 1.559 0.321 -4.601 1.509 



 

126 

 

rs7226064 -0.121 1.518 0.936 -3.096 2.853 

rs7238896 1.197 1.567 0.445 -1.874 4.268 

rs724016 2.157 0.798 0.007 0.593 3.721 

rs72656010 0.695 1.489 0.640 -2.222 3.613 

rs7274811 -0.605 1.141 0.596 -2.841 1.631 

rs72801854 1.819 1.345 0.176 -0.818 4.456 

rs72892910 -0.968 0.855 0.258 -2.644 0.708 

rs72959041 -0.132 0.962 0.891 -2.017 1.754 

rs73175572 0.125 1.402 0.929 -2.623 2.873 

rs7426945 1.529 1.508 0.311 -1.426 4.484 

rs74749286 0.067 1.240 0.957 -2.364 2.498 

rs750090 -0.167 1.371 0.903 -2.854 2.520 

rs7516554 1.956 1.445 0.176 -0.876 4.788 

rs7548408 0.595 1.434 0.678 -2.216 3.407 

rs75543804 2.963 1.825 0.104 -0.613 6.539 

rs756717 0.267 3.101 0.931 -5.812 6.345 

rs75949361 -2.455 1.513 0.105 -5.421 0.512 

rs76040172 -3.622 1.526 0.018 -6.612 -0.632 

rs76798800 -0.983 1.018 0.334 -2.978 1.012 

rs77165542 -0.233 0.911 0.798 -2.019 1.552 

rs7845090 -1.065 1.109 0.337 -3.238 1.107 

rs7893571 1.182 1.509 0.434 -1.776 4.140 

rs7915723 -1.770 1.716 0.302 -5.133 1.592 

rs7930275 0.869 1.468 0.554 -2.008 3.745 



 

127 

 

rs7957774 -0.242 1.626 0.882 -3.430 2.945 

rs7978353 2.752 1.317 0.037 0.171 5.333 

rs7982447 2.103 1.729 0.224 -1.287 5.493 

rs79969674 1.095 1.764 0.535 -2.362 4.553 

rs8011368 1.127 1.564 0.471 -1.937 4.192 

rs8023263 0.871 1.462 0.551 -1.994 3.737 

rs8042404 -0.146 1.490 0.922 -3.066 2.774 

rs8064502 -0.974 1.312 0.458 -3.546 1.598 

rs8133137 -1.077 1.593 0.499 -4.198 2.045 

rs815335 0.678 1.249 0.587 -1.770 3.126 

rs8192675 -0.179 1.346 0.894 -2.817 2.459 

rs845084 0.447 1.432 0.755 -2.360 3.253 

rs869400 3.696 1.550 0.017 0.657 6.734 

rs879620 1.214 0.843 0.150 -0.437 2.866 

rs882378 -1.400 1.575 0.374 -4.486 1.686 

rs894347 -0.452 1.240 0.715 -2.882 1.977 

rs9378684 -0.459 1.438 0.750 -3.276 2.359 

rs9415106 0.653 1.642 0.691 -2.564 3.871 

rs9496567 -1.189 1.288 0.356 -3.714 1.336 

rs9512696 -1.193 1.348 0.376 -3.835 1.449 

rs962554 -0.404 1.139 0.723 -2.636 1.827 

rs968379 1.774 1.324 0.180 -0.821 4.368 

rs9808900 -0.226 1.069 0.833 -2.320 1.869 

rs9814633 -1.340 1.597 0.401 -4.471 1.791 



 

128 

 

rs982692 4.433 1.599 0.006 1.300 7.566 

rs9843653 -0.457 1.056 0.665 -2.527 1.612 

rs9967367 0.967 1.498 0.518 -1.968 3.903 

 


