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Abstract：The dynamic response of an hydraulic machine is greatly affected by the water due 

to the added mass effect. However, the presence of cavitation can change the modal response 

of the coupled fluid-structure system because it modifies the properties of the surrounding fluid, 

i.e. the speed of sound and density. In this paper, a FEM-based acoustic-fluid model has been 

used to simulate the dynamic response of a NACA0009 hydrofoil with attached leading edge 

cavitation. The natural frequencies and the corresponding mode shapes have been compared 

for the hydrofoil in air, in still water and in cavitation conditions. The numerical predictions 

show a good agreement with the experimental results obtained in a high-speed cavitation 

tunnel. They confirm that different fluid conditions can modify the mode shapes in comparison 

with the modes in air. The nodal lines of the torsion and the second bending modes are slightly 

shifted with water and cavitation. Furthermore, the third mode of vibration under cavitation 

conditions appears as a combination of the torsion and the second bending shapes. The results 

indicate that such alterations are mainly induced by the value of the speed of sound inside the 

cavity. 

1. Introduction  

The dynamic behaviour of hydraulic machinery has to be correctly assessed during the design stage to 

avoid resonances. It has been demonstrated that the modal response of a structure is significantly 

different when submerged in water or vapor-water mixtures [1-2]. 

Lindholm et al. [3] analyzed the vibration of cantilever plates in air and water, showing that the 

fluid had a significant effect upon the dynamic plate frequencies. Kwak [4] estimated the natural 

frequencies of circular plates in water by using an approximate formula, which mainly depends upon 

the so-called added virtual mass incremental factor. Chang and Liu [5] experimentally found that the 

mode shapes of a plate under a flow can suffer small changes. Rodriguez et al. [6] carried out 

experimental modal analysis of a Francis runner submerged in still water. All these studies showed that 

the natural frequencies and mode shapes are not changed in a low-density fluid such as air in relation 

to the results in vacuum. But if the structure is submerged in a high-density fluid, the natural 
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frequencies are drastically reduced meanwhile the mode shapes do not differ significantly. 

However, cavitation is a rather common phenomenon in hydraulic machinery that modifies the 

average properties of the surrounding fluid. For example, the structure might not be fully wetted and 

the two-phase fluid might not be homogeneous. Fine et al. [7] found that the added mass of the 

circular disk under a supercavitation flow is lower than under the fully wetted conditions with water. 

De La Torre et al. [8] investigated experimentally a 2-D NACA0009 truncated hydrofoil under 

cavitation conditions and concluded that the added mass decreased with cavity length. These studies 

mainly focused on the natural frequencies of the structures under cavitation conditions. 

In reference to the hydrofoil mode shapes, De La Torre et al. [9] found experimentally slight 

alterations between different fluid conditions. In particular, they observed that the mode shape of the 

second bending mode under cavitation conditions was actually closer to a bending-torsion coupled 

mode, but the reason for that could not be found out. In order to understand such results, a FEM-based 

acoustic-fluid model has been used to simulate the dynamic characteristics of a NACA0009 hydrofoil 

under air conditions, still water conditions and cavitation conditions. And the obtained results and 

conclusions are presented in the current paper. 

2. Numerical simulation 

2.1. Coupled acoustic-structure modelling 

FEM-based acoustic-fluid approach to simulate the added mass effect of surrounding water on a solid 

structure has been widely used in hydraulic turbine runners with sufficient accuracy as for example by 

Liang et al. [10]. In this case, the fluid-structure coupled system can be written as:  

            =s s s s fsM u C u K u F F    (1) 

         =f f f f sfM p C p K p F F              (2) 

where, [Ms] is the structural mass matrix, [Cs] is the structural damping matrix, [Ks] is the structural 

stiffness matrix, {Fs} is the load vector on the structure, {u} is the nodal displacement vector, [Mf] is 

the acoustic fluid mass matrix, [Cf] is the acoustic fluid damping matrix, [Kf] is the acoustic fluid 

stiffness matrix, {Fsf} is the force that the structure motion produces on the fluid, {Ffs} is the force that 

the fluid exerts on the structure, {Ff} is the acoustic fluid load vector and {p} is the nodal pressure 

vector. 

The dimensions of the NACA0009 hydrofoil were taken from the work of De La Torre et al. [8] 

with a truncated chord of 100mm, a span of 150mm and a trailing edge thickness of 3.22mm. The 

structure material was taken as aluminum with a theoretical density of 2700kg/m3, a Young’s modulus 

of 52GPa and a Poisson’s ratio of 0.3. The incidence angle of the hydrofoil was 0º as shown in Figure 

1a. 

De La Torre et al. [9] determined the hydrofoil mode shapes under different flow conditions from 

the vibration amplitudes measured at 26 points uniformly distributed on the hydrofoil surface as 

indicated in Figure 1b, which were excited by two PZT patches. 

 

 
(a) 
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(b) 

Figure 1. (a) Cross section of the hydrofoil from leading edge (left) to trailing edge (right), (b) top 

view of the hydrofoil and measurement points on the surface [9]. 

 

 
(a) 
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Fluid

 
(b) 

Figure 2. (a) Photograph of the attached leading edge cavitation during the tests [8], (b) outline of the 

model domain with main dimensions and boundary conditions. 

 

To simulate the cavitation conditions observed during the tests (see Figure 2a), the attached vapor 

cavity was considered to have a constant length of 50mm, a thickness of 1.8mm and a span of 150mm. 

The shape and location of the vapor cavity domain is shown in Figure 2b. It is assumed that the vapor 

cavity is stable and the dynamic change of cavitation is not considered. The acoustic properties of the 

elements in the cavitation domain were taken as a density of 1.205kg/m3 and a speed of sound of 

343.21m/s. In turn, the acoustic properties of the water domain were taken as 1000 kg/m3 and 1450m/s. 

The surrounding fluid domain corresponded to the tunnel test section dimensions of 150×150×885mm. 

The flow inlet and outlet boundary surfaces were set with an absorption coefficient of 0.3. The rest of 

boundary surfaces were set as fully reflective. One lateral side of the hydrofoil body was fully 
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constrained and the opposite surface was left free to simulate a cantilever mounting. The small gap of 

0.012mm between the hydrofoil tip and the lateral test section wall as modeled with acoustic elements. 

2.2. Model validation 

The three first natural frequencies found with the numerical model are compared in Table 1 against the 

experimental ones under different conditions. They correspond to the first bending mode (f1), the 

torsion mode (f2) and the second bending mode (f3) as shown in Table 2. It is confirmed that the 

frequencies under still water conditions are reduced drastically compared with air conditions. However, 

the frequencies under cavitation conditions are slightly higher than those in still water, but they are 

still much lower than in air. The goodness of the model is proved since the maximum deviations are 

below 9%. 

 

Table 1. Numerical and experimental natural frequencies under different conditions. 

Modes First bending f1 Torsion f2 Second bending f3 

Conditions air water cavitation air water cavitation air water cavitation 

Exp. [Hz] 270 125 134 1021 625 670 1657 875 961 

Sim. [Hz] 279 133 142 999 611 647 1689 949 1017 

Dev. [%] 3.5 6.6 5.9 2.1 -2.2 -3.5 1.9 8.4 5.8 

 

Table 2. Numerical mode shapes under different conditions. 

Modes Air Still water Cavitation 

First 

bending 

f1 

   

Torsion 

f2 

   

Second 

bending 

f3 

   

 

The relative hydrofoil deformations at f1, f2 and f3 obtained numerically are compared with the 

corresponding relative hydrofoil vibrations measured experimentally for air, still water and cavitation 

conditions in figures 3 to 5, respectively. The plots show that the simulated mode shapes are close to 

the measured ones. Only, slight deviations can be observed at some points, but the overall trends are in 

good agreement, thus confirming the accuracy of the model. 
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(c) 

Figure 3. Comparison of numerical and experimental mode shapes for f1 (a), f2 (b) and f3 (c) in air. 
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Figure 4. Comparison of numerical and experimental mode shapes for f1 (a), f2 (b) and f3 (c) in still 

water. 
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Figure 5. Comparison of numerical and experimental mode shapes for f1 (a), f2 (b) and f3 (c) in 

cavitation. 

3. Discussion 

The simulated mode shapes for f1 plotted in Table 2 do not show significant changes for the different 

fluid conditions. However, slight alterations of the shapes are observed for f2 and f3 in water and in 
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cavitation relative to the air results. In order to quantify such changes, a line of points in span wise 

direction close to the trailing edge (TE) have been selected which follows the line defined by points 

numbered from 1 to 6 in the experiments. In Figure 6a, the normalized deformations at TE for the 

torsion mode f2 have been plotted for air, water and cavitation conditions. And in Figure 6b, the 

deformation at the same points have been plotted for the second bending mode f3 also in different 

conditions. 

The most remarkable observation is that for f3 the zero displacement location moves along the 

hydrofoil span as it was already detected in the experiments. The nodal point in air is located about 

76.7% of the span, with a deviation of about -0.9% from the experimental position. Then, for still 

water, the nodal point moves backwards towards the clamped section and it is located about 69.3%, 

with a deviation of -0.6% from the experimental value. For cavitation condition, the position is very 

close to the air condition, which is in disagreement with the experimental results that locate such point 

around 72.6% of the span. 
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(a) (b) 

Figure 6. Normalized deformations at trailing edge for f2 (a) and f3 (b). 

 

To investigate the disagreement between the nodal point location predicted by simulation for f3 in 

cavitation conditions and the experimental results, the recent work of Liu et al. [11] has been 

considered. Their numerical results showed that the value of the speed of sound inside the cavity had a 

significant influence on the hydrofoil modes of vibration meanwhile the effect of changing the density 

was negligible. A change of acoustic properties is expected inside the cavity because the visual 

observations [8] pointed out that the actual cavity was a mixture of vapor and water instead of a pure 

vapor sheet. In this sense, Brennen [12] points out that the sound speed in a mixture of water and 

vapor varies with the void fraction α as plotted in Figure 7. 

 

 
Figure 7. Speed of sound (red line) and density (blue line) as a function of void ratio  in a bubbly 

air/water mixture at atmospheric pressure. 
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Based on that, it was decided to compute the effect of α in the mode shape of mode f3. In particular, 

three values corresponding to α = 1 ( = 1.205kg/m3, c = 343.21m/s), α = 0.999 ( = 2.2kg/m3, c = 

270m/s) and α = 0.9987 ( = 2.5kg/m3, c = 260m/s) were simulated. The resulting mode shapes are 

compared in Table 3. 

 

Table 3. Mode shapes of f3 for different cavity void ratios α. 

 = 1.0  = 0.999  = 0.9987 

   
It can be clearly observed that a very small reduction of void ratio has a significant effect on the 

mode shape. As the speed of sound is decreased, the torsional deformation appears and it is increased 

as it can be seen at the tip of the hydrofoil. For  = 1, all the points at the tip present maximum vertical 

displacement, but for lower  the displacement is maximum close to one edge and it is minimum at 

the opposite edge. So, the bending-torsion mode shape observed in the experiments is simulated. 

Moreover, the nodal line moves backwards towards the hydrofoil clamped section as shown in Figure 

8. The minimum deviation of the nodal location relative to the experimental results is found when α is 

0.9987 with a value of 0.9%. Additionally, the natural frequency of f3 decreases with decreasing α 

meanwhile the frequency of f1 and f2 remains unchanged, as indicated in Table 4. And when α is 

0.9987, the frequency deviation is reduced to -3.8% for f3. So, a very good agreement with De La 

Torre et al. [9] results is found for all the modal properties. 
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Figure 8. Normalized deformations at trailing edge for f3 with different cavity void ratios. 

 

Table 4. Numerical and experimental natural frequencies under cavitation conditions. 

Modes First bending f1 Torsion f2 Second bending f3 

α 1.0 0.9987 1.0 0.9987 1.0 0.9987 

Exp. [Hz] 134 134 670 670 961 961 

Sim. [Hz] 142 142 647 647 1017 924.1 

Dev. [%] 5.9 5.9 -3.5 -3.5 5.8 -3.8 

 

4. Conclusions 

A coupled acoustic-structural FEM model was used to simulate the dynamic behavior of an hydrofoil 

under different flow conditions including air, still water and cavitation. The modal response obtained 

numerically showed a good agreement with the experimental results in terms of natural frequencies 

and mode shapes. 
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Compared with air conditions, the frequencies of the submerged hydrofoil were reduced 

significantly due to the added mass effect. In a cavitation flow, the frequencies were slightly higher 

than in still water. The mode shapes under water and cavitation conditions were slightly different than 

in air for the torsion and the second bending modes. They presented changes in the locations of the 

nodal points. 

With a reduction of the cavity void fraction from 1.0 to 0.9987, so that the sound speed varied from 

343m/s to 260m/s, the nodal line of the second bending mode was gradually shifted backwards to the 

clamped section and the natural frequency was reduced. Moreover, the observed bending-torsion mode 

shape found in the experiments was also simulated. In particular, the best agreement with experiment 

was found for  = 0.9987. 

In conclusion, the acoustic properties of the cavity appear to be relevant for the accurate 

determination of the hydrofoil dynamic response. 
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