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ABSTRACT: We describe in this paper a methodology to perform the probabilistic and reliability-

based design of a novel carbon/carbon rocket nozzle subjected to operational thermal and 

mechanical loads. In this methodology the nozzle is represented by a multiphysics finite element 

model capable of predicting the temperature and stress fields of the exit cone. The analysis shows 
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that the most likely failure modes of the exit cone are related to compressive loading along the axial 

and hoop directions, and interlaminar shear. The probabilistic models used in this methodology 

account for the uncertainty of the material properties by using uniform and normal distributions and 

different variances. The reliability analysis is performed by using surface response methods. A 

global sensitivity analysis is also carried out using polynomial expansion chaos surface response 

models. A particular novelty of analysis is the use of Sobol indices to rank the importance of the 

single uncertain parameters in the models. The methodology provides a high level of confidence 

and robustness in determining that the axial thermal conductivity of the carbon/carbon material is 

the most critical material property to affect the three main failure modes, while the coefficient of 

the thermal expansion and the heat capacity play a very marginal role. 

Keywords: Rocket nozzle; Exit cone; Reliability; Carbon/carbon; Uncertainty 

Nomenclature 

M = performance function 

R = the capability 

S = the response 

R1 = the shear strength, MPa 

S12 = the shear stress, MPa 

R2 = the axial compressive strength, MPa 

S22 = the axial compressive stress, MPa 

R3 = the hoop compressive strength, MPa 

S33 = the hoop compressive stress, MPa 

x1 = thermal expansion coefficient, 1/K 

x2 = heat capacity, J/K 

x3 = radial thermal conductivity, W/(m·K) 



x4 = axial thermal conductivity, W/(m·K) 

x5 = axial elastic moduli, MPa 

x6 = radial elastic moduli, MPa 

x7 = density, kg/m3 

1 Introduction 

Carbon/carbon (C/C) nozzles constitute one of the more advanced components of Solid Rocket 

Motor (SRM) technology developed in recent years. Compared with a nozzle made from 

conventional materials, the carbon/carbon version involves a simplified design that produces  

a reduction in weight and internal ablation, and also features improved operational reliability. 

The operational environment of a solid rocket nozzle is very complex and challenging, with 

temperatures usually exceeding 3000°C and the presence of high pressure fields. The internal 

part of the nozzle is also subjected to sharp heat flux gradients and erosion. The short time burn 

generates some significant temperature gradients, and the complex thermodynamic 

environment generated by the presence of high pressures presents a critical challenge to the 

structural design of the rocket nozzle. The C/C nozzle exit cone structure is one of the most 

critical components in the SRM system, leading to potential failures during use.  

Several efforts have been devoted to understanding the behavior of C/C composites at high 

temperatures [1-5]. Li et al [1] and Peng et al [2] investigated the microstructure and the 

ablation mechanism of C/C composites with scanning electron microscopy. Other research 

groups have focused on the effect of the ablative environment on the ablation behavior of C/C 

composites and have obtained valuable performance data. For example, Liu et al [3] studied 

the ablation characteristics of a C/C composite in a lab-scale solid rocket motor under a flux of 



combustion products containing a high content of particulate alumina. Zaman et al [4] reported 

on the residual mechanical and thermophysical properties of C/C composites repeatedly ablated 

using 3000 °C oxyacetylene flame. From the numerical standpoint, Vignoles et al., [5] 

identified an efficient method to simulate the ablation of C/C composites by considering the 

bulk transport of reactants and heterogeneous mass transfer conditions. In recent years, several 

groups have also started to consider the ablation behavior of ceramic based nozzles doped with 

ceramic composition (e.g. ZrB2, ZrC, etc.) for enhanced performance at high temperatures [6, 

7]. These works have built on the know-how accumulated on studying traditional C/C nozzles  

Other significant activities related to C/C nozzle design have considered various aspects 

of heat transfer [8-10]. The analysis of the reliability of C/C composite nozzle exit cone 

structures is however scarcely represented in open literature [11, 12]. The reasons behind this 

lack of information are mainly related to the significant costs involved in the development and 

testing of these composites, and also confidentiality issues related to intellectual property 

ownership [13]. The resources involved in obtaining large amounts of experimental data may 

be prohibitive, and that justifies the use of reliability-based models to design solid rocket motor 

components. The results from system reliability analyses calculated on small data samples are 

affected by significant errors. Therefore numerical models have been widely used to simulate 

the thermal-structural response of the nozzle and integrate the reliability-based approach [13-

17]. Morozov and de la Beaujardiere [13] developed a finite element method to investigate the 

dynamic thermo-structural response of a composite rocket nozzle throat. Goyal et al [16] 

developed reliable reduced size models based on 2D plane strain assumptions for SRM 

structural analysis. Turchi et al [17] suggested a numerical approach to describe a carbon–



phenolic SRM nozzle model and then investigated the role of the most important uncertainty 

parameters affecting the design. Heller et al [11, 12] pioneered a methodology for reliability 

analysis of C/C composites, and analyzed the stress state of a cylindrical structure consisting of 

multiple layers of C/C composite under thermal and pressure shock by assuming elasticity 

within the structure. The reliability of the composite configuration was also calculated. Bozkaya 

et al [18, 19] and Akpan and Wong [20] developed some useful and efficient methods for the 

sensitivity analysis and reliability calculations [21] based on surface response methods (SRM) 

and Monte Carlo simulation techniques.  

In this paper we describe a probabilistic design methodology to assess, at the initial design 

stage, the reliability of carbon/carbon rocket nozzles under thermal and mechanical load 

conditions. The proposed finite element methodology allows the estimation of the reliability 

and probability using a combination of surface response methods and sensitivity analysis based 

on Sobol’s approach with Polynomial Chaos expansions for the surface responses. A particular 

advantage of this approach also consists in the reduction of the computational resources 

required to perform the overall analysis.  

The paper is organized as follows. In the first section we introduce a numerical multi-

physics (thermal and structural) finite element analysis methodology to design a C/C exit cone 

with uncertain parameters, and present a method to estimate the probability of structural failure 

by combining the finite element model with response surface methods. In the second part of the 

paper the reliability metrics of the exit cone are calculated. Finally, the extent and the influence 

of different failure modes on structural reliability are analyzed and discussed. The global 



sensitivity of the uncertain parameters to the failure modes is also evaluated through a Sobol 

analysis. 

2 Thermal stress and failure mode analysis of the C/C exit cone 

2.1 Model of the rocket nozzle 

The nozzle is represented as an axisymmetric structure (Figure 1). The nozzle consists of a 

throat insert, an exit cone, a back wall, the inlet section and a metal flange. The exit cone is 

made from 2D needle-punched felt reinforced C/C composites [22, 23]. Carbon-felt reinforced 

C/C composites constitute the throat, and carbon cloth phenolic makes its inlet. The back wall 

insulation is made of silica cloth phenolic insulation materials, and high-strength alloy steel is 

used for the metal flange. The exit cone and the throat insert are bonded together by an adhesive 

layer; the exit cone and the back wall are also bonded by a similar adhesive layer (Figure 1). A 

gap is present in the connecting section between the throat insert and the exit cone to release 

the thermal stress and avoid a deformation mismatch caused by the stress concentration at high 

temperatures. The silica cloth phenolic can isolate the hot and cooled substructures, and makes 

it possible for the metal flange to stay within its operational temperature range. The main role 

of the metal flange is to connect the composite nozzle to the motor casing, and fix the geometry 

of the exit cone. The properties of the materials used in the design are listed in Tables 1, 2 and 

3. The parameters k, c, α, υ, E, ρ represent the thermal conductivities, heat capacities, thermal 

expansion coefficients, Poisson’s ratios, elastic moduli and densities, respectively. The 

subscripts 1, 2 and 3 indicate the principal orthotropic directions of the materials (i.e., the radial, 

tangential and axial directions in a cylindrical coordinate system) respectively. 



 
Fig. 1. Two-dimensional view of the nozzle structure 

Table 1 Thermal properties of the 2D needle-punched felt reinforced C/C 

Temperature [°C] α [K-1] c [J/(kg·K)] k [W/(m·K)] 
k11 k22 =k33 

20 1.15E-07 777.6 7.18 16.47 
200 6.82E-07 1286.4 9.09 21.05 
400 8.64E-07 1660.8 9.95 23.34 
600 1.24E-06 1824.0 9.73 22.39 
800 1.52E-06 1929.6 9.94 22.36 
1000 1.76E-06 1996.8 10.29 22.20 
1200 1.97E-06 2054.4 10.47 23.22 
1400 2.17E-06 2121.6 10.65 23.70 
1600 2.39E-06 2150.4 11.25 24.08 
1800 2.70E-06 2208.0 11.66 25.01 

Table 2 Mechanical properties of needle-punched felt reinforced C/C 

Temperature, °C E11 [GPa] 
(Out-plane) 

E22=E33 [GPa] 
(In-plane) 

υ Density [kg/m3] υ12= υ13 υ 23 
20 7.90 29.50 0.1 0.24 1540 

1200 / 33.84 / / / 
1600 / 31.13 / / / 

Table 3 Material properties of other materials other than needle-punched felt reinforced C/C 
Materials 
Properties 

Silica cloth phenolic insulation Carbon-felt  
reinforced C/C 

Carbon cloth 
phenolic 

Alloy 
steel 20°C 300°C 

k [W/(m·K)] 
k11 0.61 0.82 80.4 

0.84 27.63 k22 0.53 0.74 30.5 
k33 0.53 0.74 30.5 

c [J/(kg·K)] 
c11 1013 1705 

1200 1189 473.1 c22 1072 1722 
c33 1072 1722 

α [10-6K-1] 
α11 12.40 1.01 3.37 

8.2 12.92 α22 11.72 1.31 1.45 
α33 11.72 1.31 1.45 



υ 0.11 0.1 0.26 0.3 
E [GPa] 14.5 13.2 11 196 

ρ [kg/m3] 1640 1820 1800 7750 

The thermal domain (i.e., the transient heat transfer) representing the nozzle is modeled as 

axisymmetric because of the rotational symmetry of the nozzle geometry. The gas flow 

generates nearly 6MPa pressure [13] and wall shear stresses on the inner wall of the nozzle. 

Because the magnitude of the wall shear stress is very small [22], its influence on the nozzle 

performance can be therefore neglected. The pressure generated by the gas flow generates the 

main mechanical load. The heat transfers between the high-temperature gas and the inner wall 

generally can be classified into convective, radiant and conductive. The forced convective heat 

is the most significant factor for the heat transfer [23-26].  

To simplify the model we impose the following assumptions: (1) only convective heat 

transfers between the flow and the nozzle are considered on the inner wall of the nozzle; 

radiation and conduction are ignored [23-26]. The mechanical erosion of the material and the 

ablation of the inner nozzle wall are also neglected [27, 28]. (2) Only convective heat transfer 

between the air and the outer wall of the nozzle is considered, and the radiation heat loss is 

neglected [29-32]. (3) The flow field parameters (pressure and temperature) do not change for 

a SRM in steady-state operations (4) The thermally induced erosion of the insulation material 

is ignored [27, 28]. 

The temperature profile around the nozzle, the gas pressure and the convective heat 

transfer coefficient vary with the axial distance (Fig. 2. (a) and (b)) [32]. 



  

 
Fig. 2. Variations of the flow gas temperature, convective heat transfer coefficient (a) and gas 

pressure (b) with the axial position 

The following boundary conditions and constraints are used in the numerical analysis of 

nozzle: (a) The heat transfer between the outer wall of the exit cone and the ambient air is 

represented by natural convection only, with a convective heat transfer coefficient of 5W/ 

(m2·K) [27, 28]. (b) The body of the nozzle is initially at room temperature (20 °C), which is 

representative of ground test conditions. (3) The outside ambient pressure is standard (sea level) 

atmospheric pressure, and the ambient temperature is 20 °C. (4) The interfacial shear strength 

of the adhesive layer present between the exit cone and throat is 10MPa [32]; a bilinear cohesive 

zone model (CZM)[33] is used to simulate the interface state. (5) The metal flange edge is fixed. 

(6) The total simulation time is 21 seconds, which represents the typical duration of the test 

time of a solid rocket engine [32].  

The calculations were performed on a Windows-based machine with a 4.8GHz CPU and 

32GB RAM. The coupled-thermal displacement analysis method solver of ABAQUS-Standard 

TM (Version, 16.4-2) is used to directly couple the temperature and stress fields of the nozzle 

exit cone with the above loads and boundary conditions. In order to guarantee the accuracy of 

the initial temperature distribution, the same mesh density was used both for the thermal and 

structural models. The thermomechanical coupling element CAX4T (axisymmetric thermal 



coupling quadrilateral linear element) was used, and the CAX3T (axisymmetric thermal 

coupled triangular linear element) was adopted to mesh the local region. An analysis of different 

mesh densities was performed to examine the dependency of the numerical results on the 

numbers of elements. After examining the stress distribution from different simulations it was 

found that the deviation of the maximum equivalent stress would not exceed 1% when the 

element size was less than 0.5×0.5mm. Hoever, local stress concentration regions usea finer 

mesh size. For all the other components, the elements side has a constant length of 1mm. The 

total number of elements in the multi-physics model is 7023, with 45 elements through the 

thickness. 

2.2 Results of the numerical analysis 

The overall structural temperature reaches its peak at the end of the time domain simulation. At 

the entrance of the throat the highest temperature is 3191 °C, and 2091 °C at the exit cone. The 

temperature of the external alloy steel is less than 30 °C at the end of the simulation. 

 
Fig. 3. Nozzle temperature contour of the final states: (a) two-dimensional cross-section, (b) a 

three-dimensional structure, (c) two-dimensional exit cone [Unit, °C] 

The structural failure mode of the nozzle can be divided into material failure, and failure 

of the bonding between the different components. The material failure can be caused by the 

material ablation that induces erosion; another failure mode is represented by the local stress 



that exceeds the strength of the material. Because this analysis is mainly concerned with the 

structural response of the system at the initial design stage iteration, effects like the mechanical 

and thermal erosion are neglected. The subsequent reliability analysis is therefore performed 

by only considering the failure mode represented by the structural stress exceeding the material 

strength. 

2.2.1 Radial stress of the exit cone 

The radial stress field of the exit cone is shown in Fig. 4(a). The maximum radial tensile stress 

occurs at point A, which is located at the sharp contact corner of the exit cone and the throat. 

During the thermal loading stress concentrations appear at this corner. The maximum radial 

tensile stress is 9.8MPa, which is significantly lower than the value of the material tensile 

strength (160MPa). While, the stress concentration at sharp corners does not represent the 

correct stress magnitude, it must be larger than the actual stress, so he radial tensile stress should 

not cause failure of the exit cone. The maximum radial compressive stress occurs at point B, 

with the compressive stress being mainly generated by the thermal expansion of the throat. The 

maximum radial compressive stress is 60.2MPa, which is again lower than the value of the 

material compressive strength (140MPa). The radial compressive stress therefore should not 

damage the exit cone. 



 
Fig. 4. The (a) radial, (b) axial, (c) hoop and (d) interlaminar shear stress contours of the exit cone  

2.2.2 Axial stress at the exit cone 

The axial stress field of the exit cone is shown in Fig. 4(b). The maximum axial tensile stress 

occurs at point C, which is located at the contact corner of the exit cone and the back wall. The 

maximum axial tensile stress is 28MPa, lower than the value of the material tensile strength. 

The maximum axial compressive stress is 75.5MPa after 5.2s. The maximum axial compressive 

stress occurs at point A. Because this particular location is close to the throat, it expands before 

the other adjacent surfaces. Compressive stresses are generated in this area because of the 

thermal expansion mismatch. Because the compressive strength of the material is 90MPa, if 



one takes into account potential material uncertainties the axial compressive stress may be a 

source of failure for the nozzle.  

The time histories of the stresses localized at points A, E, and F are shown in Fig. 5. The 

figure shows that the maximum axial compressive stress of the exit cone occurs after 5.2 

seconds. At this time the adhesive layer between the exit cone and the throat is gradually 

degraded and therefore stress is released. The compressive stresses continue to decrease as time 

increases. After 11 seconds the adhesive layer is completely destroyed, and stress cannot be 

further released, with consequent leveling off. 

 
Fig. 5. Time histories of the stresses of the exit cone 

2.2.3 Hoop stress of the exit cone 

The distribution of the hoop stresses is shown in Fig. 4(c). The maximum hoop tensile stress 

occurs at point D located at the contact corner between the exit cone and the back wall. The 

maximum hoop tensile stress is 14.3MPa after 5.7s, again significantly lower than the material 

tensile strength. After 9.2s the hoop compressive stress reaches its maximum (76.2MPa) at 

point A. The hoop stress can also be observed in the annular region of the exit cone near point 

E. The maximum hoop compressive stress at point E is 75.93MPa at 19.2 sec. This position is 



located in the front area of the exit cone, and it is exposed to the combustion flow. Although 

the temperature in this region is higher than in other areas, its hoop thermal expansion is 

constrained by the presence of the back wall and therefore a large compressive stress is 

generated. If uncertainty associated to the material properties is considered the hoop stresses at 

points A and E may exceed the compressive strength of the material (90MPa), and therefore 

cause failure of the exit cone. 

From Fig. 5 it is possible to notice that between the time interval of 7s-10s the hoop 

compressive stress at point A is slightly higher than the stress at point E. During the remaining 

time the hoop stress at point E is always greater than the stress at point A. From the size of the 

pressure distribution area, the hoop stress at point A can only cause partial damage to the corner 

of the small area, and will not likely cause the failure of the whole structure. The hoop stress at 

point E may, however, induce failure. 

2.2.4 Interlaminar shear stress of the exit cone 

The interlaminar shear stress of the exit cone is shown in Fig. 4. (d). The figure shows that the 

maximum interlaminar shear stress occurs again at point A. The maximum interlaminar shear 

stress is 15.6MPa (at 4.1s). Another area of stress concentration is point F, with its maximum 

interlaminar shear stress at 12.3MPa. With the interlaminar shear strength equal to 26MPa, if 

material uncertainties are considered the interlaminar shear strength of point A and F may 

exceed the interlaminar shear strength of the material, and therefore cause failure of the exit 

cone. Delamination damage caused by shear failure may also occur in the circular area around 

point F. 



In summary, the model identified three distinct modes that may lead to the failure of the 

exit cone: compressions along the axial and hoop directions, and interlaminar shear. The other 

failure modes are less likely to occur. 

3 Reliability analysis of the exit cone 

The structure of the nozzle is complex. The high combustion temperature and the internal gas 

flow velocity create an extremely harsh environment for the nozzle materials. Moreover, size 

scale effects given by the discrete nature of the C/C microstructure bring further uncertainties 

in determining the overall mechanical performance and directly affect the reliability of the 

nozzle structure. 

3.1 Quantization of parameter uncertainty 

In the probability model, the uncertainty comes from the discretization of the uncertainty 

from the variability of the material properties. The material properties are usually measured 

through experiments, and the uncertainty includes not only the natural dispersion of the 

properties, but also the testing errors. In this paper, the value of the structural strength at failure 

is also non-deterministic. For simplicity we assume that the material properties follow a normal 

distribution, and the strength has a uniform distribution. In order to facilitate the calculation, 

seven main material parameters are normalized as shown in Table 4, and the probability 

distribution types of material properties are also specified. 

Table 4 uncertainty parameters and the distribution type of material 
Parameter Symbol Distribution Type Mean Coefficient of 

Variation 
Thermal expansion coefficient x1 Normal Distribution 1.0 15% 
Heat capacity x2 Normal Distribution 1.0 30% 
Radial thermal conductivity x3 Normal Distribution 1.0 10% 
Axial thermal conductivity x4 Normal Distribution 1.0 3% 
Axial elastic moduli x5 Normal Distribution 1.0 10% 
Radial elastic moduli x6 Normal Distribution 1.0 10% 
Density x7 Normal Distribution 1.0 10% 



Hoop compressive strength R3 Uniform Distribution 140.0 10% 
Axial compressive strength R2 Uniform Distribution 90.0 5% 
Shear strength R1 Uniform Distribution 30.0 11.5% 

 

3.2 Computational process  

From the above analysis it is evident that there are three main factors leading to the failure of 

exit cone: axial compression, hoop compression and interlaminar shear failures. The maximum 

stress failure criterion is used to evaluate the reliability of the exit cone. Failure of the exit cone 

is assumed to occur if the stress is greater than the strength along specific directions. The 

maximum stress failure criterion does not consider interaction between the failure modes, but 

it is a conservative approximation of failure especially for combined tensile/shear/compressive 

loading.  

Among the most common structural reliability analysis methods, response surfaces and 

Monte Carlo simulations are well developed and benchmarked. In this study we combine a 

surface response method (SRM) with finite elements, as well as Monte Carlo simulations to 

analyze the reliability. We first obtain the structural performance functions for the different 

failure modes by response surface approximation. To this end, 300 sample sets used to obtain 

the surface response are derived by optimization using Latin Hypercube sampling of the 

uncertainty space. Each set is computed independently by fitting higher order polynomials. We 

finally obtain a surface response for the three types of failure modes by higher order polynomial 

fit, and then the response surface is used for further reliability analysis (see the flowchart in 

Figure 6). 



 
Fig. 6. Flowchart of computing process  

3.3 Reliability analysis of the nozzle exit cone 

3.3.1 Reliability based on probabilistic theory 

The structural performance function of the exit cone can be represented by a two-dimensional 

function that relates response and capability. If R represents the capability – i.e. strength -  and 

S is the response (stress), it is possible to denote the performance function as: 

                                     (3) 

For the three failure modes concerned in this study the corresponding limit state functions 

can be presented as follows: 

                                  (4) 

Where  and are, respectively, the shear strength and shear stress;  and  are 

the axial compressive strength and axial compressive stress;  and  are the hoop 

compressive strength and stress, respectively. Using a classical SRM nonlinear quadratic 

regressive fit the expressions of the responses are: 
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The subsequent reliability analyses from Monte Carlo simulations are performed based on these 

SRMs in order to reduce the computational expense. The reliability index , failure probability

, and the standard deviation and coefficient of failure probability are calculated using a 

Monte Carlo method with 5,000 and 10,000 Monte Carlo simulations respectively (Table 5). 

Table 5 Reliability of exit cone based on probability model 

Stress Sample 
Reliability 
index,  

Failure Probability, 
 Stdev( ) CoV( ) 

Interlaminar shear N=5000 1.9357 0.0529 0.0032 5.98% 
N=10000 2.0480 0.0406 0.0020 4.86% 

Axial compression N=5000 1.5849 0.113 0.0045 3.98% 
N=10000 1.5853 0.1129 0.0032 2.8% 

Hoop compression N=5000 2.7944 0.0052 0.0010 19.56% 
N=10000 2.6921 0.0071 8.4E-4 11.83% 

3.4 The results of the failure probability analysis 

The reliability results for the three failure modes are listed in Table 6. The results show that the 

axial compression failure is the most likely cause of the structural failure. Failure can also occur 

by interlaminar shear, while hoop compression is the least likely of the three to cause failure. 

Table 6 The failure probability of different conditions 
Failure 

Interlaminar shear Axial compression Hoop compression 
0.0406 0.1129 0.0071 

3.5 Global sensitivity analysis  
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Variance based sensitivity analysis, namely Sobol analysis, is a form of global sensitivity 

analysis. It decomposes the variance of the output of the model or system into fractions which 

can be attributed to inputs or sets of inputs [34]. It would be very useful to identify the most 

significant input uncertain parameters that contribute to the variation of the different types of 

stress associated to these three failure modes. In this case study, the Sobol analysis method is 

used in this case to carry out the global sensitivity analysis [35]. The basis of the method 

consists in the decomposing the model output function into a sum of variance terms by using 

combinations of input parameters with increasing dimensionality. The variance 

decomposition can be expressed as: 

𝑉(𝑜𝑢𝑡𝑝𝑢𝑡) = ∑ 𝑉*+
*,- + ∑ 𝑉*/+

*0/1+ + ⋯+∑ 𝑉*⋯++
*0+      

           

(8) 

Where 𝑉(𝑜𝑢𝑡𝑝𝑢𝑡) is the total variance of the model output; 𝑉*  defined as the first order 

contribution of the ith model parameter; 𝑉*/  is the second order contribution of coupling 

effects of the ith and jth parameter; n means the number of model parameters. The importance 

of the given input factor is measured by a term defined as the sensitivity index, which is the 

fractional contribution to the output variance due to the uncertainties in the inputs. The Sobol 

sensitivity index can be expressed as: 

𝑆4 = 𝑉*/	𝑉(𝑜𝑢𝑡𝑝𝑢𝑡)

                               

(9) 

𝑆46 = 𝑉*6/	𝑉(𝑜𝑢𝑡𝑝𝑢𝑡)

                                

(10) 

𝑆7* = 1 − 𝑉~*/	𝑉(𝑜𝑢𝑡𝑝𝑢𝑡)

                             

(11) 

𝑆4  is the first order Sobol sensitivity index,  𝑆46  denotes as the second order term and 

𝑆7*	denotes as the total Sobol sensitivity index corresponding to the ith model parameter. The 

resulting Sobol’s sensitivity indices therefore rely on not only the input parameter distribution, 



but also the contribution of the input parameter in the mathematical model. The first order Sobol 

indices 𝑆4 are used to quantify the separate effect on the failure modes of each input parameter, 

while the total Sobol indices 𝑆7* quantify the total effect of the input parameter, which include 

both the first order effect and also its interactions with the other input variables [36]. 

The use of Polynomial Chaos Expansion (PCE) techniques is widely recognized as a quick way 

to directly compute the Sobol sensitivity indices. PCE is therefore employed in this case study. 

Since the distribution of the input parameters (i.e., the thermal expansion coefficient, heat 

capacity, radial thermal conductivity, axial thermal conductivity, axial elastic moduli, radial 

elastic moduli and density) are assumed to have normal distributions, the PCE surface response 

is generated based on the Gaussian probabilistic distribution by using Hermite orthogonal 

polynomials.  A linear enumeration strategy is employed to construct the multivariate 

orthonormal basis. The multivariate orthonormal basis is then truncated by using a fixed 

strategy to build the complete basis with respect to a maximal degree of four [37]. A non-

intrusive method based on least squares minimization is used to optimize the PCE coefficients 

using 200 sampling points generated by the FE model. With this PCE response surface model, 

the Sobol’s indices can then be computed directly without further Monte Carlo simulations.  

Figure 7 shows the first order and total Sobol’s indices of these seven uncertain parameters for 

the three failure modes separately. The result shows that the indices of these uncertain 

parameters share very similar trends related to the axial compressive failure (Figure 7 (a)), hoop 

compression failure (Figure 7 (b)) and shear failure (Figure 7 (c)). Both types of indices clearly 

show that the axial thermal conductivity has the highest impact on the variation of the outputs 

(First order: 28%, 36% and 36%; Total: 60%, 70% and 70%), despite the coefficient of variation 



(CoV) of its uncertain distribution shown in Table 4 is the smallest among the seven input 

variables. The radial thermal conductivity comes second in terms of impact. However, in terms 

of total contributions, the second largest influence comes from the elastic moduli for the axial 

compression failure (25%). For the hoop compression and shear failures, the radial elastic 

moduli and the density equally take the second leading contributions by about 21%. This 

suggests that the coupling contribution from the elastic moduli and density is more significant 

than the one from the thermal conductivity and the elastic moduli along the radial direction. 

The first order Sobol’s indices clearly show that the thermal expansion coefficient and heat 

capacity provide negligible contributions to all the three failure modes. These two parameters 

could be therefore excluded in future uncertainty analysis. 

 

(a) 



 

(b) 

 

(c) 

Figure 7 Sobol’s indices ranking of the input uncertain variables according to their influence on: 
(a) the axial compressive failure (b) the hoop compression failure and (c) shear failure 

 

4 Conclusions 



In this paper we have used a probabilistic model to account for uncertainties in the material 

properties of a solid rocket nozzle exit cone made from carbon/carbon composites, adhesive 

layers and metal components and simulate the structural response. To this end we combine a 

finite element model and a surface response method to compute the structural reliability by 

considering three types of failure modes. The methodology here has been developed to provide 

a way to calculate the reliability of nozzle-type structures in the case of small sample data 

populations. A sequentially coupled thermal/structural analysis shows that under the service 

environment conditions reproduced in this study the axial compressive, hoop compressive and 

interlaminar shear stresses are close to the material strength, while the stress along other 

directions is relatively small. If we ignore local stress concentration in the corners of the exit 

cone, the most likely failure region is in the contact area between the exit cone and the throat 

induced by the axial compressive stress. Also, another critical area is represented by the front 

region of the exit cone exposed to the combustion chamber, which is characterized by the 

presence of hoop compressive stresses. The third possible failure mode is the interlaminar shear 

failure, which is located at the region of the exit cone far away to the throat. 

A global sensitivity analysis also was carried out to identify the most influential input 

parameters on these three failure modes. A Sobol analysis was used to rank the impacts of the 

input parameters based on the PCE response surface model. The results show that the axial 

thermal conductivity has the highest contribution on all the three modes. The contributions from 

the thermal expansion coefficient and heat capacity are negligible. The conclusions from this 

probabilistic analysis are quite useful to streamline and optimize the outcome of the initial 

design stage for these C/C composite nozzles. The importance of the axial thermal conductivity 



in this type of structure may lead to a design of C/C composites and their stacking sequences 

that favor a strong unidirectional thermal conductivity response for the nozzle configuration. In 

a similar manner, the design and materials selection of these types of nozzles can be streamlined 

to prevent the axial compression failure, which is the most important failure mode of the system. 

Compressive failure in C/C composites can be tailored by fibers architectures or needle-punch 

techniques[38], and these approaches could be used to increase the reliability of these carbon-

based nozzle designs.   
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