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A B S T R A C T

The use of reduced-order models (ROMs) for nonlinear systems has received significant attention due to
their potential to greatly reduce computational cost, compared to full nonlinear finite-element models. Here,
we consider and compare two indirect methods; the applied modal force and enforced modal displacement
techniques, paying particular attention to the effect of nonlinear cross-coupling terms. The analysis we present
shows that the applied modal force technique is able to account for some effects arising from modes that
are not retained in the ROMs, but the resulting accuracy of the ROM depends on the amplitudes selected for
the set of forces used to estimate the coefficients of the ROMs. This analysis also shows that the enforced
modal displacement technique does not compensate for the effect of modal interactions with modes that are
not included in the ROM, but its accuracy is independent of the amplitude of the forces used to estimate
the coefficients. The mechanisms that lead to the differences between these techniques is firstly demonstrated
using a two conceptually-simple, discrete systems, before a nonlinear beam model is considered.

1. Introduction

The numerical models used by engineers are becoming increasingly
complex. Even with the dramatic increase in computational power,
procedures such as optimisation or sensitivity analysis come at great
computational expense — an expense that increases significantly with
the complexity of the model. Due to this, there has been signifi-
cant interest in developing reduced-order models (ROMs) that capture,
with reasonable accuracy, the dynamics predicted by nonlinear finite-
element (FE) models. Such models are needed to assist in designing
lighter, and hence more flexible, structures, such as turbine blades,
aircraft and bridges [1,2] and assessing the effect of nonlinearities on
hypersonic vehicles [3–5].

Reduced-order models have been extensively adopted for linear
systems to reduce their dimensions and, more recently, reduction tech-
niques have been extended to account for some nonlinear behaviour.
For instance, Craig-Bampton [6] methods can deal with local nonlinear-
ities such as nonlinear springs [7,8], however they cannot be used for
deriving reduced-order models of systems with global nonlinearities. In
order to deal with global nonlinearities, with particular emphasis on ge-
ometrically nonlinear effects [9], direct and indirect methods have been
developed. The differences between the direct and indirect methods can
be seen in the way in which the nonlinear stiffness forces are described
and the modal bases adopted. In direct methods, the nonlinear stiffness
forces and their modal counterparts are assumed to be known and the
relationship between them is used to determine the nonlinear modal

∗ Corresponding author.
E-mail address: tom.hill@bristol.ac.uk (T.L. Hill).

space [10]. Indirect methods assume that the nonlinear terms featuring
the finite-element tensors are not known and assumptions on how
the resulting nonlinear modal terms are described in the ROM are
made [9]. In most commercial software the nonlinear tensors are not
known explicitly, instead the nonlinearity is captured via an iterative
scheme, thus the indirect methods have attracted considerable atten-
tion and are considered here. Two common indirect methods are the
Applied Modal Force (AMF) and Enforced Modal Displacement (EMD);
both use a set of nonlinear static solutions to estimate a set of nonlinear
stiffness coefficients adopted in the ROMs. The main difference between
the methods is in the inputs applied to the full FE model and the
corresponding outputs used to determine their nonlinear coefficients.
The AMF applies a set of static loads to the full FE model and calculates
the resulting nonlinear displacement responses. This approach was first
introduced by McEwan [2] (referred to as the applied loads procedure
in [3] or as Implicit Condensation (IC) in [5]). In contrast, the EMD,
introduced by Muravyov and Rizzi [11], and sometimes termed the
enforced displacements procedure [3], applies a set of static displace-
ments to the full FE model and uses the resultant forces to determine
the stiffness coefficients for the reduced-order model.

With either reduction method, the final common step is the valida-
tion of the ROMs. An accurate, but computationally-expensive, solution
is the use of nonlinear time-domain simulations for multiple sets of
input forces/initial conditions [2,5,12]. An alternative solution is the
use of nonlinear normal modes (NNMs) or backbone curves [13,14],
which describe the nonlinear undamped-unforced frequency response
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Fig. 1. A schematic of the two-mass oscillator, used here as a motivating example.

— an approach that has been adopted in many fields [1,13,15–20]. The
NNMs can be analytically determined for some systems by adopting
an approximate perturbation method such as the harmonic balance
method or normal forms [21]. Alternatively, NNMs can be found nu-
merically, or experimentally, using a Newton–Raphson method; how-
ever, computing the Jacobian can be computationally-expensive [7,8].
Considering FE modelling, full-modal continuation methods have been
used to compare AMF and EMD techniques applied to full-order contin-
uous systems [1]. Here, we adopt a different approach to understanding
the difference between the two techniques, namely, to consider them
analytically when applied to a simple system. Using the insights this
brings we then consider the results they produce for more complex
systems.

Section 2 presents a motivating example, and briefly discusses the
two indirect methods – the AMF and the EMD – before considering
them analytically. Specifically, the accuracy of the techniques in captur-
ing the nonlinear behaviour of systems is considered, and their ability
to account for any effects arising from modal interaction with modes
that are not retained in the ROM is assessed. Emphasis is placed on the
effect of selecting the input scaling factor on the resulting nonlinear
coefficients in the reduced-order model and the resulting curve fit.
Although these techniques are typically applied to FE models, the use of
analytical models in the current work allows for a direct mathematical
comparison between the full-order models and resulting ROMs. In
Section 3, further analysis of the motivating example is presented,
before a lumped-mass system, exhibiting membrane-like coupling, is
considered. In Section 4, a continuous system is used to provide further
insight into the applications of this approach, before conclusions are
drawn in Section 5.

2. Reduced-order modelling

A model reduction has the main aim of reducing the dimension of
a system in order to allow analysis to be performed in a faster and less
computationally-expensive way. In this section, a conceptually-simple,
two-degree-of-freedom (2-DoF) model is considered to highlight the
issues faced during the reduction process. The observations resulting
from this are further discussed in Section 3, where a 10-DoF model is
also considered, and then tested on a model of a continuous structure
in Section 4.

2.1. Motivating example

A 2-DoF spring–mass system, shown schematically in Fig. 1, consists
of two masses, both with 𝑚 = 1. These masses are both grounded
via linear springs (both with rate 𝑘 = 1) and are connect via another
linear spring (also with rate 𝑘 = 1). A nonlinear cubic spring, with
coefficient 𝑘𝑛𝑙 = 0.25, connects the first mass to the ground. For an-
alytical simplicity, the 2-DoF system is treated here as the full-order
model. As ROMs are typically described in terms of linear modal
coordinates, prior to the reduction the system is transformed using
the linear mode shapes, resulting in decoupling of the linear stiffness
terms (but typically retaining coupling between linear modes through
nonlinear stiffness terms). One advantage of using a linear modal basis
for the ROMs is that these are easily computed using commercial
finite-element packages [2,5,11,12,22].

Fig. 2. Variation of the cubic coefficient for the 2-DoF mass–spring model as the scale
factor changes and adopting the EMD or the AMF method.

Here we consider generating a ROM consisting of the first mode, 𝑞1,
with a linear and a cubic stiffness term — reducing the 2-DoF system
to a 1-DoF one is artificial, but we believe instructive here due to the
relative simplicity of the resulting analysis. Fig. 2 shows the variation
of the nonlinear coefficient, which captures cubic stiffness effects via
the force 𝐹 = 𝑘𝑛𝑙𝑞31 , as the input to the full-order model is scaled (this
scale factor, 𝑡𝑅, is defined formally in Section 2.2). The cubic coefficient
value determined using the EMD (×) is constant and equal to the actual
coefficient value in the full model (line) while the value obtained with
the AMF (+) is a function of the scale factor. We now consider why this
is the case.

2.2. The AMF and EMD methods

Let us express the full model in the form

𝐌�̈� +𝐊𝐱 + 𝐟𝑛𝑙,𝑥(𝐱) = 𝐅𝑥 , (1)

where 𝐌, 𝐊, �̈�, 𝐱, 𝐟𝑛𝑙,𝑥(𝐱) and 𝐅𝑥 are the matrices of inertia and stiffness,
vector of generalised accelerations and displacements, vector of nonlin-
ear forces and external forcing (both defined in physical coordinates —
hence the subscript 𝑥), respectively.

For reduction purposes, we consider the full model in its modal
coordinates 𝐪. This is achieved using the transform 𝐱 = Φ𝐪, where Φ

is the mass-normalised matrix of eigenvectors, allowing Eq. (1) to be
written

�̈� +Λ𝐪 + 𝐟𝑛𝑙(𝐪) = 𝐅 . (2)

Here, Λ is the diagonal matrix of the squares of the natural frequencies,
𝐟𝑛𝑙(𝐪) = Φ𝑇 𝐟𝑛𝑙(Φ𝐪) is the vector of nonlinear forces projected into the
modal coordinates and 𝐅 = Φ𝑇𝐅𝑥 is the modal forcing vector. All
the linear coefficients in Eq. (2) can be obtained directly from the
model; however, the nonlinear coefficients are not always available as,
typically, finite-element software iteratively determines the nonlinear
effects on the system responses.

Consider a ROM in which 𝑅 modes are retained from the full model
(of 𝑁 modes),

̈̂𝐪 + Λ̂�̂� + 𝐟𝑛𝑙 = �̂� , (3)

where �̂� are the estimates of the modal coordinates retained in the
model. Note, if the reduced model perfectly captured the response of
the full model then �̂� = 𝐑𝐪 with 𝐑 being a 𝑅 ×𝑁 reduction matrix in
which the 𝑖th row consists of zeros except for a unity element at the
location of the 𝑖th retained mode. Here the forcing is reduced using
�̂� = 𝐑𝐅 (the effect of forcing in non-retained modes is not captured in
the ROM) and the linear properties using �̂� = 𝐑Λ𝐑𝑇 . As 𝐟𝑛𝑙(𝐪) is not
typically available from the full model, 𝐑 cannot be used to reduce
it. Instead these nonlinearities are assumed to be a sum of cubic and
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quadratic terms that combine all the retained modes [2,3,5,15,23],
such that the 𝑚th term in vector 𝐟𝑛𝑙 is given by

(𝐟𝑛𝑙)𝑚 =
𝑅
∑

𝑖=1

𝑅
∑

𝑗=𝑖

(

𝐵𝑖,𝑗
)(𝑚) 𝑞𝑖𝑞𝑗 +

𝑅
∑

𝑖=1

𝑅
∑

𝑗=𝑖

𝑅
∑

𝑘=𝑗

(

𝐴𝑖,𝑗,𝑘
)(𝑚) 𝑞𝑖𝑞𝑗𝑞𝑘 , (4)

where the summations in 𝑖, 𝑗 and 𝑘 span the retained modes. The
coefficients 𝐴𝑖,𝑗,𝑘 and 𝐵𝑖,𝑗 characterise the nonlinear terms and must
be estimated in the reduction process.

This identification process differentiates the AMF and EMD tech-
niques. Static responses from the full model are used for both the
techniques: the AMF applies a set of static modal forces (𝐅) as inputs to
the full model and uses the resulting displacement responses to estimate
the ROM parameters; whereas, for the EMD, the inputs to the full model
are static physical deformations (𝐪) with the resulting forces used in
the parameter estimation. Fig. 3 shows flow charts summarising the
identification of the coefficients 𝐴𝑖,𝑗,𝑘 and 𝐵𝑖,𝑗 for the two techniques.
The identification is typically achieved using the least squares method
with the number of static responses needing to be at least equal to the
number of coefficients. However, often the number of coefficients is
reduced using physical constraints [3–5,23,24].

These physical constraints arise from ensuring conservation of en-
ergy, as discussed in [11]. Considering the 2-DoF mass–spring model
with the generic cubic stiffness terms discussed earlier (but now, for
simplicity, ignoring external forces – 𝐅 = 0), the Lagrangian 𝐿 may be
written as

𝐿 = 1
2
(

�̇�21 + �̇�
2
2
)

− 𝑘
2𝑚

(

𝑞21 + 3𝑞22
)

− 𝑎𝑞41 − 𝑏𝑞
3
1𝑞2 − 𝑐𝑞

2
1𝑞

2
2 − 𝑑𝑞1𝑞

3
2 − 𝑒𝑞

4
2 ,

(5)

with: 𝑎 =
𝑘𝑛𝑙
16𝑚2

, 𝑏 =
𝑘𝑛𝑙
4𝑚2

, 𝑐 =
3𝑘𝑛𝑙
8𝑚2

, 𝑑 =
𝑘𝑛𝑙
4𝑚2

, 𝑒 =
𝑘𝑛𝑙
16𝑚2

. (6)

where, due to linear symmetry, the mass-normalised modal vectors
are (2𝑚)−1∕2 [1 1]𝑇 and (2𝑚)−1∕2 [1 − 1]𝑇 and where we introduce
𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 to allow us to track the terms. Applying Lagrange’s
equation to Eq. (5), the two equations of motion for the full model are

𝑞1 +
𝑘
𝑚
𝑞1 + 4𝑎𝑞31 + 3𝑏𝑞21𝑞2 + 2𝑐𝑞1𝑞22 + 𝑑𝑞

3
2 = 0 , (7a)

𝑞2 +
3𝑘
𝑚
𝑞2 + 𝑏𝑞31 + 2𝑐𝑞21𝑞2 + 3𝑑𝑞1𝑞22 + 4𝑒𝑞32 = 0 . (7b)

Now comparing these equations with the general form for the nonlin-
earity in the ROM (Eq. (4)), it can be seen that the following constraints
exist

𝐴(1)
1,1,2 = 3𝐴(2)

1,1,1 , 𝐴(1)
1,2,2 = 𝐴(2)

1,1,2 , 𝐴(2)
1,2,2 = 3𝐴(1)

2,2,2 . (8)

These constrains, along with the equivalent ones for any quadratic
terms in the ROM, are needed to ensure conservation of energy in the
model.

The identification of the coefficients 𝐴𝑖,𝑗,𝑘 and 𝐵𝑖,𝑗 requires a set
of forces/displacements defined using a reference scale factor for the
structure of interest (𝑡𝑅). Similarly to the formulation in [5] we define
the full model input force as

AMF ∶ 𝐅 = 𝐌Φ𝐑𝑇𝐂 , (9a)

EMD ∶ 𝐱 = Φ𝐑𝑇𝐂 , (9b)

where 𝐂 is a column vector of length 𝑅. As multiple force (or displace-
ment) inputs are needed for the AMF (or EMD) technique, a family of
𝐂 vectors are used. Each consist of a simple combination of up to 3
modes being non-zero [3,4,23], with the non-zero values based on

𝐶𝑘 =

{

𝑡𝑅�̂�𝑘∕max{|(Φ𝐑𝑇 )𝑘|} if AMF ,
𝑡𝑅∕max{|(Φ𝐑𝑇 )𝑘|} if EMD ,

(10)

for the 𝑘th retained mode. In this paper, only single-mode models are
derived, and hence the set of vectors, 𝐂, take the form

𝐂 =
[

𝐶1
]

,
[

−𝐶1
]

. (11)

2.3. Mathematical insights

Using the 2-mass oscillator, we now consider why the coefficients of
the ROM found using the AMF are a function of scale factor, as seen in
Fig. 2. In contrast, as observed numerically by Rizzi and Przekop [25],
the EMD-based coefficients are not sensitive to scale factor — also
shown in the figure. The full model, Eqs. (7) with external forcing
added as in Eq. (2), may be written as

𝑞1 +
𝑘
𝑚
𝑞1 +

𝑘𝑛𝑙
4𝑚2

(

𝑞31 + 3𝑞21𝑞2 + 3𝑞1𝑞22 + 𝑞
3
2
)

= 𝐹1 , (12a)

𝑞2 +
3𝑘
𝑚
𝑞2 +

𝑘𝑛𝑙
4𝑚2

(

𝑞31 + 3𝑞21𝑞2 + 3𝑞1𝑞22 + 𝑞
3
2
)

= 𝐹2 . (12b)

Retaining the first mode, as before, we can write the ROM equation,
Eq. (3), as

̈̂𝑞1 +
𝑘
𝑚
𝑞1 + 𝐴

(1)
1,1,1𝑞

3
1 = 𝐹1 , (13)

where we have dropped the 𝐵(1)
11 term for simplicity.

With the AMF method, 𝐴(1)
1,1,1 can be approximated by applying

the static input force 𝐅 = [𝐹1, 0]𝑇 to the full model, Eqs. (12), i.e. we
remove the dynamic terms and set 𝐹2 = 0. Solving the resulting
expression, to find the static modal displacements, provides the data
used to identify the ROM coefficients. Here, we analytically investigate
how this identification is performed. This analysis is based on a further
simplification, namely that as the reduction is centred around the first
mode, hence it is reasonable to assume that only a small amount of 𝑞2
present, otherwise such a reduction would be ill-advised. Based on this,
we neglect terms containing 𝑞22 and 𝑞32 , allowing Eqs. (12) to be written
as
𝑘
𝑚
𝑞1 +

𝑘𝑛𝑙
4𝑚2

𝑞31 +
3𝑘𝑛𝑙
4𝑚2

𝑞21𝑞2 ≈ 𝐹1 , (14a)

𝑞2 ≈
−𝑘𝑛𝑙𝑞31

(12𝑘𝑚 + 3𝑘𝑛𝑙𝑞21 )
. (14b)

Substituting the value of 𝑞2 obtained from Eq. (14b) into Eq. (14a)
allows us to write the model in the form of the static version of the
ROM, Eq. (13) (setting ̈̂𝑞1 = 0), with an analytical approximation for
the coefficient �̃�(1)

1,1,1

𝑘
𝑚
𝑞1 + �̃�

(1)
1,1,1𝑞

3
1 = 𝐹 1 , with: �̃�(1)

1,1,1 ≈
𝑘𝑘𝑛𝑙

4𝑘𝑚2 + 𝑘𝑛𝑙𝑚𝑞21
. (15)

Here we can see that the identified ROM coefficient is a function of
the modal displacement, 𝑞1 and hence is also a function of the scaling
factor.

If the EMD is used, the input to the full model is a modal displace-
ment vector 𝐪 = [𝑞1, 0]𝑇 , and the static force response of the full model,
Eqs. (12), is

𝐹1 = 𝑘
𝑚
𝑞1 +

𝑘𝑛𝑙
4𝑚2

𝑞31 , (16a)

𝐹2 =
𝑘𝑛𝑙
4𝑚2

𝑞31 . (16b)

Comparing the first of these equations to the static version of the ROM,
Eq. (13) with ̈̂𝑞1 = 0, it can be seen that 𝐴(1)

1,1,1 = 𝑘𝑛𝑙∕(4𝑚2), in other
words, the identified coefficient in the ROM exactly matches that of the
same nonlinear term in the full model. Note that this also means that
the identified term is independent of the input amplitude, or scaling
factor. Furthermore, this shows that the effect of any coupling with the
second, unmodelled, mode is not captured using the EMD method.

Fig. 4 shows the cubic coefficient of the full model, AMF method and
EMD method, as shown previously in Fig. 2, along with the approxima-
tion to the identified nonlinear coefficient using the AMF techniques,
i.e. Eq. (15). These predictions, represented by black circles, show a
good agreement with numerically-calculated values.

In summary, this analysis shows that the two methods result in
different ROMs. The coefficients in the ROM identified using AMF are

9
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Fig. 3. Flow charts describing how a ROM is generated from the full model using (a) the AMF and (b) the EMD techniques.

Fig. 4. Variation of the cubic coefficient for the 2-DoF mass–spring model as the
scale factor changes, as shown previously in Fig. 2, with the addition of the analytical
approximation to the AMF coefficients.

a function of the scale factor used in the input forces to the full model.
This is due to the fact that all the modal coordinates can be triggered
by this force input and that the scale affects the degree of the resulting
cross-coupling. This can be useful when strong cross-coupling between
modes is present and needs to be captured in an approximate fashion, as
is explained in the next section. In contrast, the EMD method predicts
the coefficient accurately for this well-defined problem but does not
have the ability to capture any cross-coupling between the modes, as
𝑞2 is not excited in the static displacement inputs applied to the full
model.

These features are examined further in the following sections, where
static stiffness and backbone curves for discrete and continuous systems
are discussed.

3. Discrete system analysis

Before considering a continuous system, we extend the discussion of
the two-mass system before considering a five-mass system that exhibits
coupling between axial- and membrane-like modes.

3.1. Two-DoF spring–mass system

The 2-DoF spring–mass system, presented in Section 2.1, is consid-
ered further here.

The red line in Fig. 5 shows the relationship between the nonlinear
force and the modal displacement for the full model when 𝐹2 = 0, and

hence is representative of the locus of forces used for the AMF fit. The
fit using the AMF-based ROM (red dots) matches this well for both scale
factors shown — see inset panel of Fig. 5(a) which shows the fit over
the range relevant to the lower scale factor. In contrast, the EMD-based
ROM does not capture the full model well when the higher scale factor
is considered. Instead, it exactly matches the stiffness relationship for
the full model when it is constrained such that 𝑞2 = 0 through the
appropriate choice of non-zero 𝐹2. This may be considered somewhat
artificial, as the second mode is unlikely to be constrained to zero in
the full system. For the lower scale factor the match is close, as the
𝑞2 content in the full model (with input 𝐅 = [𝐹1, 0]𝑇 ) is small at these
amplitudes.

This improvement in force-modal displacement with the AMF
method translates, for this simple example, into improved dynamic
performance of the AMF-based ROM over that of the EMD-based one.
Fig. 6(𝑎) shows the two backbone curves for the full model, projected
into the modal space. We see the modal contribution to the first
and second nonlinear normal modes (NNMs) – here 𝑄𝑖 represents the
amplitude of modal coordinate 𝑞𝑖. As the ROM is based on only the first
mode, ideally it should match the 𝑄1 line for the first NNM. For this
system it can be seen that there is a sizeable 𝑄2 component to the first
NNM and so generating an accurate single-mode ROM is challenging.

Fig. 6(𝑏) shows the backbone curves predicted by the EMD- and
AMF-based ROMs — note that, as the ROM is a single-mode model,
the second modal amplitude is not captured. These backbone curves
have been computed from the ROM and the full-order model using
the numerical continuation software COCO [26]. It can be seen that,
for this example, neither technique produces a ROM capable of fully
capturing the nonlinear behaviour of the system using just the first
mode, over the region shown here. The main reason is the strong
coupling between the two modes, as is apparent in Fig. 6(𝑎). This modal
interaction increases with amplitude, which corresponds to a decrease
in the accuracy of the ROMs. Considering the techniques in turn, the
backbone curves obtained using the EMD do not change with scale
factor as the input to the full model does not excite the second mode,
as seen in Eq. (16b) and in Fig. 4. Here, the identification process
results in a perfect fitting of the cubic coefficient of the first mode.
However, as no information regarding the influence of the second mode
is generated, no cross-coupling effects are captured, resulting in a poor
fit to the full model backbone curves at higher amplitudes (where
the cross-coupling influence of the second mode increases). For the
AMF method, the backbone curves are a function of the scale factor
used. Here, horizontal lines are used to indicate the maximum modal
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Fig. 5. A plot of nonlinear force against modal displacement for the first mode of the full model. The red line shows the relationship when a force is applied in only the first
mode i.e. 𝐅 = [𝐹1 , 0]𝑇 . The blue line shows the case where the second modal displacement is constrained to zero, but with a force in the second mode, i.e. 𝑞2 = 0 and 𝐹2 ≠ 0. The
blue and red dots show the EMD and AMF fits, respectively, using scale factors 𝑡𝑅 = 0.5 in panel (𝑎) and 𝑡𝑅 = 2 in panel (𝑏). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. The backbone curves of the 2-DoF mass–spring model. Panel (𝑎) shows the first and second backbone curves in the projection of the response frequency, 𝛺, against the
modal amplitudes, 𝑄1 and 𝑄2. Panel (𝑏) shows the first backbone curve of the full model, compared to the backbone curve of five different ROMs. This is in the projection of
frequency against the first modal amplitude. The horizontal lines show the maximum value of 𝑄1 reached in the data used for fitting the AMF-based ROMs.

displacement of the full model due to the force inputs for each scale
factor. It can be seen that, for the higher scale factors, the ROM curves
seem to soften such that they more closely follow the full model at
higher amplitudes, at the cost of a poorer fit at lower amplitudes. We
suggest that this is due to the fact that the influence of the second mode
is partially captured in the AMF technique as seen in the analytical
analysis, Eq. (15). A consequence of this is that the coefficient value
tends away from that of the cubic term in the full model, 𝑘𝑛𝑙∕(4𝑚2).
Note that, as the scale factor reduces, the AMF-based ROM tends to that
of the EMD-based one, this is because the effect of the cross-coupling
reduces as the displacements of the full model are reduced.

3.2. A five-mass, 10-DoF system

This section considers the 5-mass, 10-DoF system shown in Fig. 7.
These masses are free to move in two directions, 𝑥 and 𝑦, and are
connected via linear springs of stiffness 𝑘, with an additional two
springs grounding the end masses. The length of the springs when
at equilibrium is denoted 𝓁0. As such, to achieve a tension of 𝑇
in all springs when the system is stationary, the separation of the

grounded points is given by 6
(

𝓁0 + 𝑇 ∕𝑘
)

. Throughout this section, the
following parameter values are considered: 𝑚 = 0.1 kg, 𝑘 = 100 kN m−1,
𝓁0 = 10 cm and 𝑇 = 100N. With these values, the first five linear modes
(i.e. the five modes with the lowest natural frequencies) consist of
purely vertical (𝑦-direction) motion, whilst the following five linear
modes are purely horizontal (in the 𝑥-direction). These sets of modes
are analogous to sets of axial and membrane modes in a continuous
structure.

Although the springs in this system are linear, this system exhibits
nonlinear behaviour due to the stretching of the springs that results
from vertical displacement of the masses. However, in contrast to
the system considered in Section 2, this nonlinearity is not perfectly
captured by quadratic and cubic nonlinear terms.

3.2.1. Single-mode ROM
In order to investigate the behaviour of the reduced-order modelling

techniques when applied to this system, the AMF and EMD methods
have been used to compute a ROM consisting of only the first mode
of the system. The resulting values of the coefficient of the 𝑞31 term
are shown in Fig. 8. As in the previous case, the EMD method predicts
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Fig. 7. A schematic diagram of a 5-mass system with 10 DoFs.

Fig. 8. The variation of the cubic coefficient, with scale factor, for the 5-mass, 10-DoF
system. The EMD and AMF methods are compared to the coefficient of the full-order
model and the closed analytical approximation of the AMF method.

the same coefficient as the full model1 at low scale factors. However,
in contrast to the case shown in Fig. 4, the EMD method varies with
scale factor. This is due to the higher-order terms that are present in
the full-order model – i.e. the force–displacement relationship cannot
be perfectly captured by a function with only quadratic and cubic
terms. The coefficients predicted using the AMF method appear be
more robust to scale factor; however, these do not converge to the full-
model coefficient at low scale factors. To investigate this, the coupling
between the modes is now considered.

When applying loads to the first mode, during the AMF method, a
strong coupling with the seventh mode (the second axial mode) is ob-
served – i.e. the seventh mode exhibits a relatively large displacement.
As such, we now consider the behaviour of the first and seventh modes
when a static force is applied to the first mode. For simplicity, it is
assumed that the nonlinearity may be approximated up to the cubic
order and that all other modes are negligible; hence the equations of
motion of the first and seventh modes may be written

𝑞1 + 𝜔2
𝑛1𝑞1 + 3𝛼1𝑞21 + 2𝛼2𝑞1𝑞7 + 𝛼3𝑞27 + 4𝛽1𝑞31

+3𝛽2𝑞21𝑞7 + 2𝛽3𝑞1𝑞27 + 𝛽4𝑞
3
7 = 𝐹1 , (17a)

𝑞7 + 𝜔2
𝑛7𝑞7 + 𝛼2𝑞

2
1 + 2𝛼3𝑞1𝑞7 + 3𝛼4𝑞27 + 𝛽2𝑞

3
1

+2𝛽3𝑞21𝑞7 + 3𝛽4𝑞1𝑞27 + 4𝛽5𝑞37 = 𝐹7 , (17b)

where 𝐹1 and 𝐹7 represent the static forces applied to the two modes.
Note that some nonlinear parameters (e.g. 𝛼2) appear in both equations
of motion to satisfy the Lagrangian, as discussed in Section 2.2. When
the AMF method is used to generate a ROM of the first mode, a force
is only applied to the first mode, i.e. 𝐹7 = 0. If it is assumed that 𝑞7 is
small, and hence removing terms containing 𝑞27 or 𝑞37 , Eqs. (17) may be
written

𝜔2
𝑛1𝑞1 + 3𝛼1𝑞21 + 2𝛼2𝑞1𝑞7 + 4𝛽1𝑞31 + 3𝛽2𝑞21𝑞7 ≈ 𝐹1 , (18a)

1 The coefficient of the full model has been found using a Taylor
approximation of the full system, up to the third order.

𝑞7 ≈
−𝛼2𝑞21 − 𝛽2𝑞

3
1

𝜔2
𝑛7 + 2𝛼3𝑞1 + 2𝛽3𝑞21

. (18b)

Substituting Eq. (18b) into Eq. (18a), and assuming any terms contain-
ing 𝑞41 or above are negligible, leads to

𝜔2
𝑛1𝑞1 + 𝐵

(1)
1,1𝑞

2
1 + 𝐴

(1)
1,1,1𝑞

3
1 ≈ 𝐹1 , (19)

where:

𝐵(1)
1,1 = 3𝛼1 , 𝐴(1)

1,1,1 = 4𝛽1 −
2𝛼22

𝜔2
𝑛7 + 2𝛼3𝑞1 + 2𝛽3𝑞21

. (20)

This shows that, following the assumptions stated above, the quadratic
coefficient in the ROM, 𝐵(1)

1,1, is equal to the coefficient of 𝑞21 in the full-
order model, Eq. (17a), and is invariant with scale factor. Note that,
for the system and parameters considered here, 𝛼1 is zero, and hence
it is expected that 𝐵(1)

1,1 = 0. As seen in the 2-DoF system considered in
Section 2, the cubic parameter, 𝐴(1)

1,1,1, is a function of 𝑞1 and hence will
vary with scale factor. However, unlike the previous case, when the
scale factor is low (i.e. when 𝑞1 is small), the cubic parameter will tend
towards

𝐴(1)
1,1,1 = 4𝛽1 −

2𝛼22
𝜔2
𝑛7

, (21)

which is not equal to the coefficient of 𝑞31 in the full-order model,
Eq. (17a). This difference is highlighted in Fig. 8 where, for low scale
factors, the coefficients predicted using the AMF method (blue crosses)
tend towards a different value to that of the full-order model and those
predicted by the EMD method. The dashed-black line shows the value
to which the AMF method is expected to converge, given by Eq. (21).
The black circles indicate the predicted value of the AMF method found
using Eq. (20), and agree very well with the values found using the AMF
method.

As previously depicted in Fig. 5, the red lines in Fig. 9 show the
relationship between the nonlinear force and the modal displacement
for the full model when a force is applied to only the first mode –
equivalent to the AMF method. The blue lines show this relationship
when the displacements of all but the first mode are constrained to zero
– equivalent to the EMD method. Note that, due to the symmetry of the
nonlinearity in this system, only the positive forces and displacements
are shown. The fit using the AMF-based ROM (red dots) shows a good
agreement with the red line at low amplitudes (although it diverges
at higher amplitudes). Furthermore, the AMF-based ROM appears to
exhibit little change between the scale factor of 𝑡𝑅 = 0.01 – in Fig. 9(𝑎)
– and 𝑡𝑅 = 0.1 – in Fig. 9(𝑏). This reflects the observation in Fig. 8,
where the cubic coefficient predicted by the AMF method is relatively
invariant to the scale factor. The fit using the EMD-based ROM (blue
dots) appears to diverge quickly, with amplitude, for the low scale
factor fit (in Fig. 9(𝑎)) and shows a different curve, with a poor
fit at low amplitudes, for the higher scale factor (in Fig. 9(𝑏)). This
demonstrates that the constrained full model exhibits more complex
force–displacement relationships than can be captured by a quadratic
and cubic nonlinearity. This illustrates the reason for the sensitivity of
the EMD fit to the scale factor, as seen in Fig. 8.

Fig. 10 compares the backbone curves found using the 1-mode
ROMs of the AMF and EMD methods, to the first backbone curve of
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Fig. 9. A plot of nonlinear force against modal displacement for the first mode of the full model of the 5-mass system. The red line shows the relationship when a force is applied
in only the first mode and the blue line shows the case where the displacements of all but the first mode are constrained to zero. The blue and red dots show the EMD and AMF
fits, respectively, using scale factors 𝑡𝑅 = 0.01 in panel (𝑎) and 𝑡𝑅 = 0.1 in panel (𝑏). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 10. Comparing the backbone curves of the AMF- and EMD-based ROMs, to the first
backbone curve of the full model of the 5-mass system, in the projection of frequency,
𝛺, against the first modal amplitude, 𝑄1. The horizontal lines show the maximum value
of 𝑄1 reached in the data used for fitting the ROMs.

the full-order model, computed using COCO [26]. Three different scale
factors are considered for each of the methods: 𝑡𝑅 = 0.01, 𝑡𝑅 = 0.05 and
𝑡𝑅 = 0.1. For all scale factors, the backbone curves of the AMF-based
ROMs (dashed lines) show an excellent agreement with the backbone
curve of the full-order model (solid blue line), within the region of
amplitudes used for fitting (the horizontal lines). Beyond these regions,
the AMF backbone curves only diverge slightly. Furthermore, the re-
sults of the three different scale factors are almost indistinguishable,
due to the robustness of the coefficients to the scale factor. The EMD-
based backbone curves (solid lines) show a much greater variation
between scale factors (due to the sensitivity of the parameters) and a
poor fit to the backbone curve of the full model. Additionally, due to
the strong hardening nonlinearity in this structure, the load cases used
for the EMD method contain significantly higher displacements than
those used for the AMF method (note that the maximum displacement
at 𝑡𝑅 = 0.1 for the EMD method is beyond the axis limits in Fig. 10).

These backbone curves demonstrate that, whilst the EMD method
is able to correctly estimate the coefficients of the true model (at low
scale factors), it does so by disregarding the coupling between the first
mode and the remaining modes of the system (namely the seventh
mode, which exhibits a strong coupling). As such, the backbone curves
that result from the EMD method can be inaccurate. The AMF method,
meanwhile is able to capture this coupling, but this results in a different
set of coefficients to the full-order model.

Fig. 11. The variation of the cubic coefficient in the first equation of motion, with
scale factor, for the 5-mass system. A two-mode model is derived using the EMD and
AMF methods.

3.2.2. Two-mode ROM
As it has been observed that the seventh mode couples strongly

with the first, a ROM including both of these modes in now derived
using the AMF and EMD methods. Note that the dynamics of the first
mode (i.e. the first backbone curve) are still of primary interest, and
the inclusion of the seventh mode is intended as a means of improving
the accuracy of the model.

As described in Eq. (10), the forces (in the case of the AMF method)
or displacements (in the case of the EMD method) are given by

𝐶1 =

{

𝑡𝑅𝜔2
1∕max{|Φ1|}

𝑡𝑅∕max{|Φ1|}
𝐶2 =

{

0.01𝑡𝑅𝜔2
7∕max{|Φ7|} if AMF ,

0.01𝑡𝑅∕max{|Φ7|} if EMD .

(22)

Note that, due to the extremely high stiffness of the seventh mode, an
arbitrary scaling of 0.01 has been applied to 𝐶2. Without this scaling,
the forces applied to this mode become extremely large. As described
in [5], the loading or displacement combinations are given by

𝐂 =
[

+𝐶1
0

]

,
[

0
+𝐶2

]

,
[

−𝐶1
0

]

,
[

0
−𝐶2

]

,
[

+𝐶1
+𝐶2

]

,
[

+𝐶1
−𝐶2

]

,
[

−𝐶1
+𝐶2

]

,
[

−𝐶1
−𝐶2

]

.

(23)

Fig. 11 shows the variation of the coefficient of the 𝑞31 term in the
first modal equation of motion. The value of this coefficient in the
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Fig. 12. Comparing the backbone curves of the AMF- and EMD-based, 2-mode ROMs,
to the first backbone curve of the full model of the 5-mass system. This is in the
projection of frequency, 𝛺, against the first modal amplitude, 𝑄1. The horizontal lines
show the maximum value of 𝑄1 reached in the data used for fitting the ROMs.

full model is represented by a red line, and the red and blue crosses
represent the values predicted by the EMD and AMF methods for the 2-
mode ROM, respectively. As the coupling with the seventh mode is now
captured in this two-mode model, the coefficient predicted by the AMF
method now matches that of the full-order model for low scale factors
(in contrast with the single-mode model, Fig. 8, where a different
value is predicted). As with the single-mode model, the value of the
coefficient predicted by the EMD method varies significantly with the
scale factor, due to the higher-order terms in the full model. A similar
trend is now seen in the AMF method, where the predicted coefficient
increases with scale factor, rather than remaining relatively stable as
in the single-mode case. This may also be due to the higher-order
coupling terms between 𝑞1 and 𝑞7, which were considered negligible
previously, but which are more significant here as 𝑞7 is forced to a
higher amplitude.

The backbone curves of the two-mode ROMs, derived using the EMD
and AMF methods at different scale factors, are compared to the first
backbone curve of the full model in Fig. 12. Comparing these to the
backbone curves of the single-mode ROMs, in Fig. 10, clearly shows an
improvement in the EMD method. This is due to the coupling between
the first- and seventh-mode that is now captured. The backbone curves
of the AMF method, however, appear to falsely predict an internal
resonance between these two modes (indicated by the sudden change
in direction of the backbone curve). Additionally, the AMF backbone
curves are significantly less accurate at low amplitudes, before this
internal resonance.

These results indicate that the AMF method is more robust when
low-frequency modes are included in the ROM, and is able to capture
the coupling with higher-frequency mode. However, it does so by
predicting coefficient values that are not equal to those in the full
model. In contrast, the EMD method requires that higher-frequency
modes are included in the ROM to achieve a good fit. However, even
without including these modes, it is able to correctly estimate the
coefficient values in the full model. It is clear that the accuracy of both
methods are affected if the order of the nonlinearity in the ROMs is not
sufficiently high.

4. A continuous system

To further investigate the accuracy of the AMF and EMD methods,
a continuous system is now considered. To allow us to assess the actual
value of the 𝑞21 and 𝑞31 coefficients in the first mode of the full model,
rather than using an FE model, we select a Galerkin-based model. The
system considered is a pinned–pinned beam with a linear rotational
spring at one end, shown in Fig. 13. This system is asymmetric, and is
similar to that in [27].

Based on the Euler–Bernoulli beam theory, the equations of motion
for the free vibration are given by

𝜌𝐴𝜕
2𝑤
𝜕𝑡2

+𝐸𝐼 𝜕
4𝑤
𝜕𝑥4

−
[

𝐸𝐴
2𝐿 ∫

𝐿

0

( 𝜕𝑤
𝜕𝑥

)2
d𝑥

]

𝜕2𝑤
𝜕𝑥2

+𝛿(𝑥−𝐿)𝑘𝜓𝐿(𝑡) = 0 , (24)

where 𝑥 defines the distance along the beam, 𝑤 is the transverse dis-
placement of the beam, 𝐿 = 0.5m is the beam length, and
𝑘 = 100N m rad−1 denotes the rotational spring constant. Here, 𝛿 is the
Dirac delta function, 𝜓𝐿(𝑡) is the rotation of the beam at the sprung-
end (𝑥 = 𝐿), 𝐼 is its second moment of area and 𝐴 is its cross-sectional
area. The nonlinearity arises from the dynamic tension in the beam,
which is captured by the third term in Eq. (24). Additionally, the beam
has a width of 0.03 m and a thickness of 0.001 m, with a density of
𝜌 = 7800 kg m−3 and a Young’s modulus of 𝐸 = 200 GPa.

We use the separation of variables substitution

𝑤(𝑥, 𝑡) =
∞
∑

𝑗=1
𝜙𝑗 (𝑥)𝑞𝑗 (𝑡) , (25)

where 𝜙𝑗 (𝑥) and 𝑞𝑗 (𝑡) are the 𝑗th mass-normalised modeshape and
modal displacement respectively. After applying the boundary condi-
tions, the linear modeshapes are written

𝜙𝑗 (𝑥) =
(

𝜌𝐴∫

𝐿

0

[

�̂�𝑗 (𝑥)
]2 d𝑥

)− 1
2
�̂�𝑗 (𝑥), (26)

with

�̂�𝑗 (𝑥) = sin
( 𝛽𝑗
𝐿
𝑥
)

−
sin

(

𝛽𝑗
)

sinh
(

𝛽𝑗
) sinh

( 𝛽𝑗
𝐿
𝑥
)

, (27)

and where 𝛽𝑗 is found by solving the expression

cot
(

𝛽𝑗
)

− coth
(

𝛽𝑗
)

=
2𝐸𝐼𝛽𝑗
𝑘𝐿

. (28)

A Galerkin decomposition is now applied by multiplying the equation
of motion by 𝜙𝑛 and integrating over the length of the beam. Noting
the orthogonality between 𝜙𝑗 and 𝜙𝑛 when 𝑗 ≠ 𝑛, and between 𝜕4𝜙𝑗∕𝜕𝑥4
and 𝜙𝑛 when 𝑗 ≠ 𝑛, leads to the modal equation for the 𝑛th mode

𝑞𝑛 + 𝜔2
𝑛𝑞𝑛 +

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
𝛼𝑖,𝑗,𝑘,𝑛𝑞𝑖𝑞𝑗𝑞𝑘 = 0 , (29)

where

𝜔2
𝑛 = 𝐸𝐼

(

𝛽𝑛
𝐿

)4 [

∫

𝐿

0
𝜙2
𝑛d𝑥

]

,

𝛼𝑖,𝑗,𝑘,𝑛 = −𝐸𝐴
2𝐿

(

∫

𝐿

0

𝜕𝜙𝑖
𝜕𝑥

𝜕𝜙𝑗
𝜕𝑥

d𝑥
)(

∫

𝐿

0

𝜕2𝜙𝑘
𝜕𝑥2

𝜙𝑛d𝑥
)

.
(30)

This system is simulated using the first 15 modes, assuming that the
contribution of higher modes is negligible. Note that similar expressions
are derived in [27,28].

Fig. 14 shows the first backbone curve of the beam, simulated using
the first 15 modes. The amplitude of the first 5 modes of this model are
shown in terms of the response frequency, 𝛺. This demonstrates that,
in this response region, the first mode dominates the response, and the
second modal contribution is significant at higher frequencies, but that
the other modes are negligible. This also shows the onset of an internal
resonance between the first and second modes, where the second modal
amplitude grows, whilst the first mode decreases. It is not expected that
a single-mode ROM will be able to capture this resonance.

Fig. 15(𝑎) presents the variation of the cubic coefficients adopting
the EMD and AMF techniques, varying the values for the scale factor,
having retained just one mode. As observed when considering the
discrete spring–mass model, the accuracy of the AMF in identifying
the cubic coefficient decreases as the scale factor increases, due to the
triggering of other modes. As with the two-mass system considered
in Section 3, where the nonlinearity of the full-order model is cubic,
the EMD method is robust to the scale factor, and predicts the same
coefficient as the full model.
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Fig. 13. A schematic diagram of a pinned–pinned beam with a torsional constraint.

Fig. 14. The modal participation in the first backbone curve of the continuous beam
model.

Fig. 15(𝑏) compares the backbone curves of the full, 15-mode beam
model to those of the ROMs. The backbone curve of the ROM found
using the EMD method shows a very close agreement with the full
model before the internal resonance. Similarly, the AMF backbone
curve, found using a low scale factor of 𝑡𝑅 = 10−4, shows a good
agreement. The horizontal line shows the maximum amplitude of 𝑄1
reached when fitting the parameters using the AMF method. As the
scale factor is increased, to 𝑡𝑅 = 10−3 and 𝑡𝑅 = 10−2, the backbone
curves of the AMF method begin to deviate, as seen in the previous
examples. However, in this example, this deviation is small, given that
the scale factor is varying significantly. Note that, due to the large
variations in scale factor, the maximum values of 𝑄1 that are reached
for scale factors of 𝑡𝑅 = 10−3 and 𝑡𝑅 = 10−2 are beyond the limits of this
plot.

Fig. 16 shows the nonlinear force against the modal displacement
for the first mode of the 15-mode beam model. As previously, the red
line, showing the full model, represents the response of the system
when a static force is applied to just the first mode, whilst the blue

line shows the case where the displacement of the first mode is non-
zero and other displacements are constrained to zero. These correspond
to the loci of forces used for the AMF and EMD methods respectively.
The force–displacement relationships predicted by the AMF and EMD
methods (red and blue dots respectively) show a decrease in stiffness as
the scale factor increases, as reflected in the backbone curves in Fig. 15.

5. Conclusions

In this paper, two methods for the identification of reduced-order
models (ROMs) have been discussed and an investigation of their capa-
bility in capturing nonlinear behaviour of systems has been performed;
particular emphasis has been placed on the nonlinear coupling between
modes. The methods are the enforced modal displacement (EMD) and
the applied modal force (AMF). The analysis has been conducted by
applying these techniques to two discrete nonlinear analytical models
(a two-mass and five-mass model) and a continuous nonlinear ana-
lytical model (a beam with pinned ends). As analytical models are
used, the true values of the nonlinear coefficients in the full-order
models are known, allowing for direct and detailed comparison with
the values predicted by the reduced-order modelling methods. The
difference between these techniques has been demonstrated by consid-
ering the magnitude of the forces (in the case of the AMF method) or
displacements (for the EMD) used to calibrate the ROMs.

The coefficients determined by the EMD method are invariant to
the magnitude of the enforced displacements when the order of non-
linearity in the full- and reduced-order models match; however, the
constraints required to calibrate the EMD could be considered unrepre-
sentative of the true dynamics. The AMF identifies different coefficients
as it changes the maximum displacement obtained given a set of forces,
even when the correct order of nonlinearity is employed. It has been
demonstrated that this variation is due to the capability of the AMF
method in capturing the nonlinear coupling with the modes that are
not retained in the ROM. These coupling terms may be captured by
the EMD method, however this requires that the coupled modes are
included in the ROM, resulting in a larger model. At this point, it could
be difficult for the user to decide upon which technique is likely to give

Fig. 15. A comparison of the ROM of the 15-DoF modal beam model. Panel (𝑎) shows the variation of the cubic coefficient of the ROM with the scale factor, 𝑡𝑅, for the AMF
and EMD methods, compared to the 𝑞31 coefficient of the first modal equation in the full model. Panel (𝑏) compares the first backbone curve of the full model to the backbone
curve of the ROMs using three different scale factors. The horizontal lines show the maximum value of 𝑄1 reached when estimating the coefficients using the AMF method. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. A plot of nonlinear force against modal displacement for the first mode of the 15-mode beam model. The red line shows the relationship when a force is applied in
only the first mode. The blue line shows the case where the all modes, aside from the first, are constrained to zero but experience a force. The blue and red dots show the EMD
and AMF fits, respectively, using scale factors 𝑡𝑅 = 10−4 in panel (𝑎) and 𝑡𝑅 = 10−2 in panel (𝑏). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

the stronger results. While the EMD method can provide a consistent
set of parameters, there is potential for the AMF results to capture
the dynamic behaviour of the system more accurately. However, it
is important to consider that the triggering of other modes using the
AMF can badly affect the accuracy of the ROM if the scale of the
forcing used for calibration is incorrect. Unfortunately, the optimal
choice of this scaling is not typically known a-priori. In such a case, the
EMD is a sensible option, particularly if the nonlinearities the system
presents are well-modelled. As shown in the present discussion, the
EMD is able to provide the correct values for the coefficients linked to
the nonlinear terms defined just by the retained modes, assuming the
nonlinearities are well-described by the nonlinear terms in the ROM. If
the order of the nonlinearity in the ROMs is not sufficiently high, the
accuracy of both methods is compromised. This suggests that, although
additional data would be required for calibration, ROMs with higher-
orders of nonlinearity could provide more accurate results. Regardless
of which technique is used, the importance of accurately capturing the
cross-coupling terms in ROM is a key factor in predicting the correct
nonlinear behaviour.
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