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A B S T R A C T

β-Lactams are the most successful antibacterials, yet their use is threatened by resistance, importantly as caused
by β-lactamases. β-Lactamases fall into two mechanistic groups: the serine β-lactamases that utilise a covalent
acyl-enzyme mechanism and the metallo β-lactamases that utilise a zinc-bound water nucleophile. Achieving
simultaneous inhibition of both β-lactamase classes remains a challenge in the field. Vaborbactam is a boronate-
based inhibitor that reacts with serine-β-lactamases to form covalent complexes that mimic tetrahedral inter-
mediates in catalysis. Vaborbactam has recently been approved for clinical use in combination with the car-
bapenem meropenem. Here we show that vaborbactam moderately inhibits metallo-β-lactamases from all 3
subclasses (B1, B2 and B3), with a potency of around 20–100 fold below that by which it inhibits its current
clinical targets, the Class A serine β-lactamases. This result contrasts with recent investigations of bicyclic
boronate inhibitors, which potently inhibit subclass B1 MBLs but which presently lack activity against B2 and B3
enzymes. These findings indicate that cyclic boronate scaffolds have the potential to inhibit the full range of β-
lactamases and justify further work on the development of boronates as broad-spectrum β-lactamase inhibitors.

The β-lactams are amongst the most important antibacterials;1 their
continued widespread use is challenged by resistance, most importantly
due to β-lactamases.2 There are two mechanistically distinct types of β-
lactamases: the serine–β-lactamases (SBLs; Ambler classes A, C and D)3

and the metallo–β-lactamases (MBLs; class B)4 (Fig. 1). SBL inhibitors
(clavulanate, sulbactam and tazobactam) are established for clinical use
when combined with a penicillin/cephalosporin.5 In combination with
a cephalosporin, the non β-lactam SBL inhibitor Avibactam has been
introduced as a broader–spectrum SBL inhibitor (active against classes
A and C, with limited activity against class D).6–8 None of the clinically
used SBL inhibitors inhibit MBLs. The β-lactams of the established SBL
inhibitors are also increasingly subject to hydrolysis by MBLs/SBLs7,8

and even the cyclic urea core of avibactam is susceptible to low-level
hydrolysis by some MBLs.9 There is thus increasing interest in devel-
oping non-hydrolytically labile β-lactamase inhibitors.10 In this regard,
boronic acids have long attracted attention since they can mimic the
tetrahedral intermediates common to SBL and MBL catalysis (Fig. 1).11

Vaborbactam (formerly RPX7009) was developed to target SBLs of

classes A and C12 and has been recently approved for clinical use in
combination with meropenem (Vabomere).13,14 In an initial study,12

vaborbactam was described as a sub-micromolar inhibitor of clinically
relevant SBLs, with Ki values (using nitrocefin assays) for SBLs, in-
cluding extended spectrum-β-lactamases (ESBLs), in the 10–100 nM
range (CTX-M15 Ki 44 nM; SHV-12 Ki 29 nM; TEM-10 Ki 110 nM; KPC-2
carbapenemase Ki= 69 nM (all class A); Enterobacter cloacae cepha-
losporinase P99 Ki= 53 nM; Klebsiella pneumonia15 CMY-2 Ki 99 nM
(class C)).12 A subsequent study reported that vaborbactam inhibition
manifests fast-on-fast-off behaviour, a feature proposed to underlie lack
of potent inhibition of the SHV-12 SBLs (and the TEM-42 ESBL).13 Co-
administration of vaborbactam with a β-lactam antibiotic (primarily
meropenem) manifests activity against bacterial strains harbouring
genes encoding diverse class A enzymes (TEM-116; CTX-M, SHV, and
TEM ESBLs; the KPC, FRI-1 and SME-2 carbapenemases) and the
narrow spectrum oxacillinases OXA-2 and OXA-30.12 By contrast, va-
borbactam combinations were not active against strains harbouring
OXA-48 like class D SBLs, those hyperexpressing chromosomally

https://doi.org/10.1016/j.bmcl.2019.05.031
Received 9 April 2019; Received in revised form 15 May 2019; Accepted 16 May 2019

⁎ Corresponding authors.
E-mail addresses: christopher.schofield@chem.ox.ac.uk (C.J. Schofield), jurgen.brem@chem.ox.ac.uk (J. Brem).

Bioorganic & Medicinal Chemistry Letters 29 (2019) 1981–1984

Available online 17 May 2019
0960-894X/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/0960894X
https://www.elsevier.com/locate/bmcl
https://doi.org/10.1016/j.bmcl.2019.05.031
https://doi.org/10.1016/j.bmcl.2019.05.031
mailto:christopher.schofield@chem.ox.ac.uk
mailto:jurgen.brem@chem.ox.ac.uk
https://doi.org/10.1016/j.bmcl.2019.05.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bmcl.2019.05.031&domain=pdf


encoded AmpC SBLs, and/or producing MBLs (i.e. the NDM, IMP or
VIM carbapenemases).12,13,16,17 Boronates with a ‘bicyclic’ scaffold
such as cyclic boronate CB211,18 (Fig. 1) can inhibit all four Ambler
classes, with one such compound, VNRX-5133, in clinical trials11,15,18

(Fig. 1). By contrast, vaborbactam, which is principally ‘monocyclic’ in
solution (Fig. 1), is reported not to inhibit MBLs.12–14

Here we report studies profiling the interactions of vaborbactam
with representative enzymes of the three MBL subclasses (B1, B2, B3).
The results reveal that vaborbactam shows weak inhibition activity of
all three MBLs subclasses, including the clinically relevant B1 MBLs
Verona Integron-encoded MBL (VIM)-1 and VIM-2, the New Delhi MBL
(NDM)-1 and Imipenemase (IMP)-1; the B2 MBL Aeromonas hydrophila
CphA (CphA) and the B3 MBL L1 from Stenotrophomonas maltophilia.
As anticipated, based on prior reports,12,13,17 vaborbactam inhibits

representative SBLs from classes A and C, i.e. the class A narrow
spectrum β-lactamase TEM-116 (IC50= 6 μM), the Class A carbapene-
mase KPC-2 (IC50= 90 nM), and the class C cephalosporinase AmpC
from Pseudomonas aeruginosa (IC50= 5 μM) (Table 1). Against the
tested class D enzymes, moderate inhibition of the OXA-48 carbape-
nemase was observed (IC50= 25 μM and IC50= 32 μM in the presence
of 100mM NaHCO3), whilst only very low-level inhibition (< 50%) of
the narrow spectrum oxacillinase OXA-10 was observed using 400 μM
vaborbactam (Table 1).
Vaborbactam was then tested against a panel of MBLs (subclass B1:

IMP-1, VIM-1, VIM-2, NDM-1; subclass B2: CphA and subclass B3: L1)
comprising representatives of the three MBL subclasses (which differ in
their active site architectures and Zn(II) requirements).18,20,21 Va-
borbactam weakly inhibits all four of the tested B1 MBLs, VIM–1
(IC50= 398 μM), VIM-2 (IC50= 316 μM), NDM-1 (IC50= 631 μM) and
IMP-1 (IC50= 126 μM), but at a much lower levels than observed for
the SBLs. Similar low–level inhibition of the MBL subclass B2 CphA
(IC50= 631 μM) and the subclass B3 L1 (IC50= 336 μM) was also ob-
served (Table 1).
We investigated the antimicrobial activity of vaborbactam at a fixed

concentration of 8 µg/mL (27 µM), in combination with meropenem
against three E. coli and K. pneumoniae clinical isolates all co-expressing
NDM-1, which is weakly inhibited by vaborbactam (IC50= 631 μM). In
accord with the literature data12,13 and its relatively weak potency

versus NDM-1 vaborbactam did not improve the MIC of meropenem
against these strains (Supporting Information- Table 1.).
Although there are multiple crystal structures of boronates com-

plexed to both SBLs22 and the related penicillin binding proteins,23

there are few with MBLs.11,18 To investigate the possible structural
basis of vaborbactam interaction with the MBLs, a model of va-
borbactam bound to the B1 MBL VIM-2, based upon the binding mode
of a bicyclic boronate (Fig. 1, PDB ID: 5FQC),18 was constructed
(Fig. 2C).
The model implies that vaborbactam might bind in a similar manner

Figure 1. Outline mechanism of β-lactamase catalysis exemplified for a carbapenem. Note that the product can be produced in different tautomeric forms. The
tetrahedral intermediate, common to both SBLs and MBLs, is mimicked by cyclic boronates.

Table 1
IC50 values and reported Ki values for vaborbactam against β-lactamases,
compared to the reported values for vaborbactam and a bicyclic boronate.18
†Weak inhibition (< 50%) was observed for OXA-10 at the highest tested
concentration (400 μM).

Class Enzyme Vaborbactam IC50
[μM]

Vaborbactam Ki
[nM]

Cyclic Boronate
(CB2)11,18 IC50
[μM]

A TEM-116 6 μM Not available 0.003 μM18

A CTX-M15 Not available 44 nM12 0.013 μM11

A SHV-12 Not available 29 nM12 Not available
A TEM-10 Not available 110 nM12 Not available
A KPC-2 0.09 μM 69 nM12 0.03 μM
B1 IMP-1 126 μM Not available 1 μM18

NDM-1 631 μM Not available 0.029 μM18

VIM-1 398 μM Not available 0.085 μM11

VIM-2 316 μM Not available 0.003 μM18

B2 CphA 631 μM Not available > 100 μM18

B3 L1 336 μM Not available Not inhibited19

C AmpC 5 μM Not available 0.12 μM11

C P99 Not available 53 nM12 Not available
C CMY-2 Not available 99 nM12 Not available
D OXA-10 > 400 μM Not available Not available

OXA-10 > 400 μM Not available 5.1 μM11

(100mM
NaHCO3)
OXA-48 25 μM Not available Not available
OXA-48 32 μM Not available 2.6 μM11

(100mM
NaHCO3)
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to the bicyclic boronates (Fig. 2B and C),11,24 with its ‘endocyclic’
boronate oxygen positioned to bind to the Zn(2) ion in the Cys-His-Asp
site of the di-Zn(II) active site and the other two boronate oxygens
positioned to bind to Zn(1) in the tri-His site. Since VIM-1 and VIM-2
employ different binding modes for the substrate carboxylate (VIM-2:
Y224, R228 and VIM-1: H224,S228),24 the observation that VIM-1 and
VIM-2 are inhibited to a similar degree by vaborbactam is notable. The
modelled VIM-2 complex features water-mediated contacts between the
vaborbactam carboxylate and Y224 and R228, as observed in our pre-
vious crystallographic characterisations of bicyclic boronate binding to
MBLs18 (Fig. 2B and C).
The overall results reveal that, from comparison of IC50 values,

vaborbactam manifests inhibition of SBLs (TEM-116, KPC-2 and AmpC,
from classes A and C, respectively) that is 20 to 7000–fold more potent
than that for the class B MBLs (IMP-1, VIM-1, VIM-2, NDM-1 and L1)
and 5-fold more potent than reported for the class D SBL, OXA-48
(Table 1). With the class D enzymes (OXA-10 and OXA-48) va-
borbactam manifests weak activity against the carbapenem hydrolysing
class D (CHDL) SBL OXA-48, but no activity against the narrow spec-
trum oxacillinase OXA-10 (Fig. 3). These observations correlate with
microbiological studies, wherein vaborbactam shows no activity
against OXA-10/OXA–4817 and as reported here, NDM-1 producing

strains. Although of weak potency against MBLs, vaborbactam exhibits
greater activity against the MBLs than avibactam, which we have de-
monstrated to interact with some MBLs9 but which does not show any
inhibition across the same range of inhibitor concentrations. Notably,
vaborbactam shows some activity towards the (mono-Zn(II)) B2 MBL
CphA and the B3 MBL L1 (Table 1). For the class B1 MBLs, vaborbactam
was most potent against IMP-1 (126 µM), and less potent against VIM-1
and VIM-2 (398 and 316 µM, respectively) with the lowest activity
observed against NDM-1 (631 µM).
The results imply that whilst vaborbactam itself is very likely not

useful against most, if not all, MBL-, and many SBL- (especially class D),
producing strains, there is considerable potential for further optimisa-
tion of cyclic boronate based β -lactamase inhibitors. Boronates are
being pursued as SBL/MBL/penicillin-binding protein (PBP) inhibitors,
in part because of their ability to mimic potentially common tetrahedral
intermediates in catalysis.12,18 However, while such efforts are cur-
rently limited by the lack of useful (broad spectrum and potent) PBP
inhibition by the boronates so far investigated, structure-activity re-
lationship (SAR) information is emerging for SBL/MBL inhibition by
different types of boronates. By contrast to the results for the mono-
cyclic compound vaborbactam reported here, bicyclic boronates are
capable of potent (nM) inhibition of MBLs of subclass B1 in addition to
their activity against SBLs. However, the currently tested bicyclic bor-
onates e.g. CB2, Table 1,18,19 do not exhibit inhibitory activity against
the B2 CphA (mono Zn(II)) or B3 L1 MBLs. It is notable that va-
borbactam shows weak but detectable (μM) inhibition of both CphA
and L1, raising the possibility that monocyclic boronates are potentially
capable of supporting broader spectrum inhibitory activity against
MBLs than their current bicyclic counterparts. Together with previous
studies, including those with PBPs,23 these observations may reflect the
increased conformational flexibility of monocyclic versus bicyclic bor-
onates and, maybe, the increased propensity of the former to exist in an
acyclic form. Further SAR on both mono- and bi-cyclic boronate based
β-lactamase inhibitors is required.
We also observed substantial variations in vaborbactam potency

within, as well as between, different MBL subclasses (B1-B3). The dif-
ferences in vaborbactam activity against B1 MBLs (IMP-1 > VIM-1/
VIM-2 > NDM-1), might relate to the active site of IMP-1 being more
compact (on the basis of reported crystallographic studies) than that of
NDM-1;25 bicyclic boronates inhibit IMP-1 less potently than VIM-1/-2
and NDM-1.11 For the class D enzymes, which require active site lysine
carbamylation for activity;26 vaborbactam inhibition was unaffected by
addition of NaHCO3 to the assay buffer, although this increased cata-
lytic activity. This observation is consistent with reported studies on
bicyclic boronates,18 but contrasts with results for avibactam.26 The
molecular reasons for these variations in SAR for the different classes of
boronate based inhibitors are presently unclear, but merit further de-
tailed investigation given the desirability of developing very broad
spectrum β–lactamase inhibitors, especially those active against

Figure 2. Model of vaborbactam binding to VIM-2
(B). Residues within 3.5 Å of vaborbactam are in-
dicated. The model is presented alongside a view
from a crystal structure of (A) vaborbactam bound
to CTX-M15 (PDB ID: 4XUX) and (C) a bicyclic
boronate bound to VIM-2 (PDB ID: 5FQC).18

Figure 3. IC50 values for vaborbactam against the shown β-lactamases.
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carbapenemases, e.g. the VIM, IMP, NDM and OXA-48 enzymes, for
which current inhibitors are largely ineffective.
Overall, our results identify vaborbactam as a low level pan β-lac-

tamase inhibitor able to inhibit SBLs and MBLs of all classes. Together
with recently reported studies on the structural bases of (bi)cyclic
boronate inhibition of all classes of β-lactamases and PBPs, these data
support the proposal that cyclic boronates constitute inhibitor tem-
plates of interest for development as β -lactamase inhibitors with wider
spectra of activity than currently available agents.
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