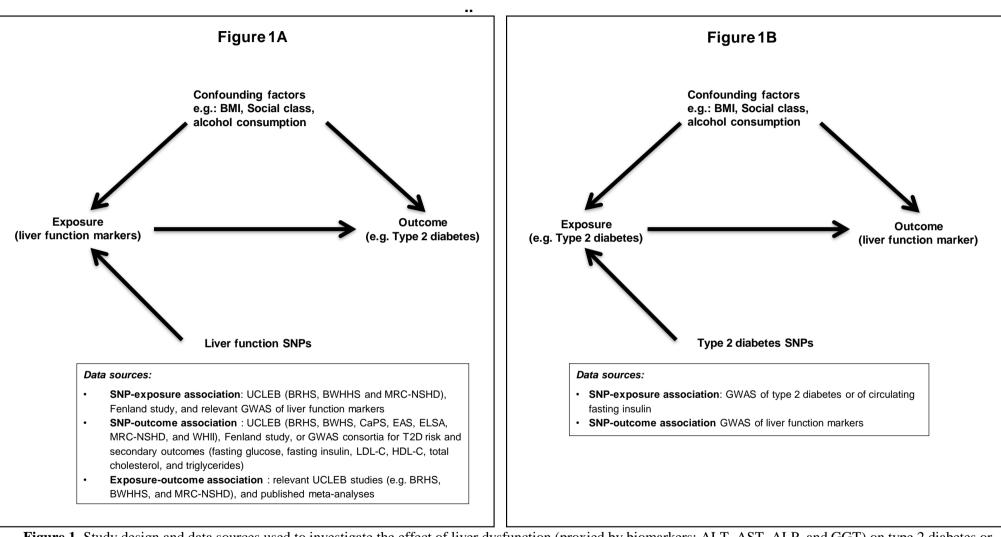


De Silva, M., Borges, C., Hingorani, A., Engmann, J., Shah, T., Zhang, X., ... Lawlor, D. (2019). Liver Function and Risk of Type 2 Diabetes: Bidirectional Mendelian Randomization Study. *Diabetes*, 68(8), 1681-1691. [db181048]. https://doi.org/10.2337/db18-1048

Peer reviewed version


Link to published version (if available): 10.2337/db18-1048

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via AHA at http://diabetes.diabetesjournals.org/content/early/2019/05/03/db18-1048 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

Figure 1. Study design and data sources used to investigate the effect of liver dysfunction (proxied by biomarkers: ALT, AST, ALP, and GGT) on type 2 diabetes or secondary outcomes (fasting glucose, fasting insulin, LDL-C, HDL-C, total cholesterol, and triglycerides) (**Figure 1A**) and the effect of predisposition to type 2 diabetes or insulin resistance on circulating liver function biomarkers (**Figure 1B**)

As shown in **figure 1A**, the multivariable association of liver function markers with T2D risk (or related outcomes) was estimated by meta-analysing results from each data source using logistic regression models (or linear regression models in the case of secondary outcomes) with participant-level data from relevant studies within UCLEB consortium (BRHS, BWHHS, MRC-NHSD) and summary-level data from the published meta-analyses of Kunutsor *et al* (2013) and Fraser *et al* (2009). We also estimated the association of liver function markers with T2D risk (or secondary outcomes) using a Mendelian randomization approach. In Mendelian randomization analysis, we used different data sources to estimate the SNP-liver function marker association (UCLEB consortium — BRHS, BWHHS and MRC-NHSD —, Fenland study, and GWAS of liver function markers — Chambers *et al* (2011)) —, and SNP-T2D risk association (UCLEB — BRHS, BWHS, CaPS, EAS, ELSA, MRC-NHSD, and WHII —,

and GWAS consortium) or SNP-secondary outcomes. As shown in **figure 1B**, the summary-level data for the association of SNP-T2D risk and SNP-fasting insulin for the reverse MR was extracted from GWAS consortia, and the association of SNP-liver function marker was extracted from Chambers *et al* (2011). ALP: alkaline phosphatase; ALT: alanine aminotransferase; AST: aspartate aminotransferase; BMI: body mass index; BRHS: British Regional Heart Study; BWHHS: British Women's Heart and Health Study; CaPS: Caerphilly Prospective Study; DIAGRAM consortium: Diabetes Genetics Replication And Meta-analysis consortium; EAS: Edinburgh Artery Study; ELSA: English Longitudinal Study of Ageing; GGT: gamma-glutamyl transferase; GWAS: genome-wide association study; HDL-C: high density lipoprotein-cholesterol; LDL-C: low density lipoprotein-cholesterol; MRC-NSHD: National Survey of Health and Development; SNPs: single nucleotide polymorphisms; T2D: type 2 diabetes; UCLEB consortium: UCL-LSHTM-Edinburgh-Bristol consortium; WHII: Whitehall II study.