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ABSTRACT

In this paper, a new Synthetic video Texture dataset (SynTex) is
introduced. It was generated using a Computer Graphics Imagery
(CGI) environment and offers the capability of being able to generate
many versions of the same scenes with different video parameters.
This will support research in video compression enabling researchers
to understand and model the relationship between video content and
its coding parameters. To validate that SynTex is suitable for this
purpose, firstly, typical spatio-temporal descriptors were calculated
and compared against existing real video datasets with similar pa-
rameters. Then, the encoding statistics of SynTex were extracted
using the HEVC reference software and compared to natural video
datasets. The comparisons show that SynTex exhibits a compara-
ble coverage over the spatial and temporal domain and it has similar
encoding statistics to real video datasets.

Index Terms— Synthetic Video Dataset, Video Texture, Video
Compression, HEVC Coding Statistics.

1. INTRODUCTION

With increasing demands for more immersive video formats, the
amount of video data that needs to be compressed while preserv-
ing its quality is massive [1]]. Cisco reports that by 2021 82% of
the consumer traffic will be video data [2]. What is more important
is that the trade-off between compression efficiency and quality is
content related. This poses the challenge of better comprehending
content properties and their relation to compression. Textured areas,
and particularly dynamic textures, can be challenging to compress.
Furthermore, different types of textures have different coding per-
formance [3,4]. In order to fully understand explore and model the
relation of texture to compression, we need a dataset that contains
the same content but with different acquisition (e.g. camera motion)
or content parameters (e.g. different level of coarseness).

There are few freely available video datasets that contain a va-
riety of video textures [4H6]. One of the most cited is DynTex [35].
This contains 650 PAL resolution dynamic video sequences (spatial
resolution 720 x 576 at 25 frames per second (fps)) with a wide
range of texture types. It has been widely used for developing dy-
namic texture classification and recognition algorithms. However,
the video parameters (spatial resolution and frame rate) are obsolete
compared to current requirements. Thus, the use of DynTex in fu-
ture research is limited. HomTex [4}/7] and BVI-Texture [6] datasets
were developed with the aim of analysing the properties of video tex-
ture and its coding performance. The BVI-Texture dataset [[6] con-
tains 20 video sequences with Full High Definition (FHD) resolution
(1920 x 1080) at a frame rate of 60 fps. This dataset was used to
test HEVC compression efficiency and its perceptual quality versus

The authors acknowledge EPSRC for funding (grant #: EP/L016656/1,
EP/M000885/1) and the Leverhulme Trust.

bit rate performance. It has been also used to develop video quality
assessment metrics and future video coding algorithms. Although
BVI-Texture dataset satisfies current video specifications, the small
number of available sequences is not adequate for an extensive anal-
ysis. Another available dataset containing video textures is Hom-
Tex [4]. HomTex contains 120 video sequences that are manually
cropped and selected from the DynTex and BVI-Texture datasets to
obtain homogeneous video textures. The resolution and frame rate
are 256 x 256, 25 fps and 60 fps, respectively.

In all of the above mentioned datasets, the number of sequences
is insufficient to allow full exploration and understanding of the
video parameter space. A larger video dataset that contains many
different variations (different camera motions, frame rates, spatial
resolutions, etc.) of static and dynamic textures is thus needed.
Due to the enormous number of potential combinations of param-
eters related to video content (e.g. spatial patterns, colourfulness,
complex local motion patterns) and acquisition (e.g. frame rate,
shutter angle, camera position), the cost in personhours of captur-
ing multiple variants is prohibitive. Also the randomness of some
textural content (e.g. foliage, falling leaves), makes capturing an
identical scene with different video parameters infeasible. Drawing
inspiration from computer vision [[8-11]], we propose to address this
by the generation of a synthetic video dataset. Such an approach
has the benefit of using parameterised models for the production
of the synthetic video content. This translates to datasets that are
reproducible and can densely cover the video parameter space.

The use of synthetic data is a common practise in many research
areas, especially in situations where real data may be difficult to
acquire, due to budget, time or privacy concerns. For example, in
computer vision, synthetic data are used for scene understanding [9]
or object recognition [8]] and have been proven reliable and use-
ful especially for training neural networks [[10,/11]]. To the best of
our knowledge, in the field of video compression, there is only one
synthetically-generated dataset [12]], designed to simulate a multi-
lens stereoscopic video system with the aim to be used for multi-
view compression, streaming, or other computer graphics related re-
search.

This paper introduces a Synthetic video Texture dataset (Syn-
Tex) with the aim of studying and analysing video coding perfor-
mance for different video textures and parameters. To the best of our
knowledge, this is the first synthetic video texture dataset that has
been developed for this purpose. It is developed using a Computer
Graphics Imagery (CGI) environment and is based on the genera-
tion of 3D models to which are rendered and projected to capture
artificial video content. After creating the SynTex dataset, we first
calculate and compare the range of low-level features of the uncom-
pressed video content with existing real video datasets that include
a high textural content, BVI-Texture [6], BVI-HFR [13] and Hom-
Tex [4]. Then, we compress the sequences and compare the coding
performance of SynTex and HomTex to further validate the effective-
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Table 1: Description of scenes and parameters of SynTex dataset.

Video
Texture Type of Scene Model Parameters
Brick Cut; Brick Hewn;
Ceramic Tile; Clay Brick
Static (New); Cobble Stone Granularity; Camera Motion
(Rough); Fabric; Panel;
Hexagon Tile
Fire:  Flowing River: Spread Width of Fire; Wave Speed; Inten-
Dynamic ; g : sity of Smoke; Initial Velocity of Smoke;
. Ocean Wave;  Pond o . e .
Continu- X i X Initial Velocity of Steam; Different Wind
Water; Smoke; Steam; L . . .
ous Swine Fabric: Waterfall Direction of Fabric; Swing Speed; Density
s ’ of Waterfall; Granularity
. . . . Different types of Leaves/Flower/Tree;
D).lnamlc Falll‘r?.g Lea'ves, Flgwer, Wind Speed; Density of Fountain; Spread
Discrete Grass; Tree; Fountain

Width of Fountain; Granularity

ness of SynTex. The results show that SynTex covers a wide range
of low-level features and has a similar coding performance when
compared to real video datasets. It is thus of use for further under-
standing of compression performance and as a basis for designing
new modes or training machine-learning based encoders.

The remainder of this paper is organised as follows: Section [2]
describes the SynTex dataset and its parameters. Section[3]reports on
the comparison of SynTex to other real video datasets and validates
its effectiveness. Conclusions are finally drawn in Section 4]

2. DESCRIPTION OF THE SYNTEX DATASET

SynTex was created using the CGI tool, Unreal Engine 4 (UE4) [14].
UE4 is a C++ based tool that is widely used by the games indus-
try and also by movie makers. It has, however, also recently been
used for research purposes, for example for the analysis of stereo
vision [9]] and studying virtual reality (VR) [15]. UE4 has a variety
of assets that include models for different scenes and objects. For
each of these models there is a set of different parameters that can
be adjusted, for example the amplitude or the speed of a wave. UE4
also includes universal parameters for capturing video that simulate
areal camera, such as resolution, frame rate, shutter angle and view-
ing angle. These parameters will be used in our future work to create
a synthetic video dataset that aims at simulating real scenes captured
at different frame rates, with a different shutter angle, etc.

Our synthetic video dataset [I6] contains 196 homogeneous
video sequences with spatial resolution of 1920 x 1080, frame
rate at 60 fps, and 180° shutter angle. The selection of these param-
eters was driven by the typical requirements for video content and
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Fig. 1: Sample frames from the SynTex dataset (the top row is ‘Static’ textures, the middle row is ‘Dynamic Continuous’ textures, and the bottom row is
‘Dynamic Discrete’ textures).

also by the need for common parameters with existing datasets (so
as to be able to validate the generated video sequences). The added
value of using this methodology is that this dataset can be easily
captured using different parameters, e.g. different frame rate.

Based on previous studies on the analysis of video content for
video compression purposes [4l[I7], video textures are classified into
three types, static (e.g. a camera panning over a still scenery) and
dynamic continuous (e.g. a scene of ocean waves) and dynamic dis-
crete (e.g. a scene of moving foliage). In this paper, we followed
the same definitions to generate synthetic video textures. Sample
frames of the generated video sequences are illustrated in Fig.[T|and
the differentiating parameters per different model are reported in Ta-
ble[T] As mentioned above, the video acquisition parameters are the
same for all videos. Also, some general parameters such as the tex-
ture granularity and amount of motion were uniform for the different
versions of the videos (wherever it was applicable). Table[T]and Fig-
ure[]show that there are eight scenes for each type of video texture.
Each scene has a wide range of associated parameters that can be
flexibly modified.

3. VALIDATION OF THE SYNTEX DATASET

As the video content in SynTex is artificial, in order to validate its
effectiveness, we must confirm that SynTex has similar properties
when compared to real video textures. First, we compare the content
characteristics of the uncompressed videos and then we compress
them and compare their compression performances and statistics.
We compare SynTex against the published datasets BVI-HFR [13]],
BVI-Texture [6] and HomTex [4], that contain a significant quantity
of real textures. We emphasise that we expect deviations in the ex-
amined statistics due to the following reasons. First, the real datasets
have a smaller number of video sequences (20, 22, and 120, respec-
tively), and BVI-HFR and HomTex (20/120 sequences) are captured
at different frame rates. Moreover, BVI-HFR and BVI-Texture have
heterogeneous textural content, which will result in different low-
level features. Furthermore, although the datasets all provide good
coverage, the actual content is very different (the spatio-temporal
patterns cannot be identically replicated) and are expected to have
different statistics.

3.1. Low-level Features

In this section, we compare the coverage of low-level features: Spa-
tial Information (SI), the Motion Vectors (MV), the Colourfulness
(CF) and the Temporal Information (TI) of SynTex with BVI-HFR,



Table 3: Extracted coding statistics during the coding process [4].
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Fig. 2: The relative range and uniformity of coverage of SynTex and the
compared datasets (left column: 1920 x 1080 spatial resolution datasets,
right column: 256256 spatial resolution datasets).

Table 2: The relative total coverage of SynTex and other datasets.

| SynTex | BVI-Texture | BVI-HFR | HomTex

Rel. Total Coverage | 0.40 | 0.35 | 025 | 033

BVI-Texture, and HomTex datasets, as suggested by Winkler [[18].
Since the spatial resolution of SynTex is 1920 x 1080 at a frame rate
of 60 fps, it was directly compared with BVI-Texture and BVI-HFR
datasets (60 fps version). However, in order to compare it with Hom-
Tex, each sequence in SynTex had to be downscaled to 256 x 256.
Figure 2] shows the relative ranges and uniformity of coverages
of SynTex compared to BVI-Texture and BVI-HFR on the left and
the relative ranges and uniformity of coverages of the downscaled
SynTex and HomTex on the right, as defined in [18]]. As can be
seen, the relative ranges of CF, MV and TI are very close to the
other datasets. The relative range value of SI in SynTex is slightly
lower, which is expected due to the homogeneity of the video con-
tent. Regarding the uniformity of coverage values for SI, MV and TI
of SynTex, they are comparable with the other datasets. It should be
noted that the uniformity of MV for SynTex is significantly higher
than in HomTex. This is explained by the higher temporal cohesion
and homogeneity of the sequences. The motion patterns in SynTex
are generated using models and this ensures a uniform motion across
all frames. Last but not least, all above comparisons are confirmed
by the relative total coverage of SynTex that is reported in Table [2]
As highlighted in the table, SynTex achieves a better relative total
coverage compared to BVI-Texture, BVI-HFR, and HomTex.

3.2. Video Coding Statistics

To further validate the effectiveness of SynTex, we use the HEVC
reference codec (HM 16.2) [19] to compress SynTex at five quantisa-
tion levels, QP={22, 25,27, 32, 37}, and compare coding statistics
with HomTex as in [4].

In Fig. 3] we illustrate examples of Peak Signal to Noise Ratio
(PSNR) (dB) versus the required bits per pixel for similar video tex-
tures from SynTex and HomTex. Although the two datasets contain
different texture patterns, we are showing examples of quality-rate
curves of video textures similar both in spatial and temporal char-
acteristics. Also, we note that in order to express the compression
ratio, we use bits per pixel instead of bit rate, as this compensates
for the different frame rate of HomTex and SynTex sequences. From
the examples depicted in Fig. 3] we notice that for all three video
texture types, the real and synthetic sequences have similar curves.

Also, between the three texture types there is a clear difference in
the compression efficiency. Static textures generally exhibit very
high quality even at low bit rates, while dynamic discrete sequences
require a much higher bit budget for the same quality.

Figure[d] shows the distribution of coding statistics of the down-
scaled SynTex and HomTex datasets. The results presented here are
at a QP of 25 using the Random Access profile [20] as in [4]. 33 cod-
ing statistics were computed and are related to the prediction modes,
the partitioning of the Coding Tree Units (CTUs), the residual infor-
mation, the bits allocation, the motion vectors, the distortion, and the
bit rate (see Table [3). Due to space limitations, in Figure ] we are
presenting 16 typical encoding statistics.

Prediction mode statistics: A first observation from Figure@is
that, for both SynTex and HomTex, there are significant differences
between the different types of video textures. Static textures ex-
hibit a high percentage of Skip modes and a low percentage of Intra
modes, mainly because they only have simple camera motion with a
fixed movement direction [21]]. Intra mode is also mainly used to en-
code dynamic textures. A noticeable difference between SynTex and
HomTex is in the Intra and Skip modes. This is explained by the dif-
ferent acquisition parameters of SynTex and by the fact that many of
sequences from HomTex suffer from noise, as also explained in [[17].
Another reason that explains the differences in Skip statistics for the
dynamic continuous textures is the frame rate. SynTex is captured at
60 fps which is higher than that of HomTex (the frame rate for most
continuous textures in HomTex is only 25 fps).

Partitioning statistics: It can be seen from Fig. [ that the dis-
tribution of SynTex is within the value range of HomTex, and for
both of these two datasets, different types of video textures also
have different distributions. Static textures have the lowest num-
ber of partitions (medians of 2 and 4 partitions per CTU for SynTex
and HomTex respectively). The highest number of partitions for dy-
namic discrete (medians of 21 and 36 partitions per CTU for SynTex
and HomTex respectively). The reason for this is that there are many
regular objects or regions in discrete textures, hence the higher num-
ber of partitions per CTU will be obtained [22].

Bit statistics: The regularity of distributions of bits for SynTex
and HomTex are consistent. In general, since static textures exhibit
simplicity of motion and texture type, it will have the lowest average
number of bits per pixel [4,[23]. Dynamic discrete textures exhibit
more random local motion and variability in shapes, hence the av-
erage number of bits per pixel is higher compared to other texture
types [4,[23]. Dynamic continuous textures have irregular regions
and complex motions, hence the average number of bits per pixel
will be also higher than static [4}24].
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Fig. 3: Examples of PSNR-bits per pixel curves for sequences with similar textural content from SynTex and HomTex encoded by HEVC reference software.
The solid lines depict sequences from the SynTex dataset and the dashed lines sequences from HomTex.
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Fig. 4: Boxplots of coding statistics of the downscaled SynTex and HomTex (blue for static, green for dynamic continuous and red for dynamic discrete).

Distortion statistics: The distributions of the distortion statis-
tic for SynTex is consistent with HomTex. Figure ] shows that the
averages of the SAD per pixel of dynamic continuous and dynamic
discrete are higher than static textures because the motions of dy-
namic textures are highly complex and random compared to static
textures, so that they have higher residual energy compared to static
textures [4,25]]

Bits allocation statistics: Figure [f] shows that the distributions
of bits allocation for SynTex and HomTex are consistent. In general,
for SynTex and HomTex, most bits are allocated to residual encod-
ing in dynamic continuous and discrete textures, this indicates that
due to the complex textures and motions, a higher percentage of bits
are needed to encode residuals [20]. For static textures, due to the
simplicity of motions and textures, the bits used to code are evenly
distributed and this also indicates a better prediction result in static
textures compared to dynamic textures [4].

Residual statistics: Figure [d] shows that the residual statistics
vary with texture types. Also, the distribution of SynTex is within the
value range of HomTex. It should be noted that the average correla-
tion of the residual statistic for static textures of SynTex is slightly
higher than HomTex. This is because SynTex contains more speed
variations than HomTex. The higher the camera motion, the higher
residual energy will be obtained [26,27]]. Furthermore, SynTex con-
tains versions of static textures with different granularity that are
spatially complex, such as Brick Cut, Fabric, Cobble Stone (Rough),
etc. On the other hand, HomTex only contains rather smooth texture
types (e.g. sky, ceiling). Hence, SynTex has a higher residual energy
than HomTex.

Motion Vector statistics: For both SynTex and HomTex, static
textures have short motion vector length and smaller standard devia-
tion of directions. This shows that static textures have higher motion
consistency. It should be noted that, on the one hand, the standard
deviation of motion directions of SynTex is within the value range
of HomTex. On the other hand, for static textures, SynTex is much
lower than the median value of HomTex. The reason is that since
the static textures in SynTex are captured in a controlled environ-
ment, i.e. there is no camera shake during the capturing process
and no slight change of movement direction for the camera, which

commonly exists in real video shooting [1]. Hence, the direction of
motion vectors of static textures in SynTex is strictly consistent with
each other compared to HomTex. Dynamic continuous textures have
the largest magnitude of motion vectors and discrete textures present
a slightly smaller motion vector length with highest standard devi-
ation of motion directions due to the higher percentage of random
motions [4]. For both SynTex and HomTex, dynamic continuous and
discrete textures achieve a higher standard of deviation in the motion
vectors directions than static textures, due to the higher percentage
of random motions.

To sum up, most distributions of the encoding statistics of Syn-
Tex are consistent with HomTex. The reasons for the few deviations
are due to the different spatio-temporal patterns (diversity, regular-
ity, granularity) and acquisition parameters (different camera speed,
frame rate, shutter angle). However, these differences between Syn-
Tex and HomTex are small and we conclude that the rate distortion
properties of SynTex in HEVC are sufficiently close to real video
textures, to make a credible proxy.

4. CONCLUSION

In this paper, we introduced a synthetic video texture dataset, Syn-
Tex. SynTex covers a wide range of video textures, and spatial and
temporal patterns, and allows the parameters related to video con-
tent (e.g. granularity, wind speed, camera speed) to be flexibly mod-
ified. The coverage of important low-level features and coding per-
formance of SynTex are shown to be similar to real video datasets.
Thus, we can conclude that SynTex has similar properties compared
to real videos. SynTex is the first video texture dataset created for
video compression purposes. It can be used by researchers to analyse
and understand the video parameter space and its relation to video
compression. One of the benefits of this synthetic dataset is that by
using UE4, it can be further extended to include more video varia-
tions (different scene, heterogeneous content, etc.) to cover the needs
of training, testing and validating of any video acquisition, analysis
and compression research method. Part of the future work is to per-
form a subjective evaluation of SynTex at the different compression
levels to study the relationship of perceptual quality and video con-
tent parameters.
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