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Engineering design processes often use optimization strategies, which aim to min-

imize multi-objective functions. The analysis should consider the uncertainty in a

system, which may cause signi�cant changes in its behaviour. The inclusion of the un-

certainty in the design process makes the identi�cation of an optimum design more

challenging. In this paper, two novel optimization methods (Iterative Di�erential

Evolutionary Algorithm - I.D.E.A. and Reliable & Robust Evolutionary Algorithm

- R.R.E.A.) are presented. These optimization strategies aim to solve problems that

are very time demanding and for which it is di�cult (and expensive) to determine

derivatives and to identify and de�ne the optimum set of parameters. The approaches

are validated considering as a test case the optimization of a landing gear system in

order to avoid the onset of shimmy, assuring a reliable design.
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Nomenclature

Methodology Notation

countG = number of evaluated generations in the di�erential evolutionary algorithm

CR = crossover variable in the di�erential evolutionary algorithm

d = direction of interest

f(x) = objective function

F∗ = set of values for the input factor such that the relative locus of interest LoI is tangent

to the de�ned limit-state function g

FG = set of values of the input factor at the generation G

F = scale factor in the di�erential evolutionary algorithm

g = limit-state function

NG = number of generation

Gmax = maximum number of generations in the di�erential evolutionary algorithm

HB = Hopf Bifurcation

h±p = quantity adopted in URQ

i, k = indices for each step of the continuation analysis and for the continuation

algorithm iterations to converge to steady solutions

LoI = locus of interest in the optimization process

NmaxFeval
= maximum number of function evaluations in the di�erential evolutionary algorithm

NP = number of populations (N -dimensional vectors) in a generation

Pmaxineg,pos
= the maximum negative and positive range of variation for the ith considered parameter

(i = 1...N)

r1, r2, r3, r4, r5 = random factors in the di�erential evolutionary algorithm

S = coe�cient adopted for one of the objective functions in the R.R.E.A. technique

Tolε, Tolp = tolerances in the I.D.E.A. iterative process

vi,G = mutant vector in the di�erential evolutionary algorithm

V TR = desired value to search in the optimization process

W0,Wp,W
+
p ,W

−
p ,W

±
p = weights adopted for the URQ
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xbest,G = best vector determined for the generation G in the di�erential evolutionary algorithm

xrk,G = rk vector at the generation G in the di�erential evolutionary algorithm

x, P = independent states and bifurcation parameters in the bifurcation analysis

x1, x2, ..., xN = components for the input design factor vector x

ε = relative acceptable error

µx, σ
2
x, γx, Γx = input statistical quantities: mean, variance, skewness and kurtosis

µd, σd = mean and deviation of the output of interest

τF , τCR = constants to perform self-adaptation in the di�erential evolutionary algorithm

Landing gear model notation

Bm = track of the main assembly

B = distance between the nose and the axis of the main assembly

cψ = damping for the torsional degree of freedom

Iψ = moment of inertia for the torsional degree of freedom

L = tyre relaxation length

Lδ = distance Lδ from the axle about which the rotational degree of freedom δ is considered

L = lift

V = forward velocity

W = weight of the aircraft

β = out-of-plane rotational degree of freedom

δ = in plane rotational degree of freedom

λ = lateral tyre displacement

φ = rake angle

ψ = torsional degree of freedom describing the rotation of the wheel/axle assembly about the local axis z
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Abbreviation

HC = Hypercube

I.D.E.A. = Iterative Di�erential Evolutionary Algorithm

LCO = Limit Cycle Oscillation

LoI = Locus of Interest

MCS = Monte Carlo Simulations

PDF = Probability Density Function

QoI = Quantity of Interest

ROM = Reduced Order Model

RBDO = Reliability-Based Design Optimization

RDO = Robust Design Optimization

R.R.E.A. = Reliable & Robust Evolutionary Algorithm

SA = Sensitivity Analysis

SVD = Singular Value Decomposition

URQ = Univariate Reduced Quadrature

I. Introduction

Optimization techniques are commonly adopted for a system analysis with the aim of validating

and evaluating a system already designed or to actually de�ne the design that ful�ls some �xed

requirement. A range of optimization methods can be used and the selection depends on the goal

of the optimization itself: the sought optimum can be required to be either reliable or robust, or

both reliable and robust. Robustness refers to the minimization of the variance in the determined

optimum, while reliability concerns the minimization of the occurrence of limit-state or constraint

violations ([1]). Loci of solution points describing speci�c variations of quantities of interest are

considered during an optimization of a structure that aims to assure reliability by minimizing the

probability of failure.

Technological progress often leads to an increase in the complexity of systems of interest and

application of optimization techniques to complex systems can be challenging. This complexity
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requires the development of techniques able to deal with the design of such systems. In the aero-

nautical �eld the complexity may arise due to the presence of a very large number of subsystems,

such as �ight controls, electrical systems, landing gear, avionics system, instrumentation and record-

ing, etc. The source of complexity can be due to the number of components and their geometry

as well as the non-linearities characterizing the system dynamics and the description of quantities

of interest for the analysis. In this scenario, complexity can be due to the description of the vari-

ation of the quantities of interest (which we refer to as 'locus of interest') that is needed to assure

the limiting criteria to be ful�lled and, whatever the method of analysis, the determination of an

optimum design can be di�cult. Moreover, the di�culty during the optimization process increases

if uncertainty, which is always present in all branches of physics and engineering, is included in

the analysis. This e�ect is particularly true for systems whose numerical model is computationally

expensive to evaluate.

In the optimization process, uncertainty in the system has not always been considered and

instead a deterministic process is adopted ([2�5]), typically incorporating a safety factor ([6]). The

consideration of uncertainties in the development and improvement of optimization processes has

recently become of signi�cant interest ([7]). In fact, there is awareness within the engineering sector

that a deterministic approach, with the application of a safety factor, often results in an over or

under designed system ([1]).

Techniques that are commonly adopted to optimize a system under uncertainties ([8], [1]) are

Robust Design Optimization (RDO) ([9]) and Reliability-Based Design Optimization (RBDO) ([10]).

In RDO the mean of the response of interest is optimized by minimizing its variance. In RBDO,

a cost function is minimized and the uncertainty is considered, introducing speci�c risk and tar-

get reliability constraints that require tail statistics to be computed. In the presence of a very

computationally expensive numerical model, nonlinear behaviour and multi-objective problems, the

traditional RDO and RBDO aproaches are not always suitable because of two main issues: the pro-

hibitive computational cost and the neglect of higher-order moments commonly used for the RDO

and RBDO techniques. If a �nite element model (FEM) or multi-body model is considered, the

analysis is simpli�ed as much as possible and non-linear stability analysis is usually not considered;
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the focus may be on fatigue life([11]), stress and shape optimization ([12], and linear stability ([2]).

The reason for such a choice is the signi�cant computational time required if non-linear analysis is

considered and the di�culties in automatically tracking and parametrizing the response of interest

for further analyses.

The complexity of a problem can be reduced thanks to the adoption of speci�c techniques. The

�rst step is to identify the quantities that are of interest for the analyzed problem; the label QoI is

here used as abbreviation for these entities. The factors that most in�uence the system can be iso-

lated using sensitivity analysis techniques ([13]). Then, surrogate models and reduced order models

(ROMs) can be constructed in terms of the identi�ed factors and QoI. Finally, using the ROMs

and suitable strategies to perform optimization and to propagate uncertainties, possible optimum

designs need to be critically assessed in terms of the de�ned objective functions and requirements,

considering the most in�uential factors as uncertain and/or design variables and applying suitable

optimization strategies.

Currently, available optimization methodologies have a limited capability to deal with objec-

tive functions that are very computationally expensive and a�ected by non-linear phenomena. In

particular, the limitation is in terms of methods that can assure reliability, and possibly robustness,

su�cient for an engineering structure whose analysis is time demanding even in the absence of

uncertainty. Alternative optimization strategies have been proposed to overcome these problems,

aggressive design procedures ([7, 14]), to make feasible the probabilistic design ([15, 16]). The main

idea behind aggressive design techniques is to exploit the existence of a desired target; a desired

nominal response of interest and its statistical properties are de�ned and the optimization is then

performed such that the sought target-desired performance is matched as closely as possible ([7, 14]).

The di�culty in such an approach, is that, depending on the problem, it is not assured that the

desired target is matched `close' enough or that the computational e�ort is actually reduced. In

this scenario, the necessity arises to develop a method that can assure reliability and possibly also

robustness for an engineering structure whose analysis is time demanding even in the absence of

uncertainty.
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The original contribution of this paper is to provide optimization techniques that can:

• be considered when objective functions are expensive to compute and involve correlated quan-

tities, in particular if the system is non-linear;

• limit the number of evaluations of the objective function and hence the computational cost of

the nonlinear analysis;

• guarantee a minimization of the probability of failure while limiting the dependence on ap-

proximations to evaluate the objective functions of interest;

• identify the maximum range of parameter variation for the investigation;

• avoid gradient calculations;

• produce reliable and/or robust solutions.

Two optimization techniques have been developed and are presented here: the �rst (Iterative

Distribution Evolutionary Algorithm - I.D.E.A.) is a reliability - based method, while the second

(Robust and Reliable Evolutionary Algorithm - R.R.E.A.) can be tuned in order to achieve a more

reliable or robust optimum. R.R.E.A. calculates the statistical quantities, using Univariate Re-

duced Quadrature ([17]) to reduce computational cost. Both the optimization techniques aim to

limit the number of evaluations of the objective function without involving approximations in the

computation, guarantee a minimization of the probability of failure, and avoid gradient calculations.

The developed strategies are applied to the selection of design variables in a landing gear system

featuring complex nonlinearity in its dynamics subjected to structural uncertainties. The goal of

the considered application is to decrease the probability of occurrence of `shimmy' - a self-sustained

oscillation resulting from the nonlinear interaction between the follower forces acting on the tyre

and the modes of vibration - during ground manoeuvres. In this paper, the methodology and

landing gear model are described next, followed by its implementation and presentation of results;

conclusions are then drawn from the study.
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II. Methodology

An optimization problem is formulated as follows. A vector of values x1, x2, ..., xN for an input

design factor vector x is sought in order to minimize the de�ned objective function f(x). The design

factors are selected among a number of factors, each in�uencing to a certain degree the output of

interest for the optimization. The selection is performed using sensitivity analysis (SA) techniques,

in this case Sobol' indexes [13, 18, 19].

In the proposed optimization strategies, the nominal values of the selected design factors are

regarded as uncertain. However, there is no limitation in the choice of design/uncertain factors

that can be considered. The strategies are conceived in order to solve problems that are very time

demanding and for which it is di�cult (and expensive) to determine derivatives and to identify and

de�ne the optimum set of parameters. The achieved reduction in computational time is both in

terms of number of cases to be analyzed directly through experiments or runs of numerical models,

and in avoiding the computations of gradients. The completeness of the analysis is ful�lled thanks

to the inclusion of e�cient and e�ective methodologies to perform SA and propagate uncertainties

in the system.

The two novel optimization methods are: the Iterative Distribution Evolutionary Algorithm,

I.D.E.A., and Reliable & Robust Evolutionary Algorithm, R.R.E.A. . They both consist of three

phases and can be categorized as evolutionary algorithms ([20�22]). Evolutionary Algorithms (EAs)

are population-based metaheuristic optimization algorithms that explore the set of possible solu-

tions for a su�cient set of solutions following a mechanism inspired by biological evolution, namely

reproduction, generation, mutation, recombination and selection. The optimization considers the

input factors as individuals belonging to populations that are generated through mutation and re-

combination and that can be subjected to mutation. EA techniques are extremely versatile since

they can be adopted to any problem of interest, since no assumptions are made ([23]) and their

e�ciency has been recognised in the industrial environment [24] . However, the determined solution

is numerical and is an approximation of the unknown optimal one, which means that it could be

sub-optimal. In this scenario, it is important to remark that in engineering problems an optimum

result can be di�cult to identify and is not uniquely de�ned and thus evolutionary algorithms are
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e�ective.

The proposed optimization algorithms are innovative procedures that aim to minimize the probabil-

ity of failure without directly computing it due to the unfeasible computational cost in obtaining the

probability density function of the quantity of interest. I.D.E.A. aims to determine the range of vari-

ation for the input factors for which the uncertain boundary is tangent to the limit condition for the

reliable area. It also provides an understanding of the acceptable range of uncertainties exploiting

geometrical considerations to distribute the points to be investigated in the considered parameter

space. The method does not build on pre-existing techniques and is a new strategy. R.R.E.A. aims

to assure reliability and/or robustness to the design, minimizing the objective function de�ned in

terms of the mean µd and deviation σd of the output of interest. Three cases, i.e. three objective

functions, have been analyzed and the di�erence is due to the main goal of the optimization:

1. f(x) = µd + Sσd, the critical uncertain boundary is kept as big a distance as possible from

the limit condition for the reliable area (conservative condition)

2. f(x) = |µd + Sσd|, the uncertain boundary is tangent to the limit condition for the reliable

area (non conservative condition);

3. f(x) = σd; the most robust solution is sought.

The optimization code allows the goal to be reached, combining existing formulae to approximate µd

and σd. A di�erential evolutionary algorithm, enhanced by the authors, has been considered to de�ne

the overall structure of the method. The di�erential evolutionary technique is a self-adaptive one,

which has been introduced in [25] and denoted as jDE. The di�erential evolutionary algorithm was

originally proposed by Storn and Price ([26]) as a population-based algorithm to be adopted in order

to perform global optimization in the presence of continuous domains. A Di�erential Evolutionary

algorithm is quite simple to implement, it is robust and belongs to the most powerful group of

evolutionary algorithms ([20�22, 25]). The optimization strategy has been developed in order to

minimize the stated objective functions. Moreover, approximated formulae have been considered for

the mean µd and the standard deviation σd of the output of interest due to the lack of a closed-form
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solution of the integrals that need to be evaluated to compute the statistical quantities

µd = E [f(x)] =

∫ + inf

− inf

f(x)px(x)dx (1)

σ2
d = E

[
(f(x)− µd)2

]
=

∫ + inf

− inf

[f(x)− µd]2 px(x)dx

In what follows the approach considered to identify the range of variation to start the optimiza-

tion process is presented; it is the �rst step common to both the proposed optimization strategies

and it constitutes the �rst two phases. Then, the residual phases applicable to the Iterative Dis-

tribution Evolutionary Algorithm and Reliable & Robust Evolutionary Algorithm are presented.

Finally, the minimization of functions usually used to test optimization algorithms is performed in

order to compare the di�erential evolutionary algorithm and the enhanced one, developed by the

authors.

A. Range of Factor Variation for the Optimization Process

The Iterative Distribution Evolutionary Algorithm and the Reliable & Robust Evolutionary

Algorithm consist of three phases. The starting step for the iterative procedure is to identify the

set of values for the parameters F∗.

The stated identi�cation can be performed once some directions of interest have been de�ned

for the analysed problem. The directions of interest lie in the same space as the locus of interest

LoI and the limit-state function g; the stated space has the dimensions equal to the the number

of quantities of interest (QoI) and in the present paper it is a two-dimensional space since two are

the QoI for the analysed problem. The locus of interest is the collection of the values of the QoI

identifying a certain behaviour of interest, while the limit-state function collects the values of the

QoI that de�ne the limit of the failure region (Figure 1). The direction of interest need to be de�ned

by the researcher in the best way to capture the probabilistic characteristics. For instance, in the

presence of uncertainties that determine a delimited uncertain area for the LoI, then the directions

of interest can be de�ned as the lines that connect points between lower and upper bounds of the

stated uncertain area. The points can be determined by discretizing the lower and upper bounds.

Having obtained the direction of interest, the set of values for the parameters F∗ can then be

de�ned in one of the following ways:
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• such that the locus of interest LoI is tangent to the de�ned limit-state function g.

• identi�es the direction of interest for which the probability of failure is highest (that will be

labelled as direction d); the set is the one for which the distance between the relative locus of

interest LoI and the limit-state function g is a minimum.

Both of these methods have been considered since it is possible that for some cases of interest

the described tangency doesn't occur.

The locus of interest and the limit-state function are functions of the quantities of interest of

the analysed problem. For the sake of clarity Figure 1 show an example for the stated scenarios.

In Figure 1, the considered generic problem is de�ned in terms of two quantities of interest (QoI1

and QoI2). In the considered generic problem the directions of interest are connecting same indexed

points of the discretized loci of interest, which are laying in the space de�ned by the quantities of

interest (QoI).

In Figure 1, three directions are shown for simplicity, and the probability of failure is also

presented along these three directions of interest. In this example, the failure occurs when a point

on the locus of interest lies in the convex space delimited by the limit state function. Three loci are

shown in the �gures; the set of values for the parameters F∗ is identi�ed among all the values F

adopted. Each set F is linked to a speci�c locus of interest since the quantities of interest describing

such a locus are determined by a speci�c set F. Figure 1 shows the case for which the tangency

between a locus of interest and the limit state function occurs, thus the set F∗ is the one that

generates such a locus of interest. The same Figure 1 can be used also to show how to identify

the set F∗ considering only the direction for which the probability of failure is highest; along this

direction the distance from the limit state function of each considered locus is determined and the

set F∗ is given by the one related to the state function characterized by a minimum distance.

In what follows the �rst two phases common to I.D.E.A. and R.R.E.A. are presented.

First phase: Preparation The objectives of the optimization are established including possible

acceptable tolerances. In particular, the limit state function g that delimits the failure region has to

be de�ned. Moreover, in the presence of a system with many parameters sensitivity analysis needs
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𝑄𝑜𝐼2

𝑄𝑜𝐼1

Failure region

Direction of interest: d

Probability of Failure: 𝑃𝑓
Limit state function: g

Locus of Interest

Directions of interest

Locus of Interest (LOI) 
tangent or with the 
minimum distance

Fig. 1: Selection of F∗ looking at the probability of failure or considering the distance between the

locii and the limit state function g along the direction of interest d.

to be performed to detect the most in�uential ones for the considered objectives in the optimization

process. Sobol indices ([13, 18]) are adopted. Having identi�ed the parameters to be considered

during the optimization process, the maximum negative and positive ranges of variation Pmaxineg,pos

for the ith considered parameter (i = 1...N) are de�ned. In case a symmetric variation of the param-

eter of interest is adopted, then Pmaxineg
is equal to Pmaxipos

and the maximum percentage is Pmaxi
.

Second phase: Data Collection The quantities of interest (QoIs), those that describe the locus

of interest and limit-state function, are evaluated for a suitable number of points in the parameter

space by directly running the numerical model or doing experiments. These are needed to train

surrogate models adopted in the SVD based methodology ([27�30]). Using the SVD/metamodelling

based methodology can reduce by 95% the time required to investigate the parameter space to deter-

mine the set of nominal values F∗ for which the stated tangency occurs. Knowing F∗, the intervals

(xj,low, xj,upp) of interest for each jth design parameter are selected such that the point F∗ is internal

to the �nal optimum uncertain interval of variation and is around the optimum nominal value Fopt.

If F∗ is selected considering the tangent condition, it is worth noticing that the analyses are per-
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formed numerically, thus the tangency can be de�ned as the state for which the locus of interest LoI

is the nearest one to the de�ned limit function g along the direction of interest d previously identi�ed.

Mathematically, this can be expressed as F∗ := F|(dist(g − LoI(F∗)d) = min(dist(g − LoI(F)d).

1. Determine the upper and lower bounds for the optimum nominal value. Given that the point

F∗ needs to be internal to the �nal optimum uncertain interval of variation, the stated bounds

are de�ned as by eqs. (2) and (3).

Foptupp
(1− Pmaxilow

) = F ∗
i (2)

Foptlow(1 + Pmaxiupp
) = F ∗

i (3)

2. De�ne the maximum possible interval of variation for the lower or upper nominal value Fopt

such that

[Foptlow(1− Pmaxilow
),Foptupp

(1 + Pmaxiupp
)] (4)

3. Substitute the lower and upper bounds of eqs. (2) and (3) into (4) to give the required

expression

[F ∗
i ·

1− Pmaxilow

1 + Pmaxiupp

, F ∗
i ·

1 + Pmaxiupp

1− Pmaxilow

] (5)

The range of variation de�ned in eq. (5) is the same for both the optimization strategies.

The user can decide to consider more than one set F∗ to continue the optimization process and

eventually pick the best set according to other requirements, such as robustness.

In the following subsections the other phases needed to complete the proposed optimization

processes are presented.
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B. Iterative Distribution Evolutionary Algorithm

The Iterative Distribution Evolutionary Algorithm has the capability of minimizing the prob-

ability of failure (a reliable optimizer) and providing an understanding of the acceptable range of

uncertainties. I.D.E.A. consists of three phases: the �rst two have been already presented in section

IIA and Figure 2 presents the �ow chart describing the last phase, which is iterative. In Figure 2

HC is an abbreviation of hypercubes.

Start

Sampling – Full Factorial Design – maximum HC  

Evaluate objective function at the sampling points inside the 
initial hypercube using surrogate models

Identify all possible sub-HCs not containing negative points

Select largest sub-HC 

Select a sampling point inside the sub-HC randomly and 

evaluate objective function at such a point

Positive point/result 

under tolerances 

Yes

Optimum

Points still to be 

evaluated in the 

selected sub-HB

YesNo

No

Fig. 2: Flow chart describing the iterative phase of the I.D.E.A..

Third phase: Iterative Process The third phase is the iterative part that has evolutionary

characteristics. A general evolutionary algorithm has three main steps: generation, mutation and

selection ([20�22]). Each generation consists of separate selection and mutation steps performed

iteratively. In IDEA the generation is the region-hypercube of interest identi�ed for each set F∗

the user wants to use; this hypercube has as many dimensions as the number of design factors and
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each value of the design factors is delimited by the de�ned interval (eq. (5)). Moreover, for each

generation, a full factorial design is considered to de�ne sampling points in which to evaluate the

objective function. This consists of generating a well structured sampling plane that has the aim

to not exclude any values for a speci�c parameter that could match desired requirements for some

precise values of other parameters. For each generation and each point in the full factorial sampling

plane, the QoI need to be evaluated. Thanks to the surrogate models already trained, a saving in

time can be achieved. The surrogate models are used to evaluate the QoI at the points that are in

the range considered in the �rst phase. Depending on the obtained QoI the points are divided into

two groups: positive and negative. The positive points are those for which the loci identi�ed by the

QoI are not in the failure region or if they are, the de�ned tolerance Tolε is ful�lled such that

dist(g − LoI(FG)d)− dist(g − LoI(F∗)d) <= Tolε · dist(g − LoI(F∗)d) (6)

where G is used here to emphasize belonging to a particular generation; FG is the set of values of

the parameters at the generation G.

All the other points are negative and always present since, as previously stated, the optimization

process is considered for problems that do not have an acceptable probability of failure.

The mutation consists of a subdivision of the hypercube along particular directions such that

all the new hypercubes contain the point F∗. The directions for the subdivisions are identi�ed by

the negative set of points, and in particular by the values assumed by the parameters at such a

point. The directions are identi�ed by varying all the parameters at the negative point but one.

The number of the directions for each negative point is equal to the dimension of the hypercube,

i.e. the number of design parameters.

To perform the subdivision, the set of points inside the hypercube are de�ned such that the

directions are parallel to the sides of the hybercube. In fact, in this way, �xing the values of all

the design factors but one, the direction containing negative points can be identi�ed. Thus, the full

factorial design is the selected sampling strategy only for subdivision purposes (the Latin Hypercube

Sampling method is adopted to train the surrogate models).

Figure 3 clari�es the procedure considering an hypercube in 2D (the black rectangle) and just

one negative point (the yellow point). The black rectangle is always the same initial hypercube and
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all the possible subdivisions are shown. The blue rectangles are those to be neglected (`positive'

points) and the red rectangles are considered to improve the optimization further (`negative' points).

Moreover, in Figure 3 the green and yellow points are the one related to the set F∗ and belonging to

the negative set. At the end of the mutation step, no hypercube with negative points inside should

be present.

Fig. 3: Example of the mutation strategy.

The selection step consists of sorting the hypercube in a descending order in terms of the volume

and evaluating the QoI at the points not in the range considered in phase one. This selection can

only be done by directly running the numerical model or using experimental results. Finally, the

selected hypercube in the one that does not have a tolerance greater than Tolp of points for which

the loci of interest are intersecting the limit state function, accepting also the tolerance shown in eq.

(6). Tolp is de�ned as the percentage of the number of negative points acceptable in the hypercube

with respect to the total number of points belonging to the considered hypercube. The optimum

set of values is assumed to be the mean point in the hypercube.

Validation phase The optimum sets of values determined for each generation can be compared,

performing uncertainty quanti�cation (UQ) for each of them and looking at the results. This com-

parison can be accomplished either using just the points belonging to the optimum hypercube or
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adopting SVD based methods. The desired optimum set is the one that provides the minimum prob-

ability of failure (high reliability) and the least width of PDF (high robustness) or a suitable de�ned

compromise of these properties. Once the optimum is found, the nominal value and percentage

variation can be de�ned as preferred, i.e. assuming a symmetric or asymmetric distribution.

C. Reliable & Robust Evolutionary Algorithm

The Reliable & Robust Evolutionary Algorithm has the capability of minimizing the objective

function of interest f(x) de�ned in terms of the mean µd and standard deviation σd, (case 1:

f(x) = µd + Sσd, case 2: f(x) = |µd + Sσd|, case 3: f(x) = σd). Looking at the selected objective

function, the expectation is that the higher the value of the coe�cient S, the more the optimization

tries to minimize the other statistical quantity, σd. However, this can also be untrue if, for instance,

the coe�cient S is increased and the required minimization can then be ful�lled by decreasing the

mean without the need to reduce the variance with respect to that related to a higher value of S.

Comparing the two optimization methods, the non-conservative condition (i.e. the tangent-limit

condition - case 2 for the R.R.E.A.) is the result that can be obtained using the I.D.E.A. process,

while more or less conservative results can be obtained using the R.R.E.A. method. If the tangent-

limit condition is the desired objective then both methods can be used only if the input statistical

quantities are known; if such information is lacking the I.D.E.A. process must be used instead. In

fact, the R.R.E.A. method approximates the output statistical quantities, which require the �rst

four input statistical quantities to be known (i.e. the mean µx, the variance σ2
x, the skewness γx

and the kurtosis Γx).

The R.R.E.A. method consists of three phases; the �rst two have been already presented in

IIA, and the last one is discussed here.

Third phase: Optimization The last phase of the algorithm is the core of the optimization.

In order to determine the set of values of the input factors that minimizes the selected objective

function a technique to approximate the statistical quantities has been used and an evolutionary

algorithm has been considered. The approximated statistical quantities have been determined using

the Univariate Reduced Quadrature technique (URQ) ([17, 31]). URQ belongs to the categories

of numerical approximation techniques to compute the integrals that de�ne the stated statistical
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quantities (eq.(1)) such as Taylor-based Moment Propagation, Gaussian Quadrature, Monte Carlo

Simulations (MCS) and Statistic Expansion. The URQ technique provides formulas consisting of

sums of functional values that try to match the highest possible number of terms of the mean and

variance expressions based on a third order Taylor-series expansion. The URQ has the advantage

of having one less level of di�erentiation if compared to the methods based on �rst derivatives, thus

it is advantageous with respect to gradient-based optimization techniques. The URQ method has

a higher accuracy than those characterizing the linearization method, but similar computational

cost. This has been shown in [17] by using a fourth-order Taylor-series expansion. The use of such

a technique requires the �rst four moments of the input uncertain parameters to be known, i.e. the

mean µx, the variance σ2
x, the skewness γx and the kurtosis Γx. Adopting the URQ method, the

output statistical quantities can be determined by evaluating the objective function at 2n+1 points

(n is the number of uncertain input factors) that are de�ned following a speci�c expression [17, 31].

Due to the requirement of the URQ technique to evaluate the objective functions at a speci�c

point, the R.R.E.A. can be used for systems that require the analysis of interest to be performed

under any conditions. The advantage of being able to approximate the statistical quantities by

evaluating the objective function only 2n + 1 times, an attractive quality for a computationally

expensive system, can be exploited if the analysis does not get stuck for some reason at one of the

2n+ 1 analyzed conditions.

As previously stated, the optimization is based on the self-adaptive di�erential evolutionary

paradigms. All Di�erential Evolutionary algorithms comprise of three main steps that need to be

followed after having generated the �rst population: mutation, crossover and selection. The adopted

DE algorithm is the self-adaptive one proposed in [25] but with the addition of these steps in the

process. The additional steps are as follows (see �ow diagram in Figure 4):

• reduction in the dimension of the population. This step is considered when the `if-conditions'

are ful�lled. Labeling NmaxFeval
, pmax, NP and countG as the maximum acceptable number

of function evaluations, maximum number of population size reduction, population size and
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number of evaluated generations, the mathematical expression of such a condition is

countG >
NmaxFeval

pmax ·NP
(7)

The meaning is that considering the worst case scenario, the number of populations evaluated

for all the possible reduced generations needs to be less than the maximum number of function

evaluations. The condition presented in equation (7) on one hand is conservative since it

considers that actually all the possible pmax reductions will be done and it does not take into

account that the current population size NP can be reduced; on the other hand it does not

consider that NP could have been greater in previous steps.

• stratagem to avoid local minimum. This step has been introduced in order to avoid that

a local optimum, determined after a certain number of evaluated generations countG, can

`monopolise' the optimization process. To this end, a random variation of the identi�ed best

individual is generated.

• sorting the individuals at the end of the algorithm depending on the relative values of the

objective function. At the end of the optimization process, it has been considered necessary

to sort the set of obtained values for the quantity of interest and relative input factors in

order to keep the best ones at the beginning of the ordered set of quantities. Such a sorting is

signi�cant if then a reduction of the size of the population is considered and some individuals

of the population in the previous generation are excluded from the iterative process.

The selected stopping criterion is in terms of the maximum number of generations Gmax and/or

the error with respect to the desired optimum value of the objective function V TR± ε, if known or

given.

In order to use the presented evolutionary algorithm some constants need to be �xed, thus

the goodness of the results depends also on these values. The constants are τF ,τCR,pmax, NPmin,

NPinit, NmaxFeval
, V TR, ε, Gmax,Fupp, Flow, CRupp, CRlow and are de�ned depending on the

analyzed problem.

Validation of the enhanced jDE algorithm The enhanced self-adaptive di�erential evolutionary

algorithm has �rst been veri�ed by performing the minimization of functions that are commonly
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Fig. 4: Flow chart describing the iterative phase of the R.R.E.A..

used to test optimization algorithms [33]. In almost all cases, the number of generations needed

to converge to the global optimum of the function if the original jDE is used decreases if the en-

hanced di�erential algorithm is adopted. Moreover, some of the considered functions (Rosenbrock10,

Griewank and Sphere10) do not converge even with 10000 generations when the old algorithm is

adopted. For further information, see [34].

III. Case study and bifurcation analysis

The validation considers the occurrence of shimmy phenomena in landing gear systems during

ground manoeuvres [29, 35, 36]. Shimmy results from the nonlinear interaction between the follower

forces acting on the tyre and the modes of vibration, resulting in Limit Cycle Oscillations (LCOs).

Bifurcation analysis serves as an e�cient methodology to determine the boundaries of stable dynamic

regimes [37, 38].
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The implementation of bifurcation analysis entails the solution of all the steady states of the

system in the parameter range of interest, along with a determination of their stability. Changes in

local stability as a parameter varies are then assessed using bifurcation theory to infer the mecha-

nisms governing more global behavior.

The results obtained performing bifurcation analyses can be graphically visualized and the plots

are called bifurcation diagrams. Various methods can be adopted to perform bifurcation analysis,

identifying the equilibrium branches for bifurcation diagrams and bifurcation points, possibly also

evaluating the periodical solutions in more than one parameter. Continuation analysis has been

adopted here since it gives the possibility of analyzing both equilibrium and periodical solutions

and of performing bifurcation analysis directly using multi-body systems. Considering numerical

continuation, it is �rst necessary to de�ne the set of parameters to be varied in order to investigate

possible changes in stability of equilibrium solutions; these parameters are called bifurcation pa-

rameters. Then equilibrium solutions need to be determined in terms of the variation of one of the

selected bifurcation parameters, detecting the occurrence of possible bifurcation points such as Hopf

bifurcations (HB). A Hopf bifurcation typically occurs when a complex conjugate pair of eigenvalues

of the linearised system at a �xed point becomes purely imaginary; thus this kind of bifurcation

can only occur in systems of dimension two or higher. In the presence of such critical points, the

locus of bifurcation points can be investigated as more than one parameter changes, and shown on

two-parameter bifurcation diagrams. Moreover, if the bifurcation point is an Hopf bifurcation, then

limit cycle oscillations occur and the maximum amplitude and period characterizing the relative

periodic response of the system can be determined.

Considering shimmy in the landing gear as the case study, the selected bifurcation parameters

are the forward velocity V and the vertical load along the main structure of the landing gear. The

reason for this choice is the considerable variation of these parameters during landing and take-o�

manoeuvres:

- the variation of the vertical load is strictly related to the loading condition (for instance lift

relative to weight during take-o�, landing or taxing). In the present paper, an upper force

limit of 4 · 105 N is considered.
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- the forward velocity V during a landing manoeuvre must ful�l regulatory certi�cation require-

ment; tables provided in an International Civil Aviation Organization (ICAO) document ([39])

indicate the range of handling speeds for each category of aircraft to perform the manoeu-

vres speci�ed. These speed ranges are assumed for use in calculating airspace and obstacle

clearance requirements for each procedure. Taking into account the information provided by

ICAO, the range of interest for the forward velocity V is taken as [0−100m/s] in the analysis.

Moreover, the aim of the analysis is to investigate the variation of occurrence of Hopf bifurcation

points in the operational parameter space usually considered for ground manoeuvre, i.e. in the

(vertical load, forward velocity) space. Having de�ned the vertical load and the forward velocity as

bifurcation parameters, the variation of locus of Hopf bifurcation points in the de�ned operational

parameter space can be investigated as other parameters change.

Figure 5 shows deterministic bifurcation diagrams in terms of one bifurcation parameter (the

forward velocity V ) and maximum amplitude of the torsional state ψ for the periodic solution (LCO)

for a landing gear model ; Figure 6 is an associated two-parameter bifurcation diagram, in particular

shows the locus of Hopf bifurcation in a 2 dimensional space idenit�ed by the forward velocity V

and the vertical load Fz, i.e. the set of points (V, Fz) for which Hopf bifurcation occurs.

The analysis has been performed using AUTO as the continuation and bifurcation software

([40]). Since the developed methodologies are implemented in Matlab, the Matlab version of AUTO

(the Dynamical System toolbox [41]) has been adopted. The Dynamical System toolbox integrates

AUTO into Matlab via mex functions to perform bifurcation analysis of dynamical systems for

which an analytic description is available or that are modelled in software able to interface with

Matlab.

A. Landing Gear Model

The landing gear model is analytic and is taken from Howcroft ([42]). It represents a dual-

wheel landing gear in which free-play and wheel gyroscopic e�ects are omitted. The de�ection

of the landing gear structure is modeled in terms of three degrees of freedom (Figure 7) and an

additional DoF is introduced for the tyre dynamics. There are seven states, since the equations for
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Fig. 5: Deterministic bifurcation diagrams in one parameter, the forward velocity V , with periodic

branches.

Fig. 6: Deterministic bifurcation diagrams in two parameters, the forward velocity V and the

vertical load Fz.

the �rst three DoFs are of second order while the last is of �rst order. The degrees of freedom are:

1. torsional, ψ, describing the rotation of the wheel/axle assembly about the local axis z;

2. in-plane, δ, expressing the bending of the oleo piston in the side-stay plane. This DoF is

approximated as a rotation about a point at a distance Lδ from the axle;

3. out-of-plane, β, describing the rotation of the landing gear about the two attachment points;
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4. lateral tyre displacement, λ, as de�ned for the straight tangent model ([43]).

The �rst three DoFs above-mentioned are clari�ed in �gure 7 considering a zero rake angle φ.

Fig. 7: DoFs characterising the adopted landing gear model ([42]). (XYZ) and (xyz) are the global

and local coordinate systems.

Further details on the landing gear model can be found in [29], where it was used to perform

uncertainty quanti�cation in terms of shimmy phenomena. In the following section the results

obtained using both the I.D.E.A. and R.R.E.A. algorithms are presented.

IV. Application and Results

The application of the optimization techniques presented in section II has the aim of optimizing

the landing gear design whilst decreasing the probability of occurrence of shimmy during ground

manoeuvre. Figure 8 shows an example of what can occur due to uncertainty in the system.

The continuous blue and red lines are the lower and upper con�dence bounds for the loci of

Hopf bifurcation points determined using the SVD based method ([19, 29, 30]). The dashed red line

is the operational trend, de�ned later. For all the values of the forward velocity V between the �rst

and second intersecting points, LCO (shimmy) can occur due to the uncertainty in the system.

The I.D.E.A. technique has the aim of decreasing the probability of occurrence of shimmy

during ground manouevres. In particular, this has been addressed here by making the probability
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Fig. 8: Example of lower and upper con�dence bounds for the loci of Hopf bifurcation points and

operational trend.

of intersection between the loci of interest (loci of Hopf bifurcation) and the limit state function

(the operational trend) as low as possible.

The R.R.E.A. technique minimizes one of the three selected objective functions (Case 1: f(x) =

µd+Sσd, Case 2: f(x) = |µd + 4σd|, Case 3: f(x) = σd) considering as the function of interest d(x)

the distance of the point on the locus of Hopf bifurcation that is at the maximum positive distance

from the point on the same direction of interest but on the limit state function. It can be expressed

as

√
(W operational −W loci)2 + (Voperational − Vloci)2 (8)

whereW stands for the generic vertical load, and the subscripts operational and loci are adopted

to indicate if the considered point is on the operational trend or on the locus of Hopf bifurcation.

The direction of interest for which the stated distance is maximum, is called critical. Figure

9 shows the mean and deviation considered to de�ne the objective functions along the critical

direction of interest and assuming a symmetric distribution for an exemplar function (the red line is
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the point on the operational trend intersecting the critical direction of interest). It is apparent that

the selected objective function is chosen such that the mean is negative, i.e. the point on the critical

direction corresponding to the mean is not inside the region where LCOs occur ( which is limited

by the operational trend), and the minimization of the mean is actually giving a maximization of

the distance of the locus of Hopf bifurcation point from the operational trend.

The three considered cases for the optimization are now explained.

Case 1 evaluates the distance along the critical direction of the tail of the PDF of f at a point

identi�ed by the value assumed by the variance, thus assuring reliability and determining a

conservative result since it can be far from a simple tangency between the lower bound of the

locus of Hopf bifurcation and the operational trend.

Case 2 looks for the parameter values that gives the tangency assuming that the tail ends at 4σd.

Case 3 requires more robustness, minimizing the variance, and the system might not be su�ciently

reliable, i.e. intersection between the lower bound and the operational trend can occur. For

Case 3, two situations are analysed, i.e. including or excluding a constraint on the mean µd

during the optimization process. The constraint requires that the optimum is characterized by

a negative mean; the optimization code discharges the solutions for which µd is greater than

0, i.e. the locus of Hopf bifurcation is certainly intersecting the operational trend. In fact, µd

is the mean of the distance function d that is always negative in the absence of intersection.

Fig. 9: Mean and deviation considered to de�ne the objective functions adopted in R.R.E.A. .
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The second optimization process (R.R.E.A.) can be used for systems that allow the analysis of

interest to be conducted at any conditions: URQ (section IIC) has been adopted to compute statis-

tical quantities of the output of interest, which requires 2n+1 evaluation of the responses of interest

(signi�cantly less computational expensive than MCS). This aspect is important if bifurcation anal-

ysis is adopted. In fact, it would be unfeasible to determine statistical quantities without the use of

techniques based on the evaluation of a signi�cantly smaller number of bifurcation diagrams than

the one required by techniques such as MCS. This constraint is due to the computational burden of

bifurcation analysis applied to the landing gear system; for instance the indicative times required

to compute the bifurcation diagram in 1 and 2 parameters are 12 and 52 seconds, respectevely.

Here, the phases characterizing the developed methods are followed and discussed step by step.

A �rst element that is common to both the I.D.E.A. and R.R.E.A. approach is the de�nition of

the limit state function g. This is the variation of the vertical load on the landing gear as the forward

velocity changes during a static manoeuvre on the ground of an illustrative aircraft in equilibrium

conditions. The stated variation can be de�ned by employing equilibrium equations. The explicit

expression of the stated variation is given by

Fn =
Bm
B

(W − L) L =
1

2
ρV 2SCL (9)

where Bm is the track of the main assembly, B is the distance between the nose and the axis of

the main assembly, W is the weight of the aircraft, ρ is the air density, S is the equivalent surface

and L is the lift (Figure 10).

Fig. 10: Aircraft free body diagram.

Another common element is related to the interval of variation, the tolerances adopted in the

I.D.E.A. and all the coe�cients that need to be de�ned in the Evolutionary Algorithm (Table 1).
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Variable Value

Pmaxilow = Pmaxiupp
Pmax

Tolε 0.01

Tolp 0.05

NmaxFeval value su�ciently high so as not to prematurely stop the iterative optimization process

τF 0.01

τCR 0.01

ε 10−5

V TR 10−5

N 3, dimension of the uncertain factors

Fupp 1

Flow 0.2

CRupp 1

CRlow 0.05

NPmin 3

NPinit 10

Gmax 30 · log(2 ·D)

minx, maxx are the last coe�cients to be set depending on range of variation for the parameters

Table 1: Values considered for the coe�cients used in the optimization.

The values adopted for τF and τCR, ε and V TR, Fupp, Flow, CRupp and CRlow and pmax are kept

equal to those identi�ed as appropriate during the validation performed on the objective functions

stated in subsection IIC. The values adopted for the minimum and initial population size (NPmin

and NPinit) are to assure a combination of generations at an acceptable computational time. The

same considerations have been made to select the value for the maximum number of generation

Gmax. However, more investigation into the computational burden and accuracy of the solution can

be carried out, if of interest, changing the selected values for the parameters.

Latin Hypercube Sampling (LHS) is the technique adopted to de�ne the sampling planes for

initializing the design/uncertain factors and the parameters in the mutation and crossover steps (F

and CR).
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In what follows, the results obtained applying I.D.E.A. and R.R.E.A. to the landing gear are

presented.

For both techniques, �rst of all the values adopted to de�ne the limit function trend are speci�ed

(Table 2). Then, the variables and the percentage variation need to be de�ned. The variables for the

analytic model are selected as those that most in�uence the most the problem of interest, which have

been determined in a previous investigation by the authors ([19]): the damping and the moment of

inertia for the torsional degree of freedom (cψ, Iψ) and the tyre relaxation length L. Two choices of

percentage variation of these variables are considered for the I.D.E.A. technique: Pmax �xed equal

to 3.5% (Example 1) and 7% (Example 2). Only the �rst of these (Pmax = 3.5%), is applied if

the R.R.E.A. technique is considered. Adopting the surrogate models trained using the bifurcation

diagrams already evaluated to perform the Uncertainty Quanti�cation in a previous work ([19]),

the set of values F∗
G and the interval (eq. 5) have been determined for each considered case. From

this point, di�erent approaches need to be followed depending on the adopted strategy. First the

I.D.E.A. and then the R.R.E.A. strategies and results are presented.

parameter value

B 11.04 m

xcg 8.6m

Bm Bm = B − xcg

W 8 · 104 kg

ρ 1.225kg/m3

S · CL 128.1m2

Table 2: Values adopted to describe the limit function for the optimization of the analytic landing

gear design.

I.D.E.A. Considering the I.D.E.A. strategy, the evolutionary phase starts and Fig. 11-15

provide the results obtained for the �rst of the two considered examples (i.e. Pmax = 3.5%) for one

generation each, where the green point stands for F∗
G. The hypercubes in the parameter space (in

this case a cube) are determined and sorted in an ascending order. Using a full factorial design, the
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hypercubes are �lled with points (red in Fig. 12) and the QoI (Fn and V ) are evaluated for the

points inside the initial range of variation for which the surrogate models are trained. The dimension

of such a full factorial design is 36. Negative points, i.e. those for which the locus of Hopf bifurcation

points intersect with the operational trend under the considered tolerance, are determined (yellow

points in Fig. 13) and the hypercube is further subdivided as explained in section II B. At this step,

AUTO is run for all the other sampling points inside the hypercubes that can be further considered

due to containing the point F∗
G and no negative points. Finally, the hypercubes are sorted again and

the one with the greatest volume is picked out for each considered generation and the optimum sets

are determined (Fig. 14). A post-processing of the data can be considered and the SVD (Singular

Value Decomposition) based method can be applied to eventually propagate the uncertainty for the

determined optimum sets (the black points in Fig. 15).

The comparison of the initial con�dence bounds and the optimum ones are shown in Fig. 16

and 17 for Example 1 and Example 2, respectively. Moreover, Fig. 18 shows a comparison of the

loci of quantiles for the initial and optimum con�dence bounds obtained for Example 2.

Finally, for the sake of completeness Fig. 19 shows a comparison of the PDFs obtained for

the initial set of nominal values and the optimum set, considering the same percentage of variation

(3.5% and 7% for Example 1 and Example 2, respectively). Table 3 provides the initial set of

nominal/percentage values and the optimum set and relative acceptable uncertainties.

1300

c

0.45
1200110

0.5

I

L

100

0.55

110090

Fig. 11: I.D.E.A. - one generation step. The green point is related to the locus of interest tangent

to the limit-state function.

Using the identi�ed optimum set of values, the probability of failure related to the points on the
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Fig. 12: I.D.E.A. - Full factorial design.
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Fig. 13: I.D.E.A. - Mutation step. The yellow points are the negative ones.
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Fig. 14: I.D.E.A. - Mutation step and selection of the best hypercube (in red). The selected

optimum set of parameters is the magenta point.

locus of Hopf bifurcation determined for the starting landing gear design, intersecting the direction

of interest and belonging to the region of failure, are shown in Table 4. The stated points of interest

inside the region of failure are two and three for the Example 1 and Example 2.

The results show a very encouraging achievement for the proposed novel optimization algorithm
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Fig. 15: I.D.E.A. - Optional postprocessing analysis. The loci are evaluated using the SVD based

method at the black points.

Fig. 16: Comparison of the initial con�dence bounds and the optimum bounds for Example 1.

(I.D.E.A). The lower con�dence bound of the loci of Hopf bifurcation moved, decreasing the prob-

ability of failure and assuring a reliable structure. Moreover, a high level of robustness is retained,
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Fig. 17: Comparison of the initial con�dence bounds and the optimum bounds for Example 2.

Example 1 Example 2

[cψ, Iψ, L] [cψ, Iψ, L]

Starting Point [1200, 100, 0.53] [1200, 100, 0.53]

Optimum [1189.80, 91.72, 0.525] [1217.404, 90.6, 0.579]

Initial Uncertainty Range (%) [3.5, 3.5, 3.5] [7, 7, 7]

Acceptable Uncertainty (%) [4.56, 4.77, 4.56] [8.27, 7.48, 10.09]

Table 3: Results obtained applying I.D.E.A. to the analytic landing gear model considering two

di�erent sets of uncertainties.

which is shown by the width of the PDF along each direction of interest starting from the points

on the discretised locus of Hopf bifurcation that are between the intersections with the operational
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Fig. 18: Comparison of the loci of quantiles for the initial and optimum con�dence bounds

obtained for Example 2.
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Fig. 19: Comparison of PDF obtained for the initial set of nominal values and the optimum one.

trend. Finally, thanks to the introduced iterative procedure, there is no requirement to perform

bifurcation analyses and then give statistical properties to the results, propagating the uncertainty.
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Example 1 Example 2

Direction of Interest 1 2 1 2 3

SVD

Starting Design 1.294 · 10−1 3.715 · 10−1 0.1063 3.326 · 10−1 4.68 · 10−1

Optimized Design 3.0372 · 10−4 1.99 · 10−2 4.9 · 10−4 9.7 · 10−4 7.5 · 10−3

Table 4: Probability of failure for the starting design and for the best optimum landing gear design.

In the presented method the uncertainty is considered throughout the optimization procedure and

there is no need to propagate them separately for each set of design parameters.

R.R.E.A. If the R.R.E.A. technique is adopted, after having selected the range of variation

for the input parameters selected in the optimization process, the enhanced evolutionary algorithm

presented in section IIC can be applied. The range of variation considered for the nominal values of

the three more in�uential parameters is presented in Table 5. Moreover, since the URQ is adopted

then the �rst four statistical moments of the input factors need to be speci�ed. The �rst statistical

moment, the mean, is �xed to the values characterizing each individual in the populations used in

the evolutionary algorithm. The other statistical quantities are determined assuming a continuous

uniform distribution for the design factors, i.e.

σ2 =
√

(max(xiG)−min(xiG))2/12); γ = 0; Γ = −6/5 + 3; (10)

where i and G are the indexes adopted for the individual of the population and the generation

at which the population belongs, respectively.

Parameter Label Maximum Minimum

inertia of ψ DoF Iψ 105.01 91.29

damping coe�cient of ψ DoF cψ 1262.13 1097.18

tyre relaxation length L 0.566 0.492

Table 5: Parameters and the range of values adopted in the optimization using R.R.E.A. technique.
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The investigation has been carried out considering the three de�ned objective functions (case

1: f(x) = µd + Sσd, case 2: f(x) = |µd + Sσd|, case 3: f(x) = σd). Five di�erent values for the

coe�cient S have been adopted.

MCS with 100 sampling points is used for the validation of the approximated statistical quan-

tities. Table 6 shows the obtained results for the nominal case, i.e. adopting the mean values for

Iψ, cψ and L, and for the optimized cases.

The results from the validation reveal that sometimes the discrepancy between URQ and MCS

approximations can reach 28%. The error can be due to one or the other approximation: the only

conclusion that can be made is that there is a lack of coherence between the two approximation

methods. Looking at the mean and deviation, and making a comparison with the one related to the

nominal conditions, it is apparent that minimizing the objective function, and so the distance of the

point on the PDF along the critical direction of interest from the limit state function (the operational

trend), the results are always reliable but the robustness is higher if the coe�cient S is higher. In

fact, the reliability is assured by the selected objective function while the robustness is linked to

the obtained variance. As stated in section IIC, the general expectation is that the greater the

coe�cient S the more the variance should be minimized and the results obtained for case 1 con�rm

such a statement (Table 6). In fact, this cannot in general be assured since mathematically it

can also happen that having increased the coe�cient S, the required minimization is reached for a

decreasing of the mean that does not require the variance to decrease more than that related to a

higher value of S.

For the sake of conciseness, only the probability distribution along the direction of interest for

each case is here shown (Figures 20 - 22). The probability of failure is zero for all the considered cases

with the only exception of Case 3. In Case 3 the probability of failure along all the critical directions

of interest is equal to 1 if the constraint on the mean is not taken into consideration, otherwise the

maximum probability of failure on the stated direction is reduced relative to the nominal case

(Figure 22). In fact, in the nominal case the probability of failure along such a direction is 0.4 and

after the optimization considering Case 3, with the constraint, it is 0.1.

Considering the results presented here it is apparent that these is signi�cant potential for using
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case µfMCS µfUQR |εµ| σ2
fMCS

σ2
fUQR

|εσ|

Nominal −860.35 −623.58 0.83 3433.5 3404.9 27.52

case 1: S = 1 −34370.5 −35099.7 2.12 6253.7 6481.3 3.64

case 1: S = 3 −43335.24 −44057.87 1.67 5971.92 4395.49 26.4

case 1: S = 5 −34629 −34266.8 1.05 3996.24 4034.64 0.96

case 2: S = 4 −14305.73 −13901.27 1.23 3491.83 3448.87 2.83

case 2: S = 8 −29457.4 −29551.6 0.32 3741.72 3883.1 3.78

case 3: no mean 11693.14 11680.14 0.11 3144.47 2789.09 11.3

case 3: mean −4091.64 −4417.23 7.96 3257.48 4200 29

Table 6: Results obtained applying R.R.E.A. to the analytic landing gear model for three di�erent

objective functions.
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Fig. 20: PDF obtained considering case 1 for the objective function.

the enhanced di�erential evolutionary algorithm together with Univariate Reduced Quadrature for

complex analyses that assure acceptable results to be achieved whatever condition in the acceptable

range of parameter variation is considered. This approach has been demonstrated using three

di�erent objective functions: in all three cases the expectation is completely met. In Case 1 the

variance decreases as the weight factor S increases; in Case 2 the tangency between the lower bound

and the operational trend is obtained as desired. It can be observed that the variation of S in this

case does not signi�cantly in�uence the �nal results. In Case 3 the variance is minimized and it has
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(b) S = 8

Fig. 21: PDF obtained considering case 2 for the objective function.
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(a) Without constraints on the mean.

1.4 1.6 1.8

Distance 105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
D

F
 

10-4

Operational Trend

SVD first design
SVD optimized design

(b) With constraints on the mean.

Fig. 22: PDF obtained considering case 3 for the objective function.

been proved that the constraint on the mean µd must be considered in order to obtain an acceptable

probability of failure.

V. Conclusions

The Iterative Distribution Evolutionary Algorithm and Reliable & Robust Evolutionary Algo-

rithm optimisation strategies were shown to be capable of dealing with objective functions that

are related to expensive nonlinear analyses and involve correlated quantities. The application of

both the iterative di�erential evolutionary and the reliable and robust evolutionary algorithm in

minimizing the probability of onset of shimmy for a landing gear system during ground manoeuvre

has given encouraging results. The techniques have been able to limit the number of evaluations

of the objective function, to guarantee a minimization of the probability of failure while limiting

38



approximations in evaluating the objective functions of interest, to identify the maximum range

of parameter variation for the investigation and to avoid gradient calculations. Adopting I.D.E.A.

enables reliable results to be obtained, while R.R.E.A. gives the possibility of investigating reliable

and/or robust solutions. Finally, the comparison that was performed between the enhanced (in

R.R.E.A.) and the standard (jDE) di�erential evolutionary algorithms, using commonly applied

optimization test functions, con�rmed the improved e�ciency of the proposed approach. Since the

obtained promising results, a further work would be to validate and compare the developed methods

with performance of other techniques in order to justify adoption of the algorithms in practice.
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