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Abstract 

This paper presents a methodology for testing railway pantograph/catenary systems based 

upon the dynamically substructured system (DSS) approach for combined physical and 

numerical components, originally developed by Stoten and Hyde. The main advantage of 

DSS is that it can provide more stable substructured testing than alternative schemes, such as 

the commonly used hybrid simulation method, often referred to as hardware-in-the-loop 

simulation. The developed method is validated through experiments using a simple 
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pantograph rig, together with a numerical simulation of the catenary. In order to realise a 

real-time simulation of the large catenary model, for the first time in DSS testing this study 

uses (I) a modal analysis technique to reduce the dimension of the contact wire model and 

(II) a moving window approach to represent long-distance travel of the pantograph. Finally, 

the experimental DSS test results are compared with simulations of the benchmark 

pantograph/catenary emulated system. 

Keywords 

Pantograph, overhead catenary system, dynamically substructured system, automatic control 

 

Introduction 

A typical current collection system that consists of a catenary and a pantograph is shown in 

Figure 1. When a vehicle is stationary the contact force between the pantograph head and 

contact wire is constant. However, this force fluctuates when the vehicle is running, mainly 

due to the presence of the catenary wire support points and droppers. In general, higher 

operating speeds of vehicles cause larger contact force fluctuations and therefore it is 

necessary that the current collection performance is improved in such cases. To place the 

current work in context, a brief review of relevant test systems is provided below.  
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Figure 1. A typical overhead catenary and pantograph system. 
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One example of current collection performance enhancement for high-speed railways 

in Japan is the relatively simple expedient of dividing the contact strip on the pantograph 

head into separate small-mass sections. These can improve the dynamic compliance of the 

pantograph to prevent contact loss1. An actively controlled pantograph is also being 

developed2, where the contact force is ideally made equal to the static uplift force generated 

by a raising mechanism on the pantograph. Feedback and/or feedforward techniques are 

being used to control the force to be equal to this static value. 

Nevertheless, it is also vital that current collection performance is evaluated by a 

process of testing, with due consideration to the dynamic interaction between the pantograph 
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and catenary. After establishing the current collection function of pantographs, their 

performance can then be validated via on-track testing. However, this requires higher labour 

costs, track availability and, due to the high-voltage environment, problematic signal 

acquisition. Therefore, a laboratory-based testing scheme is the preferred option. 

Dynamic characteristics of pantographs per se can be examined using the laboratory-

based testing rig developed at the Tokyo-based Railway Technical Research Institute 

(RTRI)2. This essentially consists of a horizontal rotating disc together with an attached 

concentric contact track and the pantograph itself. The disc can be actuated in the vertical 

direction to simulate contact wire displacement and in the radial direction to simulate 

catenary stagger. Although the system provides for maximum vehicle speeds of 300 km/h, it 

cannot measure the essential dynamic interaction between the pantograph and the catenary. 

In this case, the vertical motion of the disc is determined by a predefined signal. 

Therefore, alternative test equipment has been developed at the RTRI to measure this 

dynamic interaction3, consisting of a tracked running device (representing the vehicle) that 

supports a pantograph and a linear catenary of length 400 m. This equipment can evaluate 

current collection performance, but the maximum velocity of the running device is limited to 

200 km/h, which is not always sufficient for high-speed railway investigations. Moreover, 

the ‘coasting section’ of the track is approximately 70 m long, which is not always of 
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sufficient length for higher speed investigations. Although not laboratory-based in a 

conventional sense, this field system is located within the grounds of the RTRI. 

Purely numerical techniques for pantograph/catenary systems are also being 

developed and they are used to understand the behaviour of the pantograph/catenary systems. 

Song, Liu, et al4 have developed nonlinear finite element model of the catenary based upon 

cable and truss elements. Furthermore, wind-induced vibration has been analysed using a 

computational fluid dynamics software5, 6. An optimisation of existing catenary systems has 

been carried out by constructing a three dimensional finite element model7. In this case it was 

found that a 23 % increase in speed is available when a small pre-sag catenary is adopted. 

Variation in predicting the pantograph/catenary interaction has been surveyed by comparing 

simulation results and field measurements8. This study has demonstrated the effect of low-

pass filtering for the contact force that is stipulated in the EN 50317:2012 standard. In order 

to understand the behaviour of pantograph/catenary systems, wave propagation analysis of 

the catenary is also used by Van, Massat, et al9. This study has pointed out that waves in the 

catenary wire are fully reflected, while reflections on the steady arm are negligible. Therefore, 

it is shown that dynamic characteristics of the droppers adjacent to the support point are 

important. Song, Liu, et al10 have analysed the effect of the contact and catenary wire tensions 

on the wave reflection and transmission at the dropper points. A 3-dimensional finite element 
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model of the catenary with a lumped mass model of the pantograph, which includes their 

dynamic interaction, has been applied to the evaluation of the current collection performance 

at the RTRI11. However, it is recognised that system component modelling errors can have a 

significant effect on the accuracy of the numerical simulation. 

As a direct consequence of the above, interest in substructured testing of railway 

pantograph/catenary systems has emerged in order to (i) improve current collection 

performance, (ii) improve operating speeds of vehicles and (iii) allow realistic testing within 

a laboratory environment. In particular, the use of the dynamically substructured system 

(DSS) testing method of Stoten and Hyde12 is being investigated - research that forms the 

kernel of this paper. 

In the next section, ‘Substructure testing’, the basic concepts of mixed 

physical/numerical component testing are introduced, along with specific details relevant to 

railway pantograph/catenary systems. Then, in ‘The catenary model’, the numerically 

modelled component of the substructured test is introduced, along with two methods of 

reducing its dynamic complexity in order to execute simulations in real-time. In the following 

two sections, ‘The dynamically substructured system’ and ‘Linear substructuring control 

design’, the formulation of the DSS method is presented, together with the control algorithm 

that ensures DSS synchronisation of the physical pantograph head and the numerical contact 
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wire, at their point of virtual contact. This leads on to ‘Experimental studies’, detailing the 

main results of implementation tests on a DSS pantograph/catenary system, together with 

benchmark comparisons against simulated results. Finally, ‘Conclusions’ presents the main 

outcomes to emerge from this work. 

 

Substructure testing 

As outlined in the ‘Introduction’, existing RTRI test systems have certain advantages and 

disadvantages. The various disadvantages have provided an impetus for the use of 

substructured system testing, thus enabling accurate, real-time investigations within a 

laboratory environment. At RTRI, a pantograph testing rig has been constructed to test the 

DSS method. It consists of a shinkansen pantograph, a servo-controlled actuator system for 

the pantograph and a real-time numerical simulator/substructure controller; see Figure 2. In 

this configuration, the catenary displacement is calculated by the real-time numerical 

simulator, which in turn is fed by the contact force measurement. Using the same discrete-

time hardware, a substructure control algorithm generates a displacement demand signal to 

the inner-loop servo controller that, by design, ensures any difference between the numerical 

(catenary) and physical (pantograph) displacements is driven towards zero. In principle, the 
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Figure 2. A schematic image of the substructured pantograph/catenary testing system. 
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outer-loop substructure control algorithm can be of any suitable type and this issue is 

discussed in a subsequent section. Similarly, the inner-loop displacement servo controller 

can also be of any type, but it is typically based upon a conventional proportional-integral-

derivative (PID) algorithm.  
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Substructured testing can be classified into hardware-in-the-loop simulation (HiLS), 

hybrid simulation (HS) and dynamically substructured system (DSS)13 methods, where the 

terminology is often used in an equivocal manner. For example, the expressions HiLS and 

HS are often used synonymously. Substructured testing for the pantograph/catenary systems 

based on HS has already been extensively developed and used, e.g. Facchinetti, Gasparetto, 

et al14 and Schirrer, Aschauer, et al15. 

Since DSS can provide significantly higher stability margins than HS13, the RTRI and 

the University of Bristol have applied the DSS testing method to a simplified representation 

of a physical pantograph, called the quasi-pantograph (QP), that is linked with a numerical 

catenary system. Successful DSS designs are then transferred directly from the QP to the 

substructured pantograph testing rig at the RTRI.  

The original QP rig used a mass-spring-damper (m-k-c) single degree-of-freedom 

(SDOF) mechanism to represent the pantograph and an entirely different m-k-c SDOF 

numerical model for the catenary16, 17. The configuration of the developed substructured 

system is shown in Figure 3, where the modelled catenary spring term has a time-variant 

stiffness that represents equivalent changes in the catenary due to movement of the 

pantograph along a virtual track. Although it enabled both stable testing and a representation 
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Figure 3. The original SDOF catenary-based QP-DSS testing system. 
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of long-distance travel of the pantograph, the SDOF catenary model could not simulate wave 

propagation of vertical displacement along the wires. 

 

 

 

 

 

 

 

 

Thus, a multi degree-of-freedom (MDOF) catenary model was subsequently used 

within the DSS method18, where the catenary was modelled as a lumped mass system; see 

Figure 4. By indexing the location of the point of application of the contact force (shown as 

the red arrow in the figure), the pantograph behaved as if it was running beneath the catenary. 

Furthermore, it was now possible to investigate wave propagation within the catenary model. 

However, due to the dynamic complexity, it was not possible to compute the real-time 

response of a catenary model with more than 5 spans. Hence, one of the main purposes of 

this paper is to present an MDOF catenary-based DSS method that can represent much 
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Figure 4. The MDOF catenary-based QP-DSS testing system. 
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longer-distance travel of pantographs. In order to do this, the basis of the associated catenary 

model and associated model reduction methods are presented in the next section.  
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Figure 5. The MDOF catenary model, based upon a lumped mass system. 
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Model overview 

The catenary system is modelled as a lumped mass system as shown in Figure 5, where both 

the catenary wire and contact wire are divided into discrete masses connected via parallel 

springs and dashpots. Although catenary wire masses are defined only at locations where 

droppers exist, contact wire masses are defined over 6 equal intervals between adjacent 

droppers. The terminations of both contact and catenary wires and the support points of the 

catenary wire are rigidly fixed. In addition, the tensioned wires are represented by springs 

and the droppers by springs and dashpots.  
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Table 1. A specification of the catenary model. 

Catenary wire Tensile force 19600 N 

Mass per unit length 1.375 kg/m 

Contact wire Tensile force 19600 N 

Mass per unit length 0.935 kg/m 

Span length 50 m 

Dropper interval 5 m 

 

A specification of the catenary model that is used in this paper is summarised in Table 1. 

 

 

 

Model reduction methods 

It is essential that substructured testing realises long-distance travel of a pantograph. 

However, since this would require a very large and complex catenary model, where the 

response would be difficult to calculate in real-time using conventional laboratory hardware 

and software. Therefore, this study uses (I) a modal analysis technique and (II) a moving 

window approach to reduce the dimension of the catenary model, thereby allowing for real-

time computation of its response. 

(I)  Modal analysis technique 

Since the dimension of the catenary wire is relatively low, although it is modelled in physical 

coordinates, its response can be solved in real-time. However, the dimension of the contact 

wire is too large to simulate in real-time and therefore it is modelled in modal coordinates, 

thereby providing the first method of model reduction. 
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Thus, the equation of motion of the MDOF contact wire model is represented in 

physical coordinates as: 

 fxKxCxM =++   (1) 

where M, C and K are the (n × n) mass, damping and stiffness matrices, respectively. 

Furthermore, f is the external force vector that is applied to the contact wire and 

x = [x1, x2, …, xn]
T, where xi are displacement of masses of the contact wire model. In 

addition, the generalized eigenvalue problem is represented by 

 ( ) 0XKM =−2  (2) 

where X is a complex amplitude of x(t) at the angular frequency .  

In order to reduce the dimension of the contact wire model, the displacement vector 

in physical coordinates, x(t), is approximately represented by the first r (r < n) eigenmodes 

as follows: 
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 ( ) ( )tt rr ξΦx   (3) 

where the r columns of the matrix r consist of the ordered eigenvectors and r(t) is the 

corresponding modal displacement vector. By substituting the coordinate transformation 

equation (3) into equation (1) and pre-multiplying by r
T, the equation of motion of the 

contact wire is obtained in modal coordinates as: 

 .
TTTT

fΦxΦKΦxΦCΦxΦMΦ rrrrrrr =++   (4) 

The pre-multiplying terms on the left-hand side of equation (4) can be written as: 

 
rrr ΦMΦM

T
=  (5) 

 
rrr ΦCΦC

T
=  (6) 

 
rrr ΦKΦK

T
=  (7) 
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where Mr, Cr and Kr are diagonal (r × r) modal mass, damping and stiffness matrices, 

respectively. Substituting equations (5), (6) and (7) into equation (4), the equation of motion 

can finally be rewritten as follows: 

 fΦxKxCxM rrrr

T
=++   (8) 

Since a focus of this study is on the fundamental principles of substructure testing for 

pantograph/catenary systems, this paper assumes that the catenary model does not have 

significant nonlinearity, especially due to slackening of the droppers. This effect will be 

introduced in our future work. 

 

(II)  Moving window approach 

The moving window approach was originally introduced by Facchinetti, Gasparetto, et al14. 

Here, the complex catenary model is divided into a set of smaller catenary models as shown 

in Figure 6, where each smaller model is successively used in the real-time simulation. As 

described previously, the number of spans within each smaller model should be no more than 

5; in this study just 3 spans are used within each window. 
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Figure 6. A schematic diagram of the moving window approach. 

(a) Complex catenary model 

(b) kth smaller catenary model 

(c) (k+1)th smaller catenary model 

1st span 2nd span 3rd span 

1st span 2nd span 3rd span 

The ends of the wires of the smaller model are fixed. Simulation results presented in 

the section ‘Comparison of experimental and emulated system results’ show good 

correspondence between experimental and simulated results, in spite of the relatively simple 

boundary conditions. 
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The scheme proceeds as follows. When the pantograph arrives at the left side of the 

3rd span of the kth model, both displacement and velocity of the 2nd and 3rd span of the kth 

model are copied to the 1st and 2nd span of the (k+1)th model. Then, it is assumed that the 

displacement of the 3rd span of the (k+1)th catenary model is approximated by its static 

displacement. Simultaneously, the location of the pantograph is moved from the left side of 

the 3rd span of the kth model to the left side of the 2nd span of the (k+1)th model. 

Although the above copying process of state variables is suitable for use with physical 

coordinates, i.e. for the catenary wire model, it also has to be applied to the contact wire 

model constructed in modal coordinates. Since the copying process requires coordinate 

transformation from modal to physical coordinates (and vice versa), even though the modal 

analysis technique is adopted, the time-history response of the contact wire model cannot be 

calculated in real-time due to the dynamic complexity. However, by applying linear algebraic 

operations to the copying process of the contact wire model, as given by the developments 

in Equations (9)-(18) below, the moving window approach can be used for the real-time 

simulation.  
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As shown in equation (3), the physical displacement of the contact wire of the kth 

smaller catenary model x(k) = [x1(k)
T, x2(k)

T, x3(k)
T]T can be represented using eigenvectors (k) 

and the modal displacement (k): 

 ( ) ( ) ( )kkk ξΦx =  (9) 

Displacement of the 2nd and 3rd span of the kth smaller catenary model, x2(k) and x3(k), are 

copied to those of the 1st and 2nd span of the (k+1)th model, x1(k+1) and x2(k+1), as follows: 
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(10) 

Then, equation (10) is rewritten as  

 ( ) ( )kk xTx =+1
 (11) 

Equation (12) is then obtained by substitution of equation (11) into equation (9): 
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 ( ) ( ) ( )kkk ξΦTx =+1
 (12) 

Furthermore, displacement of the 3rd span of the (k+1)th model is set as the static displacement 

x3(0)(k+1), based upon the following equation: 
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 (13) 

Using the coordinate transformation x(0)(k+1) = (k+1) (0)(k+1) and substituting equation (12) 

into equation (13), the displacement of the (k+1)th model, x(k+1), is derived from the physical 

coordinates as: 

 ( ) ( ) ( )( ) ( ) ( )kkkkk ξΦT0ξΦx += +++ 111
 (14) 

Here, (0)(k+1) is the static displacement of the (k+1)th model in modal coordinates. Finally, 

the physical displacement x(k+1) is transformed into modal coordinates by equation (15): 
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 ( ) ( ) ( ) ( )111
T

1 ++++ = kkkk xMΦξ  (15) 

where M(k+1) is the modal mass matrix of the (k+1)th catenary model and (k+1) is a matrix 

that consists of the normalised eigenvectors, as follows: 

 ( ) ( ) ( ) IΦMΦ =+++ 111
T

kkk  (16) 

Substituting equation (14) into equation (15) and using equation (16), the modal 

displacement of the kth catenary model can be copied to the (k+1)th catenary model as follows: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
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where 

 ( ) ( ) ( )kkk ΦTMΦA 11
T

++=  (18) 
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In equation (17), both (0)(k+1) and A can be calculated a priori. Therefore, the copying 

process based upon equation (17) is faster than the coordinate transformation from modal to 

physical coordinates and vice versa. 

 

The dynamically substructured system 

In the DSS method, the pantograph/catenary system is divided into a physical substructure 

and a numerical substructure. The pantograph is defined as the physical substructure and the 

catenary is defined as the numerical substructure; see Figure 7. Here, the physical 

substructure is labelled as P, which is driven by a hydraulic actuator that is labelled as A, 

and the numerical substructure is labelled as N. The actuator is driven by the substructuring 

control signal, u, which in turn generates the actuator ram displacement, xP. This ram 

displacement is identical to that of the pantograph head, since the two are rigidly connected 

for all implementation tests described in this work. 

In addition, the contact force between the two components, f, is measured using a 

load cell that, together with xP, is input to the numerical contact wire model. The mass index, 

i, of the contact wire model – the point at which the contact force is applied – changes with 

time due to the travelling pantograph. For example, Figure 7 shows the pantograph located 
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Figure 7. A pantograph/catenary substructured system, using DSS terminology. 
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beneath the ith mass of the contact wire model, with displacement xi and the measured contact 

force (shown in red) also being applied at this point. 
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DSS can be synthesised via a transfer function or a state-space approach. Since the 

number of DOF of the catenary model tends to be high (typically ~360), its transfer function 

would tend to be numerically ill-conditioned. Therefore, DSS design is executed via the more 

well-conditioned state-space approach of Tu, Stoten, et al19 in this paper. Hence, using 

physical coordinates, the equation of motion of the contact wire is written in state-space form 

as: 
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where 

 xxN1 =  (20) 

 ( ) +−= −
t

dt
0

1
fxKMxN2  

(21) 

Over the bandwidth of interest, experimentation has shown that the actuator is adequately 

modelled as a first-order system: 



 

25 

 

 ubxax PP +−=  (22) 

where a = 1/T, b = /T, T is the time constant of the actuator and  is its low frequency gain.  

The dynamics of the DSS substructuring error, xe(i), i.e. the difference between the 

displacement of the contact wire model at the ith mass, xN1(i), and the displacement of the 

actuator, xP, can therefore be determined as: 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ubxaA

xxAxAxA

xxx
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iNiNiiNiNiiNieiiN

PiNie

−++

++++=
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++−−

,11

2111,11111,11,11

1







 (23) 

Equation (23) is valid for 2 ≤ i ≤ n-1; where n is the number of masses within the contact 

wire model. Since both terminations of the catenary model are rigidly constrained, the 

pantograph dynamic model is not defined at location indices i = 1 and n. 

 In the next subsection, linear substructuring control (LSC)19 is used to formulate a 

design that ensures the global asymptotic stability of the substructuring error, xe(i). 
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Linear substructuring control design 

LSC is designed for each condition when the pantograph is located under the ith mass of the 

contact wire. In order to ensure that the substructuring error is globally asymptotically stable, 

the control input, u, is defined as:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PPiNiNiNiNiNiNieie xKxKxKxKxKu ++++= ++−− 2211111111
 (24) 

where Ke(i), KN1(i-1), KN1(i+1), KN2(i) and KP are the LSC gains. Substituting equation (24) into 

equation (23), the error dynamics are obtained as 

 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) PPiiNiNiN

iNiNiiNiNiNiiN

ieieiiNie

xKbaAxKb

xKbAxKbA

xKbAx

−++−+

+−+−+

+−=

+++−−−

,1122

11111,1111111,11

,11

1





 (25) 

where KN1(i-1), KN1(i+1), KN2(i) and KP are determined so that second to fifth terms on the right-

hand side of equation (25) are zero: 

 ( )
( )

b

A
K

iiN

iN

1,11

11

−

− =  (26) 
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 ( )
( )

b

A
K

iiN

iN

1,11

11

+

+ =  (27) 

 ( )
b

K iN

1
2 =  (28) 

 
( )

b

aA
K

iiN

P

+
=

,11
 (29) 

Substituting equations (26) to (29) into equation (25), the error dynamics are then given by 

the scalar homogeneous differential equation: 

 ( ) ( ) ( )( ) ( )ieieiiNie xKbAx −= ,11
  (30) 

Numerous robust control designs can be used to determine a suitable Ke(i) in equation (30), 

e.g. two commonly-used techniques are adaptive control12 and H∞ control19. Since the focus 

of this study is on the principles of DSS for pantograph/catenary systems, rather than on 

control design per se, a simple proportional control will suffice. Thus, given a required 

settling time of the first-order dynamics, ts, Ke(i) is determined from equation (30) as: 
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( )

( )

b

t
A

K s
iiN

ie

4
,11 +

=  (31) 

 In this paper, it is assumed that all masses and dashpots of the contact wire model 

have identical coefficients. Therefore, AN11(i,i) does not depend on the index i and, as a 

consequence, the gains Ke(i), KN1(i-1), KN1(i+1) and KN2(i) are constant and also independent of i. 

Figure 8 shows a diagram of the complete DSS-LSC substructured system thereby 

obtained for the pantograph/catenary system. Since the QP is not equipped with a device to 

generate static uplift, an equivalent offset displacement is also provided by the actuator.  

The main difference between HS and DSS is that DSS assumes dynamic 

characteristics of the actuator cannot be identified perfectly. Therefore, the substructuring 

error xe(i) has been introduced, which can be decreased via the proposed automatic control 

method. Furthermore, the eigenvalue of the DSS-LSC system can be designed by judicious 

selection of the controller gain, Ke(i). 
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Figure 8.  Block diagram of the pantograph/catenary DSS-LSC system. 
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Experimental studies 

In this section, the DSS performance is evaluated via experimental substructured tests 

conducted on the QP rig at the University of Bristol. The benchmark emulated (i.e overall) 

system is also simulated numerically and the results compared with the experimental 

responses. 
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Figure 9 shows the simple mechanical system that constitutes the QP rig, consisting 

of a mass, a spring and damping that is inherent to the mechanism, whilst Figure 10 shows a 

block diagram of the complete DSS implementation. One side of the QP is rigidly supported, 

and the other is driven by the servo-controlled hydraulic actuator, with an inner-loop 

Instron 8800 controller running a displacement proportional (P) control law. The contact 

force between the pantograph/catenary systems, f, is measured by a load cell that is 

introduced between the QP and the actuator. The measured force is then input via an A/D 

converter to the real-time numerical model of the contact wire, simulated on a dSPACE 

DS1104 processor. In addition, the measured displacement of the QP, xP, is fed back to both 

the Instron controller and the dSPACE processor, which also has the task of running the DSS-

LSC algorithm. The resulting LSC control signal, u (i.e. the displacement demand to the 

Instron controller), is output from the dSPACE processor via a D/A converter. This completes 

the closed-loop system. 
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Figure 9. QP test rig in the ACTLab, University of Bristol. 
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Figure 11. Comparison between measured and estimated output, xP,  

based upon estimates of a, b. 
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Parameter identification of the actuator and the QP 

The dynamic parameters of the actuator, a and b, that appeared in equation (22) are required 

in the DSS design. These were estimated as 54.0a b  , using the output error (oe) method 

within the System Identification Toolbox of MATLAB. Hence, the entries of the contact wire 

model parameter matrix, AN11 in equation (19), were determined as 

AN11(i,i-1) = AN11(i,i+1) = 30.2 and AN11(i,i) = -60.4. Then, from equations (26) to (29) and 

equation (31), the LSC gains were computed as KN1(i-1) = KN1(i+1) = 0.559, KN2(i) = 0.0185, 

KP = -0.118 and Ke(i) = 0.117.  

The measured displacement, xp, and the estimated displacement based on the 

identified a and b are shown in Figure 11, where they are seen to have a good correspondence. 
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Figure 12. Comparison between measured and estimated output, xP, 

based upon estimates of m, k, c. 
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The QP parameters m, c and k were identified in a similar manner, with m ≈ 6.18 kg, 

c ≈ 29.1 Ns/m and k ≈ 16700 N/m. The experimentally measured displacement, xp, and the 

estimated displacement based upon the identified parameters are shown in Figure 12, where 

they are again seen to have a good correspondence. 

 

 

 

 

 

 

Comparison of experimental and emulated system results 

In this study, it is assumed that the QP runs under a catenary that is commonly used on high-

speed railways in Japan and that the velocity of the QP is either 100 km/h, 200 km/h or 

300 km/h. In this section, the modelled QP-catenary system (i.e. the benchmark emulated 

system) is simulated numerically for comparison with the DSS experimental system. The 
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emulated system response can be considered as a benchmark result for comparison purposes, 

since the emulated system uses complex contact and catenary wire models, neither of which 

are subject to the modal analysis or the moving window techniques. In DSS experimentation, 

the contact wire model was reduced in complexity by only using natural modes up to 14 Hz, 

so that the number of adopted eigenmodes in equation (3) was 30. The value of 14 Hz was 

an upper limit that proved to be a good compromise between complexity and accuracy of the 

model. 

Figure 13 shows a comparison between the simulation results of the emulated system 

and the DSS experimentation, when the velocity of the QP was 100 km/h. It can be seen that 

they correspond well. Similarly, Figures 14 and 15 show the comparative results when the 

velocity of the QP was 200 km/h and 300 km/h, respectively. They, too, can be seen to 

correspond relatively well. However, it can also be seen that the simulated displacement and 

contact force of the emulated system has higher frequency components than those of 

experimental results. It is due to the reduction of dimension of the contact wire model, which 

is used for the DSS experimentation. Therefore, by adopting higher eigenmodes, the response 

of the DSS experiment could correspond closely with the emulated system. Our next phase 

of this work would be to reduce the computational load of the real-time simulation and to 

increase the number of adopted modes. 
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Figure 13. Comparison between experimental and emulated results (100 km/h). 
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Figure 14. Comparison between experimental and emulated results (200 km/h). 
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Figure 15. Comparison between experimental and emulated results (300 km/h). 
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Conclusions 

A substructured test method for pantograph/catenary systems was developed, based upon the 

dynamically substructured system (DSS) approach of Stoten and Hyde5. In the DSS design, 

a linear substructuring control (LSC) method was used to synthesise the synchronising 

control law that rapidly reduced the displacement error between the physical pantograph head 

and the numerical catenary contact wire (at their point of contact) towards zero. In order to 

realise the real-time simulation of the catenary model, a modal analysis technique was 

adopted to reduce the dimension of the underlying model dynamics. Furthermore, a moving 

window approach was used to accommodate long-distance travel of the pantograph. This 

reduced a complex catenary model of length 1050 m (with 2500 states) to a series of 7 smaller 

catenary models, each of length 150 m (with 360 states). Moreover, each smaller catenary 

model was reduced to a 60-state model by the modal analysis technique, yielding an overall 

~42-fold reduction in model complexity. The proposed method was validated by comparing 

responses of a benchmark emulated (i.e. overall) system simulation, with those of the DSS 

experiment.  

Experiments were conducted within the Advanced Control and Test Laboratory 

(ACTLab), University of Bristol, using a simple mechanical quasi-pantograph (QP) system, 

under the condition that the QP runs at either 100 km/h, 200 km/h or 300 km/h. In the 
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100 km/h case, the experimental displacement and force at the point of contact between the 

QP head and the catenary contact wire corresponded very well with the simulated results. In 

the 200 km/h and 300 km/h cases, displacement and force outputs from the emulated system 

had higher frequency components than those of the experimental data, due to the modal 

reduction of the contact wire model. In future work, it is possible that the differences can be 

reduced by adopting a larger number of natural modes.  

The next stage of this work is to validate the proposed DSS-LSC method on the 

pantograph testing rig at the Railway Technical Research Institute in Japan. Furthermore, the 

effect of the parameter variations within the servo-controlled actuator will be investigated. 

Finally, the effect of contact loss, catenary stagger and parameter variations within the 

catenary model, e.g. tension changes through the wires, are also to be investigated.  
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