

Luengo-Fernandez, R., Penz, E., Dobson, M., Psallidas, I., Nunn, A. J., Maskell, N. A., & Rahman, N. M. (2019). Cost-effectiveness of intrapleural use of tissue plasminogen activator and DNase in pleural infection: Evidence from the MIST2 randomised controlled trial. *European Respiratory Journal*, *54*(2), [1801550]. https://doi.org/10.1183/13993003.01550-2018

Peer reviewed version

Link to published version (if available): 10.1183/13993003.01550-2018

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via European Respiratory Society at https://erj.ersjournals.com/content/early/2019/05/01/13993003.01550-2018 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

Cost-effectiveness of intrapleural use of tissue plasminogen activator and DNase in pleural

infection: Evidence from the MIST2 randomised controlled trial.

Ramon Luengo-Fernandez, D.Phil., ¹ Erika Penz², Melissa Dobson, ³ Ioannis Psallidas, ³ Andrew J.

Nunn,⁴ Nick A. Maskell,⁵ Najib M. Rahman^{3,6}

1. Health Economic Research Centre, Nuffield Department of Population Health, University of

Oxford, OX3 7LF Oxford, UK

2. Department of Medicine, University of Saskatchewan, S7N0W8 Saskatoon, Saskatchewan,

Canada

3. Oxford Respiratory Trials Unit, Nuffield Department of Clinical Medicine, University of Oxford,

OX3 7LE Oxford, UK

4. MRC Clinical Trials Unit at University College London, WC1V 6LJ, London, UK

5. Academic Respiratory Unit, Bristol Medical School, University of Bristol, BS10 5NB Bristol, UK

6. Oxford NIHR Biomedical Research Centre.

Corresponding author:

Professor Najib M. Rahman

Oxford Respiratory Trials Unit, Nuffield Department of Clinical Medicine, University of Oxford, OX3

7LE Oxford, UK

Tel: + 44 (0)1865 225256

najib.rahman@ndm.ox.ac.uk

1

Abstract

The MIST2 trial showed that combined intrapleural use of tissue plasminogen activator (t-PA) and DNase was effective when compared to single agents or placebo. However, the treatment costs are significant and overall cost-effectiveness of combined therapy remains unclear.

An economic evaluation of the MIST2 trial was performed to assess the cost-effectiveness of combined therapy. Costs included were those related to study medications, initial hospital stay, and subsequent hospitalisations. Outcomes were measured in terms of life-years gained. All costs were reported in Euros (€) and in 2016 prices.

Mean annual costs were lowest in the tPA-DNase group (€10,605 for t-PA, €17,856 for DNase; €13,483 for placebo, €7,248 for t-PA-DNase (p=0.209)). Mean 1-year life expectancy was: 0.988 for t-PA; 0.923 for DNase; and 0.969 for both placebo and t-PA-DNase (p=0.296). Both DNase and placebo were less effective, in terms of life-years gained, and more costly than t-PA. When t-PA-DNase was compared to placebo, the incremental cost per life-year gained of t-PA-DNase was €1.6billion, with a probability of 0.85 of t-PA-DNase being cost-effective.

This study demonstrates that combined t-PA-DNase is likely to be highly cost-effective. In light of this evidence, a definitive trial designed to facilitate a thorough economic evaluation is warranted to provide further evidence on cost-effectiveness of this promising combined intervention.

Introduction

Pleural infection is a common and highly morbid condition. The incidence is increasing in both children and adults¹-⁵ and outcomes remain poor with up to 20% mortality at 1 year and failure of medical therapy in up to 30% of cases.⁶-¹⁰ Median hospital stay is between 12 and 15 days⁶.७,១,¹⁰ and we have previously estimated this condition as costing €4,223 per patient.¹ Interventions to improve drainage, reduce infection and improve outcomes such as need for surgery and time in hospital are therefore priorities in care.Ց

The MIST2 trial was a double blind, double dummy randomised placebo controlled trial assessing the combination of intrapleural tissue plasminogen activator (t-PA) and recombinant human deoxyribonuclease (DNase) as an adjunct to drainage in patients with pleural infection. This study demonstrated significantly improved fluid drainage (radiologically measured) when compared with the single use of medications and placebo.⁷ In secondary outcomes, MIST2 demonstrated t-PA-DNase therapy reduced the frequency of surgical referral (OR 0.17, p=0.03) and shortened length of stay in hospital.

Since publication of the MIST2 trial, there have been numerous case series of its use as both "rescue therapy" and as an alternative to surgery in selected patients, totalling over 500 patients to date. 11-20 However, the costs of t-PA and DNase given twice daily for 3 days (as per the MIST2 protocol) are considerable. 21 It is not as yet clear if these increased medication costs are offset by reductions in surgical referral and shortened length of hospital stay.

This study was therefore conducted to specifically address whether use of t-PA-DNase therapy is cost-effective compared with individual use of DNase, t-PA and placebo, using the original data from the Second Multicentre Intrapleural Sepsis Trial (MIST2).

Take home message

The MIST2 trial showed that combined intrapleural use of t-PA and DNase was effective when compared to single agents or placebo in the treatment of pleural infection. This economic evaluation shows that t-PA-DNase is likely to be highly cost-effective. .

METHODS

Patients

Eligibility criteria were clinical evidence of infection and pleural fluid that was macroscopically purulent, positive on culture for bacterial infection, or positive for bacteria on Gram's staining, or pleural fluid that had a pH of less than 7.2 (measured by means of a blood-gas analyzer). Evidence of infection, which was assessed by the recruiting physician, included the presence of fever and elevated serum levels of inflammatory markers such as C-reactive protein or an elevated white-cell count.

Study design

MIST2 was a double-blind, double-dummy, factorial randomised trial conducted at 11 centres in the United Kingdom between December 2005 to November 2008 (ISRCTN57454527).⁷ As per the study protocol patients who did not receive any of the study medications and had pleural opacity at baseline that was less than 5% of the hemithorax area on chest radiography were excluded. A total of 210 adult patients were enrolled into the study and randomised, 55 received double placebo; 52 t-PA, 51 DNase, 52 t-PA and DNase. Patients were then followed-up for a period of 12 months. The dose of DNase was 5mg and the dose of t-PA was 10mg. Intrapleural medications were each given twice daily for 3 days, and each administration was followed by clamping of the drain to permit the study drug to remain in the pleural space for 1 hour.

Assessments

The perspective adopted in the economic analysis was that of the hospital provider, with only the direct healthcare costs associated with initial hospitalisation, surgery, and subsequent hospitalisation over the 12 month follow-up included. All costs were reported in 2016 prices. UK pounds sterling were converted to Euros (£1=€0.877, http://ec.europa.eu/Eurostat).

Using information on patients' trial records, initial hospitalisation length of stay was estimated. This was defined as the time between the date of randomisation and discharge to home or to a nursing/residential care home. For patients who required thoracic surgery, duration of time in a surgical ward was estimated as the time between the date of surgery and date of discharge from surgery. Unit costs were obtained from National Health Service (NHS) Reference Costs.²² A day in

hospital was valued using the weighted daily average for Healthcare Resource Groups (HRGs) for "Lung Abscess and Empyema with Interventions", which was then multiplied to the patient's length of stay. For patients requiring thoracic surgery, a day in hospital was valued using the weighted daily averages of the 3 elective and 3 non-elective HRGs for "Major Thoracic Procedures, 19 years and over". Costs relating to admissions where patients underwent surgical procedures included both the cost of the hospital stay and of the procedures captured under that HRG.

From patients' trial records, information on subsequent hospitalisations over the 12-month follow-up were obtained. For each hospitalisation, information on the date of admission and discharge and the reason for that admission was recorded. Reasons for admission were translated into International Statistical Classification of Diseases and Related Health Problems 10th version (ICD-10) and Office of Population Censuses and Surveys Classification of Surgical Operations and Procedures 4th version (OPCS-4) codes, which in turn were converted into an HRG using the HRG4+ Reference Cost Grouper (NHS Information Centre). HRGs were then valued using NHS Reference Costs.²²² Unit costs are reported in **Table 1**. Medication costs were obtained from the British National Formulary.²¹ Total medication costs for each patient were then estimated as follows: for tPA (alteplase) €164 x twice daily x three days; and for DNase (pulmozyme) €19 x two doses of 2.5mg x twice daily x three days.

Table 1. Unit costs

	Unit cost	Source
Study medications, per dose		
Alteplase 10mg	€164	British National Formulary
Pulmozyme 2.5mg	€19	British National Formulary
Initial hospital stays, per day		
Initial stay, non-surgery	€502	NHS Reference costs
Initial stay, surgery	€955	NHS Reference costs
Subsequent admissions		
Hospital stay*	€756*	NHS Reference costs

^{*}Weighted-average for the 37 different reasons patients were readmitted during study follow-up. For the analysis specific unit costs were applied.

In the absence of prospectively collected health-related quality of life, which would have enabled the estimation of Quality Adjusted Life Years (QALYs) gained, we evaluated the impact of the interventions on life-years gained. Life-years gained were defined in this study as the number of days a patient survived during the year after they were randomised in the study divided by 365.25 days. Therefore, for surviving patients a value of 1 life-year gained was assigned.

Statistical analysis

A within trial economic analysis was undertaken, with total healthcare costs and life years gained per patient calculated for the 12 months of the trial period in each of the four groups. Given the time frame of the analysis as 1 year, discounting of costs and benefits was not performed. All analyses were carried out on an intention to treat basis using StataMP 13. Length of stay in hospital, costs and life-years gained are reported as means with standard deviations, with differences across the four groups compared using analysis of variance. Statistical significance was considered at a p<0.050.

Treatment with chest tube drainage, antibiotics and saline flushes is current practice in the UK according to evidence based guidelines (i.e. comparable to placebo in MIST2).⁸ As a result, we first compared each of the 3 trial interventions to placebo. To assess cost-effectiveness we estimated the incremental cost-effectiveness ratio (ICER), undertaken by dividing the mean cost difference between the placebo and the intervention by the difference in mean life years gained.

In addition, an incremental analysis was conducted, rank ordering each intervention in terms of total costs. The mean cost difference between the second least costly intervention and the least costly intervention divided by the difference in mean life year gained for these two interventions was used to estimate the ICER. Analysis was then repeated in increasing order of cost. 95% confidence intervals were derived for the mean cost and life-year gained differences between the groups using non parametric bootstrap sampling with 1000 replications. To assess the probability that an intervention was cost-effective at different willingness to pay thresholds for an additional life-year gained, cost effectiveness acceptability curves were used obtained using 1,000 bootstrap estimates of mean costs

and life-years gained for each of the four interventions.²³ An intervention was deemed cost-effective if the additional cost per life-year gained was below £30,000 (€34,220).²⁴

A series of one way sensitivity analyses were then performed. As there were a wide number of different reasons why patients were readmitted into hospital, each of these reasons varying substantially in cost, rather than applying cause-specific unit costs, we applied the weighted average unit cost reported in **Table 1**. As costs of trial medications are likely to vary considerably both in time (e.g. introduction of generic versions) and across countries, we varied the costs of medications by reducing their cost by 50% and increasing them by 100%.

RESULTS

A total of 210 adult patients were enrolled into the study and randomised: 55 received double placebo, 52 t-PA, 51 DNase and 52 t-PA and DNase. However, there was missing length of stay and subsequent resource use in 32 patients (7 receiving double placebo, 8 t-PA, 10 DNase, and 7 t-PA and DNase) As a result, this analysis is based on the 178 patients having complete resource use: 48 receiving double placebo; 44 t-PA, 41 DNase, 45 t-PA and DNase.

Resource use, costs and life-years gained

There were no significant differences across the four groups in terms of initial hospital stays and total number of days in hospital over the 12 month period (p=0.265 and p=0.273, respectively). However, although not statistically significant, the mean number of days in hospital was lower for the t-PA-DNase group, in terms of initial hospital stays (both surgical and non-surgical) and hospital readmissions (**Table 2**).

Table 2. Number of days in hospital over 12-month follow-up

	t-PA	DNase Placebo		t-PA-DNase	
	(n=44)	(n=41)	(n=48)	(n=45)	
Initial hospital stay, mean (S.D.)					
Number of days,	14.48 (20.21)	22.59 (58.74)	23.65 (54.90)	11.43 (9.31)	
non-surgical					
Number of days,	2.05 (9.30)	5.66 (18.07)	1.17 (4.36)	0.24 (1.15)	
surgical					
Number of days,	16.52 (22.79)	28.24 (61.41)	24.81 (56.11)	11.78 (9.43)	
total					
Subsequent hospital stays, mean (S.D.)					
Patients with 1 or	3/44 (7%)	1/41 (2%)	4/48 (8%)	1/45 (2%)	
more subsequent					
admissions (%)					
Number of days	0.75 (2.96)	0.75 (4.83)	1.38 (6.54)	0.16 (1.04)	
Total hospital stays, mean (S.D.)					

Number of days	17.27 (24.79)	29.00 (62.01)	26.19 (56.66)	11.93 (9.57)

Except for trial medications, patients randomised to t-PA-DNase had the lowest levels of hospital care costs (**Table 3**). Over the 12-month follow-up period, and after including the costs of medications, patients randomised to t-PA-DNase had total costs of €7,248 (S.D. 4,922) compared with €10,605 (15,413) for t-PA, €17,856 (34,861) for DNase, and €13,483 (28,798) for placebo. Although differences in total costs between the four patient groups were not statistically significant (p=0.209), patients in the t-PA-DNase group incurred significantly lower costs than patients randomised to DNase (p=0.041). Patients randomised to t-PA had the highest number of life-years gained with a mean of 0.988 (S.D. 0.081) life-years gained whereas patients randomised to DNase had the lowest number with a mean of 0.969 (S.D. 0.147). However, differences in one-year life expectancy were not statistically significant across patient groups (p=0.296).

Table 3. Mean costs and outcomes over 12-month follow-up

	t-PA DNase		Placebo	t-PA-DNase	
	(n=44)	(n=41)	(n=48)	(n=45)	
	Cos	sts €, mean (S.D.)			
Trial medications	986 (N/A)	227 (N/A)	0	1,213 (N/A)	
Initial hospital stay,	7,155 (9,991)	11,164 (27,892)	11,687 (27,133)	5,701 (4,604)	
non-surgical					
Initial hospital stay,	1,953 (8,874)	5,401 (17,247)	1,113 (4,159)	234 (1,098)	
surgical					
Subsequent	511 (2,026)	1,065 (6,820)	682 (2,865)	102 (682)	
admissions					
Total costs	10,605 (15,413)	17,856 (34,861)	13,483 (28,798)	7,248 (4,922)	
Life-years gained, mean (S.D.)					
Life-years	0.988 (0.081)	0.923 (0.228)	0.969 (0.147)	0.969 (0.153)	
Cost-effectiveness of placebo vs. trial interventions					
ICER	N/A	Placebo dominant	t-PA dominant	€1.6 billion	

Probability placebo	N/A	0.81	0.24	0.04
cost-effective				

Cost-effectiveness

Placebo vs. trial interventions

Given that placebo is currently standard UK practice in the form of saline flushes, we individually compared placebo to each of the three interventions in the trial (**Table 3**). Placebo was found to be dominant over DNase (i.e. it was both more effective and less costly) whereas it was dominated by t-PA (i.e. placebo was less effective and more costly). When placebo was compared to t-PA-DNase the additional cost per life-year gained was €1.6 billion. In this comparison, the probability that t-PA-DNase was cost-effective at a £30,000 (€34,220) cost per life-year gained threshold was 0.96.

Results of the sensivity analysis showed that varying trial medication costs (reduction of 50% and increase of 100%) had no impact on cost-effectiveness. Using the overall mean-weighted unit cost to value subsequent days in hospital, rather than cause-specific unit costs, did not impact cost-effectiveness (Online supplementary material).

Table 4. Cost-effectiveness of treatments for pleural infection at 12 months

	Incremental	Incremental	Incremental cost-	Probability of
	costs, €	life-years	effectiveness ratio	intervention being
	(95% CI)	(95% CI)		cost-effective*
t-PA-DNase	-	-	-	0.86
t-PA	3,357 (-335 to	0.019 (-0.025	€178,166	0.12
	8,114)	to 0.062)		
Placebo	2,878 (-4,280	-0.019 (-0.061	t-PA both more	0.03
	to 10,874)	to 0.020)	effective and less	
			costly	
DNase	4,373 (-6,700	-0.045 (-0.116	t-PA both more	0.001
	to 15,940)	to 0.016)	effective and less	
			costly	

*Assuming a cost-effectiveness threshold of £30,000 (€34,220) per life-year gained

When we compared all the interventions in an incremental analysis, we found that DNase and placebo were less effective, in terms of life-years gained, and more costly than t-PA. As a result, for the incremental cost-effectiveness analysis t-PA was compared to t-PA-DNase, the least costly intervention (**Table 4**). When compared to tPA-DNase, the incremental cost per life-year gained was €178,166. This is much higher than the currently recommended willingness to pay thresholds recommended by NICE. At a threshold of £30,000 (€34,220) per life year gained, the probability that t-PA-DNase was cost-effective was 0.86, whereas for t-PA this was 0.12. Placebo and DNase had a probability of less than 0.05 of being cost-effective. As shown in **Figure 1**, at any willingness to pay threshold for an additional life-year gained ranging between £0 and £100,000 (€114,000) the probability of t-PA-DNase being cost-effective remained above 0.50. For placebo and DNase the probability of being cost-effective never exceeded 0.10.

DISCUSSION

Using costs collected alongside a randomised clinical trial evaluating intrapleural therapy for empyema over a 1 year period, we found that administration of twice daily t-PA-DNase for 3 days was most cost-effective compared with t-PA alone, DNase alone or placebo. Despite the added medication costs associated with t-PA and DNase, overall costs were lower in the combined treatment group than with individual therapies alone, highlighting the benefit seen in the original clinical trial in terms of reduced length of stay in hospital and surgical interventions.

This finding is clinically important with potential impact on current treatment. Although the MIST2 regimen is currently used only in patients who are failing medical therapy for pleural infection, and may not have a surgical option in most hospitals, these data suggest that it may be cost effective to treat patients with pleural infections with a combination of t-PA and DNase early in treatment. The MIST2 trial recruited all patients with pleural infection and began treatment as soon as possible on admission, therefore this study provides some economic rationale as to the use of the MIST2 regimen in all such cases. Our results suggest that using tPA / DNase in preference to standard care (saline flushes, which is equivalent to placebo) in patients with pleural infection might save €5,700 per patient treated.

There are limitations to this analysis. Firstly, the economic evaluation was conducted retrospectively and not concurrently alongside the clinical trial. The number of patients in each trial group was small, with the trial not being designed to detect differences in healthcare costs between the groups.

Relevant healthcare resource use categories such as use of accident and emergency services, critical care, outpatient and primary care were not evaluated. Furthermore, the timeframe of our analysis is over 1 year and therefore cost-effectiveness of t-PA-DNase beyond this period is uncertain. However, given the acute nature of empyema and its general treatment, it is reasonable to expect that all relevant hospitalizations and costs would have been captured in the 1 year follow-up period.

Prospective follow up data from randomised and observational studies suggest that the majority of outcomes occur within 3 months, and all within 12 months in pleural infection. 6, 7, 9, 10

Quality of life via patient questionnaires was not assessed in this trial and therefore the health outcome expressed in our analysis was life years gained. Ideally, in order to assist decision makers in choosing amongst different health care interventions, costs per quality adjusted life years (QALYs) are typically recommended.⁶ However, given that combined treatment not only reduced hospitalisation stays over the 1-year follow but also reduced surgical interventions, it is likely that quality of life would also be higher in the combined treatment group, hence improving the cost-effectiveness of the intervention.

Finally, the MIST2 trial was conducted in the UK, using British unit costs to value hospital resource use and medications. Therefore, the results presented will be most generalizable to UK settings.

However, we do believe that our measures of resource use, showing the potential for combined t-PA-DNase treatment to considerably reduce overall hospital resource use, are likely to be applicable to other jurisdictions.

Previous evidence from the MIST2 trial showed that combination treatment with tPA and DNase was effective in improving fluid drainage in patients with pleural infection. This study now highlights that combined treatment is also likely to be highly cost-effective. In light of this evidence, a definitive trial designed to facilitate a thorough economic evaluation is therefore warranted to provide further evidence about the cost-effectiveness of this promising combined intervention in order to assist decision makers.

Author contributions

RL-F performed the health economics analysis and wrote the first draft of the manuscript. EP helped write the first draft of the manuscript and provided intellectual input for data interpretation. MD, IPC, AJN, NAM and NMR were involved in either original data collection, subsequent intellectual input or manuscript writing All authors reviewed and approved the final manuscript.

Conflict of interests

NMR and AJN report grants from Roche during the conduct of this study. IPC works as a Medical Science Director in Astrazeneca pharmaceutical company in a different scientific area not relevant with

the manuscript. EP reports personal fees from AstraZeneca, GlaxoSmithKline, and Boehringer Ingelheim, outside the submitted work. RL-F, MD and NAM declare no competing interests

Support statement

This work had no specific funding. The original trial was partly funded by an unrestricted educational grant from Roche UK and by others. AJN's salary came through core funding MC_UU_12023/27 Tuberculosis Treatment Trials

REFERENCES

- Grijalva CG, Zhu Y, Pekka NJ, Griffin MR. Emergence of parapneumonic empyema in the USA.
 Thorax. 2011;66:663-8.
- 2. Desrumaux A, Francois P, Pascal C, Cans C, Croize J, Gout JP, et al. Epidemiology and clinical characteristics of childhood parapneumonic empyemas. Arch Pediatr. 2007;14:1298-303.
- 3. Farjah F, Symons RG, Krishnadasan B, Wood DE, Flum DR. Management of pleural space infections: a population-based analysis. J Thorac Cardiovasc Surg. 2007;133:346-51.
- Roxburgh CS, Youngson GG. Childhood empyema in North-East Scotland over the past 15 years. Scott Med J. 2007;52:25-7.
- Finley C, Clifton J, Fitzgerald JM, Yee J. Empyema: an increasing concern in Canada. Can Respir J. 2008;15:85-9.
- Maskell NA, Davies CW, Nunn AJ, Hedley EL, Gleeson FV, Miller R, et al. U.K. Controlled trial of intrapleural streptokinase for pleural infection. N Engl J Med. 2005;352:865-74.
- 7. Rahman NN, Maskell NA, West A, Teoh R, Arnold A et al. Intrapleural use of tissue plasminogen activator and DNase in pleural infection. N Engl J Med 2011;365:518-526.
- 8. Davies HE, Davies RJ, Davies CW. Management of pleural infection in adults: British Thoracic Society Pleural Disease Guideline 2010. Thorax. 2010;65 Suppl 2:ii41-ii53.
- 9. Davies CW, Kearney SE, Gleeson FV, Davies RJ. Predictors of outcome and long-term survival in patients with pleural infection. Am J Respir Crit Care Med. 1999;160:1682-7.
- Ferguson AD, Prescott RJ, Selkon JB, Watson D, Swinburn CR. The clinical course and management of thoracic empyema. QJM. 1996;89:285-9.
- 11. Majid A, Ochoa S, Chatterji S, Fernandez-Bussy S, Kheir F, Rivera E, Cheng G, Folch E. Safety and Efficacy of Tissue Plasminogen Activator and DNase for Complicated Pleural Effusions Secondary to Abdominal Pathology. Ann Am Thorac Soc. 2017;14:342-346
- Bishwakarma R, Shah S, Frank L, Zhang W, Sharma G, Nishi SP. Mixing It Up: Coadministration of tPA/DNase in Complicated Parapneumonic Pleural Effusions and Empyema. J Bronchology Interv Pulmonol. 2017;24:40-47.
- Majid A, Kheir F, Folch A, Fernandez-Bussy S, Chatterji S, Maskey A, Fashjian M, Cheng G,
 Ochoa S, Alape D, Folch E. Concurrent Intrapleural Instillation of Tissue Plasminogen Activator

- and DNase for Pleural Infection. A Single-Center Experience. Ann Am Thorac Soc. 2016;13:1512-8
- Sharan LA, Price TP, Hehn B, Manoff D, Cowan SW. A 22-year-old man with pleural tuberculosis associated hydropneumothorax: Case report and literature review. Respir Med Case Rep;18:27-30.
- 15. Mehta HJ, Biswas A, Penley AM, Cope J, Barnes M, Jantz MA. Management of Intrapleural Sepsis with Once Daily Use of Tissue Plasminogen Activator and Deoxyribonuclease. Respiration. 2016;91:101-6.
- Croft DP, Philippo SM, Prasad P. A case of Lemierre's syndrome with septic shock and complicated parapneumonic effusions requiring intrapleural fibrinolysis. Respir Med Case Rep. 2015;16:86-8.
- 17. Popowicz N, Nash M, Lee YC. Unintentional intramuscular administration of tPA/DNase for pleural infection. Respirol Case Rep. 2014;2:144-6.
- 18. Popowicz N, Piccolo F, Shrestha R, Lee YC. Two sequential tPA/DNase courses for noncommunicating loculated collections in pleural infection. Respirol Case Rep. 2014;2:87-9.
- 19. Piccolo F, Pitman N, Bhatnagar R, Popowicz N, Smith NA, Brockway B, Nickels R, Burke AJ, Wong CA, McCartney R, Choo-Kang B, Blyth KG, Maskell NA, Lee YC. Intrapleural tissue plasminogen activator and deoxyribonuclease for pleural infection. An effective and safe alternative to surgery. Ann Am Thorac Soc. 2014;11:1419-25.
- Porcel JM. Minimally invasive treatment of complicated parapneumonic effusions and empyemas in adults. Clin Respir J 2018;12:1361-6
- 21. British National Formulary. BNF Online. https://www.bnf.org/ (accessed 28 March 2017).
- 22. Department of Health. NHS reference costs 2015 to 2016.
 https://www.gov.uk/government/publications/nhs-reference-costs-2015-to-2016 (accessed 28 March 2017).
- 23. Fenwick E, Byford S. A guide to cost-effectiveness acceptability curves. Br J Psych 2005;187:106-108.
- 24. National Institute for Health and Care Excellence. Guide to the methods of technology appraisal 2013. London: National Institute for Health and Care Excellence (NICE); 2013.

Figure 1. Cost-effectiveness acceptability curve