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ABSTRACT  

Optically-switched composite materials based on semiconducting materials have the potential to simplify the circuitry 

required to control artificial muscles. This contactless control method has the potential to improve visual technologies by 

enabling controllable haptic and morphing interfaces. Optically-switched active displays could provide enhanced user 

interaction, especially for those with visual impairments. Research into morphing interfaces with dielectric elastomer 

actuators (DEAs) centralizes on segmented electrode architectures that can achieve large active strains in multiple degrees 

of freedom. However, controlling the activation of multiple electrodes typically requires an array of discrete rigid 

components (e.g. MOSFETs) as well as the separation of high-voltage power lines and low-voltage control signals. In this 

work, we develop a photo-switched DEA system that removes the need for wired control signals, reducing 

complexity.  Photonic switching of DEA electrodes is achieved by exploiting the light-dependent resistance of a thin film 

of deposited amorphous silicon (a-Si). Samples with layer thicknesses of 0.84 μm have been fabricated using plasma 

enhanced chemical vapor deposition. Breakdown voltages of above 6kV were obtained when using a non-conducting 

substrate (glass). Preliminary testing of the system shows that voltage swings of up to 865V can be achieved between 

ambient and direct illumination, producing an out of plane actuation of 2 μm in a weight-biased DEA disc actuator. Further 

tuning of the electric circuit should lead to larger actuation strains. Future work will focus on the control of multiple DEA 

electrodes using localized light patterns as well as testing and characterizing other materials to improve the voltage swing 

across the DEA.  
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1. INTRODUCTION  

Dielectric elastomer actuators (DEAs) are an emerging class of actuators that produce high strains and can be 

designed to create both in-plane and out-of-plane actuation [1]. DEAs consist of a dielectric elastomer that 

separates two compliant electrodes. Applying a potential across these electrodes generates an electric field 

dependent Maxwell pressure, which leads to a through thickness compression of the pre-strained dielectric 

elastomer membrane [1]. Maxwell pressure equation for a DEA where er is the relative permittivity and e is the 

permittivity of free space, V is the applied voltage and T is the thickness of the membrane. 

𝑃 = 𝑒𝑟𝑒(
𝑉

𝑇
)2      (1) 

Typical applied electric fields are of the order of 100Vµm-1[2], which for DEAs typically corresponds to an 

operational voltage of 2-3kV [2]. These voltages are limited by the dielectric breakdown strength of the 

elastomer. However, some designs have been shown to operate with as low as 300V  by reducing the membrane 

thickness to 3μm through a pad-printing fabrication technique [3].  

DEAs can be designed with multiple segmented electrodes on a single membrane, to achieve advanced 

functionality such as multiple degree-of-freedom actuation [4] or peristaltic pumping [5]. To actuate individual 



 

 
 

 

 

DEA elements in controlled sequences, numerous MOSFETs or relay switches are required. These may be 

bulky, an obvious downside in the field of robotics [6], and difficult to integrate into a compliant actuator 

without using external circuitry. DEA technologies have the potential to create small controlled deformations 

of a thin membrane, by the implementation of optically-switched functional materials into the actuator design. 

These materials are required to withstand high voltage without risk of electrical breakdown and provide enough 

change in resistance between the light and dark states to allow enough voltage ‘swing’ for actuation. The 

potential scope of this technology has several application [7] including the generalized benefit of a wireless 

control of a DEA system. As well as morphing visual membranes [8] or aerodynamic surface tailoring. 

 

Light dependent Resistors (LDRs) are commonly used in electronics to provide variable resistances with light 

intensity. They largely consist of two electrodes connecting a photo-resistive ceramic material. Photo-resistive 

ceramics such as cadmium selenide/telluride and zinc oxide [9] have been widely used in LDRs. It is possible 

for these ceramic powders to be deposited as thin ceramic films[9], however ceramics are typically brittle 

without significant additions, such as plasticizers. This is an important consideration when implementing these 

materials in actuator devices. Semiconducting materials such as silicon provide an alternative as they can be 

doped to provide a varying range of electrical properties. Commercially available silicon photovoltaic cells fall 

into three categories; single crystal, arranged polycrystalline and amorphous. These have an increasing number 

of randomized grains respectively.  With amorphous silicon being the most commercially available and often 

found in small electronic devices such as calculators. Amorphous silicon has no long-range orientation of the 

crystal grain structure rather than being a truly amorphous material[10]. Amorphous silicon is a semiconductor 

with a number of dangling bonds in its electron structure, this creates a lower energy path for free moving 

electrons to pass from the valence band to the conduction band [11]. The dangling bonds caused by the 

amorphous structure creates several electron recombination centers. These provide a lower energy pathway into 

the extended states where electron transport can occur. We can deduce that amorphous silicon should have a 

sensitive response to stimulus that would allow for conduction but potentially localized to where the stimulus 

occurs due to the ‘amorphous’ nature. As mentioned in the literature the availability of free moving electrons 

in the a-Si structure leads to a “short ambipolar electron diffusion length of less than 115nm”[12]. This therefore 

opens the potential to utilize this resolution to create multiple electrodes on a single sample of amorphous 

silicon as a control switch for multiple actuators that are independent of one another. For this investigation the 

following samples where tested; amorphous silicon, a 15kΩ LDR and p-type Silicon wafer. 

2. METHODOLOGY 

 
2.1 Amorphous silicon deposited onto Glass substrate 

Amorphous silicon (a-Si) was deposited onto a chosen substrate using a plasma enhanced chemical vapor 

deposition process (PECVD). A glass substrate was used for optical transparency. The deposition process of 

thin films has a high risk of contamination from surface dirt and dust, therefore the manufacture process was 

carried out in a clean room facility (Class 10000 cleanroom; 21C +/- 1C; 50% +/- 5% humidity). The glass 

substrate was thoroughly cleaned using a two-stage cleaning process of acetone followed by Isopropanol 

ultrasonic baths for 5 minutes respectively. Once the substrate had been dried using a nitrogen air supply, the 

substrates were transferred to a silicon carrier wafer which was placed into the PECVD system (Oxford 

Instruments Plasmapro System 100 PECVD). The PECVD deposits amorphous silicon at a rate of 28 nm per 

minute. A 30-minute deposition time created a 0.84µm layer of amorphous silicon. Once the sample had been 

removed from the PECVD it was masked to allow for gold electrodes to be spluttered onto the sample. The 

electrodes consisted of a 400nm titanium layer followed by a 200nm gold layer. The sample was then mounted 

onto a specially designed printed circuit board and attached using epoxy adhesive. The gold electrodes were 

connected to the PCB using bond wires of 5µm diameter gold wires to header pins which allows the samples 

to be connected using readily available high voltage wires. 



 

 
 

 

 

 
2.2 Manufacture of DEA  

A single membrane disc DEA was fabricated using 3M 4905 VHB tape, stretched over an acrylic frame with 

4x4 biaxial pre-strain. Carbon grease electrodes (MG Chemicals) were applied using a mask onto the surface 

of the tape. The process for this is shown in Figure 2. The actuator was weight-biased by a small 9.1g metal 

component placed in the center of the electrode to generate an out of plane displacement during actuation.  

Displacement was measured using a laser displacement sensor (LK-G152 and LKGD500, Keyence).  

Figure 2: Schematic showing the process used to manufacture a dielectric elastomer actuator from 4905 VHB 

tape. 

2.3 Breakdown voltage and light/dark resistance of the a-Si thin-film. 

The samples were tested using a voltage ramp test to check for electrical breakdown. The test consisted of a 

voltage ramp from 250V to 2kV increasing at a rate of 5Vs-1 using a high voltage amplifier (Ultravolt 5HVA23-

BP1). The ramp test was conducted in various lighting conditions, dark (~ 0 Lux), ambient light (307.5Lux) 

and various light intensities to a maximum of 51 kLux this was measured using a Urceri MT-912 light meter. 

The current was measure using a DAQ device (National Instruments BNC-2111) and the results of which are 

shown in Figure 4. 

Figure 2: Current passing through the a-Si film as a function of voltage at different light intensities. 

 

No electrical breakdown occurred in the a-Si sample during the test, however P-Type silicon showed breakdown 

at 1.3 kV and a 15 kΩ LDR did not provided enough resistance to limit current reaching the DEA even at the 

lowest light intensity. Therefore, it was deemed that a-Si would be the most appropriate material to be used for 

a high voltage photoactive switch. To determine how much voltage swing can be generated at high voltage 

(~2.18 kV) the maximum current at this voltage was taken and plotted with different light intensity. For this 



 

 
 

 

 

initial study the relationship between current and light intensity was assumed to be linear and a linear regression 

was fitted to the data set with a norm of residuals of 8.68. The equation for this linear fit is as follows; 

 

𝐼 = 1.1076𝐿 + 24.2     (2) 

 

Where I is the current and L the light intensity. From this equation the resistance change of the a-Si film can be 

calculated using Ohm’s law. The achievable voltage changes can be calculated from the dark and illuminated 

resistances with a fixed 50MΩ bleed resistor. In future work this relationship can be used to help optimize the 

voltage divider set up and improve the achieved change in voltage. 

 
2.4 Temperature effects  

An initial concern was that there would be an increase in temperature of the a-Si due to the proximity to the 

light source. The hypothesis was that this would increase electron mobility and therefore a reduction in the 

resistance of the a-Si leading to increased displacement creep of a DEA actuation over time. To test this, the a-

Si sample was placed at the closest proximity to the light source (51klux) and a ramp test was conducted with 

the thermal response measured by a camera (FLIR E4). The sample was illuminated for 10 mins, reaching a 

maximum temperature of 34.5°C. The results of this ramp test are shown in Figure 3. As can be seen there is 

no significant difference in the current with heating of the a-Si switch. 

 

Figure 3: Current as a function of voltage for a-Si with increasing exposure time to the light source. 

 

Figure 4: (a) a schematic of the Voltage divider circuit for the optically controlled DEA. (b) The Experimental 

set up for the optically controlled DEA. 

 

To discharge the DEA after actuation, a bleed resistor of 50 MΩ was placed in parallel with the DEA. The light 

source was controlled via a relay with an Arduino circuit with a loop function turning the light on for 5 seconds 

and turning it off for 10 seconds.  
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3. RESULTS 

Actuation tests were conducted at 3kV input for 30 seconds. The light source was turned on at 9 seconds and 

held for a 5 second period, after which it was turned off for 10 seconds and then on again for a final 5 seconds 

at 24 seconds as highlighted in Figure 5 A displacement of 2.2 μm was recorded by the laser displacement 

meter. As shown in Figure 5, small latency can be seen between the application of light and the increase in 

current seen in the circuit. The DEA has a slightly delayed response and takes some time to reach full actuation, 

but this is likely due to the capacitive nature of the actuator. This low latency can be extremely beneficial in 

electronics where high frequency switching of input signals is required. The results show a measurable 

displacement of the DEA; however, it is difficult to observe with the naked-eye. This is largely due to the 

relatively small change in resistance that of the a-Si between the ambient and illuminated states.  

Figure 5: DAQ results from the experimental tests showing the voltage, current and displacement of the 

actuator as a function of time. The illumination periods have been overlaid in the charts. 

 

This led to a relatively small voltage change across the DEA. This could be improved by improving the material 

properties as well as refining the resistance of the bleed resistor to better tune the voltage change. Other 

materials could be investigated as well as doping techniques to help improve this resistance change. One 

difficulty is that for this to be beneficial the maximum resistance would need to remain close to the value of 

ambient a-Si as any lower would allow more current to flow to the actuator when the voltage is initially applied. 

 

4. CONCLUSIONS 

This work proposed a potential method for the wireless control of DEAs using an optical switching of 

amorphous silicon thin films. It was shown that an optical switch can be placed in series with a high voltage 

supply to simplify the electronic circuitry required for controlling a DEA actuator. A simple linear regression 

was proposed for the resistance of amorphous silicon with light intensity at 2.18kV which can be used to inform 

the design of an optically-controlled DEA device. Clear actuations of 2.2 μm were achieved, providing the basis 

for wireless optical control of dielectric actuator muscles. Future work will focus on controlling multiple DEA 
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Light off Light on Light off Light on Light off 



 

 
 

 

 

electrodes using localized light patterns a well as testing and characterizing other materials to improve the 

voltage swing across the DEA.  
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