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ABSTRACT 
 
Traffic data identified from free, satellite imagery, such as historical imagery available on Google 
Earth, are collected and employed as possible indicator of business downtime after the 2015 
Gorkha Earthquake in Nepal. Business downtime is a crucial factor when assessing losses and it 
is also of great importance to insurance and reinsurance companies, particularly the downtime of 
private businesses, for which limited data is available. Currently, indicators of business recovery 
after natural disaster events either focus on damage or they are directly collected through costly 
procedures and none of the approaches available quantifies longer term recovery. In many cases, 
such data, when available, are not easy to access. There is a need for both time- and cost-effective 
methods to quantify business downtime that are not necessarily derived from physical damage and 
are able to describe both short-term and, potentially, long-term business recovery. The aim of this 
quantification refers to the recovery phase rather than the immediate emergency response in the 
aftermath of a natural disaster. Car and lorry numbers of four areas of Kathmandu were counted 
from historical images available on Google Earth. These four areas correlated to the four areas in 
which data related to business closures were obtained through interviews during a field 
investigation made by the authors in Kathmandu in November 2016 (18 months after the event). 
Food and health business closure data correlate very satisfactory with the calculated drop in car 
numbers. 
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Introduction 
 
Loss estimation is essential to assessing the severity of natural hazards, as well as identifying 
vulnerability and guiding recovery decisions and processes. The evaluation of economic losses is 
typically made in terms of monetary losses, casualties and downtime. The definition of downtime 
in Performance Based Earthquake Engineering (PBEE) is “the time necessary to plan, finance, and 
complete repairs on facilities damaged in earthquakes or other disasters” [1]. However, this 
definition relates more to short-term business recovery than the long-term [2]. Business resiliency 
has been identified as a principal factor for loss estimation and indicators of business interruption 
that are not related solely to the amount of damage and are indicative of longer-term recovery 
process are becoming increasingly significant [3]. 
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In the recent past, business recovery has been assessed with one off, large scale surveys 
and investigations of the disaster affected communities [4]. These procedures are both costly and 
require substantial amounts of organization and effort. Thus, there is a need for time and cost-
effective methods to track business recovery after natural disasters. Statistical data is a useful tool 
to provide baseline information for comparing “before and after” scenarios, and therefore methods 
of quantifying recovery are needed [5]. There are two main difficulties surrounding the 
quantification of business recovery: firstly, not all studies refer to the same definitions of downtime 
and recovery; and secondly, it is difficult to collect data on the private sector and small businesses. 
Therefore, most studies in the past focused on public and government businesses for which it is 
easier to obtain information. 

 
In this study, downtime of private businesses and commercial activities is defined as the 

time during which the specific activity remained closed after the disaster until returning to normal 
opening time activity. Noy [6] states that the factors affecting economic recovery from a natural 
disaster include literacy rate, per capita income, openness to trade, amount of government 
spending, quality of institutions, foreign exchange reserves, and domestic credit levels. He 
concludes that developing countries suffer a greater shock to their economies than developed 
countries and small economies are at much greater risk to indirect consequences than larger 
economies [6]. For insurance and reinsurance companies, the quantification of business recovery, 
in particular for the private sector can be of great interest. In developed countries, it can be easier 
to collect data and build up models for business quantification (e.g., [2]; [3]); while for the case of 
developing countries the quantification of business recovery in the private sector can be even more 
challenging. It is therefore assumed that the work shown herein will only be applicable to business 
recovery in developing countries. 

 
Remote sensing and satellite imagery are very time effective methods used to determine 

loss estimation, particularly looking at damage. Haghighattalab et al. [7] used high-resolution 
satellite imaging, such as Quickbird and IKONOS, in order to classify damage and immediate 
response following the Bam, Iran earthquake in 2003. These images were used to detect damage 
on roads (such as building debris, presence of cars or collapsed trees), and consequently which 
roads were blocked. Booth et al. [8] also investigated the use of high resolution remote imagery to 
accurately demonstrate the damage of buildings after the Haiti 2010 earthquake, by comparing two 
different sets of imagery with ground observations. These images were obtained from high altitude 
aircraft with resolutions of 25cm or better and, as a result, are likely to be very costly. Damage 
detection through satellite information has become very relevant for emergency response [9] and 
this has determined significant efforts for automatic visual computation on satellite imagery [10]. 

 
A focus on road networks as an indicator of economic loss and business downtime has also 

been noted in current literature, as damage to road networks is responsible for substantial 
disruption and economic loss. Chang and Nojima [11] developed a method to measure the system 
performance of road networks after the 1995 Kobe earthquake and used length of network open 
and distance of accessible travel routes as possible performance indicators. Similarly, Contreras et 
al. used travel times as a possible indicator of recovery after the 2009 L’Aquila earthquake [12]. 
Previous investigation into road recovery by calculating the distance of usable roads in an area 
using free and open telematics data from satellite navigation software was undertaken by Endo 
and Komori, following the 2011 Tohoku Earthquake [13]. 



 
A further study into the use of pedestrian traffic as a suitable proxy for recovery of central 

building districts was undertaken by Harding and Powell [4], after the Christchurch earthquake in 
2010. They conclude, from the initial investigation, that pedestrian footfalls have the potential to 
be an indicator of business recovery. 

 
There has been a recent increase in investigations into using road networks and remote 

sensing, including satellite imagery, as ways of assessing business interruption and downtime, as 
well as damage and recovery levels. Contreras et al., after investigating the use of remote sensing, 
GIS and ground observations to monitor recovery, recommends the use of Google Earth time series 
data as an indicator of both change and progress in a post-disaster recovery progress [14].  

 
This study aims to use remote sensing from historical images available in Google Earth to 

measure long term business recovery by using traffic levels as a proxy. If extensively validated, 
this methodology would be a cost-effective indicator of business recovery in the short-term and 
long-term. This approach can then be used to help create loss estimation frameworks. To validate 
the reliability of the approach, data from interviews made in the city of Kathmandu are collected 
and compared. The preliminary aspect addressed herein is whether there is a significant correlation 
between the time different businesses were closed and the “traffic drop” as observed from satellite 
imagery in Google Earth in the same areas using a very simple regression model for traffic time-
series. The traffic drop is intended as an integral quantity of the disruption obtained analyzing the 
traffic trends after more than one year from the event. 

 
In the following, we firstly provide a general overview of the earthquake event that struck 

Nepal in April 2015, with focus on the damage observed in the city of Kathmandu (i.e., the main 
focus of this study). Then, we discuss in detail the methodological approach of this study and how 
the field data were analyzed and correlated with historical satellite imagery information from 
Google Earth. Finally, we summarize the general conclusions and further developments of this 
“proof of concept” study. 
 

The 2015 Gorkha earthquake 
 
The Mw 7.8 Gorkha earthquake occurred on April 25, 2015. Its epicenter was located 77km North 
West of Kathmandu and the event depth was 15 km. Shaking lasted for two minutes and triggered 
hundreds of aftershocks, five of which registered Mw above 6. The most significant aftershock 
occurred on May 12 (approximately two weeks after the mainshock) with the epicenter located in 
the North East of Kathmandu. The May aftershock was Mw 7.3 and caused significant additional 
damage. As expected, from the tectonic history of the area, the earthquake’s epicenter was located 
in the Eastern side of the seismic gap [15]. The Western side of the seismic gap remains unbroken 
and, therefore, it is highly likely that another major seismic event will occur there in the near future. 

 
Some secondary effects such as landslides and minor liquefaction did take place, however 

much of these were small scale and very localized, and much of the damage affected buildings. 
The severity of this damage was related to the topographic and soil conditions of Kathmandu 
Valley [16]. Fig. 1a shows the map of the average shear-wave velocity in the uppermost 30m (VS30) 
based on data available from the United States Geological Survey (USGS) and provided in [17]. 
VS30 is used as proxy for site-amplification models in many codes (e.g., [18]), and, in this 



framework, it can support damage interpretation given the lack of recorded data. Nepal has a very 
poor network of strong motion stations in place; only the records from the KATNP station were 
publicly available after the event. However, the KATNP station is in central Kathmandu, very 
close to the areas investigated herein, so the intensities discussed will be reasonably accurate (see 
Fig.1a). The response spectra recorded at the KATNP station show two main peaks: a short peak 
in the N-S component at 0.2-0.6s and a larger peak across all components at a period of 4-6s. The 
shorter peak is due to direct shaking, and the larger peak is mostly due to the basin effects of the 
Kathmandu Valley [17]. Kathmandu is located within a very deep sedimentary basin, with 
sediment reaching a maximum thickness of approximately 550m. This basin is made up of thick 
lacustrine and fluvio-lacustrine deposits (formed in the bottom of ancient lakes) and has a natural 
dominant period of 1-2s [19]. This is likely to have significantly modified the ground motion of 
the earthquake and is regarded to be the cause of the amplification at the 4-6s range. 

 

  
(a) (b) 

Figure 1.    (a) VS30 velocity map form USGS, location of KATNP station, survey areas by Goda 
et al. [17] (indicated as 1-5) and the four zones investigated in this study (indicated as 
A-D) with regards to the Kathmandu ring road (adapted from [17]); (b) Surveyed areas 
of this study under satellite imagery map of Kathmandu city cyan (zone A), orange 
(zone B), yellow (zone C), magenta (zone D). 

 
Damage 
 
The majority of building types in Kathmandu are low to mid-rise buildings which have a natural 
period of <1s and so were not affected by the long-period ground motions. It is therefore presumed 
that the short peak in the North South component at 0.2-0.6s caused the majority of the damage to 
buildings [17]. Much taller buildings (approximately ten storeys high) have a resonance period of 
1-2s and so are much more likely to resonate with the dominant period of the basin and therefore 
suffer much greater damage. Currently, only historical buildings are likely to fall into this category 
and a number of high-rise condominium recently built in the urban area. 
 

Unreinforced masonry buildings made up the majority of collapsed buildings in 
Kathmandu, particularly many historic buildings in Durbar Square. Reinforced Concrete (RC) 
buildings with masonry infills were more resistant to shaking due to their increased stiffness; these 
buildings make up approximately 28% of all buildings in urban areas like central Kathmandu [20]. 



Due to the higher numbers of RC buildings, less buildings were destroyed than in most other areas, 
but a greater percentage were partially damaged. Very high buildings also suffered significant 
damage; this can be related to the peculiar peaks in the response spectra of the earthquake. 

 
A damage survey was undertaken by Goda et al. [17] in May 2015 and areas 1, 2 and 4 

from Goda et al.’s survey coincide with zones A, C and B investigated in this study, as shown in 
Fig. 1a and Fig. 1b. Area 1 and zone A are located by Kathmandu Durbar Square, home to the 
city’s historic buildings which suffered severe amounts of damage, some even suffering complete 
collapse. However, non-historic buildings surrounding Durbar Square were undamaged, some 
suffered from minor cracking in masonry but remained structurally sound. A large portion of 
damaged housing in Kathmandu was in zone C, located in the North West of the city. This is likely 
to be due to the different soil conditions present here. Most of the damage in Kathmandu, in 
comparison to other districts, was extremely localized. Severe damage likely occurred due to local 
conditions such as soil type and poor construction practice. 

 
Methodology 

 
Our surveys were undertaken in four parts of central Kathmandu (inside the main ring road, see 
Fig. 1b) as part of a research field mission to Nepal in November 2016. Once these four areas were 
defined, the number of cars in these areas over time were counted using historic imagery freely 
available in Google Earth and provided from third party companies (e.g., DigitalGlobe) as 
documented from the software. Multiple businesses across certain roads were interviewed and data 
regarding the length of time they remained closed after the earthquake was obtained. The latitude 
and longitude of the four corners of areas A-D are shown in Table 1 along with their areas and 
number of surveyed businesses. Table 1 also provides the length of vehicle accessible roads in 
each zone, according to two different definitions for normalization of traffic flows. Normalization 
method 1 treats the main roads and ring road as twice as significant as the local roads and so the 
lengths of these are doubled. Normalization method 2 only considers the lengths of the major roads 
within the zones and the local roads are not counted. 
 

Zone A is located next to Kathmandu Durbar Square, near the center of Kathmandu. Only 
local roads pass through this area and it was expected that low level of traffic is present here. This 
area experienced some significant damage, mainly to some of the temples in Durbar Square and 
this damage is likely to be because of both their unreinforced masonry construction and also the 
height of the buildings suffering from amplification effects [20]. The population density of central 
Kathmandu is 20,287.3 people/km2 according to 2011 census data [21]. Zone B lies to the South 
of the Tribhuvan International Airport, in an area which had been newly constructed and recorded 
very little damage. This zone lies at the junction between the ring road and Araniko Highway and 
it covers the largest area; it is expected to see the highest traffic in this zone. Much of this area 
falls within the district of Kathmandu, however the Eastern section lies in the municipality of 
Madhyapur Thimi, which has a much lower population density of 7,572.3 people/km2. Zone C is 
in the Northwest of Kathmandu, with both the Bishnumati River and the ring road running through 
it. This zone is notably smaller than the others and therefore, despite having a major road running 
through it, is expected to have the smallest numbers of cars passing through. This area of 
Kathmandu has alluvial soils and so suffered from more damage than most areas of Kathmandu 
due to the soil exhibiting amplification effects of the ground motion. This zone also lies in the 
main district of Kathmandu and therefore has the same population density as zone A. Zone D is in 



South West Kathmandu, just South of the Manamati River and also has the ring road running 
directly through it. This zone lies directly next to the village of Seuchatar which has a very low 
population density in comparison to Kathmandu, i.e., 4893 people/km2. 
 
Table 1.     Summary of the location and size of the four zones considered in Kathmandu 

 

Zone Coordinate 
Latitude 
(decimal 

degrees North) 

Longitude 
(decimal 

degrees East) 

Area 
(km2) 

Road Length 
(km) 

Number of 
surveyed 

businesses 
A* B**  

Zone 
A 

1 27.705 85.308 

0.19529 3.255 2.07 23 2 27.705 85.314 
3 27.702 85.308 
4 27.702 85.314 

Zone 
B 

1 27.684 85.344 

1.3904 11.422 2.27 29 2 27.684 85.360 
3 27.676 85.344 
4 27.676 85.360 

Zone 
C 

1 27.736 85.304 

0.081576 1.781 0.48 24 2 27.736 85.308 
3 27.734 85.304 
4 27.734 85.308 

Zone 
D 

1 27.699 85.279 

0.163344 2.203 0.73 11 2 27.699 85.284 
3 27.696 85.279 
4 27.696 85.284 

*Normalization method 1 **Normalization method 2 
 
Satellite business recovery evidence: “car counting” 
 
In order to investigate a difference in traffic trends before and after the April 25 earthquake, cars 
were counted from historical imagery between January 2014 and April 2016 (see Fig. 2). Overall, 
between 2014-2016, 22 historical images were available in Google Earth and of these, two were 
unusable for all four zones (see the strikethrough dates in Fig. 2). This is due to either being too 
dark to accurately interpret them or because of cloud cover. In Google Earth, a boundary was 
drawn between the four coordinates marking the corners of the zone and cars laying within this 
zone were counted (see Fig. 3). Only cars located completely inside the boundary lines were 
counted to ensure consistency. Both numbers for parked and moving cars were collected and it 
was assumed that any car present on a road was moving. Both cars and lorries were present in 
these images and could be identified by the difference in size and therefore both types of vehicle 
were counted. There were also many smaller black marks on the roads and it was assumed these 
were motorbikes or similar, which are very common in Kathmandu. However, because of the 
difficulty in identifying them accurately, they were omitted. 
 

Fig. 3 shows an example of the vehicles counted for Zone C on two different days. No 
information was available in relation to the time of day the images were recorded; however, it was 
assumed that they were all taken at roughly the same time of day. This is because, despite there 
are differing light levels in the images, the shadows are all facing the same direction in the majority 
of the images and only vary about 2m in length. It should also be noted that images can only be 



taken when the sun is reasonably high in the sky in order to obtain viewable images [22] and so 
they are likely to be taken roughly at the same time of day, possibly mid-late morning, due to the 
shadows forming on the west side of the buildings. 
 

 
Figure 2.    Timeline showing dates of historical images available, including the zones for which 

they were used, the date of the earthquake and its main aftershock (see the red stars), 
the unusable images struck through, and in bold the dates used as example in Fig. 3. 

 

  
(a) (b) 

Figure 3.    Example of car counting for Zone C for (a) 03/03/14; (b) 27/04/15. Note: pictures have 
been corrected for improved clarity. (Source Digital Globe through Google Earth). 

 
Field Data 
 
The survey results were compiled into a database to assess the business types, and length and 
reason of closure in each zone. The trend of most note is the average length of business closure, 
shown in Fig. 4. The only reason for closure in both zones A and B was due to damage (or an 
unspecified reason). Damage is the biggest reason for closure in zone D and it was the reason that 
resulted in the longest closures. A higher percentage of businesses closed due to damage in zones 
C and D. Damage was responsible for the highest average downtime for zone D. However, a lack 
of demand was responsible for the longest average business closures in zone C, possibly since it 
is furthest from the center of Kathmandu. Another important reason for closure is scare; this is 
only significant in zones C and D. The businesses were split into three different subcategories: 
“food and health” such as bakeries, groceries or pharmacies; “other commercial businesses” such 
as manufacturing, clothing and jewelry shops; and “services”, such as banks or travel agencies. 
Fig. 4 shows the distribution of downtime within these subcategories. Only zones B and D had 
services and this business type seemed to be the most significant contribution to business closure 
for zone D. On the other hand, due to the lack of data for these categories in zones A and C they 
cannot be used in relation to the traffic flow estimated in the four zones. 



 
Figure 4.    Average downtime for each zone and split according to the three business categories 

considered as per data collected by the authors in November 2016. 
 
Preliminary Data Analysis 
 
Moving and parked car numbers are collected; however, analysis was only made on the total 
number of cars. This distinction has been made for potential further automatization of the traffic 
flow counting and to have the possibility, in future studies, to double check if moving cars are 
enough as proxy for business recovery time. An idealized version of these trends was then created 
(see Fig. 5a). There appeared to be two different trends within each zone: a fluctuation around an 
average value before the earthquake, then an increasing linear trend after the earthquake. Treating 
the car numbers before and after the earthquake as two different data sets resulted in a straight-line 
average up to the earthquake and an increasing linear trend after it, resulting in the computation of 
a drop (i.e., the step in Fig 5a). The drops for each zone were then normalized by dividing them 
by the length of the roads present in each zone. Two different definitions of road length are used 
in order to obtain two different normalization methods. Normalization 2 is the most suitable 
method. In this method, zone B has the most cars per km out of all the zones and this reflects the 
fact that the extremely busy ring road makes up most of the road lengths in zone B. Similarly, zone 
A is the only area without the ring road running through it and it is expected to have much less 
dense traffic, which is reflected in this normalization by having the lowest car/km by a significant 
amount. 

 

 
 

(a) (b) 
Figure 5.    (a) Idealized trend for normalization 2 and (b) correlation plot of businesses closure 

and drop in car numbers. 
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The drop in car number is then used as a proxy for downtime and compared to the average 
downtime per area. This drop does not represent necessarily a reduction of traffic right after the 
event (e.g., hours or days) but an integral measure of the traffic disruption over a longer period 
after the event (e.g., one year) resulting from the modelling of the trend before (constant) and after 
(linear) making it suitable to be correlated with the business downtime. It is worth noting that 
traffic flows in the hours or the first days after a strong earthquake do not necessarily go suddenly 
down and the drop trend can appear after weeks. To gain an accurate representation of business 
recovery, a comparison was drawn between overall average downtime and the subcategories of 
Food and Health and Commercial businesses (see Fig. 5b). To investigate the strength of 
correlation, Pearson’s correlation coefficient for each normalization method was calculated. The 
coefficients obtained for both normalization methods were positives, as shown in Table 2. 
 
Table 2.     Correlation coefficients for the two normalization methods. 
 

 Overall Food and Health Commercial 
Normalisation 1 0.7570 0.9032 0.6210 
Normalisation 2 0.8434 0.9336 0.8306 
Normalisation Area 0.6012 0.7891 0.7054 

 
Conclusions and Developments 

 
The initial results of this study suggest a very strong positive correlation between the drop in traffic 
after the earthquake and the average downtime experienced in an area by small private businesses. 
Although very limited amount of data could be obtained to make this correlation, the strength of 
it suggests that it can be valid, even if further analyses are necessary on the variability of the traffic 
data to assess the significance of the regression on these trends. Highest correlation was found 
between the drop in traffic and the downtime of businesses in the food and health category, (having 
a correlation coefficient of 0.9336). Food and health businesses are those fundamental for any real 
recovery of business activity in an area and this strong correlation confirms an intuitive 
observation. To test whether this result is a fluke, it is suggested that the same normalization 
methods are applied to an area with similar traffic levels and level of development, with a random 
date of a supposed event. This approach can be employed in urban areas where the traffic levels 
are significant, so that any decrease in numbers is clear, and it is best applicable to developing 
countries where car numbers are more likely to represent the activity of local businesses. In fact, 
in developed countries, the absence of cars does not necessarily represent a lack of business activity 
given the presence of alternative means of transport such as undergrounds or similar. Moreover, a 
sufficient number of Google Earth historical images is only available for developing countries, so 
any further application and validation, at this stage, can be done only in developing countries. 
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