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Abstract

We compare two popular scenario tree generation methods in the
context of financial optimization: Moment matching and scenario re-
duction. Using a simple problem with a known analytic solution, we
find that moment matching – accompanied by a check to ensure ab-
sence of arbitrage opportunities – replicates this solution precisely. On
the other hand, even if the scenario trees generated by scenario reduc-
tion are arbitrage-free, the solutions to the approximate optimization
problem represented by the reduced tree are biased and highly vari-
able. These results hold for correlated and uncorrelated asset returns,
as well as for normal and non-normal returns.

Keywords: Scenario trees; No-arbitrage; Financial optimization; Moment
matching; Scenario reduction

1 Introduction

Scenario trees are used in many optimization models as a discrete approxima-
tion to a continuous distribution. We consider two approaches which have
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been applied in the literature: moment matching (see, e.g., Høyland and
Wallace, 2001; Høyland et al., 2003) and scenario reduction methods (see,
e.g., Pflug, 2001; Heitsch and Römisch, 2003).1 The latter seem appealing
for two reasons: First, they explicitly aim at an optimal approximation in
a sense to be described below. Second, they try to overcome the curse of
dimensionality which frequently arises in multi-stage financial optimization
problems: Including many time steps and many different assets quickly ren-
ders the optimization problem computationally intractable. This makes a
method which generates discrete approximations using sparse scenario trees
very desirable.

Geyer et al. (2010) focus on applications of stochastic programming in
multi-stage financial optimization, and show that scenario reduction may lead
to meaningless results if arbitrage opportunities are present in the reduced
scenario tree used for optimization. Obviously, arbitrage must be excluded
from the scenario tree whenever this is theoretically required (by the subject
under investigation). Geyer et al. (2010) point out that the principal idea
behind scenario reduction implicitly assumes the absence of arbitrage. Our
main goal here is to assess the quality of scenario reduction after the trees
have been checked to be free of arbitrage.

In this paper we focus on multi-stage and multi-asset financial optimiza-
tion, and compare moment matching and scenario reduction algorithms.
Somewhat surprisingly, numerical comparisons of optimization results based
on scenario reduction algorithms to known analytical solutions in this context
do not seem to exist in the literature. We confine ourselves to arbitrage-free
trees generated by the two approaches and compare the optimal solutions of
these approximate problems to the closed-form solution. As a main result we
find that moment matching provides highly accurate results, whereas results
from scenario reduction (using the same number of scenarios) may be biased
and show very high variance. This applies even if all branching factors in the
trees are well above the minimum requirement in order to rule out arbitrage
opportunities. Applying a more severe reduction makes the results far worse.
Moment matching clearly remains superior for asset returns being correlated
or not, as well as for normal, skewed and/or leptokurtic distributions.

The paper is organized as follows: Section 2 briefly sketches the two
approaches considered for scenario tree generation, moment matching and
scenario reduction. Section 3 discusses ways to ensure the absence of ar-

1For an overview, see Heitsch and Römisch (2009, p. 372f.).
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bitrage in scenario trees. The numerical comparison of the two approaches
based on a simple example with a known closed-form solution is presented
in Section 4. Section 5 concludes.

2 Scenario Tree Generation

Using the notation in Pflug (2001) and the terminology of multi-asset finan-
cial optimization (e.g., portfolio management or asset-liability management),
the purpose of scenario generation can be described as follows: Given an op-
timization problem under uncertainty described by a (usually continuous and
multivariate) asset return distribution G, we want to generate a scenario tree
discretization G̃ such that the objective function F (x) of the original and the
objective F̃ (x) of the discretized optimization task are close in some sense.
Whereas the original problem is in many cases computationally intractable,
the discretized tree representation of the problem is tractable if the tree is
sufficiently small (depending on the application, say, on the order of 105 or
106 scenarios).

One approach to achieve this is to construct the approximated return
distribution G̃ to be similar to the original distribution G in the sense that
the first few moments of G̃ and G are identical or at least close, and then
essentially “hope” that this similarity carries over to the optimization result.
This is known as moment matching and is described, e.g., in Høyland and
Wallace (2001); Høyland et al. (2003). Absent further assumptions on the
objective function, the approach is rather ad hoc and there is no general
theoretical result on the quality of the approximation of the original objective
function F (x) by that of the approximated problem, F̃ (x). For reasonably
well-behaved objective functions, however, moment matching has been found
to work well (see, e.g., Topaloglou et al., 2008), although counterexamples
where the approach leads to bad solutions are also known from the literature
(Hochreiter and Pflug, 2007).

Conceptually more appealing and theoretically well-founded, Pflug (2001)
suggests an approach to define an optimal discretization G̃ in terms of the
difference between F (x) and F̃ (x). He shows that the goal of minimizing
supx |F (x)− F̃ (x)| (i.e., minimizing the worst-case difference between origi-
nal and approximated objective function) is equivalent to the minimization
of the Wasserstein distance between G and G̃. As the title of Pflug (2001)
implies, he recommends this approach in particular for financial optimization
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problems. So-called scenario reduction algorithms based on this or concep-
tually related ideas have been implemented in software modules, e.g., as part
of GAMS (see, e.g., Heitsch and Römisch, 2003, 2009). Applications using
scenario reduction algorithms can be found in, e.g., Bertocchi et al. (2006),
Hochreiter and Pflug (2007), and Rasmussen and Clausen (2007).

3 Arbitrage and Scenario Trees

For optimization models using tradable assets there is an additional require-
ment from financial theory: Arbitrage opportunities must be ruled out in
order to arrive at meaningful results (see Klaassen, 2002; Geyer et al., 2010).
Therefore, unless scenario trees are guaranteed to be arbitrage-free by con-
struction, they have to be checked for arbitrage opportunities. Only trees
which pass this test can be used in the subsequent optimization. A neces-
sary condition for the absence of arbitrage is that the branching factor (i.e.,
the number of arcs emanating from a node) at each node of the tree must
be greater than or equal to the number of non-redundant assets in the op-
timization problem (see Geyer et al., 2010, for a more formal exposition).
Intuitively, more assets than states provide excess degrees of freedom, which
can be exploited to form arbitrage portfolios.

For moment matching, it is straightforward to implement this necessary
condition by imposing the minimum branching factor for each node of the
tree. However, since the condition is not sufficient, trees constructed in this
way may still admit arbitrage opportunities. A very simple approach to
ensure the absence of arbitrage is to construct a tree, check it for arbitrage,
and discard it if arbitrage opportunities are detected. This procedure is then
repeated until an arbitrage-free tree is found (essentially, this combines the
ideas of Høyland et al. (2003) and Klaassen (2002)).

Depending on how aggressively scenario reduction methods are tuned,
they may arrive at rather sparse trees. Several authors (see, e.g., Bertoc-
chi et al., 2006; Hochreiter and Pflug, 2007; Rasmussen and Clausen, 2007)
generate sparse scenario trees without discussing or taking the no-arbitrage
requirement into account. In fact, applying existing implementations of sce-
nario reduction techniques entails a high risk of arriving at scenario trees
which admit arbitrage opportunities: As soon as the branching factor for at
least one node in the tree is smaller than the number of assets, arbitrage
opportunities must arise (see Geyer et al., 2010). This is complicated by the
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fact that existing implementations of scenario reduction algorithms do not
allow the user to control the branching factor for each node in the tree, but
only the overall tree structure (e.g., six nodes in the second stage and 36
nodes at stage 3, but there may well be one node at stage 2 with only three
successors and another node at stage 2 with nine successors).

Transferring the idea in Klaassen (2002) to scenario reduction algorithms,
one approach to arrive at arbitrage-free trees using scenario reduction is to
impose lower bounds on the tree size which would in principle admit the
resulting trees to be free of arbitrage. The generated trees can then be
checked for arbitrage opportunities, and this procedure is repeated until a
tree passes the no-arbitrage test. This emphasizes once again that “extremely
sparse” trees are not compatible with the no-arbitrage condition of many
financial optimization models, which requires that the branching factor be
greater than or equal to the number of non-redundant assets.2 This does
not apply to other areas where severe reduction of tree sizes using scenario
reduction methods may still be valuable.

4 Numerical Example

It is quite common to test newly devised numerical methods using problems
with known analytical solutions. Surprisingly, we could not find any results
on the accuracy of scenario reduction methods when applied to such proto-
type problems in the context of financial optimization. We fill this gap by
building on and extending a numerical example from Geyer et al. (2010, p.
612), where the asset allocation is optimized at two decision stages (t=0 and
t=1) in order to maximize expected log utility of terminal (T=2) wealth for
normally distributed and uncorrelated asset returns. Testing both scenario
generation methods in this simple, well-known framework allows for a com-
parison of the numerical results with the correct analytical solution. In a
second step, we investigate the stability of both methods when asset returns

2For trees with arbitrage opportunities the supremum of the distance between the ob-
jective function F (x) of the original and the objective F̃ (x) of the discretized optimization
problem, which is required in the derivation of scenario reduction algorithms (see, e.g.,
Pflug, 2001; Heitsch and Römisch, 2003), does not exist. Moreover, a scenario reduction
algorithm which accounts for a minimum branching factor requires a constrained mini-
mization of the Wasserstein distance. Deriving such a constrained solution in closed form
does not seem to be a trivial task, and we do not aim to pursue this issue in the present
paper.
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are correlated and non-normal (i.e., skewed and leptokurtic).

4.1 Base Case: Uncorrelated, Normally Distributed
Asset Returns

The investment universe in the base case consists of three normally dis-
tributed, uncorrelated risky assets with expected returns of 8% and standard
deviations of 25% in each stage. Since the assets have identical properties,
the analytical solution to this problem is to allocate 1/3 of available wealth
to each asset in each stage. For a starting wealth of 1, the optimal value of
the objective function is 0.2.

For trees based on moment matching, a minimum branching factor of
six is required to match the first four moments of the marginal asset re-
turn distributions together with the pairwise correlation of zero. Applying a
branching factor of six to a two-stage problem yields 36 scenarios (tree struc-
ture 1-6-36). To examine the statistical properties of optimization results,
we use 1000 trees per method and size of the starting fan (only relevant for
scenario reduction). To arrive at these 1000 trees, we repeat the following
procedure: Generate trees, check for arbitrage opportunities, and discard
those where arbitrage opportunities are present. This sequence is repeated
until 1000 arbitrage-free trees are found.

To avoid problems associated with erroneous own implementations we
rely on publicly available packages for moment matching as well as scenario
reduction. For moment matching we use the Hoyland et al (2003) algorithm
as implemented in the executable file provided by one of the authors.3 The
scenario reduction trees are generated using the tree con algorithm of the
SCENRED 2 package which comes with GAMS. With this algorithm, we
can only impose the total number of nodes per stage (e.g., 6 nodes in stage 2
and 36 in stage 3), but not the branching factor for each individual successor
node. To put both methods on an equal footing, we begin by imposing a tree
structure of 1-6-36. This is well above the minimum tree structure required
for the absence of arbitrage (1-3-9). tree con starts with a fan of Monte-Carlo
simulated paths, the size of which can be chosen by the user. We examine
the impact of the starting fan size on the accuracy of the optimization and on
the fraction of arbitrage-free trees for varying the fan size between 250 and
2000 paths. Since trees which allow for arbitrage are discarded, all results

3http://work.michalkaut.net
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are based on 1000 arbitrage-free trees for both methods.
Table 1 shows that optimization using trees generated via moment match-

ing yields highly accurate results (standard deviations are practically zero).
In contrast, although scenario reduction leads to unbiased asset allocations,
their standard deviations are high.4 Even for large starting fan sizes, the
coefficient of variation (standard deviation divided by the mean) of optimal
asset allocations derived via scenario reduction is around 2. Objective func-
tion values show an upward bias which decreases slowly as the starting fan
size increases.

Existing scenario reduction algorithms do not allow for controlling the
branching factor at each node of the tree. This results in different branching
factors at stage 2 for this method, whereas the branching factor for moment
matching is six for all nodes at this stage. This may cause part of the in-
creased standard deviations we observe for objective values from scenario
reduction and might be overcome by improvements in future implementa-
tions of this method. The higher standard deviation of asset allocations,
however, cannot be attributed to this shortcoming of existing implementa-
tions of scenario reduction: The branching factor at the root node is six for
both methods and we are using log utility, which implies myopic solutions.
Hence, the initial asset allocation does not depend on the asset allocation
at later stages, and the increased standard deviation of the initial asset al-
location we observe for scenario reduction cannot be attributed to unequal
branching factors at the final stage.

Larger starting fans increase the chance of arriving at arbitrage-free trees:
First, because the number of trees discarded due to an insufficient branching
factor for at least one node decreases quickly. For a starting fan size of 1000
or 2000 scenarios, no tree generated via scenario reduction fails this first-
stage arbitrage test. Second, the number of trees admitting arbitrage despite
meeting the minimum branching factor requirement also decreases, as shown
in the second-to-last column. Computing time, however, increases markedly
for larger starting fans, whereas it is almost the same for starting fan sizes
250 and 500.

Note that our procedure of repeating the tree generation 1000 times only
serves to consider bias and standard deviation of the optimization results. In
practice, the procedure is meant to be applied only once. Figure 1 illustrates

4Note that we only provide the initial (t=0) asset allocations. Asset allocations at t=1
show even higher variance for scenario reduction.

7



T
ab

le
1:

M
ea
n
s
an

d
st
an

d
ar
d
d
ev
ia
ti
on

s
(i
n
b
ra
ck
et
s)

of
op

ti
m
iz
at
io
n
re
su
lt
s
fo
r
th
e
b
as
e
ca
se

u
si
n
g
sc
en
ar
io

re
d
u
ct
io
n
w
it
h
a
tr
ee

st
ru
ct
u
re

of
1-
6-
36

(S
R
,
u
p
p
er

p
ar
t)

an
d
m
om

en
t
m
at
ch
in
g
w
it
h
th
e
sa
m
e
st
ru
ct
u
re

(M
M
,
la
st

li
n
e)
,
b
ot
h
fr
om

10
00

ru
n
s
p
er

se
tt
in
g.

C
ol
u
m
n
s
sh
ow

th
e
si
ze

of
th
e
st
ar
ti
n
g
fa
n
,
th
e
ob

je
ct
iv
e

va
lu
e
at

op
ti
m
u
m
,
an

d
th
e
op

ti
m
al

t=
0
al
lo
ca
ti
on

to
as
se
ts

1
an

d
2.

A
n
al
y
ti
ca
l
so
lu
ti
on

:
ob

je
ct
iv
e
va
lu
e

0.
2;

as
se
t
al
lo
ca
ti
on

1/
3
to

ea
ch

as
se
t
(n
ot
e
th
at

x
3
=

1
−

x
1
−

x
2
).

T
h
e
si
x
th

co
lu
m
n
sh
ow

s
th
e
sh
ar
e

of
ar
b
it
ra
ge
-f
re
e
tr
ee
s
in

th
e
to
ta
l
n
u
m
b
er

of
tr
ee
s
ge
n
er
at
ed

(c
om

p
u
te
d
fr
om

th
e
n
ex
t
tw

o
co
lu
m
n
s;

tr
ee
s

w
h
ic
h
ad

m
it
te
d
ar
b
it
ra
ge

op
p
or
tu
n
it
ie
s
w
er
e
d
is
ca
rd
ed

an
d
d
id

n
ot

in
fl
u
en
ce

an
y
of

th
es
e
re
su
lt
s)
.
T
h
e

n
ex
t
tw

o
co
lu
m
n
s
sh
ow

th
e
re
as
on

fo
r
d
is
ca
rd
in
g
tr
ee
s:

ei
th
er

th
e
m
in
im

u
m

b
ra
n
ch
in
g
fa
ct
or

w
as

to
o
sm

al
l,

or
a
p
os
it
iv
e
st
at
e
p
ri
ce

ve
ct
or

co
u
ld

n
ot

b
e
fo
u
n
d
.
In

to
ta
l,
16
82

tr
ee
s
h
av
e
b
ee
n
ge
n
er
at
ed

to
ob

ta
in

th
e

re
su
lt
s
in

th
e
fi
rs
t
ro
w
.
T
h
e
fi
n
al

co
lu
m
n
in
d
ic
at
es

th
e
av
er
ag
e
ti
m
e
in

se
co
n
d
s
re
q
u
ir
ed

to
co
m
p
u
te

an
ar
b
it
ra
ge
-f
re
e
tr
ee

(i
n
cl
.
op

ti
m
iz
at
io
n
,
on

an
In
te
l
i7
-2
60
0,

3.
4
G
H
z,

3
G
B

R
A
M
). d
is
ca
rd
ed

b
ec
a
u
se

o
f

b
ra
n
ch
in
g

st
a
te

M
et
h
o
d

F
an

si
ze

O
b
j.
va
lu
e

x
1

x
2

A
rb
.
fr
ee

fa
ct
o
r

p
ri
ce

ti
m
e

S
R

25
0

0
.2
5
(0
.0
3)

0
.3
2
(0
.7
0)

0
.3
5
(0
.7
0
)

5
9
%

2
8

6
5
4

2
.8

S
R

50
0

0
.2
3
(0
.0
2)

0
.3
5
(0
.5
8)

0
.3
3
(0
.5
9
)

8
2
%

7
2
1
4

2
.9

S
R

10
00

0
.2
2
(0
.0
2
)

0
.3
2
(0
.6
4)

0
.3
3
(0
.6
2
)

9
5
%

0
5
7

7
S
R

20
00

0
.2
1
(0
.0
2)

0
.3
7
(0
.6
1)

0
.3
2
(0
.6
4
)

9
8
%

0
2
2

5
0

M
M

0
.2
0
(4
.3
E
–0
6)

0
.3
3
(1
.0
E
–0
4)

0
.3
3
(8
.5
E
–
0
5
)

1
0
0
%

0
0

0
.2

8



Allocation for asset no. 1 in percent

F
re

qu
en

cy

−200 −100 0 100 200 300 400

0
10

0
20

0
30

0
40

0

Figure 1: Histogram of the optimal asset allocation for asset no. 1 based on
1000 runs using a 1-6-36 tree structure generated via scenario reduction from
a starting fan of 2000 paths.

that due to the large standard deviation the quality of the solution actually
observed for a single run becomes rather arbitrary (the dashed line indicates
the analytical optimum of 1/3). For the setting in Figure 1 we find that
in more than two thirds of all cases, at least one of the asset weights even
becomes negative.

Table 1 shows that although tree reduction is not exploited to its fullest,
optimal asset allocations have high standard deviations. If we try to exploit
the full potential of scenario reduction in terms of substantially reducing
the tree size, the minimum tree size for which arbitrage-free trees may (po-
tentially) be found is 1-3-9 (given the minimum required branching factor
of three for each node). We repeat the exercise laid out above for this re-
duced tree size. Table 2 shows that the fraction of arbitrage-free trees declines
sharply compared to Table 1. Moreover, the standard deviations of asset allo-
cations increase enormously, leading to coefficients of variation of around 10.
Computing times increase markedly compared to the larger 1-6-36 tree struc-
ture: While the time for computing a single tree decreases with the smaller
tree size, the average time required for constructing an arbitrage-free tree
increases due to the large number of trees that have to be discarded.
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Table 3: Means and standard deviations (in brackets) in percent, computed
across 1000 arbitrage-free trees generated by scenario reduction, of means
and standard deviations of asset 1 returns. The values of the original return
distribution are µ=8% and σ=25%.

tree structure 1-3-9 1-6-36
starting fan size 500 2000 500 2000
1st stage mean 7.97 (3.16) 8.05 (2.96) 8.06 (1.58) 8.11 (1.60)

s.d. 15.3 (5.46) 15.4 (5.25) 18.0 (2.90) 17.9 (2.70)
2nd stage mean 8.03 (1.84) 8.06 (1.64) 8.00 (0.76) 7.98 (0.68)

s.d. 15.9 (3.19) 15.8 (2.88) 19.6 (1.21) 18.5 (1.10)

Analyzing the statistical properties of the simulated returns in the trees
provides some interesting insights. With moment matching, means and stan-
dard deviations of asset returns on the trees correspond exactly to the target
values (µ=8% and σ=25% for all assets). Table 3 compares means and stan-
dard deviations for asset returns generated by scenario reduction, both for
1-3-9 and 1-6-36 tree structures and selected starting fan sizes. With respect
to the mean of the asset return distribution, trees generated by scenario re-
duction are unbiased. However, standard deviations of return distributions
in the trees are biased downwards, with the bias increasing for smaller tree
sizes: Instead of the pre-specified σ=25%, the 1-3-9 trees yield standard devi-
ations of around 15-16%, while the 1-6-36 trees lead to standard deviations of
around 18-20%. This fact explains the higher expected utility in the objective
function (above the theoretical maximum of 0.2 in our example). The stan-
dard deviations of parameters decrease markedly for larger trees and slightly
for increasing starting fan size. While exact matching of return properties is
not the goal of scenario reduction methods, the high variation in both pa-
rameters may explain the high variation in the optimal asset allocation using
trees generated via scenario reduction.

4.2 Extensions: Effects of Correlation and Higher Mo-
ments

The base case example assumes uncorrelated asset returns, which may be
viewed as an unrealistic simplification. Moreover, empirical asset return dis-
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Table 4: Correlations for asset returns in the extended numerical example
asset 1 2 3

1 1 –0.3 –0.2
2 –0.3 1 0.6
3 –0.2 0.6 1

tributions are often found to be skewed and leptokurtic. Therefore, in this
section we first investigate the effect of correlations on the precision of asset
weights computed from scenario trees generated by moment matching and
scenario reduction. In a second step, we also consider skewed and leptokurtic
asset returns.

Maintaining the assumption of normally distributed asset returns with
µ=8% and σ=25%, we now assume the correlation matrix for assets 1–3
shown in Table 4, which is taken from Høyland and Wallace (2001, Table 3).
In this case the closed-form solution for the optimal asset allocation is x =
(0.46, 0.33, 0.21). In order to match non-zero correlations, we increase the
tree structure to 1-7-49 for moment matching. We use the same tree size for
scenario reduction to put both methods on an equal footing again. Similar in
structure to Table 1, Table 5 provides the results for 1000 optimization runs
based on scenarios generated by scenario reduction (for different fan sizes,
first four lines) as well as scenarios generated by moment matching (bottom
line) when using the correlations in Table 4.

Comparing Table 5 to Table 1 shows that moment matching still yields
unbiased results. Standard deviations of asset weights are higher than in
the uncorrelated base case, but the precision is still very high (coefficients of
variation are on the order of 3–4%). In contrast, for scenario reduction, stan-
dard deviations of asset weights increase enormously, leading to coefficients
of variation ranging up to 17 for x2 and a fan size of 500, as compared to
roughly 2 in the base case. Hence, for correlated asset returns, optimization
results based on trees generated by scenario reduction are far worse than
the results for uncorrelated asset returns. For scenario reduction, the stan-
dard deviations for the asset allocations x2 are around five times as large as
for x1. We do not find such differences for the standard deviations of asset
allocations for moment matching, and take this as another indicator in its
favor.

Finally, we consider skewed and leptokurtic asset return distributions.
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We use skewness of (0.49,–0.75,–0.74) from Høyland and Wallace (2001, Ta-
ble 2), and we deliberately choose a kurtosis of 4 for all assets. These input
parameters require a branching factor of 8 for moment matching, so we use
a tree structure of 1-8-64 for both methods. While no analytical solution is
available for this case, coefficients of variation for asset allocations from mo-
ment matching improve (compared to the base case) to 10−3, while those for
scenario reduction remain orders of magnitude higher. These assumptions re-
garding non-normality are rather moderate. Without presenting any further
details we conjecture that more extreme (and more realistic) assumptions
about skewness and kurtosis would not make comparisons more favorable to
scenario reduction.

5 Conclusions

We have applied publicly available implementations of moment matching and
scenario reduction methods to a small multi-stage, multi-asset financial opti-
mization problem. Our goal was to compare the two methods numerically on
a problem with a known (closed-form) solution to assess their suitability for
this class of problems. Our results show that, even after ensuring the absence
of arbitrage and for comparatively large trees, optimization results based on
scenario reduction fluctuate widely. In contrast, for comparable tree sizes,
moment matching exactly replicates the analytically known asset allocation.
Moment matching yields very precise asset allocations for correlated and un-
correlated as well as for normal and non-normal assets returns, whereas those
based on scenario reduction are biased and strongly fluctuating.

References
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