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Abstract

Companies increasingly use business process modeling for documenting and redesigning their operations.

However, due to the size of such modeling initiatives, they often struggle with the quality assurance of their

model collections. While many model properties can already be checked automatically, there is a notable gap

of techniques for checking linguistic aspects such as naming conventions of process model elements. In this

paper, we address this problem by introducing an automatic technique for detecting violations of naming

conventions. This technique is based on text corpora and independent of linguistic resources such as WordNet.

Therefore, it can be easily adapted to the broad set of languages for which corpora exist. We demonstrate the

applicability of the technique by analyzing nine process model collections from practice, including over 27,000

labels and covering three di↵erent languages. The results of the evaluation show that our technique yields

stable results and can reliably deal with ambiguous cases. In this way, this paper provides an important

contribution to the field of automated quality assurance of conceptual models.

Keywords: Process Modeling Guidelines, Naming Convention Checking, Natural Language Processing,

Process Model Quality

1. Introduction

Nowadays business process modeling plays an important role in many organizations [17]. Business process

models are for instance used for documenting business operations or supporting the analysis and design of

information systems [43]. The strong uptake of process modeling in industry has lead to huge modeling

initiatives which often result in thousands of process models [73]. Such an amount of models raises the
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question of how to assure the quality of these models. A specific problem here is the fact that many modelers

in practice are not su�ciently trained and that a significant share of process model collections from practice

contains errors [57].

In order to cope with these challenges organizations introduce modeling guidelines capturing di↵erent

details on how processes should be modeled. The complexity of such guidelines is often a factor that makes

manual enforcement and compliance checking di�cult. Several quality aspects can be easily checked in an

automated fashion. For instance, formal process properties such as soundness or the absence of deadlocks

can be reliably and e↵ectively checked [84, 90]. Such automatic analyses are precise and can also be applied

on large process model collections in a short amount of time. However, while many formal and control-flow

based aspects are well understood, there is a notable gap for checking linguistic aspects such as naming

conventions. This is a serious problem since the importance of text labels for the understanding of a process

model has been clearly demonstrated in prior research [26, 59]. Hence, an automated solution for checking

naming conventions would significantly help to improve the overall quality of process models in practice.

While refactoring of activity labels has been discussed in prior research [53], there are several challenges

that hinder the application of automatic label analysis on a broader scale. Label analysis is typically

conducted for English process models. Accordingly, any approach for English models can benefit from the

rich set of freely available natural language processing tools for the English language, such as the lexical

database WordNet for the English language [62]. Although there exist many WordNet solutions for several

languages1, these tools significantly vary with respect to completeness, quality and availability. For instance,

the English Wordnet covers 155,287 words, while the German GermaNet only covers 93,407 words. In

addition, many WordNet solutions do not always cover morphological rules. Hence, a word will be only found

in the database if it is given in the base form, e.g. a noun in the singular or a verb in the infinitive. On top

of that, most WordNet databases for other languages cannot be freely accessed. As a result, models created

with text labels in other important languages such Portuguese, Spanish, or German cannot be checked with

prior solutions.

In this paper we address these problems by introducing a flexible technique for automatically checking

naming conventions in process models. This technique does not depend on WordNet and can hence be

adapted to other languages. In order to demonstrate the applicability of the technique, we conduct an

extensive evaluation with in total nine process model collections from practice. The employed collections

contain English, German, and Portuguese labels in order to illustrate the language independence of this

technique.

Building on the recommendations from [88, 89], the remainder of this paper is structured as follows.

Section 2 discusses the background on process modeling guidelines and the potential of natural language

1http://www.globalwordnet.org/gwa/wordnet table.html
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for checking linguistic guideline aspects. In addition, we investigate the di↵erent label styles of process

model elements. Section 3 defines a technique for automatically checking naming conventions in a language

independent manner. Section 4 presents the results from the empirical evaluation of the nine process model

collections. Finally, section 5 concludes the paper and gives an outlook on future research.

2. Background

In this section, we discuss the research background. First, we summarize the general idea of establishing

process modeling guidelines. Then, we discuss the potential of natural language processing for guideline

checking. Finally, we identify di↵erent styles for labeling process model elements in di↵erent languages.

2.1. Process Modeling Guidelines

Process modeling guidelines aim at assuring the quality and consistency of process models which are

created by di↵erent and heterogeneously skilled users. They capture best practices which have proven to

be beneficial to support readers in understanding the models [29, 76, 1]. In their simplest forms, they can

be formulated as rules such as “A model must have one start event” or “A model should not make use of

complex gateways.” The rationale behind such guidelines is the insight that some modeling practices are

easier to understand and hence are superior in terms of clarity.

Guidelines refer to di↵erent aspects of process models. Four of the major aspects are formal model

properties, model layout, the use of modeling elements and the use of natural language. Thereby, formal

model properties refer to the correctness of the model structure. It is often suggested to keep a model as

structured as possible [58] and to avoid deadlocks [83]. The model layout discusses the proper arrangement

of the elements. Good layout typically minimizes the number of crossing arcs and utilizes a clear direction

of flow either from right to left or from top to bottom [74]. The usage of modeling elements dimension

defines which elements should or should not be used. Languages like BPMN o↵er di↵erent options to express

the same behaviour [70], so one option might be preferred. Elements with complicated semantics might be

forbidden in order to guarantee a good model understanding also by unexperienced model readers [76]. The

usage of natural language can be considered from two perspectives. The first refers to the set of terms which

can be used in the model. Some guidelines try to ensure the term consistency by introducing glossaries [67]

or forbidden unspecific verbs [74]. The second perspective is concerned with the structure in which these

terms are presented in the label. Guidelines usually suggest certain naming conventions as for instance the

verb-object style for activities [59].

In order to illustrate these dimensions and to discuss in how far they can be automatically checked,

we consider the exemplary BPMN process model from Figure 1. The process starts with a start event

which is then followed by the activity Cost Planning and proceeds with an XOR-split gateway. Such a
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Figure 1: Example Model

diamond-shaped element defines a decision point such that either the upper or the lower branch of the

process will be executed. Accordingly, either the activity Plan Data Transfer or the activity Recalculation

of Costs is conducted. Afterwards, the control is passed to the XOR-join gateway. This diamond-shaped

element waits for one of the incoming branches to complete. Once one branch has been executed, the process

continues with the activity Get Approval for Expenses before the process is terminated. It is quite apparent

that this exemplary process model contains some considerable weaknesses which may prevent a reader from

understanding it correctly.

Starting with the formal properties perspective, we might want to check whether the process model su↵ers

from structural errors like deadlocks. In fact, such formal issues are well-understood and can be e�ciently

checked in an automatic way using Petri-net concepts [25]. Further techniques area available for checking the

correctness of the data flow [79, 87, 75] or the satisfiability of resource constrains [9, 15, 78]. Also automatic

techniques for refactoring model structure are available [86, 68]. The layout of the model can be discussed in

terms of flow direction and crossing arcs. The depicted model appears to be well organized according to

these criteria. Poorly arranged models can be laid out using concepts from graph drawing [4], which have

been customized for process models [23]. The usage and exclusion of certain model elements is intensively

discussed for BPMN [65, 76]. We observe that the example model from Figure 1 only uses a basic set of

elements, which is often recommended. Technically, checking the inclusion and exclusion of elements of a

certain type is trivial.

If we consider the usage of the natural language in the model we can observe two main problems. The first

is concerned with inconsistent terms. While two activities refer to the term costs the last activity mentions

the term expenses. To avoid such inconsistencies an approach for automatically creating and enforcing the

usage of glossary terms has been proposed [67]. The second problem is the inconsistent usage of labeling

styles. While a verb-object labeling is typically suggested [76, 58, 1], the example model of Figure 1 shows

di↵erent deviations. The activities Cost Planning and Recalculation of Costs capture the actions plan and

recalculate as nouns at di↵erent positions in the label. The activity Get Approval for Costs is compliant with

the verb-object requirement. This style mix actually causes that the activity Plan Data Transfer could be

misinterpreted. It could either advice to plan a data transfer or to transfer a record of plan data. Also the

event and gateway labels can be improved. The gateway label acceptable? lacks a reference to a business
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object, and also the end event label Approved does not precisely define the result of the process execution.

The significance of these linguistic problems is emphasized by various process modeling guidelines

[74, 58, 29, 76, 1]. Di↵erent research has been conducted to at least partially tackle problems with labeling

styles. For instance, Delfmann et al. proposed approaches for avoiding naming convention conflicts by

enforcing certain phrase structures [20] or by introducing auto-completion [7]. Leopold et al. specify a

technique for labeling style recognition and refactoring [53]. A limitation of these approaches is their

restriction to the English language and the dependence on natural language processing tools like WordNet,

which are not available in other languages, at least in terms of the quality of the content. In order to design

a technique which is based on all relevant insights on natural language processing and conceptual models, we

use the next section to give a detailed overview of this research field.

2.2. Natural Language Processing in Conceptual Models

This section gives an overview of the intersection of natural language processing and conceptual models.

In Section 2.2.1 we present the current state of the art. Afterwards, in Section 2.2.2, we discuss the particular

challenges for the automated checking of naming conventions for di↵erent languages in process models.

2.2.1. State of the Art

The automated analysis of natural language, which is usually referred to as natural language processing

(NLP), has a long tradition and has been applied to many fields. Examples include the processing of natural

language texts [40, 30], machine translation [39, 12] and speech recognition [69, 41]. In the past, mature

and powerful tools as for instance the Stanford Parser [45] or the lexical database WordNet [62] have been

developed. Thanks to their free availability these tools have been utilized in di↵erent research domains

including the field of conceptual modeling. In conceptual modeling these tools are often used to support

and improve the design of the models. Two di↵erent directions have been considered in the related work for

accomplishing this goal: approaches applying NLP on external text material to infer useful information about

the design of the model, and approaches applying NLP on the model itself in order to facilitate di↵erent

kinds of analyses. The di↵erence between the two directions becomes clear if we consider how the NLP

techniques are employed in each scenario.

Many of the approaches applying NLP techniques on external text material aim for the automatic inference

of conceptual models. Examples include the (semi)-automatic creation of process models [31, 37, 35, 34, 77],

conceptual dependency diagrams [33], entity-relationship models [36, 66], and UML diagrams [3, 18, 19, 64].

Some authors also propose inference approaches which are not limited to a single model type, but can be

adapted for di↵erent kinds of conceptual models [? 63]. Works which are not concerned with the extraction of

conceptual models typically aim for supporting the model designer in di↵erent ways. For instance, Richards

et al. propose a technique for visualizing natural language requirements in order to better compare multiple
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viewpoints [71]. Bolloju et al. go a step further by introducing a technique which automatically indicates

inconsistencies with requirement documents [11]. Lahtinen and Peltonen complement UML tools with a

speech interface such that the conceptual models can be easily edited via spoken language [50]. In some cases

the extraction of the conceptual models is only an intermediate step: Tseng and Chen propose a methodology

for mapping natural language constructs into SQL statements via the inference of UML class diagrams

[82]. Similarly, Tseng et al. map natural language constructs into relational algebra via the extraction of

entity-relationship models [81]. The important advantage that all these works have in common is that they

apply standard NLP tools such as taggers, parsers, or speech recognition to infer the required information

from written or verbal sources. As such sources usually contain grammatically rich sentences, the authors

obtain satisfying results with this strategy.

Techniques applying NLP tools on a conceptual model itself have to meet di↵erent requirements. Typically,

conceptual models do not contain full and grammatically correct sentences. As a result, authors restrain

from employing traditional NLP tools as parsers and taggers. Some authors explicitly recommend to avoid

the application of NLP tools because of these issues [5, 47]. However, there are several attempts to make

use of the natural language in conceptual models. For instance, Becker et al. propose an approach for

enforcing naming conventions in process models [7]. Other authors also look at the terminology used in

conceptual models to improve the overall quality [22, 49, 48, 28, 85]. Going beyond the syntactic quality

dimension of process models, Gruhn and Laue employ a Prolog based algorithm that is capable of identifying

semantic errors in process models labels [38]. For achieving the best possible semantic congruence with

the modeled domain some authors use the natural language in models to generate human-readable texts

[8, 60, 16]. While many works applying NLP on conceptual models are concerned with model quality, there

are also approaches which aim for eliciting knowledge that is implicitly captured by the model. Examples

include the identification of activity correspondences between models [24, 6], the discovery of services [46, 52]

and the elicitation of process patterns [32].

Table 1 summarizes the discussed approaches from both use case classes. The double line separates the

approaches applying NLP on text material (first half) from those applying NLP directly on the models

(second half). The table highlights that NLP tools for eliciting the syntactical structure of sentences, such

as parser and taggers, are only employed by approaches which work on text material. In fact, none of the

previously mentioned approaches applying NLP on model elements, makes use of parsers or taggers. Instead,

they either assume a certain format of the language in the model [60, 16, 8] or they ignore the syntax. In

the latter case the approaches typically remove stop words such as articles and conjunctions and then use

the remaining words for their analyses. While this might be su�cient for some use cases, it yet inhibits

the precise usage of natural language in conceptual models. Hence, these approaches cannot be used for an

ex-post determination of the label structure. For the checking of naming conventions it is necessary to clearly

infer the syntactical structure of a label and properly accomplish the grammatical disambiguation of terms.
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Table 1: Overview of Approaches Applying NLP

Approach Author NLP Tools

Construction of Models

BPMN Process Model from Text Friedrich et al. [31] Parser, WordNet
BPMN Process Model from Group Stories Goncalves et al. [37] Parser
BPMN Process Model from Textual Sources Ghose et al. [35, 34] Parser
BPMN Process Model from Use Cases Sinha et al. [77] Parser
Dependency Diagram from Text Gangopadhyay [33] Parser
ER-Model from Text Gomez et al. [36] Parser
ER-Model from Text Omar et al. [66] Tagger, Parser
UML Class Model from Text Bajwa and Choudhary [3] Tagger, Parser
UML Model from Text More and Phalnikar [64] Tagger, Parser
UML Model from Text Deeptimahanti and Babar [18, 19] Parser, WordNet
Conceptual Model from Requirements Fliedl et al. [27] Tagger, Parser
Conceptual Model from Requirements Montes et al. [63] Tagger, Parser

Designer Support

Visualization of Use Case Descriptions Richards et al. [71] Parser
Consistency of Object Models Bolloju et al. [11] Parser
Speech Recognition for UML Lahtinen and Peltonen [50] Speech Analysis

Construction of Formal Specification

SQL Statements Tseng and Chen [82] Parser
Relational Algebra Tseng at al. [81] Parser

Quality Assurance

Term Inconsistency Detection in Process Models Koschmider and Blanchard [48] WordNet
Recommendation-based User Support for Process Models Koschmider et al. [49] WordNet
Linguistic Consistency Checking of Conceptual Models van der Vos et al. [85] WordNet
Naming Convention Enforcement in Process Models Becker et al. [7] Domain Thesauri
Reducing Linguistic Variations in Process Models Breuker et al. [22] WordNet
Semantic Annotation of BPMN Process Models Francescomarino and Tonella [28] WordNet
Detection of Semantic Errors in EPCs Gruhn and Laue [38] Proprietary

Generation of Text

Generation from UML Class Diagrams Meziane et al. [60] WordNet
Generation from Object Models Lavoie et al. [8] Proprietary
Generation from Conceptual Models Dalianis [16] Proprietary

Information Elicitation

Service Discovery from Conceptual Model Knackstedt et al. [46] WordNet
Service Discovery from Process Models Leopold and Mendling [52] WordNet
Detection of Process Patterns Gacitua-Decar and Pahl [32] WordNet
Similarity Measurement in Process Models Ehrig et al. [24] WordNet
Business Process Activity Mapping Identification Becker et al. [6] Proprietary
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In the light of this literature review we discuss the resulting challenges for the automated checking of

naming conventions in the following subsection.

2.2.2. Challenges for Process Model Guideline Checking

Considering the existing work on NLP and conceptual modeling, it as apparent that the automated

analysis of the text structure in conceptual models is associated with considerable challenges. Aiming for

the automated checking of naming conventions for di↵erent languages we face three main challenges: the

non-applicability of standard NLP tools, the lack of availability of linguistic tools for other languages and

the linguistic complexity impeding the grammatical disambiguation of terms.

The non-applicability of standard NLP tools is mainly caused by the shortness of process model element

labels. Typically, linguistic parsers employ statistical methods for computing the most likely part of speech

using a manually pre-tagged corpus. Thus, they require a certain degree of context to perform well [45, 80].

Further, they are usually trained with corpora consisting of book texts and newspaper articles. Hence, these

corpora hardly contain the specific patterns of word sequences that we find in process models. As a result,

the tagging algorithm does not even have the possibility to find an according match in the corpus.

As pointed out in the last subsection, previous works addressing the analysis of linguistic information in

conceptual models mainly relied on WordNet. However, the general availability of such linguistic tools for

less frequently spoken languages is limited. Hence, techniques building on these tools cannot be e↵ectively

adapted to other languages. Although English is the predominant business language, we experience that

companies typically model their processes in the native language, partially driven by legal requirements.

Hence, we consider the possibility of adapting a technique to other languages as important quality criterion.

The linguistic complexity of the target language influences how well information can be extracted from

short fragments like process model labels. As pointed out by McWhorter, the complexity of a language

can be assessed from four di↵erent angles: phonology (sounds of the language), syntax (structure of the

sentences), semantics (meaning of words) and morphology (structure of word forms) [56]. A frequently

discussed problem is for instance the phenomenon of homonymy when words and meanings are not uniquely

connected. However, for the identification of part of speeches in process model elements especially the

morphological complexity is of major importance: the more complicated the morphological rules of the target

language are, the more di↵erent word forms are available to di↵erentiate words and their part of speech from

each other. If a language is poor in terms of morphological changes, many words will su↵er from the so-called

zero-derivation ambiguity [21]. This phenomenon refers to the fact that one syntactical word can represent

multiple part of speeches without adding any su�xes. Examples are the English words the order and to order

or the plan and to plan. While this phenomenon can be frequently found among English words, also other

languages su↵er from this type of ambiguity. For instance the Portuguese word estado can represent the noun

state or the participle form of the verb to be (estar). As such cases require an appropriate disambiguation, it
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is important to be aware of the morphological complexity of the target language. Di↵erent authors tried

to adequately assess this characteristic with di↵erent metrics [44, 10, 14]. The bottom line is usually that

English is one of the languages with the least morphological complexity. German and also Slavic languages

can be rather found at the other end of the scale. For the analysis of process model labels this means that

English is one of biggest challenges. Especially for English, sophisticated disambiguation algorithms must be

introduced.

In order to be aware of the particular linguistic challenges in process model elements, we require a clear

definition of common patterns for specific languages. Hence, such label styles are discussed in the following

subsection.

2.3. Process Model Element Label Styles

Considering the findings of the previous section, it becomes clear that the automatic checking of naming

conventions and the adaptation of such a technique to other languages is still a considerable challenge.

The design of e↵ective algorithms for checking naming conventions requires a thorough understanding of

the use of natural language in process models not only for English, but also for other languages. To this

end, we manually analyzed three English, three German and three Portuguese process model collections

to gain insights into di↵erences and commonalities of labeling practices. Focussing on labeled elements

with syntactical variations, the detection of naming convention violations relates to three major elements of

process models: activities, events, and gateways.

2.3.1. Activity Label Styles

The activity label styles can be categorized in four classes based on how the action is captured in the

label. The focus on the action is particularly important for activity labels as they instruct the model reader

to actually perform a business related activity. Table 2 shows an overview of the observed activity label

styles. It shows the core structure of each style, di↵erent example labels and the languages for which we have

found the styles. Note that we abstract from additional information fragments such as for customer in the

label Create invoice for customer and focus on the core structure consisting of action and business object.

The reason why some of styles from Table 2 cannot be found in every language is given by the di↵erent

usage of the considered languages. While a certain grammatical structure can be very common in English, it

might be totally uncommon in German. Hence, Table 2 also indicates the typical usage of the investigated

languages.

In the first of the four classes the action is given as a verb. In verb-object labels as Create invoice the

verb is given as an imperative verb in the beginning of the label. In infinitive-style labels the action is also

positioned in the beginning of the label but given as an infinitive. Examples are the German label Erstellen

Rechnung and the Portuguese label Criar nota fiscal (both mean Create invoice). A typical pattern for
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Table 2: Activity labeling styles

Labeling Style Core Structure Example Languages

Verb-Object VO A(imperative) + O Create invoice, Erstelle Rechnung, Crie
nota fiscal

EN, GER, PT

Infinitive Style IS A(infinitive) + O Erstellen Rechnung, Criar nota fiscal GER, PT
Objective-Infinitive OI O + A(infinitive) Rechnung erstellen GER

Action-Noun AN(np) O + A(noun) Invoice creation EN
Action-Noun AN(of) A(noun) + ’of’ + O Creation of invoice EN
Action-Noun AN(gerund) A(gerund) + [article] + O Creating invoice, Erstellung der Rech-

nung,
EN, GER

Action-Noun AN(irregular) anomalous LIFO: Valuation: Pool level EN

Descriptive DES [role] + A(3P) + O Clerk creates Invoice, Sachbearbeiter
erstellt Rechnung

EN, GER

No-Action NA anomalous Error, Protokoll EN, GER

German activities is given by the object-infinitive style where the action is positioned at the end of the label.

An example is given by Rechnung erstellen (literally Invoice create).

In labels belonging to the second class, the action is captured as a noun. In particular, four di↵erent

styles can be observed. The first is the action-noun style (np). In such activities the nominalized action

is provided at the end of the label as in Invoice creation. Another frequent pattern for English activities

is the action-noun style (of) where the preposition of is used to separate the nominalized action from the

business object. As examples consider Creation of invoice or Notification of customer. The action-noun style

(gerund) contains a gerund in the beginning of the label as in Creating invoice. All labels which contain a

nominalized action but cannot be assigned to on of the three previously introduced styles are categorized as

action-noun (irregular).

The third class contains the descriptive label style. In such labels the action is provided is a verb in the

third person form. In many cases a role is mentioned in the beginning of the label. Examples are the English

label Clerk creates Invoice or the according German translation Sachbearbeiter erstellt Rechnung.

All labels which do not contain any action are assigned to the no-action style. Examples are usually given

by single nouns such as Error or Protokoll (protocol).

2.3.2. Event Label Styles

While activity labels instruct the reader to do something, event labels indicate a state. As this can

be expressed in di↵erent ways, we derived five di↵erent event label styles. Four of them follow a regular

structure. Note that some events are also labeled using activity styles. As those have been defined above, we

do not revisit them here.

Table 3 shows an overview of the observed event label styles. The first event label style is the participle

style, which contains a business object followed by a participle verb. In some cases an auxiliary verb is

inserted before the participle verb form. Examples are Invoice created or Customer notified. In general,

the modal style is quite similar to the participle style. However, labels of the modal style always contain a
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Table 3: Event labeling styles

Labeling Style Core Structure Example Languages

Participle PS O + [aux. verb] + A(participle) Invoice created, Rechnung erstellt,
Nota fiscal criada

EN, GER, PT

Modal MS O + A(modal verb construction) Invoice must be created, Rechnung
muss erstellt werden

EN, GER

Attribute AS O + [aux. verb] + adjective Invoice correct, Rechnung korrekt,
Nota fiscal correta

EN, GER, PT

Categorization CS O + aux. verb + noun Customer is member, Kunde ist Mit-
glied

EN, GER

Irregular anomalous Inquiry, Qualität, Solicitação EN, GER, PT

modal verb such as can, must, or shall. In English labels such as Invoice must be created this modal verb is

then followed by an auxiliary and a participle verb. In the German version of that label, Rechnung muss

erstellt werden, the order of auxiliary and participle verb is swapped. Labels following the attribute style are

characterized by an adjective at the end of the label. In some cases an auxiliary verb is used to obtain a

correct sentence. Examples are Invoice correct or Status is ok. The last regular style is the categorization

style which is characterized by the usage of two nouns which are associated with each other. As an example

consider the label Customer is member.

Besides these regular event label styles we also observed irregular labels. In many cases these labels

contain a single noun such as Inquiry.

2.3.3. Gateway Label Styles

The role of gateway labels is to properly indicate what kind of decision must be made in order to follow a

particular path in a model. Hence, gateway labels usually end with a question mark to explicitly show that a

decision must be made. From this analysis we derived four regular gateway label patterns.

Table 4 shows an overview of the observed gateway label styles. Labels following the participle-question

style can be considered to be participle state style labels with a question mark at the end. Accordingly, they

consist of a business object which is followed by an action in the participle verb form. Examples are Invoice

created? or Customer notified? The infinitive-question style is the question counterpart of the verb-object

and the object-infinitive activity styles. The infinitive verb is either positioned in the first or in the last

position of the label. In English labels such as Approve Contract? the verb is usually positioned in the

beginning. In German labels like Vertrag akzeptieren? (literally Contract approve? ) the verb is mostly given

at the end. Gateway labels of the adjective-question style are characterized by an adjective at the of the

label. Hence, they are the question counterpart of the attribute event style. As examples consider Parts

available? or ID valid? While the previously introduced styles can be associated with event or activity

styles, the equation question style is gateway specific. Such labels contain a logical evaluable statement, in

many cases by using logical operators such as > or <. An example is given by the label Amount > e 200?

However, in some cases the logical operator is replaced by a verbal construct. Thus, the given example could
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Table 4: Gateway labeling styles

Labeling Style Core Structure Example Languages

Participle-Question PQ O + [aux. verb] + A(participle) Invoice created?, Rechnung erstellt?,
Nota fiscal criada?

EN, GER, PT

Infinitive-Question IFQ A(infintive) + O /
O + A(infinitive)

Approve Contract?, Vertrag akzep-
tieren?

EN, GER

Adjective-Question AQ O + [aux. verb] + adjective Parts available?, Teil verfügbar?, Parte
dispońıvel?

EN, GER, PT

Equation-Question EQ O + logical construction + no. Amount is greater than e 200?, Betrag
> e 200?, Valor é maior do que R$
1.000?

EN, GER, PT

Irregular anomalous Result?, Neuberechnung?, Crédito? EN, GER, PT

be also written as Amount is greater than e 200?

As all investigated model elements, also some gateway labels do not follow a regular structure. Such

irregular labels usually contain a single word such as Result?

3. Checking of Naming Conventions for Di↵erent Languages

In this section, we present a technique for automatic and language-independent detection of naming

convention violations. In Section 3.1 we describe the manual preparation steps that are required. In Section

3.2 we introduce the technique on a conceptual level and discuss the comprised components in detail.

3.1. Pattern Formalization

In order to automatically detect naming convention violations, we first need to operationalize the verbally

described rules. In particular, we have to convert the rules into a pattern which can be checked in an

automatic fashion. Hence, the preparation phase includes the transformation of the given rules into so-called

linguistic patterns. As linguistic pattern we understand a sequence of part of speeches. In order to illustrate

this step consider the following naming conventions which are frequently suggested for English process

models1 [58, 61, 55]:

1. Activities must start with an imperative verb which is followed by a business object, e.g. Send

Documents or Inform Customer.

2. Events must start with a business object which is followed by a passive verb construction or a verb in

the past tense, e.g. Customer is informed or Documents were sent.

3. Gateways must represent a question which is starting with a verb, followed by a business object and an

adjective, e.g. Is customer informed? or Were documents sent?

1For a complete discussion of the naming conventions of the investigated languages please refer to Section 4.1.
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Having such naming conventions at hand, we can manually transform them to a sequence of required

part of speech tags. For the above stated rules, we accordingly derive the following linguistic patterns:

1. Activity Pattern: Verb (Imperative) + Noun

2. Event Pattern: Noun + Auxiliary Verb + Verb (Participle)

3. Gateway Pattern: Auxiliary Verb + Noun + Verb (Participle) + ’?’

As these formal representations of linguistic guideline rules can be automatically compared against existing

process model elements, they form the basis of the technique. However, before the derived linguistic patterns

are defined as a benchmark, we recommend an exploratory analysis of the model collection which needs to be

checked. Without knowing about existing patterns, it is hard to decide about minor deviations which would

not be considered to violate the above defined rules. As an example consider the event label Document sent

to Customer. In comparison to the defined event pattern we can identify two essential di↵erences. First, the

label contains an additional information fragment which is introduced by the preposition to. Second, the

label does not contain an auxiliary verb before the participle sent. We may encounter a similar situation

with activity labels. For instance the activity label Notify Customer of Rejection contains an additional

information fragment introduced by the preposition of. Also gateways might be complemented with an

additional fragment. As example, consider the label Were documents send to customer? In general, it is

essential to be aware of such deviations in order to decide whether they should be considered as violation or

not. Hence, by analysing and classifying the labels in the considered process model collection, the linguistic

patterns can be extended and adapted to the actual needs. Allowing for the introduced deviations for events,

activities and gateways, we introduce optional elements which are denoted by square brackets:

1. Activity Pattern: Verb (Imperative) + Noun [+ Preposition + Noun]

2. Event Pattern: Noun + [Auxiliary Verb] + Verb (Participle) [+ Preposition + Noun]

3. Gateway: Auxiliary Verb + Noun + Verb (Participle) [+ Preposition + Noun] + ’?’

Once the valid linguistic patterns have been determined, they serve as input for the automatic violation

detection approach.

3.2. A Technique for Checking Naming Conventions

Based on a set of required linguistic patterns, we define a technique for automatically detecting naming

convention violations. Figure 2 provides an overview of the architecture. The core idea is to first assign the

corresponding part of speech tags to a given process model element. In case the label contains ambiguous

words and can hence be represented by multiple linguistic patterns, the subsequent disambiguation component
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Figure 2: General Architecture

resolves the ambiguity and decides about the correct pattern. By comparing the linguistic pattern from the

process model element with the required linguistic patterns from the preparation phase, violations can be

automatically detected. As a result, the technique returns whether a naming convention was violated and

which style was detected. It is important to note that the comprised components of the technique can be

subdivided into language-specific and language-independent elements. While the algorithms of the technique

are language-independent, language-specific input is required to enable the algorithms to check the specific

rules of the target language. However, since the incorporation of new languages only requires an incremental

one-time e↵ort, we are convinced that this does not prevent users from introducing new languages. In the

following subsections we will explain each component of the introduced architecture in detail.

3.2.1. Part of Speech Determination

The goal of the part of speech determination component is the automatic annotation of the given process

model element with the according part of speech tags. Thereby, words with multiple possible part of speeches

are annotated with all potential tags. As already pointed out earlier, the part of speech determination for

process model elements is associated with considerable challenges. While databases like WordNet can be

used to determine all potential part of speeches of a given word in English, many WordNet solutions for other

languages have limitations in terms of quality and availability. In order to provide a language independent

and flexible solution, we decided to employ text corpora which are easily obtainable. As examples consider

the OANC (English), Floresta (Portuguese), or the Tiger Corpus (German). Such corpora usually contain

texts from di↵erent sources along with manually created part of speech tags. Due to the availability of text

corpora, we use them for developing a part of speech tagging solution which is appropriate for the purpose of

detecting naming convention violations.

Figure 3 illustrates how a text corpus can be used for extracting the required data for determining the

part of speeches of words. The strategy is to derive two data tables from the corpus: a part of speech table

and a verb table. The part of speech table contains a list of all verbs from the corpus and how often they
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Figure 3: Generation of Part of Speech Tagging Sources

occur as verb, noun, adjective or adverb. As text corpora have been manually tagged by humans, this

information can be easily and automatically obtained. The verb table includes all verbs from the corpus

and the according conjugation forms. In order to completely obtain this information, the verb data in the

corpus is complemented with additional information. In particular, we employ conjugation rules of the

target language to compute all required verb forms. In addition, we use an exception list for appropriately

determining the form of irregular verbs. For many languages such as English, German, and Portuguese

according lists are readily available online or in linguistic resources such as language books. Since we build on

a standard CSV format, available lists can be easily incorporated. In case no conjugation lists are available,

the algorithm for creating theses tables must be manually implemented. However, since this is a one-time

e↵ort with reasonable complexity, we do not consider this as a barrier for adapting the presented technique.

Using the data of these tables, two important goals can be achieved. First, all possible part of speeches of

a given word can be determined. This is accomplished by checking the di↵erent entries in the part of speech

tables. As an example, consider the word plan. Figure 3 shows the occurrences from the OANC. From the

numbers in the illustrated table we learn that plan has 7,848 occurrences as a verb and 29,161 occurrences

as noun. Hence, plan could be a verb as well as a noun. Second, in addition to the determination of the

possible part of speeches, the verb table provides the possibility to reliably decide about the word form of a

given verb. Since naming conventions typically ask for specific verb forms such as participles or imperatives,

this is a key task for detecting violations of a given naming convention.

Algorithm 1 formalizes the usage of this technique. It requires a process model element and the two

created tables as input. As a result the algorithm returns the element with the derived part of speech tags as

annotation. The algorithm consists of a loop which iteratively goes through the element label and tags each

word (lines 2-10). Therefore, we first use the part of speech table to infer all possible part of speech tags (line
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Algorithm 1: Part of Speech Determination
1: tagProcessModelElement(Label element, Table posTable, Table verbTable)
2: for i=0 to i < element.getLength() do

3: List posList = posTable.getPartOfSpeeches(element.get(i));
4: for each tag 2 posList do

5: element.get(i).addPOS(tag);
6: if tag = ’VERB’ then

7: String verbForm = verbTable.getForm(element.get(i));
8: element.get(i).setVerbForm(verbForm);
9: if posList.getLength() > 1 then

10: element.get(i).hasMultipleTags = true;
11: return element;

3). Subsequently, we use a loop to annotate the considered word with each tag from the derived list (line 5).

In case the considered tag represents a verb, the verb table is further used to derive the according verb form

(line 7). The inferred verb form is then added to the annotation of the word (line 8). Finally, if the derived

part of speech list contains more than a single entry, the variable hasMultipleTags is set to true (line 10).

3.2.2. Ambiguity Resolution

The ambiguity resolution component aims for adequately resolving cases where one word of the element

label is associated with multiple part of speech tags. This is a crucial step as the compliance of a given label

with the required linguistic pattern is based on their part of speeches. As an example consider the English

activity pattern. If the first word in the label (e.g. plan) can be classified as verb and as noun, a wrong

classification leads to a wrong decision with regard to its compliance with the naming convention. A similar

situation applies for the event pattern which is used for Portuguese process models. If a Portuguese event

ends with the word estado, it can represent the noun state or the participle of the word estar (to be). If it is

erroneously classified as a noun, the considered event label will be incorrectly classified as naming convention

violation.

For the solution of this problem we adapt a technique from prior research [53]. The core idea is to use

di↵erent stages of label context for determining the part of speech of a given word (see Figure 4). In total we

consider four di↵erent stages, organized from most local context to most generic: (I) the label itself, (II) the

process model, (III) the process model collection and (IV) knowledge on word frequencies derived from the

employed text corpus. In the beginning the algorithm tries to use the information which is included in the

label. If we for instance consider the Portuguese event label Alteração do estado, the word estado can be

doubtlessly recognized as noun since it is preceded by the preposition do. If the information in the label

is not su�cient for disambiguating the considered word, the scope is broadened to the process model. For

instance, the English word plan could be identified as noun since the process model contains several other

activities using the business object plan. Similarly, the whole process model collection can be checked for

the typical part of speech of the considered word. If the process model collection is still not su�cient to
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Algorithm 2: Derivation of Linguistic Pattern
1: deriveLinguisticPattern(Label element)
2: String linguisticPattern;
3: for i=0 to i < element.getLength() do

4: if element.get(i).hasMultipleTags = true then

5: String actualPOS = resolveAmbiguity(element.get(i));
6: linguisticPattern = linguisticPattern + actualPOS;
7: return linguisticPattern;

determine the part of speech, we employ knowledge about the frequency of each part speech in the target

language. By consulting the part of speech table we derived from text corpus we can easily learn about the

frequency of each part of speech. For instance the OANC corpus contains 226 occurrences for credit as verb

and 1,672 as noun. Accordingly, credit is in general more likely to be a noun.

Algorithm 2 illustrates the derivation of the linguistic pattern from the element and its annotation. To

accomplish this, each word of the input element is investigated in the context of a loop (lines 3-6). If the

considered word carries more than a single part of speech tag, the above introduced technique is used to

decide on the actual part of speech (line 5). Afterwards, the derived tag is added to the linguistic pattern

variable (line 6). Once all words have been investigated and the linguistic pattern was constructed, the

pattern is returned (line 7). This pattern then serves as input for the comparison component.

3.2.3. Comparison

In the comparison component we check whether the linguistic pattern from the input element is equivalent

to the required linguistic pattern from the naming convention. Therefore, we iteratively go through the label

and check the compliance of the current part of speech with the linguistic pattern. Algorithm 3 formalizes

this procedure.
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Algorithm 3: Checking of Naming Conventions
1: fulfillsNamingConvention(String element, String convention)
2: boolean correct = true;
3: int elemIndex = 1;
4: int convIndex = 1;
5: while elemIndex  element.getLength() do

6: String requiredPOS = convention.get(convIndex);
7: List currentPOSList = getPartOfSpeech(element.get(elemIndex));
8: if convention.get(convIndex).isOptional() then

9: if requiredPOS 6= currentPOS then

10: convIndex = convIndex+1;
11: else

12: if requiredPOS 6= currentPOS then

13: correct = false;
14: break ;
15: if currentPOS = ’NOUN’ ^ containsCompositeNoun(elemIndex,element.getLength()) then

16: elemIndex = getEndOfCompositeNoun(elemIndex,element.getLength())+1;
17: convIndex = convIndex+1;
18: else

19: elemIndex = elemIndex+1;
20: convIndex = convIndex+1;
21: return correct;

The algorithm requires two input parameters: the labeled element which needs to be checked and the

linguistic pattern derived from the naming convention. In the beginning of the algorithm the boolean variable

correct is set to true and the index variable for the element and the convention are initialized (line 2-4).

If the required part of speech belongs to an optional element in the linguistic pattern and the current and

required part of speech do not match, the index of the convention string is increased (lines 8-10). As a result,

the next iteration of the loop compares the same word from the element string with the subsequent word in

the convention string. In case the required part of speech belongs to a mandatory element, the current and

the required part of speech have to match. Otherwise, a violation is detected and the variable correct is

set to false (lines 11-14). If the two part of speeches match, the subsequent lines handle the occurrence of

composite nouns (lines 15-17). This is important as in many languages composite nouns are not represented

by a single word but by a sequence of words. As examples consider the English word service order or the

Portuguese noun regras de negócio (business rule). Accordingly, the function containsCompositeNouns checks

whether the current word and the subsequent words from the element string represent a composite noun

(line 15). If that is the case, the index of the element string is adjusted to the first word after the composite

noun (line 16). Otherwise, if no composite noun is detected, both indexes are increased by one (lines 19-20).

As long as the index of the element string has not reached the last word, the next iteration is triggered.

Finally, the value of the variable correct is returned (line 21). In case the user wishes to receive feedback on

the applied label style, the algorithm is accordingly used to categorize the detected linguistic pattern.

Altogether, the pattern formalization is a preparatory step that has to be conducted once. The technique
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with its three steps part of speech determination, disambiguation, and comparison can then be applied in an

automatic fashion to analyze large collections of process models.

4. Empirical Evaluation

To demonstrate the capability of the technique for checking naming conventions, we conduct an evaluation

experiment. We test the technique on nine process model collections from practice covering three di↵erent

languages. The goal of the experiment is to learn how well the automatically recognized violations match a

manually created benchmark. Section 4.1 describes the general setup of the experiment. Section 4.2 provides

an overview of the utilized process model collections. Section 4.3 investigates the technique from a runtime

performance perspective before Section 4.4 discusses the overall experiment results.

4.1. Evaluation Setup

The setup of the evaluation consists of a prototypical implementation of the presented algorithms and a

manually created benchmark.

In order to test the technique, we implemented the algorithms in the context of a Java prototype. Since

the technique is not depending on any linguistic tools, it was not necessary to include further libraries. As

the test collection includes German, English and Portuguese process models, we accordingly implemented the

part of speech determination solution for each of these languages. Therefore we used the publicly available

corpora OANC (English), Tiger (German) and Floresta (Portuguese). We developed a simple parser for

automatically extracting the part of speech and the verb table from the corpora. We complemented the

verb table by implementing the according conjugation rules of the target language with a complete list of

exceptions. The information required for this implementation can be easily obtained online.2,3,4

For the proper assessment of the violation detection technique, we created a benchmark for the test

collection. We manually inspected each label in the test collection and derived the linguistic pattern. In

addition, we categorized each label as guideline compliant or as naming convention violation. In order to

decide on the required naming conventions we employed two sources. First, we used existing guidelines and

recommendations from research and practice [58, 76, 1, 59]. Second, we consulted di↵erent industry partners

who provided us with their process model collections. From their internal process model guidelines we were

able to derive specific naming conventions.

Table 5 gives an overview of the allowed naming conventions for the experiment. Note that this

configuration can be adapted to the preferences of organizations. Further, it can be also extended with

patterns for other elements such as data objects. In general, the table reveals that there is a consensus with

2http://www.usingenglish.com/reference/irregular-verbs/
3http://www.orbilat.com/Languages/Portuguese/Grammar/ Verbs/index.html
4http://www.evertype.com/gram/german-verbs.html
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Table 5: Allowed Naming Conventions for the Evaluation Experiment

English German Portuguese

Activities VO OI IS
Events PS, MS, AS PS, MS, AS PS, AS
Gateways PQ, IFQ, AQ, EQ PQ, IFQ, AQ, EQ PQ, IFQ, AQ, EQ

respect to event and gateway labels while there are di↵erent requirement for activity labels. For English

activities there are several guidelines and recommendations available suggesting the use of the verb-object

style as introduced in Section 2.3 [58, 76, 1, 59]. However, for other languages such as German or Portuguese

the verb-object recommendation for activities is not used. A guideline from a large German health insurer

suggests to employ the object-infinitive style. As the German language has two di↵erent imperative modes,

the object-infinitive style conveys the information in a more neutral manner. A similar observation can

be made for the Portuguese models. A guideline from a large Brazilian Energy Corporation asks for the

application of the infinitive style. Accordingly, we determined the required naming conventions with these

styles. For events and gateways the requirements from practice and academia are usually less specific. Silver

[76] suggests that event labels should refer to a state and must be clearly separable from activities. The

guideline from the Brazilian Energy Corporation explicitly requires the participle or the attribute style.

Accordingly, we restrict the set of allowed patterns to these for the Portuguese models. For gateways the

consensus is rather that gateway labels should be named with a question that refers to an action and a

business object. Consequently, we consider all event question styles to be valid.

4.2. Test Collection Demographics

We designed the test collection with the aim to cover diverse types of naming conventions. Therefore,

we included model collections varying in dimensions such as domain, natural language, modeling notation,

and the share of labels violating the naming conventions defined in the previous section. Table 6 presents

details of the used model collections. In total, we classify the models into three groups based on the natural

language used:

1. English Process Model Collections

• SAP Reference Model (SAP): The SAP Reference Model represents the business processes of the

SAP R/3 system in its version from the year 2000 [42, pp. 145-164]. It contains 604 Event-driven

Process Chains (EPCs) which are organized in 29 functional branches such as sales and accounting.

• Insurance Model Collection (CH): The insurance model collection contains 119 EPCs dealing

with the claims handling activities of an Australian insurance company. The insurance model set

contains rather large processes with a high density of events.
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Table 6: Details about used model collections

English German Portuguese

SAP CH AC ITSM HI AC EC RF AC

Number of models 604 119 518 88 46 311 11 19 29

No. of Activities 2433 1655 4109 293 2117 2959 89 230 216
Average no. of activities per model 4.03 13.91 7.93 3.33 44.1 8.09 9.82 12.11 7.45
Average no. of words per label 3.50 6.98 3.66 3.98 4.65 2.92 4.1 4.79 3.6
Minimum no. of words. per label 1 2 1 2 1 1 2 1 1
Maximum no. of words per label 12 22 15 15 13 18 11 11 11
Share of naming convention violations 88.7% 41.0% 25.8% 31.7% 30.3% 33.7% 2.8% 33.0% 34.3%

No. of Events 6933 2325 553 584 1279 544 89 99 95
Average no. of events per model 11.48 19.54 1.07 6.64 26.65 1.75 8.09 5.21 3.28
Average no. of words per label 5.37 4.78 2.78 4.94 4.48 2.47 3.1 2.98 2.78
Minimum no. of words. per label 2 1 1 2 1 1 2 2 1
Maximum no. of words per label 13 21 11 13 12 7 9 6 8
Share of naming convention violations 40.4% 38.7% 67.1% 42.8% 33.2% 59.0% 2.8% 24.2% 71.6%

No. of (labeled) Gateways - - 235 - - 220 - - 37
Average no. of gateways per model - - 0.45 - - 0.71 - - 1.28
Average no. of words per label - - 2.57 - - 2.36 - - 3.03
Minimum no. of words. per label - - 1 - - 1 - - 1
Maximum no. of words per label - - 9 - - 9 - - 8
Share of naming convention violations - - 46.8% - - 35.0% - - 43.2%

Notation EPC EPC BPMN EPC EPC BPMN EPC EPC BPMN

• Academic Collection (AC): The Academic Collection includes 518 process models created with

the Business Process Model and Notation (BPMN). The models stem from academic training and

cover diverse domains.

2. German Process Model Collections

• Incident Management Collection (ITSM): This collection contains 88 EPCs covering the incident

management processes from a large German IT service provider.

• Health Insurance Model Collection (HI): The Health Insurance Model Collection includes 48 EPCs,

covering customer-oriented processes from a large German health insurer.

• Academic Collection (AC): The Academic Collection contains 311 processes modeled with BPMN.

Similarly to the English Academic collection, the models stem from academic training.

3. Portuguese Process Model Collections

• Energy Corporation Collection (EC): This collection contains 11 EPCs from a large Brazilian

Energy Corporation. As opposed to the other collections, it has been manually maintained in

order to avoid naming convention violations.

• Research Funding Collection (RF): This collection contains EPC processes regarding a Brazilian

research funding program including, for example, the activities of funding request and grant.
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Table 7: Computation Performance

English German Portuguese

SAP CH AC ITSM HI AC EC RF AC

All activities (ms) 134,722 63,370 169,617 2,977 29,323 26,403 290 310 475
Single activity (avg. ms) 55.37 38,29 41,27 10.16 9.91 8.92 3.26 1.35 2.19

All events (ms) 412,445 131,927 35,984 2,351 14,720 961 236 437 234
Single event (avg. ms) 59.49 56.74 153.12 4.03 11.51 1.77 2.65 4.41 2.46

All gateways (ms) - - 6,461 - - 109 - - 20
Single gateway (avg. ms) - - 27.49 - - 0.5 - - 0.54

• Academic Collection (AC): The Academic Collection contains 29 processes modeled with BPMN.

Similarly to the English and German Academic collection, the models stem from academic training.

4.3. Performance Results

We designed the technique to support modelers in the context of a modeling tool during the modeling

process. Hence, in order to immediately indicate naming convention violations, the implementation must

be adequately fast. Accordingly, we measure the computation time for each investigated model collection.

We tested the computation on a MacBook Pro with a 2.26 GHz Intel Core Duo processor and 4 GB RAM,

running on Mac OS X 10.6.8 and Java Virtual Machine 1.5. In order to avoid distortions due to one-o↵ setup

times, we ran the algorithms twice and measured the second run only. Table 7 summarizes the total and

average execution times of the naming convention violation detection for each element type.

The numbers illustrate two essential points. First, the execution time depends on the ambiguity of the

target language. We observe significantly higher execution times for the English models for all element

types. This is in line with the parsing complexity of English. As many disambiguation runs are necessary

to determine the label style, the overall computation time is longer. As a second point we learn that also

the share of violating labels e↵ects the overall execution time. This is especially emphasized by the events

of the English Academic Collection. The share of 67.1% of convention violations results in an increase of

computation time. The reason for this relates to the algorithm design. In order to classify a given label

as violation, all other possibilities have to be excluded. However, all in all the algorithm yields execution

times which are well suited for supporting modelers during the modeling process. Even the worst average

execution time of 153 milliseconds is fast enough for directly indicating a violation. Hence, we consider the

implementation to have a su�cient performance in terms of computation time.

4.4. Experiment Results

We furthermore assess the performance of the technique using the information retrieval metrics precision,

recall, and f-measure. In the context of naming convention violation detection, the precision value is the

number of correctly identified violations divided by the number of retrieved violations. The recall is the

number of correctly identified violations divided by the total number of violations in the considered model
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Table 8: Evaluation Results

English German Portuguese

SAP CH AC ITSM HI AC EC RF AC

Activities
Recall 98.0% 96.6% 90.0% 96.9% 99.8% 96.7% 100% 100% 100%
Precision 95.5% 99.7% 93.7% 96.9% 92.4% 95.5% 100% 100% 95.9%
F-Measure 96.7% 98.1% 91.8% 96.9% 96.0% 96.1% 100% 100% 97.9%

Events
Recall 99.3% 93.0% 99.5% 100% 94.1% 96.6% 100% 100% 100%
Precision 98.2% 98.7% 99.0% 96.5% 99.8% 99.0% 100% 92.0% 100%
F-Measure 98.7% 95.8% 99.2% 98.2% 96.8% 97.8% 100% 96.0% 100%

Gateways
Recall - - 97.3% - - 97.4% - - 100%
Precision - - 95.5% - - 94.9% - - 94.1%
F-Measure - - 96.4% - - 96.2% - - 97.0%

collection. As it is important for our scenario that both metrics yield su�ciently high values, we also calculate

the f-measure, which is the harmonic mean of precision and recall [2].

Table 8 summarizes the results of the automatic violation detection for all considered process model

collections. In general, the numbers show that the technique for detecting naming convention violations

works satisfactory. Even the lowest obtained f-measure is above 91%. However, we still observe notable

di↵erences among the di↵erent model collections and the considered languages.

For a considerable di↵erence among model collections consider the activity related f-measures for the

English collections. While for instance the f-measure of activities in the CH collection yields a f-measure

of 98.1%, the f-measure for the AC collection is only 91.8%. Such di↵erences can be explained with the

di↵erent modeling style and emphasizes the importance of including di↵erent collections in the evaluation

experiment. Depending on the modeling style, ambiguous cases can be more or less frequent. As the AC

collection was mainly created by students, these models contain more ambiguous cases which in turn results

in a slightly poorer performance. Nevertheless, as indicated by the recall value, still 90% of all naming

convention violations could be successfully detected.

The e↵ect of the target language is especially highlighted by the di↵erence between the English and

Portuguese model collections. Although the English language has a huge vocabulary, its grammar is rather

simple and there are many words su↵ering from the zero-derivation ambiguity. In other languages, such

as Portuguese or German, we observe a lot more inflectional changes. For instance, an infinitive verb in

Portuguese changes if it is used as an imperative. In English this is not the case. As example consider

the Portuguese verb auditar (to audit). While the English imperative of to audit is given by audit the

Portuguese verb auditar turns into the imperative form audite. Thus, labels violating the naming convention

for activities (to start with an infinitive verb) could be reliably detected. However, also Portuguese su↵ers

from the zero-derivation ambiguity. As an example consider the Portuguese Label Alteração do estado

(Change of Status) where the word estado can be a noun and a participle verb. Although this example

represents a zero-derivation case, it can be quite easily resolved. The preposition do before estado reveals
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that we face a composite noun and that hence estado cannot be a verb. As a result of this, we partially

achieved recall and precision values of 100%.

Surprisingly, there is no notable e↵ect of the process model element type. In some cases the f-measure

for the activities is higher than the corresponding event value as for instance in the CH and RF collection.

Nevertheless, we also observe the opposite. In the HI collection and the Portuguese AC collection the

f-measure of the events is higher than the corresponding activity value.

Based on the results of this analysis, we investigated the reasons for misclassification. In total, we

identified four main reasons why a violation was not detected or why a correct label was classified as violation:

• Erroneously resolved ambiguity: As extensively discussed in this paper, the proper resolution of

ambiguous words is one of the major challenges. Although the technique works reliably, ambiguity still

represents a major error source. The importance of this problem is heavily depending on the language.

While we have not found any erroneously resolved ambiguities for Portuguese models, ambiguity is in

many cases the error source among English models. For German models the problem is less drastic but

still present. As an example for a wrongly resolved German zero-derivation case consider the label Rate

überfällig (Instalment overdue). The problem here is that Rate can represent a German noun with the

meaning instalment or a German verb with the meaning to guess. In order to overcome these problems,

text corpora could be used to identify common combinations of words. In the previously introduced

case of the German label, a corpus could for instance reveal that the word Rate in combination with

überfällig indicates that Rate is more likely to represent a noun.

• Typographic errors: If words in the labels contain typographic errors, it is not possible to find them

in the employed corpora. Hence, their part of speech cannot be determined. As an example consider

the label Parts avalable. Here the missing i could cause a misclassification of the label. In order to

overcome this problem, we employed the Levenshtein string edit distance [54] and allow words to

slightly deviate from the terms in the corpora. For instance with a Levenshtein distance of 1, the word

avalable with a missing i is still correctly associated with the word available in the corpus. However, for

bigger mistakes that strategy cannot be employed. If we for instance allow for a Levenshtein distance

of 2 the word test could also be associated with its participle test or even completely di↵erent words as

for instance tear. As a solution for such cases, we propose to refine the Levenshtein metric. By for

instance including the closeness of keys on the keyboard the metric could be improved to better reflect

mistakes which really stem from typing errors.

• Abbreviations: Similar to typographic errors, most abbreviations will not be found in corpora. Thus, a

considered verb cannot be reliably assigned to a part of speech class. Standard abbreviations are usually

not a problem as they are in many cases also used in the underlying corpora. However, non-standard
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Figure 5: Distribution of Error Sources

abbreviations will always result in a misclassification. An example for an arbitrarily abbreviated label is

given by the German label Prüfungsverfahren abgeschl. (Audit completed). Here the German participle

verb abgeschlossen (completed) is abbreviated in the middle of the word. Although such cases are rare,

they can lead to a decrease of the overall performance. As a solution for this problem, we propose to

identify the abbreviated word in the corpus using a substring match. For the introduced example, the

search for abgeschl would accordingly result in a match. In case of multiple matches, the context of the

label could be used to select the most likely option.

• Word not in corpus: Apart from typos and abbreviations, we also found completely correct words

which were not correctly assigned to the according part of speech. We encountered that problem in two

cases. The first case refers to domain-specific or rather modern words. Especially older corpora do not

contain words such as digitalize. For domain specific words, as for instance system terms (e.g SAP or

ECPA), the problem is similar. To resolve this problem, the corpora could be complemented with a list

of domain-specific terms. As many companies maintain such lists, we consider this to be a reasonable

solution. The second case is language specific and concerned with German prefixes. The German

language allows to complement verbs with a variety of prefixes (similarly to e.g. grade and upgrade).

Thus, for instance machen (to make) can turn into weitermachen (to continue). Unfortunately, not

all of these cases are covered by corpora. As a solution, we could employ a list of prefixes to identify

composed verbs. After removing the prefix, the word can be accordingly identified in the corpus.

Figure 5 illustrates the distribution of the error sources grouped by the language of the model collections.

In general, it highlights that the language has an important influence on the distribution of the error sources.

In English models, particularly ambiguity remains the major problem. This can be explained by the general

degree of ambiguity of the English language. In comparison to German and Portuguese, English su↵ers much

more from the zero-derivation ambiguity. As a result, English models contain more ambiguous cases that

are subject to misinterpretation. Although the German performance su↵ers from ambiguity as well, typos
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play a bigger role here. Especially the German Academic collection contains a lot of typographical mistakes.

Due to the partially complex spelling rules of German, this can also be considered as a language-specific

problem. In Portuguese, the majority of errors corresponds to words not being present in the corpus. Here,

we observed many domain-specific words in the models that are not covered by the corpus. In contrast to

English and German models, no ambiguity and abbreviation errors were found. Altogether, it can be stated

that English models are particularly subject to errors caused by ambiguity and German models su↵er from

the more complex spelling. The performance of the Portuguese models cannot be explained by a particular

characteristic of the Portuguese language. It is rather the result of the specificity of the vocabulary in the

investigated models.

To demonstrate the applicability of the proposed mechanisms for dealing with typographical errors,

abbreviations, and missing words, we conducted an additional test. Since missing words and abbreviations

can be easily added to the corpus, it was not necessary to change the implementation. Hence, we added

the observed cases of missing words and abbreviations to the corpus. In order to more sophistically deal

with typographical errors we added the possibility of making use of an advanced Levenshtein metric. We

implemented a flag for accordingly turning it o↵ and on. As a result of the change, the 27 errors caused by

missing words and abbreviations could be reduced to zero. Since missing words or abbreviations only need to

be added once, such a tuning represents a reasonable one-time e↵ort. The e↵ect of the advanced Levenshtein

metric is little less significant. However, out of 104 typos 69 could be successfully identified. The reason

for non-identified typos lies in the complexity of the typographical errors. Some can not be traced back to

wrong key strokes on the neighbour key. Nevertheless, as previously discussed, a further relaxation of the

Levenshtein metric would result in a decrease of the quality. The runtime of the technique was only slightly

a↵ected by these changes. It increased by less than one percent. This result can be explained based on two

observations. First, adding a small set of new words to a corpus consisting of several thousand words does

not significantly increase the search space. Second, the Levenshtein metric is only computed if a word is not

found in the corpus. Hence, the additional mechanisms do not significantly increase the runtime. Altogether,

these extensions further increased the accuracy of our technique.

4.5. Implications

The development of an automatic technique for checking naming conventions has implications for research

and practice. In particular, we discuss implications for the automated quality assurance of process models

and the general applicability of natural language techniques for languages other than English. Furthermore,

implications for practice are highlighted.

The work presented in this paper complements prior research on automatic quality assurance and

corresponding techniques for checking formal model properties, model layout and use of model elements.

The importance of naming conventions is highlighted by guidelines such as 7PMG [58] and supported by
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experimental research on process model understanding [59]. Once techniques for the automatic checking of

formal model properties became available, this sparked an important stream of research on the quality of

process models in practice [57]. In a similar way, we expect that automatic techniques for checking naming

conventions, as the one presented in this paper, will inform model quality assurance and reveal novel insights

into when and why designers create good or bad models. Such insights are likely to be beneficial for modeling

education and for refining existing guidelines.

The design principles introduced in this work do also have implications for the applicability of natural

language techniques to languages other than English. The results of the evaluation demonstrate that language

processing in the context of conceptual models is not necessarily bound to linguistic tools such as WordNet.

The corpus-based technique presented in this paper provides the foundation for adaptations to other languages

for guideline checking as it enables the tool independent part of speech tagging of small language fragments.

Hence, the presented technique could also help to enforce and check language specific aspects of use case

diagrams, feature models, or goal models. For use case diagrams, it is recommended to formulate use cases as

verb phrases similar to the verb-object style [13]. In feature diagrams it is typically required to name features

as noun phrases or single nouns [51]. For the definition of goals in the context of goal models, it is also

suggested to use verb phrases with in imperative verb in the beginning [72]. Altogether, all these modeling

techniques face challenges comparable to checking naming conventions in process models, and can therefore

directly benefit from the results presented in this paper. Nevertheless, where applicable, also approaches

beyond the area of conceptual modeling could benefit from the corpus-based part of speech determination

and hence become more flexible in terms of language adaptability.

From a practical perspective, the presented technique helps companies to e↵ectively and e�ciently assure

the language quality of their models even if they cannot make use of the English WordNet. As we experienced

that companies typically model their processes using their local language, this is an important feature.

Considering concrete implementation scenarios, we can di↵erentiate between two main cases. First, the

technique could be implemented in a modeling tool and indicate convention violations to the modeler already

during the modeling process. As a result, modelers are directly provided with feedback and can accordingly

adapt their style of modeling. This is likely to avoid modeling errors and increase the quality of models

right from the start. This can help to address pitfalls of process modeling which relate to the often low

expertise of modelers in practice [73]. Second, the technique could be employed for the analysis of existing

modeling collections. A resulting report can be used by process modeling experts to fix quality issues which

are spotted as convention violations. However, independently of the actual implementation scenario, our

approach helps to check naming conventions automatically, which used to be a quality aspect that had to be

checked manually. This in turn assures that the process models can actually meet their goals of e↵ectively

communicating the company’s operations.

As a concrete scenario from practice we can report on our experience of introducing the tool in a a global
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medical engineering company with 3,000 employees. The company has 25 di↵erent modelers working at

di↵erent sites. In order to harmonize the processes, the company further employs a team of three experts

leading the overall modeling initiative. Recently, this company decided to integrate the here presented

automatic naming convention violation detection along with other automatic checks into their modeling tool.

Due to the introduction of the automatic checks, the time for assuring the quality of the models could be

significantly decreased. As a result, the whole modeling initiative gained in acceptance since the modelers

could work more independently. This example vividly illustrates the huge e↵ect of the automated support

technique presented in this paper.

4.6. Threats to Validity

In this section, we provided an extensive evaluation of the introduced technique for detecting naming

convention violations. Nevertheless, threats to validity are an important perspective for discussing empirical

research [88, 89]. Hence, we use this subsection to reflect on the limitations of the presented work. In

particular, there are two important points that need to be highlighted in this context: the representativeness

of the investigated process model collections and the language independence of the technique.

Concerning the representativeness, it must be noted that the analyzed process model collections are not

representative in a statistical sense. This means that we may encounter additional labeling styles in the

collections of other organizations. However, for two reasons we are confident that the presented classification

extensively covers the labeling styles from practice. First, in the context of further research projects, we also

work with collections of other companies and never encountered styles that deviate from those we presented

in the classification. Second, considering the possible options of combining verb and subject, there are no

grammatically meaningful combinations left. Hence, we have strong reasons to believe that the classification

is complete although we can not prove this in a formal or statistical manner.

With regard to the language independence we have to highlight that we only considered three languages,

namely English, German, and Portuguese. Hence, the findings cannot be necessarily adapted to other

languages. Nevertheless, our experience with Dutch and Slovene models shows that we observe the same

styles in these languages. For languages that are not part of the Indo-European language family, it is harder to

assess whether the concepts can be directly transferred as such languages may have other grammatical features.

Still, even if such languages require an adaptation, for instance in the ambiguity resolution component, the

general strategy of building on a labeling style classification can be transferred and applied. Thus, we are

convinced that the presented concepts represent a valuable starting point for any given language.

5. Conclusion

In this paper we addressed the problem of automatically checking naming conventions of process model

elements. We designed a technique which is independent of WordNet and can hence be easily transferred
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to other languages. In particular, we employed text corpora and linguistic knowledge to create a part of

speech determination component. Using the computed part of speech information, we then decided about

the according linguistic patterns and respective violations. We evaluated the technique using nine business

process model collections from practice, covering three di↵erent languages. The results demonstrate the

applicability of our technique for reliably detecting naming convention violations. Although the target

languages di↵ered in the morphological complexity, we consistently obtained f-measure values between 91.8%

and 100%.

Despite the promising results, our work has to be reflected from the perspective of some limitations. In

this work we tested the approach with languages belonging to the Romanian and Germanic sub-branches of

the Indo-European language family. Hence, our evaluation results cannot be automatically transferred to

other language families as for instance Asian languages. However, our approach is designed as a language

independent solution, which can be theoretically applied to any language. The adaptation to di↵erent

languages in this paper showed that the main challenge is given by the proper resolution of ambiguous

cases. As even the results for English, a highly ambiguous language, were very reliable, we believe that our

technique is also valuable for other language families.

The results of our evaluation are also bound to the employed process model collections as our collections

are not representative in a statistical sense. However, we tried to avoid biased results by carefully selecting

collections with diverse characteristics in various dimensions. Altogether, we investigated more than 27,000

labels in the context of our evaluation. Hence, we are confident that our results properly reflect the potential

of the violation detection technique in practice.

In future work we plan to adapt the technique to additional languages including Slavic and Asian

languages. Moreover, we aim to further examine the usability perspective and learn how well companies can

benefit from such automated quality assurance techniques.
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