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We designed a portable system using an open source microcontroller (μC) with built-in field 
programmable gate array (FPGA) for on-the-fly data acquisition and processing of optical data 
generated from rapidly pulsed infrared light emitting diodes (IR LEDs) for optical sensing of gases. 
The system is used for rapid pulse generation (ca. 2 μs short pulses with a typical repetition rate of 
1 kHz) to drive the IR LED, as well as for the optical sensing data acquisition and processing on-the-
fly large data streams of ca. 2 Gbit/s. The flexibility and performance of the system is demonstrated. 
Each of the digitally processed signal pulses yielded one data point of analytical signal in time as a 
quasi-continuous data stream produced at a rate of between 1000 and 0.1 Hz. This microcontroller–
based portable open source platform is then implemented in on-the-fly data acquisition and 
processing, of analytical signals enabling continuous gas sensing. 

© 2017 Elsevier B.V. All rights reserved.
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13 1. Introduction
14 For analytical measurements where the sample property can 
15 change at a fast rate, such as in the case of atmospheric 
16 monitoring of trace gases, rapid digital sampling and 
17 analysis techniques are required [1]. This requirement is 
18 well satisfied with optical analytical platforms, such as 
19 infrared (IR) spectrometers, supplemented with adequately 
20 fast electronics and data handling capabilities.  Although IR 
21 spectroscopy-based gas detection is a well-established 
22 technique [2], designing small low-cost low power 
23 consumption analytical platforms for portable and remote 
24 analysis presents a number of challenges [3]. One of them is 
25 the rapid, on-the-fly processing of continuous and live data 
26 streams in a flexible custom-defined manner.  Additionally, 
27 low-cost, small size and weight, and low-power analytical 
28 platforms capable of rapid, on-the-fly and custom-defined 
29 data processing are required in a number of field 
30 deployment modes including portable hand-held devices and 
31 remote sensing devices such as on-board unmanned aerial 
32 vehicles (UAVs).  
33 Most gaseous analytes of environmental or industrial 
34 significance have strong absorption bands in the infrared 
35 (IR) spectral range [4]. Most commercially available 
36 instruments for the analysis of gases employ sophisticated 
37 and expensive spectrometers that provide measurements 
38 solely in a laboratory setting [5, 6]. Light emitting diodes 
39 (LEDs) have proven to be in many ways ideal light sources 
40 for optical detection and sensing in portable format [7-9].  In 
41 this context, the use of LEDs with photodiodes (PDs) in the 
42 IR spectral range has enabled the development of portable 
43 low-cost sensors [10-12]. Recently we demonstrated that 
44 response of MIR LED-based absorption photometric sensor 
45 for methane can be predicted from 1st principles using the 
46 readily available molecular absorption data HITRAN, 
47 resulting in calibration line slope agreement to ± 1% with 
48 experimental data [13]. 
49 In this paper we advance this work in investigating a 
50 programmable fully portable sensor for methane using a 
51 powerful hand-held open source microcontroller with field 
52 programmable gate array (FPGA), to our best knowledge 
53 used for the first time for portable analytical 
54 instrumentation.  The FPGA was capable of rapid on-the-fly 
55 processing of large data streams of up to 2GB/s which then 
56 resulted in the demonstration of continuous sensing of 
57 methane in indoor and outdoor environment (Part 2).  
58 Most of the commercially available LED drivers for pulse 
59 signal generation (in µs pulses with a 1kHz frequency) have 
60 fixed settings and need additional electronics for signal 
61 collection and data acquisition [14, 15]. In most cases an 
62 oscilloscope or standard electronic data acquisition (eDAQ) 
63 system can be a good option.  However, the maximum 
64 sampling rate for data acquisition of a typical eDAQ is only 
65 1 kHz, which is not adequate for the acquisition of data 
66 generated by microsecond pulses [16]. Expensive digital 
67 oscilloscopes with sampling rates in excess of 100 mega 
68 samples/sec can be implemented for data acquisition and 
69 collection, however, the acquisition of large data streams (in 
70 our case 125 MHz/16bit yielding 2 GB/s) will exhaust the 
71 memory of a typical 16 GB SD card in only ca.1 min [17]. 
72 Nowadays, computers are omnipresent as an interface with 
73 analytical instruments for online digital data acquisition, 
74 processing, storage, and display [18, 19]. Some are capable 
75 of precisely handling large data streams in modern 

76 laboratory-based (not portable) analytical instruments such 
77 as Raman spectrometry [20]. However, for miniaturized 
78 portable analytical instruments, modern powerful 
79 microcontrollers (µC) are ideal where on-the-fly (live data) 
80 data processing is needed [8, 21]. Recently the Hauser group 
81 published a review covering the use of µC for portable 
82 analysis [8]. Although a number of µC based commercial 
83 devices, including those for detection of methane, are 
84 available [22], these lack flexibility and give no insight into 
85 the way the analytical signal is produced (‘black box’), so 
86 that it is in principle impossible to make a judgement on the 
87 data processing. 
88 Currently, open source µC systems, such as Arduino, are 
89 popular due to their programmable options [23], however, 
90 the Arduino can handle only one operation at a time and the 
91 maximum sampling rate of its in-built analog-to-digital 
92 converter (ADC) is only 10 kHz [24]. Another popular open 
93 source µC, Raspberry pi, has no built-in analog input, 
94 therefore one has to be implemented using an additional 
95 ADC [25]. Conventional ADCs perform single conversions 
96 at a time, which results in a random lag between analog 
97 signal acquisition and data processing, making it difficult to 
98 generate synchronised data [26]. Importantly, even with a 
99 very fast ADC, the Raspberry pi is not capable of processing 

100 data in a rapid manner due to the speed limit of its 
101 processor.  Regarding the most important parameter in 
102 respect to this work, namely on-the-fly large data stream 
103 data processing, both the Arduino and Raspberry pi would 
104 not be able to handle data streams in excess of 50 kHz at 16 
105 bit 0.1 MB/sec [27].
106 Alternatively, a recently introduced portable 
107 microcomputer with a field-programmable gated array 
108 (FPGA, which enhances the processing capabilities of 
109 existing microprocessors) ‘Red Pitaya’ (a technology spin-
110 off from Instrument Technologies as the makers of Libera 
111 family devices [28]) is capable of on-the-fly processing of 
112 large data volumes without any lag, thanks to the FPGA 
113 responsible for data synchronization [29]. An FPGA allows 
114 for the integration of the ADC interface, input/output (I/O) 
115 interface, memory, and processing units in a single chip 
116 [30]. FPGA-based devices are especially used in particle 
117 colliders for high-energy physics (HEP) [31], gamma 
118 radiation spectroscopy, real vision imaging and many other 
119 types of reconfigurable high performance virtual 
120 instrumentation [32]. Although FPGA based devices offer 
121 real-time data handling capability of large data without any 
122 lag, other than in the fields of nanosecond pulse generation 
123 [33], computational chemistry [34] and simulated mass 
124 spectroscopy (MS) [35], the application of a µC system with 
125 FPGA in analytical chemistry to the best of authors’ 
126 knowledge, has not been presented in the analytical 
127 literature.  
128 Therefore, we aimed to investigate flexible data 
129 acquisition and on-the-fly fully automated data processing 
130 through developing an in-house data processing routine 
131 capable of handling large and live data using a µC system 
132 with an FPGA in a rapid manner.  This creates the capability 
133 of generating rapid pulsed signals and processes in real time 
134 giving large amounts of data per second (2 Gbits/s at 125 
135 MHz with 16bit ADC), where implementation of a 
136 miniaturized µC with an FPGA for IR LED based optical 
137 gas sensing offers portability, and at the same time 
138 maximum flexibility for implementing codes for specific 
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139 analytical scenarios such as portable and remote analysis of 
140 gases.  

141 2. Instruments and Methods 
142 2.1. Instrumentation

143 2.1.1. Microcontroller with field programmable gate array
144 The microcontroller (µC) system (Red Pitaya V1.1, RS 
145 Components Pty Ltd, Wetherill Park, NSW, 1851, 
146 Australia) shown in Fig. 1 is an open source platform, based 
147 on an ARM Cortex A9 processor plus a Zynq µC system on 
148 chip (SoC) field programmable gate array (FPGA) in the 
149 same device (component A in Fig. 1) with 512MB of DDR3 
150 RAM (component B in Fig. 1).  The operating µC system is 
151 based on Linux (version 2015.1 from Xilinx) supporting 
152 network connection (WIFI, LAN and USB), which allows it 
153 to operate remotely.  The ARM CPU functions as a data 
154 analyser to evaluate the data collected by a high-speed 
155 ADC.  The sampling capability of this µC system through 
156 RF output and input (components C and D in Fig. 1) has 
157 four different options from 2-125 MHz.  The buffer size 
158 (maximum data capture capacity) of the FPGA-µC system is 
159 16,384 points. The input and output buffer of the FPGA-µC 
160 system was self-triggered using its external triggering 
161 facilities in the GPIO (shown as component E in Fig. 1).
162 Insert figure 1

163 2.1.2. In-house electronics: Voltage to current converter 
164 and resistor-capacitor circuit or RC filter.  
165 We developed a voltage to current conversion unit (V-
166 to-I) and a resistor-capacitor circuit as an RC filter in-house 
167 with off-the-shelf electronics.  The V-to-I circuit converts a 
168 voltage pulse, generated by the Red Pitaya FPGA, to a 
169 current pulse to drive the LED.  
170 The RC filter has two 1 ohm resistors and a 390 µF 
171 capacitor. There is also a dummy load resistor of 27 ohms 
172 connected across the output. The dummy load is necessary 
173 so that the power bank does not switch off if the load 
174 becomes too small.  The filter supplies power to the LED 
175 driver (V-to-I) so that the 2 amp pulse is not affecting the 
176 detector which is supplied from the same power bank.  See 
177 the supplementary information (SI) Fig. S1 A&B for a 
178 detailed circuit diagram of the V-to-I, and RC filter.

179 2.1.3. LED and photodiode 
180 We used an IR LED with an emission maximum 
181 wavelength λmax = 1.65 μm, (Lms16LED-R, Alfa Photonics, 
182 Latvia) and an IR sensitive photodiode (PD) (Lms24-05-PA, 
183 Alfa Photonics, Latvia) having a spectral response over the 
184 range from 1.1 to 2.3 µm equipped with embedded 
185 preamplifier.  

186 2.1.4. Power supply.  
187 We employed a rechargeable portable power bank 
188 (CY1767PBCHE, Cygnett, Australia) to supply 5 volt DC 
189 power to the µC system, V-to-I conversion circuit, and the 
190 preamplifier circuit of the IR PD.

191 2.2. Method

192 2.2.1. Pulse generation

193 We used the signal generation feature of the 
194 microcontroller (μC) system (Red Pitaya) to generate the 
195 desired voltage pulses. Signal generation of the μC operates 
196 by filling a floating-point array of up to 16384 values with 

197 the desired voltage at each time point, then commanding the 
198 FPGA to produce that voltage pattern at the desired 
199 frequency. They were subsequently converted into current 
200 pulses by the voltage to current converter (V-to-I) unit to 
201 drive the IR LEDs in pulse mode.  The shape of the pulse is 
202 flexible, generated stepwise digitally with details described 
203 in the Results and Discussion section. 

204 After receiving the radiation from the pulsed IR LED, 
205 optical pulses from the IR PD were acquired by the µC 
206 system through Input Channel 1 as analog voltage pulses.  
207 An 800 mm long and 7.5 mm inner diameter electro 
208 polished aluminium tube was used as a sample cell for 
209 portable analysis, which also housed the IR LED and the IR 
210 PD (shown in Fig. 2 in the Results and Discussion section).

211 2.2.2. Fast data acquisition and on-the-fly data processing

212 The analog voltage pulses from the IR PD which were 
213 collected by the µC system through the RF input high speed 
214 ADC (input channel 1) were designated ‘raw pulses’ for 
215 clarity. We constructed a data processing program for the 
216 ARM cortex A9 processor of the µC system to perform 
217 digital smoothing on the raw pulses. The digital smoothing 
218 utilized three techniques: repetitive smoothing (averaging a 
219 number of consecutive pulses) alone, and in addition to the 
220 repetitive smoothing, boxcar averaging, or Savitzky-Golay 
221 smoothing (a special form of 2nd polynomial regression-
222 based smoothing).  After the application of the smoothing 
223 techniques, the smoothed pulses were termed ‘processed 
224 pulses’ (for more information see Fig. 4).  
225 The baseline and pulse top of each of the processed 
226 pulses were evaluated using three different statistical 
227 operations: averaging, linear regression, and 2nd degree 
228 polynomial regression.  From the evaluated values of 
229 baseline and pulse-top, the height of the pulse was 
230 calculated (by subtraction), resulting in one data point for 
231 each processed pulse, termed the ‘final signal value’(S).  
232 After acquiring additional quasi-continuous final signal 
233 values from an arbitrary number of pulses, the ‘digital data 
234 signal’ in volts was formulated and by taking the negative 
235 natural logarithm (base e) of the data stream values, the 
236 digital data stream was converted into the ‘final analytical 
237 signal’ (A) in absorbance units (A.U.) (for more information 
238 see Fig. 4).  The total calculation time for the µC was 
239 ~20 ns.  
240 Baseline noise was evaluated by observing the 
241 distribution pattern of all the data points in the baseline of 
242 each of the pulses for random and fixed instrumental noise 
243 in our detection system. The distribution pattern for the final 
244 digital signal was tested on the obtained results using two 
245 different statistical evaluation techniques: simple averaging, 
246 and linear regression.  Both the instrumental and analytical 
247 signal to noise ratio was calculated and the result was 
248 optimized by comparing one with another.

249 3. Results and discussions
250 3.1. Design of Pulse Generation for IR-LED

251 The radiometric power output of LEDs increases 
252 proportionally with the magnitude of the applied current 
253 [36]. However, the temperature across the chip of the LED 
254 rises significantly when it is driven at a higher applied 
255 current [37], which causes efficiency droop (i.e. the 
256 efficiency of the LED decreases while operated with higher 
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257 electric current) due to overheating across the 
258 semiconductor material of the LED chip [36].  
259 Therefore, to minimize the effect of overheating of the 
260 semiconductor materials used in the IR LED, the LEDs have 
261 to be operated either in a quasi-continuous wave (QCW) 
262 mode (duty cycle = 50%) or in pulsed mode (switched on 
263 for a very short time, usually microseconds).  The maximum 
264 driving current in QCW for the IR LED is 250 mA [38], 
265 whereas in pulse mode the driving current can be up to 2A 
266 [38], which yields higher radiometric power output during 
267 the pulse [36] and this in turn yields in better performance 
268 of the optical measurement due to lower minimum 
269 absorbance values that can be measured by absorbance-
270 based analytical detection [15, 39]. 
271 In rapid pulsing mode, the duty cycle (the percentage of 
272 the ‘on’ time) is significantly shorter, which helps to reduce 
273 the thermal effect.  In our work, the IR LED was in “on” 
274 mode only for 2 μs with a duty cycle equal to 0.2%, so the 
275 LED was in “off” mode for a comparatively longer period 
276 (998 μs), which allows sufficient time to cool down and 
277 protect the LED from efficiency droop.  The corresponding 
278 pulse repetition frequency (PRF) in our study was 1 kHz, 
279 which helps to produce a higher number of pulses within a 
280 short period of time with resulting maximum radiometric 
281 power output. Hence, 0.2% duty cycle provides data 
282 processing suitability at such high PRF since the pulse width 
283 determined the number of data points to be processed.
284 To further demonstrate the flexibility of this approach 
285 with custom-defined data processing, we developed a 
286 computer program written in C and compiled in a Linux OS 
287 environment to generate the voltage pulses in the required 
288 shape. This program was employed to forward an array of 
289 voltage values, with stepwise amplitudes between 0 and 
290 1 volt, from the µC system to the voltage-to-current 
291 converter (V-to-I) circuit shown in Fig. 2.  Since LEDs are 
292 current driven, we applied the in-house voltage-to-current 
293 (V-to-I) converter circuit to transform the voltage pulsed 
294 signal generated (Vin) by the µC system into current signal 
295 pulse (Iin) for the IR LED.  
296 Insert Figure 2
297 As mentioned before, generated pulses can be produced 
298 in arbitrary shapes i.e. any time duration (pulse width or 
299 duty cycle), frequency, and forward voltage are possible 
300 simply by changing the parameters of the program.  The 
301 stepwise pulses generated by the μC are shown in Fig. 3A 
302 (i) as a continuous stream and in Fig. 3B (i) as single pulse 
303 which was constructed by the following: 500 steps with 0 
304 volts to achieve the base line, 20 steps to achieve 0.9 volt, 
305 180 steps to make the pulse top with 0.9 volt, 20 steps to 
306 bring the pulse signal down to 0 volt and the remaining 
307 steps to fill the buffer at 0 volt (1 step = 10ns.  The pulse 
308 generated was repeated with 1 kHz frequency, and the total 
309 time duration depends on the number of pulse data that need 
310 to be processed.  The corresponding converted currents 
311 pulsed from the V-to-I conversion unit, and measured in 
312 channel 2 of the μC are shown in Fig. 3 A (ii) and 3 B (ii). 
313 These currents were used to drive the IR LEDs in pulse 
314 mode.  IR radiation from the LED was detected by the IR 
315 PD and transformed from an optical pulse signal to voltage 
316 pulses (Vout) as measured in Channel 1 of the μC shown in 
317 Fig. 3A (iii) and 3B (iii).  This voltage pulsed signal was 
318 collected by the µC system as a raw pulsed signal and 
319 employed for further processing.  
320 Insert Figure 3

321 From Fig. 3 B i) it is observed that the stepwise 
322 generated pulse from the µC system follows a smooth 
323 shape, with a sharp rise and fall as it is generated. However, 
324 when it was converted into current pulses by the V-to-I 
325 conversion circuit the LED has a rise time of 200 ns to 
326 generate the final optical output (~2A).  After detecting the 
327 response from the IR LED, the IR PD has a “rise time” and 
328 a “fall time” of 250 ns a shown in Fig. 3 B.  The response 
329 delay appears due to inherent properties of the 
330 semiconductor material of the IR LED and IR PD and the 
331 response of the embedded PA and therefore, cannot be 
332 controlled by the user.

333 3.2. Data Acquisition and on-the-fly Data processing with 
334 µC system

335 By default, Red Pitaya FPGA performs data 
336 acquisition in continuous mode, which may result in 
337 overwriting and loss of necessary data for further processing 
338 in pulsed mode.  Therefore, data acquisition was performed 
339 through a command to the FPGA to acquire a full buffer of 
340 16384 points as an array of digital numbers.  Triggering was 
341 used to ensure the µC system only collected the informative 
342 part of the raw signal that included the baseline and the 
343 entire pulse.
344 To eliminate time lag between data acquisition and 
345 data processing, the input and output buffer of the µC were 
346 synchronized using self-triggering.  Self-triggering was 
347 performed by employing the external triggering facility of 
348 the FPGA where the digital output from the GPIO 
349 (component E in Fig. 1) was fed back as the external trigger. 
350 It was programmed by raising the pin from low (0 volt) to 
351 high (3.3 volt), keeping the pin high for 5 µsec then 
352 allowing it to fall back to low, triggering both RF input and 
353 output to function simultaneously

354 3.2.1. Digital filtering by repetitive smoothing, boxcar 
355 averaging and Savitzky-Golay smoothing
356 In order to achieve smooth pulses from the 
357 acquired raw pulses, we incorporated three digital filtering 
358 techniques namely, repetitive smoothing, boxcar averaging, 
359 and Savitzky-Golay smoothing through C programming in 
360 the CPU of the µC. When digital filtering software is 
361 incorporated in commercially available analytical 
362 instruments, analysts lose the flexibility of investigating 
363 different digital filtering techniques with variable input data 
364 according to specific analytical requirements [15]. Our 
365 digital filtering approach with the µC system allowed us to 
366 select flexible numbers of raw pulses starting from time zero 
367 (triggered on) to perform the repetitive smoothing by 
368 averaging consecutive pulses [40]. Then boxcar averaging, 
369 and Savitzky-Golay (S-G) methods [15] using point wise 
370 data after the repetitive smoothing also produced smoothed 
371 processed pulses.  The selection criteria for the large number 
372 of raw pulses for processing are described in the SI.  
373 In the data processing program, we started with 
374 repetitive smoothing of different numbers of raw pulses 
375 being averaged (A = 10, 100, 1000, and 10,000) (Shown in 
376 Fig. 4A).  We then employed Boxcar averaging and 
377 Savitzky-Golay methods on 1000 pulses already smoothed 
378 by repetitive smoothing to investigate whether further 
379 smoothing after repetitive smoothing is required (discussed 
380 in section 3.3.2).  
381 In order to obtain the final signal (height of the pulses) 
382 from both raw and processed pulses we applied three 
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383 different statistical operations in the program: simple 
384 averaging, linear regression, and 2nd degree polynomial 
385 regression, to evaluate the base line and pulse top (shown in 
386 Fig. 4B). At 0.2% duty cycle with 100M/s data rate, 200 
387 points were delivered while the LED is on only for 2 μs. 
388 Therefore, we selected 125 data points (discarding the pulse 
389 rise and fall) from the pulse top and 150 data points from the 
390 base line (before the rise) for each statistical operation.  The 
391 difference between the pulse top and baseline i.e. pulse 
392 height is considered the final signal value for each 
393 individual pulse.  Schematic representations of the final 
394 evaluated signal as pulse height and the final stream of 
395 quasi-continuous data are shown in Fig. 4C.
396 Insert Figure 4

397 3.2.2. Baseline noise evaluation and instrumental signal-to-
398 noise (SNR) from the processed pulses 
399 A. Baseline noise evaluation.  
400 Theoretically, Gaussian (white) noise attenuates with 
401 square root of the number of repetitive pulses, while other 
402 types of noise will not, and therefore the additional Boxcar 
403 and Savitzky-Golay smoothing along with the repetitive 
404 smoothing might not be equally beneficial.  To assess the 
405 nature of the noise of the processed data, we have conducted 
406 statistical analysis based on histograms of the baseline data 
407 point values.  The histograms were constructed using 150 
408 data points (A=1000) in the baseline of processed pulses, 
409 using repetitive smoothing, Boxcar and repetitive 
410 smoothing, and Savitzky-Golay and repetitive smoothing as 
411 shown in Fig. 5A.  From the histograms in Fig. 5A we 
412 observed that the baseline signals follow a normal 
413 distribution for repetitive smoothing and for repetitive 
414 smoothing + Boxcar, while the repetitive smoothing + 
415 Savitzky-Golay resulted in a distribution skewed to the 
416 right. The characteristic appearance of the normal 
417 distribution of the baseline data values in this study 
418 confirms that the baseline signals resulting from repetitive 
419 smoothing and repetitive smoothing + Boxcar averaging 
420 methods include only white noise [41, 42].  
421 We determined the baseline noise of the processed 
422 pulses after repetitive smoothing by multiplying the 
423 standard deviation (σ) of 150 baseline data points by 5, 
424 following a classical noise evaluation technique in analytical 
425 chemistry for flow-through detection, and found a good 
426 agreement with theoretical noise values (as shown in SI Fig. 
427 S2A). This also confirms the Gaussian nature of the baseline 
428 noise in the processed pulses through repetitive smoothing.  
429 The baseline noise values after applying the three different 
430 smoothing techniques are shown in SI Fig. S2B.  As 
431 expected, the repetitive smoothing followed by additional 
432 smoothing techniques resulted in lower white noise in the 
433 baseline with Boxcar averaging being 7% and Savitzky-
434 Golay 5% lower.  
435 The flexibility in this type of baseline noise evaluation 
436 with the μC system provides users with the capability to 
437 choose from a variety of digital filtering-by-smoothing 
438 techniques.  Boxcar averaging and Savitzky-Golay 
439 smoothing didn’t result in a statistically significant 
440 reduction in noise, so we have chosen repetitive smoothing 
441 only for further investigation in this study with a view to 
442 providing rapid data processing with the proposed μC based 
443 detection system.

444 3.2.3. Instrumental signal-to-noise (SNR)
445 The quality of an analytical method is very often quantified 
446 by analyzing the signal-to-noise ratio (SNR).  We 
447 determined the instrumental SNR for each resulting signal 
448 value (pulse height) and baseline noise obtained from each 
449 processed pulse after employing different smoothing 
450 techniques.  In Fig. 5B we compare the SNR values 
451 obtained after employing repetitive smoothing as a function 
452 of the number of pulses being averaged (A) using three 
453 different statistical methods.  We observed that the SNR 
454 improves as the number of pulses being averaged (A) 
455 increases. The enhancement of SNR follows the theory 
456 where SNR improves linearly by a factor of √A (shown in 
457 Fig. 5C) [42]. However, different statistical operations have 
458 no observable effect on the SNR values.  All the 
459 measurements were reproducible since the standard 
460 deviations were too small to notice the error bars for 10 
461 repetitions of each result.  
462 Insert Figure 5

463 3.2.4. Determination of the digital data stream
464 A. Pulse top and baseline signal distribution
465 In order to select the most suitable statistical method for 
466 the determination of the pulse top and baseline signal values 
467 for each subsequent pulse signal (pulse height), we 
468 investigated the distribution of the pulse top and baseline 
469 signal values, applying simple averaging and linear 
470 regression for both cases.  We omitted the 2nd degree 
471 polynomial as we did not observe any significant difference 
472 in the SNR values using simple averaging, linear intercept, 
473 or 2nd degree polynomial methods as illustrated in Fig. 5B. 
474 In Fig. S3A of the SI we have shown the baseline and pulse 
475 top signal values obtained from evaluating 10,000 
476 consecutive raw pulses (without applying any digital 
477 smoothing) using simple averaging and linear regression.  
478 We constructed the histogram using these data values 
479 (10,000 baselines and pulse tops) as shown in Fig. S3B and 
480 S3C, and we observed that the simple averaging method 
481 resulted in normal distributions as well as smaller standard 
482 deviations when compared to linear regression for both 
483 evaluations of baselines and pulse tops.

484 B. Final quasi-continuous data stream.
485 From the distribution pattern of baseline and pulse top 
486 signal values (Fig. S3B & S3C) it is evident that simple 
487 averaging has less deviation when it is used for signal 
488 evaluation.  Therefore, we considered the simple averaging 
489 method to investigate the final signal (pulse height) 
490 distribution while averaging consecutively increased 
491 numbers of pulses for repetitive smoothing, and referred to 
492 the result as the final digital data stream as shown in Fig. S4.  
493 The distributions of the final pulsed signal (height of the 
494 pulse) became smooth and, as expected, the analytical noise 
495 (in voltage) of the final data stream lowered as the number 
496 of consecutive pulses being averaged for repetitive 
497 smoothing increased.

498 C. Evaluation of analytical signal by converting the 
499 voltage signal into an absorbance signal.  
500 Since the ultimate usage of the proposed optical system 
501 is analytical sample detection based on the absorbance 
502 principle, we converted each voltage signal of the final data 
503 stream (i.e., Fig. S4) into an absorbance unit (A.U.).  By 
504 taking the negative natural logarithm (base e) of the final 
505 signal (pulse height) values, the minimum measurable 
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506 absorbance was determined [41] and referred to as the final 
507 analytical signal for this proposed absorbance based 
508 detection system.  In Fig. 6 the final absorbance signal is 
509 shown with corresponding analytical noise values (∆A in 
510 A.U.).  It is evident that as the number of repetitions of 
511 pulses for smoothing increases, the noise drops by a factor 
512 of the square root of the number of pulses, which 
513 consequently helps to improve the performance of any 
514 analytical detection.  However, while the number of 
515 repetitive pulses increases, the time required for processing 
516 each pulse increases simultaneously and the rapid 
517 instantaneous processing capability of the system therefore 
518 decreases.  Hence, where fast data processing is the 
519 principal focus, the number of repetitive pulses being 
520 smoothed needs to be optimized.  
521 Insert Figure 6

522 3.3. Optimization.  
523 In this section, the number of pulses to be averaged for 
524 repetitive smoothing are optimized for the proposed IR 
525 detection system using on-the-fly data processing which will 
526 be exercised further in the field for real sample analysis.  
527 For this, the analytical signal-to-noise ratios (ratios of the 
528 averaged absorbance values obtained from Fig. 6 to the 
529 corresponding absorbance noise values (A/∆A)) were 
530 compared with the instrumental signal-to-noise ratio (SNR) 
531 shown in Fig. 7A.  In both cases, the signal-to-noise ratio 
532 increased as the number of pulses being averaged increased 
533 and almost the same pattern was followed although they 
534 were appraised independently for different data sets 
535 following different evaluation approaches.  The analytical or 
536 absorbance noise values (∆A) were also compared with the 
537 instrumental or baseline noise values (N) of each processed 
538 pulse as shown in Fig. 7B. From Fig. 7B, we observe that 
539 the analytical and instrumental noise values merge with each 
540 other at A=10,000 (for repetitive smoothing) which is the 
541 consequence of fixed instrumental noise and the pulse being 
542 almost smoothed.  Although A=10,000 gives the optimal 
543 result in terms of noise elimination and signal-to-noise ratio 
544 enhancement, the time needed for each pulse to be smoothed 
545 for A=10,000 is 10 seconds, which in some cases may not 
546 be ideal in terms of rapid data processing. Therefore, to keep 
547 the system response fast enough for most real-time sensing 
548 scenarios, A=1000 (1 second for each data point) was 
549 chosen for on-the-fly data processing for in-field real sample 
550 analysis. 
551 Insert Figure 7 

552 4. CONCLUSIONS
553 This study demonstrates the prospects for rapid data 
554 processing of large data streams on modern portable μC 
555 systems with field-programmable gate arrays, for on-the-fly 
556 and rapidly changing sample scenarios.  Further it shows the 
557 benefits of flexibility and full insight based on a custom data 
558 handling routine implemented in an open source μC system 
559 with a FPGA. The user-defined data processing thus 
560 acquired and implemented through the μC system in a 
561 flexible manner also allows the generation of the required 
562 pulsed signal with any desired shape, duration, frequency, 
563 and amplitude to drive the LED.  The user can define and 
564 adapt the data processing software and apply it in a flexible 
565 way as required.  The use of such miniaturized µC-FPGA 
566 systems with custom data processing routines and high 

567 reproducibility makes the analytical sensing of rapidly 
568 changing samples, such as atmospheric gases, a real and 
569 relatively low-cost possibility.
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723 Figures
724

729

725

726 Fig. 1. µC system (Red Pitaya) showing the principal components: A) µC system Processor + FPGA, B) RAM High speed & 
727 resolution ADC input, C) High speed and resolution ADC input, D) High speed and resolution DAC output, E) General Purpose 
728 input and output (GPIO) which provides external self-triggering facilities, F) High speed ADC input and DAC output.



  

10

Fig. 2. Schematic representation of the IR detection associated with µC system as pulse generation and data collection system. 
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Fig. 3 A) Schematic representation of three types of pulsed signals generated and measured through i) output channel 1, ii) input 
channel 2 and iii) input channel 1 of the micro-controller system, informative parts (buffer size data points) are shown within the 
red dash lined rectangle. B) detail of each pulsed signal: (i) Step wise generated pulse defined by the µC system (Red Pitaya); (ii) 
current pulse to drive the IR LED, and (iii) the corresponding optical output pulses from the IR LED detected by the IR PD. 
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Fig. 4 Schematic representation of data processing methods A) repetitive smoothing and two additional digital smoothing 
techniques: Boxcar averaging and Savitzky-Golay applying on pointwise obtained data from repetitive smoothened pulses B) 
evaluation of baseline (from 150 data points) and pulse top (from 125 data points) of each processed pulse applying three different 
statistical methods to obtain final signal values (height of the pulses, S) C) Final data i. digital data stream in volt and ii. analytical 
signal in absorbance units (A.U.) from each individual pulse after the statistical evaluation of pulse top and baseline. 
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Fig. 6. Ultimate analytical signal in absorbance unit (A.U.) as negative natural logarithm of each signal values with corresponding noise values. 
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Fig. 7. Comparison of analytical and instrumental A) signal-to-noise ratio 
(A/∆A) and (SNR) respectively, calculated for different set of acquired data 
at different start time. B) noises (noise = 5*σ) of same set data as A.
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1. Voltage-to-current conversion
The amplified output voltage from pin 6 of the op amp turns 

on the Mosfet (Fig. S1 A Q1) allowing current to flow through 
the LED (Fig. S1 D2) and resistors R10, R11.  The voltage 
increased across the resistors until it is equal to the voltage 
applied to pin 3. This voltage is fed back to the op amp (D) 
through pin 2 which holds the current constant until the voltage 
applied to pin 3 changes to a different value

2. Other Figures
Figures for baseline noises, pulse top and baseline signal 

values, constructed histograms and quasi-continuous digital data 
stream using two different statistical methods are given in Figure 
S2, S3, S4 respectively.  In Figure S2 A the theoretical noise was 
calculated using equation 1,

𝑁𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =
𝑆𝑚𝑎𝑥 ‒ 𝑆𝑚𝑖𝑛

6 ……………………………(1)

Where,  is the base line noise, is the 𝑁𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑆𝑚𝑎𝑥 
maximum signal value in the baseline and  is the minimum 𝑆𝑚𝑖𝑛
signal value in the baseline.  

Fig. S 1 Block diagram of the in-house made A) voltage-to-current (V-to-I) 
conversion circuit B) resistor-capacitor (RC) filter. Fig S 2 A) Baseline noise values of raw and repetitive smoothing pulses 

compared with theoretical values B) Comparison of baseline noise values 
obtained after three different smoothing techniques. 
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Fig S 3 A) Pulse top and baseline signal values of respective optical voltage pulses, Constructed histogram B) pulse top data values C) Baseline data values 
obtained from 10,000 consecutive raw pulses after applying two different data evaluation statistical methods simple averaging and linear regression. 
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Fig. S 4 Analytical signal from each digitally processed signal pulses of processed data point as a quasi-continuous data stream using simple averaging 
applied on of the pulse top (125 data points) and base line (150 data points). 
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3. Command line parameters and code 
in C language

Command line parameters for the Red Pitaya peakshape program 
(note that lower case letters in the commands below refer to a 
number chosen by the user):

t,v Time (t) and voltage (v) pair.  Time is in 0.01 micro 
seconds or steps, Voltage is in volts.  Each pair specifies 
the next step in generating the voltage graph to be sent 
from the red pitaya, taking t steps to get from current 
voltage to desired voltage.  For example if the graph is 
currently at 0.4V and the parameter given is 4,0.6 then the 
next four steps in the graph will be 0.45V 0.50V 0.55V 
and 0.6V.

N=n Specifies how many samples to process.  The pump 
will be turned on before each sample.  The value of n 
must be a whole number greater than or equal to 1.  A 
value less than 1 will be replaced by 1.  If it is not 
specified the default is 10.  If N=n is specified more than 
once then only the last one on the command line is used.

S=n Specifies how many sub groups of pulses are acquired 
for each sample.  The pump will NOT be turned on 
between subgroups.  If S=n is specified more than once 
then only the last one on the command line is used.  If not 
specified, the default is 1, ie not sub group analysis.

A=n Specifies how many pulse are generated and acquired 
for each sub group which are averaged together.  The total 
number of pulses generated / acquired and then averaged 
together for each sample is value of S x value of A.  If 
A=n is specified more than once then only the last one on 
the command line is used.

P:s,t Specifies the speed (s) and time (t) that the pump will 
operate between the analysis of each sample.  The value 
of s must be between 0.5 and 1.8, if the value is less than 
0.5 the pump will not turn on, if the value is greater than 
1.8 the pump will turn on to 1.8.  The second parameter is 
the time in milliseconds to turn the pump on.  Example if 
P:0.9,4000 is specified the pump will be provided with 
0.9 volts for 4 seconds between each sample.  The pump 
cannot be turned on for less than 500 milliseconds and 
any value less than 500 will be taken as 500.  Example if 
P:1.1,0 is specified the pump will turn on the 500 
milliseconds.  You cannot turn the pump off by 
specifying no time, you must specify no voltage or not 
include the parameter.  If this parameter is not present, the 
default is not to turn the pump on. .  If P:s,t is specified 
more than once then only the last one on the command 
line is used.

R=Y Record the time when the pump is turned on and also 
turned off.

C:s,f Specifies a calculation zone within the recorded 
averaged pulse.  The calculation preformed and a simple 
average, linear regression, polynomial regression, boxcar 
smoothing with simple average, linear regression and 
polynomial regression along with s-k smoothing with 
simple average, linear regression and polynomial 
regression.  Up to 10 calculation zones can be specified.

B:n Specifies how many points to average together in the 
box car analysis.

V:s,f:v Not yet implemented.
D=N Specifies to only read and process fast analogue input 

channel 1 rather than both channel 1 and channel 2.
F=Y Specifies that the input signals should be collected at 

125 MHz instead of the default 15.625 MHz.
Z=N Specifies to not zero the calculation array between 

samples.  This parameter should rarely be used if ever.

O=N Specifies that the sequence of averaged pulses should 
NOT be written to the output.

O=n Specifies how many steps of each averaged pulse 
should be output, default if not specified is 1000.  If O=n 
is specified more than once then only the last one on the 
command line is used.

T=Y Specifies that timing information should be provided 
to the user on stderr  The information produced is how 
long is spent in each routine on every call, which can be 
used to improve the program performance or determine 
how long a particular run is going to take.  This parameter 
should rarely be used.

W=Y Indicates that the program should wait for a signal 
(button being pushed) before collecting and analysing 
each sample.

W=S Indicates that the program should initially wait for a 
signal (button being pushed) before starting to collect 
samples.

4. Program flow chart 
 

Fig. S 5 Program flowchart of the corresponding algorithm. 
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5. Program code: Red Pitaya function for generating LED pulse and acquiring signal from detector 

int GenerateAcquire ( int   DualChannel,
                      int   FastRate,
                      float in1[ ],
                      float in2[ ] )
  { //* This routine generates the output wave and acquires the responses.

//* Prerequisite: The wave form has been loaded into the FPGA using
//* rp_GenArbWaveform and the frequency set with rp_GenFreq.
//* The array in1[ ] will be filled with the detected wave form.

    uint32_t buff_size = MaxCalculation ;
    int      TriggerWait ;

    if ( FastRate )
      { rp_AcqSetDecimation( RP_DEC_1 ) ; }
    else
      { rp_AcqSetDecimation( RP_DEC_8 ) ; }
    rp_AcqSetTriggerLevel( 0 ) ; //* Set FPGA trigger.
    rp_AcqSetTriggerDelay( 8192 ) ; //* Set the FPGA acquisition trigger delay.
    rp_AcqStart( ) ; //* Tell the FPGA to start an acquisition.
    rp_AcqSetTriggerSrc( RP_TRIG_SRC_EXT_PE ) ; //* Set the acquisition trigger to be external signal.

    rp_GenOutEnable( RP_CH_1 ) ; //* Turn the signal generation on for channel 1.
    rp_GenTriggerSource( RP_CH_1, RP_GEN_TRIG_SRC_EXT_PE ) ; //* Set the generation trigger to be external signal.

    rp_acq_trig_state_t state = RP_TRIG_STATE_WAITING ;
    TriggerWait = 0 ;
    while (( state != RP_TRIG_STATE_TRIGGERED ) && ( TriggerWait < 20 ))
      { rp_DpinSetState( RP_DIO1_P, RP_HIGH ) ; //* 5 usec pulse on digital I/O pin connected to external trigger.
        usleep ( 5 ) ;
        rp_DpinSetState( RP_DIO1_P, RP_LOW ) ;
        usleep ( 5 ) ;
        TriggerWait++ ;
        rp_AcqGetTriggerState( &state ) ; //* Get the acquisition trigger state from the FPGA.
      }

    if ( state != RP_TRIG_STATE_TRIGGERED )
      { fprintf( stderr, "******** Trigger failed : state is %d\n", state ) ;
        return( false ) ;
      }
    else
      { usleep( 15 ) ; //* Sleep long enough for the buffer to be filled.
        rp_AcqGetOldestDataV( RP_CH_1, &buff_size, in1 ) ; //* Transfer the acquired detector values from the FPGA.
        if ( DualChannel )
          { rp_AcqGetOldestDataV( RP_CH_2, &buff_size, in2 ) ; } //* Transfer the acquired current feedback values from the FPGA.
        rp_GenOutDisable( RP_CH_1 ) ;
        return( true ) ;
      }
  }

Full detailed program code which is multiple pages long is available from the authors upon request. 
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Research Highlights 

 Flexible data processing with field programmable gate array (FPGA) incorporated with portable open source microcontroller 
 Rapid pulse generation of 2 μs short pulses with a typical repetition rate of 1 kHz to drive the IR LED 
 Optical sensing, data acquisition and processing on-the-fly of 2 Gbit/s datastream 
 Continuous analytical signal of 1 point every 1 ms to 10 s obtained 
 Minimum measurable absorbance of 10-4 a.u. achieved 


