
This is a repository copy of New Insights into Leaf Physiological Responses to Ozone for 
Use in Crop Modelling.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/146753/

Version: Published Version

Article:

Osborne, Stephanie Alice, Pandey, Divya, Mills, Gina et al. (5 more authors) (2019) New 
Insights into Leaf Physiological Responses to Ozone for Use in Crop Modelling. Plants. 84.
ISSN 2223-7747 

https://doi.org/10.3390/plants8040084

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



plants

Article

New Insights into Leaf Physiological Responses to
Ozone for Use in Crop Modelling

Stephanie Osborne 1,2,*, Divya Pandey 2, Gina Mills 1, Felicity Hayes 1 , Harry Harmens 1 ,

David Gillies 2, Patrick Büker 2 and Lisa Emberson 2

1 Centre for Ecology and Hydrology, Environment Centre Wales, Bangor LL57 2UW, UK;

gmi@ceh.ac.uk (G.M.); fhay@ceh.ac.uk (F.H.); hh@ceh.ac.uk (H.H.)
2 Stockholm Environment Institute, Environment Department, University of York, York YO10 5NG, UK;

pandey.divyaa85@gmail.com (D.P.); david.gillies@york.ac.uk (D.G.); patrick.bueker@giz.de (P.B.);

l.emberson@york.ac.uk (L.E.)

* Correspondence: steph_osborne@hotmail.co.uk; Tel.: +44-7906-877798

Received: 28 February 2019; Accepted: 23 March 2019; Published: 1 April 2019
����������
�������

Abstract: Estimating food production under future air pollution and climate conditions in scenario

analysis depends on accurately modelling ozone (O3) effects on yield. This study tests several

assumptions that form part of published approaches for modelling O3 effects on photosynthesis

and leaf duration against experimental data. In 2015 and 2016, two wheat cultivars were exposed in

eight hemispherical glasshouses to O3 ranging from 22 to 57 ppb (24 h mean), with profiles ranging

from raised background to high peak treatments. The stomatal O3 flux (Phytotoxic Ozone Dose,

POD) to leaves was simulated using a multiplicative stomatal conductance model. Leaf senescence

occurred earlier as average POD increased according to a linear relationship, and the two cultivars

showed very different senescence responses. Negative effects of O3 on photosynthesis were only

observed alongside O3-induced leaf senescence, suggesting that O3 does not impair photosynthesis

in un-senesced flag leaves at the realistic O3 concentrations applied here. Accelerated senescence

is therefore likely to be the dominant O3 effect influencing yield in most agricultural environments.

POD was better than 24 h mean concentration and AOT40 (accumulated O3 exceeding 40 ppb,

daylight hours) at predicting physiological response to O3, and flux also accounted for the difference

in exposure resulting from peak and high background treatments.

Keywords: ozone; air pollution; wheat; photosynthesis; leaf senescence; crop modelling

1. Introduction

The air pollutant ozone (O3) reduces yield in many crops including wheat, rice, and soybean [1,2].

Ozone at the ground level forms from precursor gases—chiefly NOx and volatile organic compounds

(VOCs)—in chemical reactions catalysed by sunlight and heat [3]. Concentrations over much of

the Earth’s land surface have approximately doubled since pre-industrial times, mainly due to

anthropogenic emissions from vehicles, industry, and agriculture [4–6]. Annual mean surface O3

concentrations have largely stabilized in Europe since the year 2000 as a result of emission control

policies [7,8], but continued increase to 2050 is likely across South and East Asia [9,10]. The pattern of

O3 exposure across regions is also expected to change over coming decades. Short peak ‘episodes’ of

very high concentrations are predicted to become more frequent in India and China [10,11], while in

Europe and North America a decline in peak episode frequency, alongside steadily increasing annual

mean O3 concentrations, was observed between 1990 and 2010 [12]. Modelling suggests this decline in

peak episode frequency in Europe and North America is likely to continue to 2050 [10].
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Model-based estimates of yield loss under future climate and air pollution scenarios represent

a powerful way of highlighting yield benefits that could come from reduced surface O3 [13–16]. Global

O3-induced wheat yield loss for the year 2000 has been estimated as ranging from 5% to 26%, with

potential additional losses of 1.5% to 10% predicted for 2030 [13,14]. However, nearly all large-scale

assessments of O3-induced yield loss for wheat published to date have followed an empirical approach,

where O3 concentration is simulated using a chemical transport model (CTM), concentration is linked

to yield loss using response functions, and response is scaled up using crop production maps and

agricultural statistics. An alternative is to use a process-based approach that could potentially produce

more robust estimates of future yield, through inclusion of interactive effects between O3, CO2, and

climate variables [17].

This process-based crop modelling approach builds on the development of methods for modelling

O3 flux into leaves that have been made over recent decades [18,19]. These methods provide an

hourly estimate of O3 dose reaching sites of damage in the leaf, creating the potential for O3 effects

to be integrated into crop simulation models in a dynamic way. Studies applying O3 flux modelling

have generally either used a multiplicative stomatal conductance (gsto) algorithm—described in prior

research [20–22]—or followed a semi-mechanistic approach where gsto is estimated empirically from

photosynthetic rate, which in turn is modelled using the biochemical model of Farquhar et al. [23], also

described in [24,25]. Since most crop models simulate growth responses at daily (and less frequently,

hourly) timesteps and can respond to a changing environment [26], integration of O3 effects into crop

models is feasible, if plant response to O3 can be represented in the model formulation. Attempts have

been made to integrate O3 effects and crop modelling [25,27], but few estimates of O3-induced crop

yield loss using a dynamic approach have been published to date [28,29]. Reasons for slow progress

include the challenge of upscaling responses from the leaf to the canopy, the need for species and

cultivar-specific model parameters, and the incomplete understanding of physiological mechanisms

driving O3-induced yield reduction [17]. This paper goes some way to addressing these issues and

identifying future research direction that would benefit from empirical investigation targeted towards

developing the models that are currently in development.

It is well established that O3 exposure can reduce yield in wheat [30–32] and can cause foliar injury,

impaired photosynthesis, altered carbon translocation, and accelerated senescence [33,34]. However,

the processes linking O3 uptake to these responses are not fully understood and it is not clear which are

most important in driving ultimate yield loss. Once O3 has been taken up through stomata, reactions

in the plant apoplast lead to the formation of reactive oxygen species (ROS), which can then react

with and damage membranes and proteins [35]. Most plants have in-built defence mechanisms and

can up-regulate antioxidants to detoxify ROS, but this comes at a carbon cost, meaning O3 damage

to productivity often occurs before visible symptoms appear [35,36]. An O3-induced reduction in

photosynthetic rate has been widely reported [32,37,38], but quantifying the extent to which this is

a direct effect of O3 on the photosynthetic mechanism, or indirect via changes to leaf pigmentation or

gsto, has been a challenge for experimentalists. Disentangling direct O3 impacts on photosynthesis

from the accelerated senescence response is also difficult. Some studies have observed reduced activity

of the carbon-fixing enzyme ribulose-1,5-biphosphate carboxylase/oxygenase (rubisco) in response

to O3 [39–41], leading to the hypothesis that ‘instantaneous’ effects of O3 on photosynthesis act via

effects on this enzyme. The physiological mechanism underpinning the often-observed accelerated

senescence response to O3 [42–46] is also unknown, although it has been hypothesized that it relates to

long-term respiratory costs associated with detoxification and repair [25].

Several approaches for modelling O3 effects on photosynthesis and senescence have been

published. In an early paper, Reich et al. proposed that ozone effects on a number of plant groups

could be expressed via a linear relationship between exposure and growth [47]. Subsequent published

approaches have attempted to model the separate effects of O3 on productivity and senescence and

have tried to account for differential sensitivity across species. A function for modelling ‘instantaneous’

suppression of photosynthesis was proposed by Martin et al. [27], who simulated a linear reduction
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in carboxylation capacity of rubisco (the parameter Vcmax in the model of Farquhar et al. [23]), above

a threshold hourly flux value representative of the species or cultivar-specific detoxification capacity.

A similar approach of O3 acting on Vcmax was also used by Deckmyn et al. in their O3 damage module

for forest trees, alongside an overnight repair mechanism and a parameter representing the respiratory

cost of detoxification [48]. Ewert and Porter [25] applied a version of the Martin et al. ‘short-term’

function alongside a ‘long-term’ algorithm for modelling O3-induced senescence and assumed that

‘short-term’ photosynthetic suppression by O3 occurs throughout the leaf lifespan. Their senescence

function assumes a linear reduction in mature leaf lifespan as accumulated O3 flux increases, and

senescence comprises the final third of the mature leaf lifespan, during which time Vcmax is assumed to

decline linearly. In this function, onset and completion of leaf senescence therefore move progressively

earlier and closer together as accumulated O3 flux increases. An alternative approach for modelling

O3-induced senescence is applied in the multiplicative DO3SE model (Deposition of ozone for stomatal

exchange), a gsto model which estimates accumulated O3 flux—known as the Phytotoxic Ozone Dose

(POD)—to vegetation [18]. In this model, leaf senescence is induced by a threshold POD, which

triggers curvilinear decline in leaf gsto with a fixed shape but variable decline rate [20,49,50]. The POD

‘trigger’ can be parameterized according to the sensitivity of the cultivar or species.

The integration of O3 damage functions, such as those described above, into crop models could

improve yield estimates under O3 stress. Model development must however be guided by experimental

evidence that identifies damage mechanisms and their relative importance, informs parameterization,

and indicates likely degree of error. Models must also be able to replicate the response to different

patterns of O3 exposure. For example, acute peaks in concentration have been observed to induce

greater yield loss than consistent, moderate levels with the same 24-h mean exposure [51], and

modelling methods need to be able to capture these nuances.

This study combines data from two independent O3 exposure experiments on European wheat

that took place at the same experimental facility in 2015 and 2016 and used consistent protocols for data

collection. We model the accumulated O3 flux to wheat flag leaves across different O3 treatments, using

the multiplicative DO3SE model, to derive the POD0SPEC metric of O3 flux exposure (mmol m−2 PLA

day−1). Exposure to O3 flux is then considered alongside leaf chlorophyll, gsto, and photosynthesis

responses in order to test key assumptions underpinning published O3 effect model functions. Firstly,

with regards to O3 effects on leaf senescence, we (i) examine whether inter-cultivar differences in

response are captured by current senescence functions and (ii) whether leaf senescence begins at an

accumulated O3 flux ‘trigger’ value. Secondly, we examine whether O3 reduces Vcmax before—and

therefore independent of—onset of O3-induced leaf senescence. Thirdly, we investigate if flux is

a better predictor of the physiological response to O3 than concentration-based metrics and whether

flux can account for differences in the pattern of O3 exposure (i.e., peak vs. background).

Our results reveal several insights about physiological responses to O3 that can add to the

evidence base for designing O3 effect model functions. The two cultivars of European wheat studied

here showed substantially different sensitivity to O3 in terms of their senescence response, indicating

the importance of cultivar-specific parameterization in senescence functions. The study also finds that

O3 effects on the photosynthetic mechanism are not observed in young flag leaves and are only seen

following the onset of leaf senescence, suggesting that O3-induced accelerated senescence is more

important than direct effects on photosynthesis in determining final yield.

2. Results

2.1. Ozone Treatments in 2015 and 2016

This study combines data from two independent experiments, which took place at the Centre

for Ecology and Hydrology (CEH) air pollution exposure facility in 2015 and 2016. Both experiments

gathered data on the physiological response of wheat cultivars to O3 exposure using consistent

experimental design and data collection techniques. The main differences in these experiments were in
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the ozone concentration profiles to which plants were exposed. In 2015, two wheat cultivars, ‘Mulika’

and ‘Skyfall’, were exposed to eight O3 treatments. The treatments varied in their profile, with some

characterized by acute peaks in concentration and others by a consistent background level (described

in full in Section 4.1). In 2016, cv. ‘Skyfall’ was exposed to five O3 treatments, all with a ‘peak’ style

profile. The treatments are named in this paper according to their severity and profile, these are

‘low background’ (LB), ‘low peak’ (LP), ‘medium background’ (MB), ‘medium peak’ (MP), ‘high

background’ (HB), ‘high peak’ (HP), ‘very high background, (VHB), and ‘very high peak’ (VHP).

Table 1 summarizes the O3 treatments using several exposure indices including the 24-h mean

(ppb) and seasonal AOT40 (ppm h). It also quantifies exposure using O3 flux, or phytotoxic ozone

dose (POD), which was modelled in this study using the multiplicative DO3SE model (described

in more detail in the Methodology and Appendix A). Several different flux metrics are included

in the table. Because most plants have the ability to detoxify a small quantity of O3, methods for

quantifying O3 dose often use a threshold for flux accumulation with the threshold value representing

the detoxification capacity. Previous experimental work in wheat has found that a threshold of six

produces the closest fit between exposure and yield [50]. We therefore applied a threshold of six

when calculating accumulated flux, to produce the POD6SPEC metric (where SPEC refers to the

species-specific nature of the metric). However, as thresholds for physiological effects are not as well

established, we have also calculated accumulated flux with no threshold, known hereafter as the

POD0SPEC. The mean daily POD0SPEC was also calculated, to represent the average level of exposure

on a given day in each treatment.

Table 1. Summary of ozone (O3) treatments administered in the 2015 and 2016 experiments. 24-h mean,

AOT40, and mean daily peak O3 have been calculated over the full O3 exposure period, whereas the

mean POD0SPEC, POD0SPEC, and POD6SPEC quantifies exposure in the flag leaf only (i.e., calculated

over the period following flag leaf emergence).

Season
Ozone

Treatment
24-h Mean

(ppb)
AOT40
(ppm h)

Mean Daily
Peak O3

(ppb)**

Mean Daily
POD0SPEC
(mmol m−2

PLA day−1)

POD0SPEC
(mmol

m−2 PLA)

POD6SPEC
(mmol

m−2 PLA)

2015

LB 26.94 0.002 33.21 0.43 22.87 6.64
LP 30.39 0.02 36.44 0.46 25.19 8.17
MB 37.42 4.19 47.74 0.57 29.91 13.03
MP 40.39 14.51 67.59 0.69 30.99 15.95
HB 50.06 12.49 56.73 0.71 31.10 15.8
HP 50.14 28.56 91.90 0.82 31.79 18.48

VHB 56.81 19.45 66.28 0.78 31.42 17.36
VHP 55.73 40.03 116.55 1.07 32.16 20.55

2016

LP1 23.42 0.01 31.44 0.36 17.66 3.47
LP2 22.05 0.03 30.73 0.34 17.11 2.93
MP 30.41 6.003 55.75 0.54 27.36 11.90
HP 39.72 21.25 81.04 0.78 31.87 17.39

VHP 50.14 37.54 113.93 1.04 33.91 20.72

2.2. Effect of O3 on Senescence

Leaf senescence in the two cultivars across different O3 treatments was compared using

chlorophyll content index (CCI) as a proxy measure for senescence. The growing seasons were

divided into six segments or ‘bins’ of equal thermal time, and statistical analysis testing for the impact

of O3 was carried out within each time-bin, in order to identify the point in the season when O3 effects

on CCI can be seen to occur. CCI declined over the course of the growing seasons in both cultivars and

in both years, and O3 accelerated this senescence (Figure 1). A substantial difference in senescence

response of the two cultivars was observed. In the 2015 experiment, cv. Mulika exhibited O3-induced

early senescence only in the highest treatment (VHP) (Figure 1A), whereas for cv. Skyfall in the

same year, all treatments exhibited accelerated senescence relative to the lowest treatment (Figure 1B).
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In 2016, for Skyfall the three highest O3 treatments exhibited accelerated senescence (Figure 1C).

A statistical summary of this analysis is reported in Table A3 of the Appendix A.

–

– –

Figure 1. Average relative chlorophyll content index (CCI) in flag leaves for six thermal time groups,

(A) cv. Mulika in 2015, (B) cv. Skyfall in 2015 and (C) cv. Skyfall in 2016. Time-bins where a statistically

significant association between CCI and accumulated POD0SPEC was observed are marked with an

asterisk (*). The direction of O3 effect, i.e., positive (+ve) or negative (−ve) effect on CCI, is also shown.

Ozone treatments which exhibited a significant early decline (defined as a decline in CCI of 10% or

more relative to the control treatments) are marked in the figure keys with asterisks (*), and those

which showed no effect are marked as n.e. (no effect).

Analysis conducted within different thermal time groupings indicated that a significant negative

effect of O3 on CCI was observed substantially earlier in the season for Skyfall compared to Mulika.

For Skyfall in 2015, accumulated POD0SPEC was significantly negatively associated with flag leaf CCI

from the third thermal time group onwards (1109–1337 ◦C days), after 25–36 days of O3 exposure.
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For Mulika in 2015, accumulated POD0SPEC was significantly negatively associated with CCI only

at the fifth thermal time group (1568–1796 ◦C days), after 49–59 days of O3 exposure. The limited

CCI data for Skyfall in 2016 supports the 2015 results, with a significant negative association between

accumulated POD0SPEC and CCI observed in the 3rd and 4th thermal time-bins. A significant positive

association between accumulated POD0SPEC and CCI was observed for Skyfall in 2015, in thermal

time group one (649–879 ◦C days) spanning the first 14 days of O3 exposure. A statistical summary of

the time-bin analysis is presented in Table A4 of the Appendix A.

The timing of leaf senescence onset and completion was influenced by O3 exposure. For both

cultivars in 2015, leaf senescence onset occurred earlier in O3 treatments with higher mean daily

POD0SPEC, although this trend was only statistically significant for Mulika (Figure 2A). On average,

O3-induced senescence onset occurred later in the season for Mulika (1725 ◦C days) compared to

Skyfall (1216 ◦C days). Senescence completion also occurred earlier in O3 treatments with a higher

mean daily POD0SPEC in both cultivars, according to a linear relationship (Figure 2B). Senescence

completion occurred at a similar thermal time on average for both cultivars (Mulika = 1841 ◦C days,

Skyfall = 1867 ◦C days). The total duration of the O3-induced senescence period was therefore longer

for Skyfall than Mulika.

Skyfall also exhibited a linear reduction in the CCI-thermal time curve integral as the mean

daily POD0SPEC increased (Figure 2C). This indicates that Skyfall exhibited reduced CCI in the flag

leaf throughout the post-anthesis period in elevated O3. No significant association between mean

exposure and curve integral was found for Mulika, although the highest treatment in terms of mean

flux exposure (VHP) did exhibit a reduced integral compared to the other treatments.

2.3. Ozone Flux at Onset of Early Senescence

Leaf senescence data was also analysed to test whether a particular quantity of O3 flux, or ‘trigger’

flux value, could be identified as inducing the onset of leaf senescence. Accumulated O3 flux at

leaf senescence onset for all 2015 treatments which exhibited significant accelerated senescence is

shown in Table 2. In the highest O3 treatment (VHP), senescence onset occurred at a substantially

lower accumulated POD0SPEC for the cultivar Skyfall (25.7 mmol m−2) compared with Mulika

(30.1 mmol m−2), indicating differential sensitivity across the cultivars. When accumulated POD0SPEC

and POD6SPEC at senescence onset are compared across the different O3 treatments for the cultivar

Skyfall, senescence onset was observed to occur across a fairly wide range of accumulated flux

(15.3–25.7 mmol m−2 POD0SPEC, 6.5–18.6 mmol m−2 POD6SPEC). The range of flux at senescence

onset was more narrow when flux was calculated without a detoxification threshold (POD0SPEC flux

range = 10.4 mmol m−2, POD6SPEC flux range = 12.1 mmol m−2) and considerably more narrow when

only the five highest O3 treatments which exhibited the strongest accelerated senescence response are

considered (POD0SPEC flux range of five highest treatments = 3.7 mmol m−2, POD6SPEC flux range

of five highest treatments = 5.7 mmol m−2).

Table 2. Accumulated flux (PODYSPEC) at the onset of O3-induced senescence for 2015 treatments

which exhibited significant accelerated senescence.

Cultivar
O3 Treatment

(2015)
POD0SPEC at Senescence Onset

(mmol m−2)
POD6SPEC at Senescence Onset

(mmol m−2)

Skyfall LP 17.8 6.5
MB 15.3 7.9
MP 22.0 12.9
HB 24.7 14.1
HP 25.1 16.2

VHB 22.9 14.4
VHP 25.7 18.6

Mulika VHP 30.1 20.6



Plants 2019, 8, 84 7 of 30

Figure 2. Effect of O3 on the onset and completion of leaf senescence in 2015. (A) Thermal time at

senescence onset versus the mean daily POD0SPEC in each treatment. (B) Thermal time at senescence

completion versus mean daily POD0SPEC in each treatment. (C) Area under the post-anthesis section

of the CCI-thermal time curve versus the mean daily POD0SPEC in each treatment. Solid trend lines

indicate a significant regression (p < 0.05), dashed lines indicate that the trend was not significant.

2.4. Response of Photosynthesis and gsto Over Time and in Elevated O3

Figure 3 presents combined datasets for four leaf-level physiological parameters capable of

short-term or ‘instantaneous’ change in response to environmental stimuli: Asat (Light-saturated

photosynthetic rate), Vcmax (maximum carboxylation capacity of rubisco), Jmax (maximum rate of

electron transport) and gsto (stomatal conductance). Data from flag leaf measurements have been
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combined across both cultivars and both experiments, and the hue of each data point corresponds

to the POD0SPEC that had accumulated at the time of measurement (an equivalent figure indicating

accumulated POD6SPEC at time of measurement is shown as Figure A3 in the Appendix A).

The average physiological values for high and low O3-treated plants within each time-bin are also

shown on the plots. The average ‘low’ value represents the mean value for the lowest 2015 treatment

(LB) and lowest 2016 treatment (LP2) combined. The average ‘high’ value represents the mean value

for the highest 2015 treatment (VHP) and the highest 2016 treatment (VHP) combined. A decline in the

photosynthetic parameters (Asat, Vcmax, Jmax) was observed across the growing season, and this decline

was accelerated in high O3. gsto did not decline over time in low O3 but did decline throughout the

season in high O3.

–Figure 3. Flag leaf data for (A) Asat, (B) Vcmax, (C) Jmax, and (D) gsto, combined across all cultivar–year

combinations. The hue of each data point corresponds to the accumulated POD0SPEC at the moment

of measurement. Mean values of physiological parameters in low O3-treated plants (averaged across

2015 LB and 2015 LP2 treatments) and high O3-treated plants (averaged across 2015 VHP and 2016

VHP treatments) are shown as black data points on the plots.

The outcome of statistical analyses carried out on each cultivar–year combination and in each

thermal time group, for the parameters Asat, Vcmax, Jmax, and gsto as measured in the flag leaves, is shown

in Figure 4. A statistical summary of this analysis is presented in Tables A5–A8 of the Appendix A.

Grey regions on plots denote the period following the observation of a significant negative effect

of accumulated POD0SPEC on flag leaf CCI. Across all cultivar–year combinations, no significant

negative effects of accumulated POD0SPEC on any of the instantaneous physiological parameters

was observed before negative effects of accumulated POD0SPEC on CCI were observed. A significant

negative association of accumulated POD0SPEC on the parameters Vcmax and Jmax was not observed

until the 5th thermal time-bin (1568–1796 ◦C days).
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physiology slope in the ‘best’ 

–

Figure 4. Plots showing the response of Asat, Vcmax, Jmax, and gsto to O3 flux. The y-axis represents the

accumulated POD0SPEC-physiology slope in the ‘best’ linear mixed regression model for each thermal

time group. Positive slope indicates a positive effect of O3 on the physiological variable; a negative

slope indicates a negative effect. (A) cv. Mulika in 2015, (B) cv. Skyfall in 2015, (C) cv. Skyfall in 2016.

Coloured symbols indicate a significant POD0SPEC–physiology association; black symbols indicate no

statistically significant physiological response. Grey regions on plots indicate the period following an

observed significant effect of O3 on flag leaf CCI.

Some evidence of heightened physiological performance in the early-season in high O3 was

observed across both cultivars and both years, although the pattern was not consistent. A significant

positive association between accumulated POD0SPEC and physiology in either the first or second



Plants 2019, 8, 84 10 of 30

time-bin was observed for i) Jmax in Mulika in 2015, ii) Asat and gsto in Skyfall in 2015, and iii) Asat and

Vcmax in Skyfall in 2016.

2.5. Comparison of O3 Exposure Metrics for Predicting Physiological Response to O3

For all measured physiological parameters (CCI, Asat, Vcmax, Jmax, gsto) and for both cultivars,

a flux-based metric of exposure was better at predicting physiological response of wheat to O3,

compared to the concentration-based metrics (24-h mean and AOT40) (Table 3). For four out of the

ten model sets created in this analysis, the accumulated POD0SPEC (i.e., without a threshold for

accumulation) produced the best model fit. For the other six model sets, the accumulated POD0SPEC

and POD6SPEC metrics were equally good at predicting physiological response. The O3 flux metric

with no threshold for accumulation was therefore equal to, or better than, the O3 flux metric with

a detoxification threshold at predicting the physiological response to O3.

Table 3. Summary of linear mixed model regression analysis to determine whether accumulated

POD0SPEC, accumulated POD6SPEC, 24-h mean, or AOT40 represent the best predictor of physiology

in the 5th thermal time-bin. The lowest AIC (Akaike Information Criterion) for each parameter and

cultivar, indicating the best model, is highlighted in grey. The outcome of model selection to determine

if the profile of O3 exposure (i.e., peak vs. background) was important in the flux-based models is

also shown.

Parameter Cultivar
AIC:

POD0SPEC
AIC:

POD6SPEC
AIC:

AOT40
AIC: 24-h

Mean

O3 Profile
Important in
POD0SPEC

Model?

O3 Profile
Important in
POD6SPEC

Model?

CCI Mulika −62.8 −60.5 −59.2 −58.3 No No
Skyfall 3.7 10.4 12.3 15.0 No No

Asat Mulika −0.5 1.3 4.1 3.2 No No
Skyfall −82.9 −68.0 −48.1 −54.2 No No

Vcmax Mulika 6.1 6.9 9.9 9.0 No No
Skyfall −63.0 −62.9 −34.6 −32.3 No No

Jmax Mulika −1.7 0.2 3.2 2.3 No No
Skyfall 6.3 7.3 9.2 9.5 Yes No

gsto Mulika 13.4 14.8 17.3 16.5 No No
Skyfall −19.1 −7.3 2.7 −1.6 No No

The inclusion of an explanatory variable describing the profile (i.e., peak or background) of O3

exposure in the ‘best’ model did not improve fit in nine out of the ten model sets created with the

accumulated POD0SPEC metric, and in all models created with the accumulated POD6SPEC metric.

Using O3 flux as the metric of exposure therefore accounts for differences in the O3 exposure resulting

from peak-dominated treatments and those featuring a consistent background level, in the majority

of cases.

3. Discussion

The first aim of the analysis presented here was to assess whether published approaches for

modelling O3-induced senescence can account for inter-cultivar variation in response. Both cultivars

exhibited accelerated senescence in response to O3, but the pattern of response differed according to

cultivar. In 2015, significant accelerated senescence was observed in seven O3 treatments for Skyfall,

but only in the highest treatment for Mulika, suggesting higher O3 tolerance in Mulika (Figure 1). This

differential tolerance is also indicated by the earlier appearance of significant O3 effects on leaf CCI

across all treatments for Skyfall compared to Mulika. Senescence completion occurred progressively

earlier, hence total leaf duration became progressively shorter, in both cultivars as average O3 flux

(mean daily POD0SPEC) in the treatment increased (Figure 2B), according to a linear relationship.

Completion of leaf senescence occurred at a similar thermal time in both cultivars (Mulika = 1841 ◦C

days, Skyfall = 1867 ◦C days), meaning that the total senescence duration was longer for Skyfall. While
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O3-induced senescence in Mulika was characterised by a sudden drop in leaf CCI in the late-season,

Skyfall exhibited a more gradual O3-induced decline in CCI.

The linear relationship between mean flux and total leaf duration observed in this study for both

cultivars gives support to the senescence function of Ewert and Porter [25], which assumes a linear

decline in mature leaf lifespan as O3 exposure increases. However, evidence presented here suggests

that the duration of leaf senescence is likely to vary with O3 exposure. Additionally, the differential

senescence duration in the two cultivars suggests that a key assumption of the Ewert and Porter

function—that leaf senescence comprises the final third of the mature leaf lifespan—may not hold true

for all cultivars. For example, in 2015 for Skyfall, leaf senescence in the highest O3 treatment comprised

76.7% of the total flag leaf lifespan (flag leaf emergence = 877 ◦C days, leaf senescence onset = 1075 ◦C

days, senescence completion = 1725 ◦C days)—substantially greater than one third. The inter-cultivar

variation in senescence response observed in this study would therefore only be captured by a model

function that allows for the proportion of leaf lifespan comprising leaf senescence to be parameterised

according to cultivar and ozone exposure. Our results suggest that to effectively model variation in

the pattern of O3-induced senescence, the timing of senescence onset, and the rate (or duration) of

senescence, models need to be calibrated for particular species and cultivars.

However, the analysis in this paper highlights the uncertainty associated with the approach of

Danielsson et al. [20] for modelling onset of O3-induced senescence using a threshold of accumulated

flux. Following this approach, senescence onset may occur at different points in time at different

levels of mean exposure but should occur at approximately the same value of accumulated flux.

This method was designed in the absence of a known mechanism for induction of senescence by O3

but could be interpreted mechanistically if accumulated O3 flux is assumed to be proportional to

increased respiratory effort accumulated over the season, which has been proposed as a potential

trigger for O3-induced senescence [25]. For Skyfall, across the five highest O3 treatments in 2015, onset

occurred across a POD0SPEC range of 22.0–25.7 mmol m−2. Given the limitations associated with the

method used to identify senescence onset—arbitrarily defined as a 10% reduction in leaf CCI relative

to the control—as well as the inherent variation that exists between seedlings, this flux range can be

considered relatively narrow. However, when all treatments that exhibited a significant O3 effect on

senescence are considered for Skyfall in 2015, the range of flux at senescence onset is considerably

wider (17.8–25.7 mmol m−2 POD0SPEC). These results provide an estimate of the degree of error

potentially associated with applying this approach in models and suggest that the accumulation of

respiratory effort does not fully explain the triggering of O3-induced senescence.

A second objective of this study was to test the hypothesis that O3 reduces photosynthetic rate in

the short term by reducing carboxylation capacity of rubisco (Vcmax). The assumption that O3 reduces

Vcmax is central to the ‘instantaneous’ O3 effect function of Martin et al. [27]. A version of this function is

also applied by Ewert and Porter [25], where O3 reduces photosynthesis in a short-term and reversible

way, in addition to and independent of the O3 senescence effect. The analysis presented here found

that a significant negative effect of O3 on photosynthesis and gsto was only observed concurrent with

O3-induced leaf senescence (Figure 4). This result was consistent across all cultivar–year combinations.

For Skyfall in 2015 and 2016, significant negative effects of O3 on Asat were observed before a negative

association between O3 and Vcmax, suggesting that reduced carboxylation capacity is not responsible for

the initial reduction in photosynthetic capacity observed in these experiments. There was therefore no

evidence of an ‘instantaneous’ effect of O3 on the photosynthetic mechanism, in the period preceding

leaf senescence.

These results contradict several studies which observed short-term reduction in photosynthetic

rate in response to O3 [39–41]. One possible explanation for this contradiction is that instantaneous

reduction of carboxylation capacity by O3 is only relevant at acute concentrations. The reduced

carboxylation efficiency reported by Farage et al. [41] was observed following 4–16 h of exposure

at unrealistically high O3 concentrations of 200–400 ppb, considerably higher hourly concentrations

compared to those used in the experiments in this study, which more closely mimic ambient
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conditions (maximum hourly O3 exposure of 117 ppb). The results presented here therefore indicate

that accelerated senescence is likely to be more important than direct effects on photosynthesis

for determining crop yield loss in most agricultural landscapes, where O3 concentrations are

typically moderate (ranging from ~20 to ~45 ppb) with occasional peaks in concentration [5,52].

Understanding and simulating the early senescence response to O3 should therefore be the priority for

O3 experimentalists and modellers.

Alternatively, our results could be explained by a differential response to O3 in younger and older

leaves. Bernacchi et al. [53] and Morgan et al. [54] observed in field experiments with soybean that O3

effects on photosynthesis and gsto were not apparent in new fully expanded leaves and Reichenauer

et al. [55] saw similar results in three wheat cultivars. Younger leaves may have a higher tolerance

to O3, or alternatively the O3 effect on photosynthesis may be associated with a cumulative build-up

of O3 damage in leaves or leaf age. Either way, the age-dependency of O3 effects is an important

consideration in O3 effects modelling. The function described by Ewert and Porter [25] for modelling

short-term effects of O3 on photosynthesis allows for leaf age to influence the rate of overnight

recovery from O3 damage but not the threshold for damage. The role of leaf age in determining O3

flux thresholds would benefit from further investigation.

A surprising result from the data analysis is that O3 had a significant positive effect on some

physiological parameters early in the season. CCI, Asat, Vcmax, and gsto all exhibited a positive

association with O3 exposure for one or more of the cultivar–year combinations, in either the first

or second thermal time group (up to 32 days following beginning of exposure). Stimulation of

growth at low doses of a toxin is known as hormesis, and this phenomenon has been observed

previously in a number of plants in response to exposure to low concentrations of O3 [56]. Stimulation

of photosynthesis and gsto in wheat during the first few weeks of O3 exposure was also observed

by Mulholland et al. [57] in their open-top chamber experiment, although generally there are few

reported cases of this phenomenon in crop species. Ozone-induced physiological stimulation could

be an adaptive response associated with plant defence responses, for example, heightened gsto and

photosynthesis may enable the upregulation of antioxidant synthesis. Observations that yield can be

stimulated at low O3 exposure concentrations have also given rise to the theory that free radicals, at

low concentrations, can act as growth promotors in plants [58]. An alternative hypothesis is that the

observed early-season physiological boost in this study is related to disruption of stomatal control by

O3, as has been observed in some grassland species [59,60], leading to heightened gsto and an associated

boost in other physiological parameters. Our results suggest that a bi-phase hermetic dose-response

curve, such as proposed by Agathokleous et al. [56], could be considered in ozone effect functions.

More experimental data is needed in order to establish if the early-season physiological boost induced

by O3 in this study is consistent across other plant species and environments.

The third aim of this study was to test whether O3 flux would be a better predictor of physiological

response than concentration-based exposure (AOT40 and 24-h mean). Flux was superior at predicting

the response to O3 of five physiological variables (CCI, Asat, Vcmax, Jmax, gsto) in regression models, for

both cultivars (Table 3). Previous studies have reported that flux is better than AOT40 at predicting the

spatial distribution of O3 injury [61] and is a better predictor of the response of wheat yield, poplar

biomass, and assimilation rate in urban trees to O3 exposure [62–64]. However, few have compared

the association between leaf-level physiology and different exposure metrics in crop species. Our

results align with the general consensus in the O3 research community that O3 flux represents a more

biologically relevant metric of O3 exposure than ambient concentration [61,65–67] and indicate that O3

flux should be the preferred metric of exposure in O3 effect model functions. More surprising is the fact

that the flux metric without an accumulation threshold, POD0SPEC, was a better or equal predictor

of physiological response compared to POD6SPEC, which employs an accumulation threshold of six.

POD6SPEC produced the closest correlation between flux and yield of wheat in a previous analysis

testing different flux accumulation thresholds [50] and has been applied in several assessments of

O3 impacts in wheat [22,68]. More research is therefore needed to establish how much the capacity



Plants 2019, 8, 84 13 of 30

to detoxify O3 varies between cultivars and why the threshold flux required to induce leaf-level

physiological changes appears to differ from the threshold required to reduce yield. This result

also highlights the limitations of an empirical rather than a mechanistic approach to modelling

ozone tolerance and detoxification capacity. The development and integration of mechanistic ozone

detoxification modules in models, such as that proposed by Plöchl et al., could potentially lead to

improved model accuracy [69].

The view that O3 flux should be the metric of exposure in O3 effect modelling is also supported

by the fact that O3 flux accounted for the different levels of exposure in treatments dominated by

peaks in concentration, versus those characterised by a consistent background level, for the majority

of physiological parameters. Flux is therefore likely to perform well as a predictor of physiological

response across different world regions which are currently experiencing divergent trends in the

pattern of O3 exposure [10–12].

Limitations of this study need to be considered when interpreting and applying the results.

Calculated values of O3 flux were not verified by leaf-level measurements of gas flux through stomata.

However, the decision to apply the multiplicative DO3SE model in this study was based on the fact

that fluxes produced by this model have previously been evaluated in several independent studies

which have demonstrated the model’s predictive capability [19,21,22,70–72]. A further limitation is

that estimates of the onset of leaf senescence were based on leaf chlorophyll content, which would have

represented both the chlorophyll loss resulting from leaf injury, as well as chlorophyll loss relating

to senescence. In addition, the analysis is based on only one crop species and two cultivars. As the

variation in yield response to O3 exhibited by different crops, and different cultivars within the same

crop species, is well established [2,73], caution must be used when extrapolating results presented here

to other wheat cultivars and crops. It should however be noted that the observation in this study that

no O3 effect on photosynthesis could be observed in young wheat leaves—indicating the senescence

response is more important than direct effects on photosynthesis—is supported by previous work

in other wheat cultivars [55] and by other experimental work in soybean [53,54]. Considerations

when applying the results presented in this study, particularly when attempting to up-scale modelled

responses from the leaf to canopy level, include the fact that the response observed in the wheat flag

leaf may differ from the responses of lower-canopy leaves, and exposure to O3 during early seedling

and leaf development may also alter the sensitivity to O3 observed in the flag leaf.

In conclusion, this study has shown that current approaches for modelling O3 effects on leaf

longevity and photosynthesis in crops have some limitations and are not fully supported by the

experimental data presented here. Model functions representing O3-induced senescence must allow

for parameterisation of the timing of senescence onset and rate of senescence, if inter-cultivar

variation in response is to be accurately simulated. Further research aimed at understanding the

mechanistic ‘trigger’ of O3-induced senescence should be a priority, as this understanding may allow

for the development of a more effective mechanism in models for inducing the senescence response.

The results also suggest an age-dependency in the response of photosynthesis to O3—which is not

currently fully considered in modelling methods—and indicate that acceleration of senescence is more

important than direct effects of O3 on photosynthesis in determining final O3-induced yield loss, at O3

concentrations that crops are likely to be exposed to on a day-to-day basis. Building functions that can

accurately represent the O3-induced senescence effect in crops should therefore be the priority for O3

effect modellers.

4. Materials and Methods

4.1. Experimental Site and Treatments

Both experiments that provided data for this study took place at the CEH air pollution exposure

facility in Abergwyngregyn, North Wales (53.2◦N, 4.0◦W). The two experiments were conducted

independently and differ in terms of the number of cultivars and treatments, however, the experimental
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design was similar across both years and the same protocols for physiological measurements were

applied. Data was therefore subsequently pooled across the two years to produce a more robust dataset.

In 2015, two European wheat cultivars (Triticum aestivum L., ‘Mulika’ and ‘Skyfall’) were exposed to

O3 for 82 days. In 2016, only the more O3-sensitive cultivar, ‘Skyfall’, was used and was exposed for

92 days. Timelines for sowing, emergence, O3 exposure, and harvest in both experiments are presented

in Figure A1 of the Appendix A. In both experiments, plants were grown in 25-litre containers (40 cm ×

35 cm × 38 cm) filled with John Innes No.3 compost (Westland Horticulture Limited, Huntingdon, UK),

and soil was inoculated shortly after sowing with microbial communities using a soil slurry taken from

a nearby wheat field. Seeds were sown in rows 7 cm apart at a density of ~260 seedlings per square

metre, which aligns with recommended seedling density for field conditions [74]. Four containers per

cultivar–treatment combination were planted and placed alongside each other, producing a canopy

of ~144 plants per cultivar–treatment combination. In both years, ammonium nitrate fertiliser was

applied once mid-season (80 kg/ha). In 2015, fungicide (‘Unix’, cyprodinil, 1.6 kg/ha—Syngenta,

Bracknell, UK) was applied once and insecticide (pyrethrum, 1 mL/L—Bayer, Monheim Am Rhein,

Germany) applied three times. In 2016, fungicide was applied twice (1st application: Trifloxystrobin,

0.12 g/L—Bayer, Mondheim Am Rhein, Gernany; tebuconazole, 0.125 g/L—Bayer, Mondheim Am

Rhein, Germany; 2nd application: cyprodinil, 2.25 g/L—Syngenta, Bracknell, UK) and insecticide

applied once (thiachloprid, 0.15 g/L—Bayer, Mondheim Am Rhein, Germany).

Ozone exposure took place within ‘solar domes’, hemispherical glass domes three metres

in diameter and two metres in height, described previously [59,75]. Air entering domes was

carbon-filtered to remove O3 and other air pollutants (i.e., NOX and SO2), and the solar dome site is

an area with some of the lowest NOX and SO2 emissions in the country and is not downwind of any

major sources [76], minimising any other pollutants that could have entered the domes after filtration.

Following filtration, a precision-controlled quantity supplied by an O3 generator (Dryden Aqua G11,

Edinburgh, UK) linked to an oxygen concentrator (Sequal 10, Pure O2, Manchester, UK), was added to

incoming air. Injection concentrations were determined by a computer-controlled O3 injection system

(Lab VIEW, version 8.6, National Instruments, Austin, TX, USA). Air within domes was circulated at

a rate of two air changes per minute, and the O3 concentration within each dome was recorded on

a 30-min cycle using two O3 analysers of matched calibration (Envirotech API 400A, St Albans, UK).

Exposure profiles for each treatment are presented in Figure 5. Treatments spanned a range of seasonal

mean concentrations and represented different O3 exposure patterns, representing potential future

profiles of increasing background or decreasing peak O3. In 2015, four treatments consisted of a low

night-time background level, with high peaks during the day, classified as ‘peak’ treatments, while

the other four treatments comprised of consistent concentrations with only small peaks, classified as

‘background’ treatments. In 2016, all treatments were ‘peak’ in profile. Although O3 treatments were

not replicated, numerous studies have established the statistical validity of conducting unreplicated

experiments using the solar dome facility [56,77,78], and previous work has shown that no solar dome

effect on air or leaf temperature is detectable [79].

Climatic conditions fluctuated naturally in the solar domes according to ambient conditions.

Air temperature, photosynthetically active radiation (PAR), relative humidity, and wind speed were

monitored in one solar dome during both experiments using an automatic weather station (Skye

instruments Ltd, Llandridod Wells, UK) to obtain data for stomatal flux modelling. Plants were

well-watered throughout, and soil moisture content was continuously monitored in selected plant

containers to a depth of 10 cm using Theta Probes (Delta-T Devices Ltd., Cambridge, UK).
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Figure 5. Average hourly O3 exposure concentrations in (A) 2015 and (B) 2016. Values are shown

for a one-week period, averaged over the entirety of each growing season. Each treatment has been

categorised based on the 24-h mean exposure (Low, Medium, High, Very High) and the characteristic

profile of exposure (peak or background). Treatments were applied five days out of seven to mimic

real-world O3 exposure.

4.2. Leaf Chlorophyll and Gas Exchange Measurements

Chlorophyll content was measured non-destructively as an index (chlorophyll content index, CCI)

using CCM-200 and CCM-200+ instruments (Opti-sciences, Hudson, NH, USA). A regression line fit to

paired measurements was used to standardise observations made using the two instruments. In 2015,

684 measurements were made over 70 days; in 2016, 105 measurements were made over 22 days.

To assess the effect of O3 on photosynthetic capacity and gsto, response curves of net photosynthetic

rate (A) to intercellular CO2 concentration (Ci), i.e., A–Ci curves, were constructed using a portable

infrared gas analyser (Li-Cor 6400XT; LI-COR Biosciences, Lincoln, NE, USA). In 2015, measurements

were made in the two lowest O3 treatments at the beginning of exposure (20–26 May). Further

measurements in the two lowest treatments (LB and LP) and two high O3 treatments (VHB and VHP)

were made in the mid-season (8–17 June) and late-season (16–24 July). Measurements were made in

the youngest fully expanded leaf of randomly selected plants (represented by the flag leaf) from 28th

May onwards. In 2016, four sets of A–Ci curve measurements were made at approximate two-weekly

intervals spanning 6 June to 29 July. Measurements in 2016 were made in all treatments at each of the

time intervals, except for the final measurement set in late July, when plants in HP and VHP treatments

were too senesced for measurements to take place. All 2016 measurements were made in the flag leaf.

For both years, four A–Ci measurements were made per treatment and per cultivar at each timepoint,

and leaves were tagged following measurement so that the same leaf could be measured throughout

the season.
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All response curve measurements were conducted at a selected light saturation (minimum

photosynthetic photon flux density = 1500 µmol m−2 s−1, LED light source), and sample chamber

relative humidity was maintained between 50 and 80%. Photosynthetic rate and gsto were allowed to

stabilise in the leaf chamber at ambient CO2 (400 µmol mol−1). The A–Ci curve was constructed by

measuring A at a minimum of nine air CO2 concentrations, ranging from ca. 50 to 2000 µmol mol−1.

Asat and associated gsto values were determined from the ambient CO2 measurements (400 µmol mol−1)

from each A–Ci curve.

Additional measurements of Asat and associated gsto were made in 2016 over six days (16 June,

1 July, 8 July, 14 July, 20 July, 26 July). Measurements were made at ambient CO2 concentration

(400 µmol mol−1) under the same light and relative humidity conditions as described above.

4.3. Derivation of Vcmax and Jmax

Maximum rate of carboxylation (Vcmax) and maximum rate of electron transport (Jmax) were

derived from A–Ci curves using the estimating utility and methodology described by Sharkey et al. [80].

Leaf temperature and atmospheric pressure were the input parameters, which were measured using the

Licor 6400XT simultaneously with all photosynthesis measurements. Vcmax and Jmax values calculated

from curves were adjusted to 25 ◦C.

The Vcmax dataset was extended by applying the ‘one-point method’ of deriving Vcmax from Asat

as described by De Kauwe et al. [81]. Estimation of Vcmax when only Asat is known using the one-point

method relies on the assumption that photosynthetic rate at ambient CO2 is rubisco-limited [81]. As the

measurements of A at 400 µmol mol−1 CO2 in the measured A–Ci curves typically fell within the

rubisco-limited section of the curve (i.e., before the transition point), this assumption was thought to

be likely to hold true for the two cultivars used in this study. The one-point method also assumes,

in the absence of a known daytime respiration rate (Rday), that Rday can be estimated as 1.5% of Vcmax.

Vcmax was calculated from Asat using the following equation:

Vcmax = Asat ∗

(

Ci + Km

Ci − Γ∗
− 0.015

)

(1)

where Km is the Michaelis–Menten constant, given by:

Km = Kc ∗

(

1 +
Oi

KO

)

(2)

The parameters Kc (Michaelis–Menten constant for CO2), KO (Michaelis–Menten constant for O2)

and Γ* (CO2 compensation point in the absence of mitochondrial respiration) were estimated at 25 ◦C

following the equations and constants published by Bernacchi et al. [82] describing their temperature

dependence in the model species tobacco (Nicotiana tabacum, L.). Equations and constants used to

derive these three parameters are listed in Table A2 of the Appendix A. Oi represents the intercellular

concentration of O2 (210 mmol mol−1) [81].

The robustness of the one-point method was evaluated by comparing Vcmax values calculated

from a subset of the measured A–Ci curves with the Vcmax values calculated from each corresponding

Asat value (i.e., the 400 µmol mol−1 CO2 value from each A–Ci curve). Vcmax values derived using

both methods were adjusted to 25 ◦C. A very close association was observed between Vcmax values

derived using the two methods (Figure 6, adjusted r2 = 0.95, p < 0.001), indicating that the one-point

method is robust for the cultivars used in this study. Vcmax values derived using the one-point method

were therefore pooled with A–Ci-derived Vcmax values for analysis, and the potential error introduced

through the use of two different derivation methods was accounted for in the statistical analysis by

including—in model selection—an explanatory variable describing the derivation method (explained

in more detail in Section 4.7.3).
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Figure 6. Plot of Vcmax values derived from A–Ci curves versus Vcmax values calculated using the

one-point method [75] from the corresponding Asat value extracted from each curve (A at 400 µmol

mol−1 CO2). The blue line represents the linear regression model fit (p < 0.001, adjusted r2 = 0.95; line

equation, y = 0.99x + 1.33). The red dashed line represents the line of x = y. Data for this comparison

comprise a subset of the A–Ci curve dataset used in this study.

4.4. Modelling O3 Flux

Stomatal O3 flux to the flag leaf was modelled in each treatment for both years to derive a measure

of exposure that accounted for the environmental influence on O3 uptake and could be tracked over

time. Flux was modelled using the multiplicative gsto module of the DO3SE model [18], which has

a published parameterisation for European wheat [49,50,83] and has been applied previously to model

O3 flux to this crop [22,84]. A summary of the DO3SE algorithms and parameters used in this study

are presented in Section A1 of the Appendix.

Ozone flux for wheat is accumulated above a detoxification threshold of six in the DO3SE

methodology (producing the POD6SPEC flux metric, species-specific phytotoxic O3 dose above

a threshold of 6 mmol m−2 PLA s−1—previously known as the POD6, with “SPEC” referring to

the species-specific version of the DO3SE model) [83], as this threshold has produced the closest

correlation between POD and wheat yield in previous experiments [50]. However, as thresholds

of physiological effect in wheat have been far less studied, the POD0SPEC (where no threshold for

accumulation is applied, previously known as the POD0) was also calculated, in order to avoid

assuming a threshold of effect. Modelled POD0SPEC and POD6SPEC for 2015 and 2016 O3 treatments

are shown in Figure 7.

4.5. Alignment of Physiological Observations with O3 Flux, and Calculation of Mean Flux Exposure (Mean
Daily POD0SPEC)

Each physiological observation (CCI, Asat, Vcmax, Jmax, gsto) was aligned with the treatment-specific

accumulated POD0SPEC and POD6SPEC on the day of measurement and at the exact time of

measurement, wherever this data was available (referred to hereafter in this paper as ‘accumulated

POD0SPEC’ and ‘accumulated POD6SPEC’). This was done to allow the impact of real-time O3 flux

exposure on physiology to be analysed. The mean daily POD0SPEC (i.e., the average accumulation of

flux per day, mmol m−2 PLA day−1,) was also calculated for each O3 treatment to act as a metric of

mean exposure intensity. Mean daily POD0SPEC values for each O3 treatment are presented in the

results section in Table 1. Mean daily POD0SPEC was calculated as the average of daily POD0SPEC

accumulation from Astart until the modelled onset of senescence.
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calibration between years, and to account for differences in beginning of season ‘baseline’ physiology 

Figure 7. Modelled O3 flux over time in the different O3 treatments. (A) POD0SPEC in 2015,

(B) POD6SPEC in 2015, (C) POD0SPEC in 2016, (D) POD6SPEC in 2016. Each O3 treatment in both

years was categorised based on the 24-h mean exposure (L = low, M = medium, H = high, VH = very

high) and the characteristic profile of exposure (P = peak, B = background).

4.6. Data Standardisation

The two experiments had different sowing and harvest calendars. In order to compare timings

across the two experiments, time was therefore standardised by calculating thermal time from plant

emergence onwards (daily mean temperature sum >0 ◦C). Physiological data was also standardised,

by conversion from raw to relative values. This was done to account for differences in instrument

calibration between years, and to account for differences in beginning of season ‘baseline’ physiology

between cultivars. Relative values for the physiological observations were calculated by deriving

a reference value for each parameter (CCI, Asat, Vcmax, Jmax, gsto) and each cultivar–year combination

(i.e., Mulika in 2015, Skyfall in 2015, Skyfall in 2016). The reference value—calculated as the 90th

percentile value of all observations, spanning the whole season and all treatments—was used as the

baseline for calculating relative change. Skyfall CCI data from 2016 comprised too few data points

for the derivation of an individual reference value, 2016 and 2015 CCI data for Skyfall was therefore

combined to produce a single reference value for Skyfall, as CCI data for Skyfall was found to not

significantly differ by year (p = 0.06 in regression model). A comparison of CCI data for Skyfall

measured in 2015 and 2016 can be found in Section A3 of the Appendix.

4.7. Statistical Analysis

Statistical analysis was conducted in R version 3.3.2 [85], and either involved linear regression

or linear mixed models (LMMs) using the package lme4 v1.17. Model selection was by AIC (Akaike

Information Criterion). The model with the lowest AIC was considered the ‘best’ model of those fitted,

and models differing in <2 AIC units from the best model were defined as having little empirical

support [86]. Wherever relevant, a random factor describing solar dome number was included in

models to account for multiple measurements made within domes, and unique pot ID was a random

factor when analysis involved multiple measurements made from the same pot. p-values were

obtained for terms in the optimal models using the R package lmerTest, v2.0-33 [87]. Assumptions of

normality and even spread of residuals were checked using residual plots and data were transformed
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where necessary. Four key analyses were conducted as part of this study and are described in more

detail below.

4.7.1. Identification of O3 Treatments with Significantly Accelerated Senescence

Flag leaf CCI data was analysed in all O3 treatments to test for accelerated senescence. Each

elevated O3 treatment was paired in turn with the control treatment for that experiment, and the

significance of the thermal time/mean daily POD0SPEC interaction term was tested using LMMs.

Control treatments were defined as the lowest in terms of mean daily POD0SPEC and comprised of

treatment LB for the 2015 experiment and treatment LP2 for the 2016 experiment.

4.7.2. Analysis of O3 Effect on the Timing of Senescence Onset and Completion

The impact of O3 on leaf senescence onset and completion was examined using regression models

fitted to each of the 2015 O3 treatments (separately for the two cultivars). It was not possible to conduct

this analysis for 2016, as 2016 CCI measurements only spanned 22 days. Regression models comprised

of relative CCI as the dependent variable and thermal time as the independent variable, and the shape

of response was determined by comparing linear, quadratic, and cubic models. The best model for

each O3 treatment was then used to determine i) thermal time at leaf senescence onset, ii) thermal time

at senescence completion, and iii) the post-anthesis curve integral (i.e., area under the curve), as shown

in Figure 8. Thermal time at senescence onset was aligned with the accumulated POD0SPEC at that

time for each O3 treatment, to identify the accumulated flux ‘trigger’ values for senescence onset.

–

–

as a ‘peak’ or ‘background’ profile was also included in model selection, to test whether the O

—
—

Figure 8. Summary of methods used to derive: i) Thermal time at leaf senescence onset, defined

as a 10% reduction in relative CCI in the elevated treatment (grey line) relative to the control (black

line); ii) thermal time at senescence completion, defined by the x-abscissa of the treatment regression

line; iii) the post-anthesis integral of the regression curve, indicated on the plot as shaded regions

(Post-anthesis period in 2015 = 1142 ◦C days onwards). Diagram not to scale.

4.7.3. Analysis of Relative Timing of O3 Effects on Different Aspects of Physiology

The effect of accumulated POD0SPEC on CCI, Asat, Vcmax, Jmax, and gsto during successive periods

of the growing season was analysed, to identify when O3 began to influence physiology. The range of



Plants 2019, 8, 84 20 of 30

thermal time spanned by flag leaf physiological measurements was divided into six thermal time-bins

of equal width. The effect of accumulated POD0SPEC on each parameter, within each time-bin and for

each cultivar–year combination, was analysed by comparing model fit with and without accumulated

POD0SPEC as an explanatory variable. An additional explanatory variable was included in model

selection for Vcmax, describing the derivation method (i.e., A–Ci curve or one-point method).

4.7.4. Comparison of Flux and Concentration-Based O3 Exposure Metrics for Predicting
Physiological Response

Accumulated POD0SPEC, accumulated POD6SPEC, 24-h mean concentration, and AOT40

(accumulated O3 > 40 ppb during daylight hours) were compared in their ability to predict the

response of CCI, Asat, Vcmax, Jmax, and gsto during the 5th thermal time-bin. The 5th time-bin was

selected for this analysis as most physiological parameters exhibited a response to O3 exposure during

this time. For each physiological parameter, LMMs constructed with each of the metrics of O3 exposure

were compared for model fit. An explanatory variable describing whether O3 had been administered

as a ‘peak’ or ‘background’ profile was also included in model selection, to test whether the O3 metric

that produced the best model fit also accounted for different patterns of exposure.
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Appendix A

A1. Summary of DO3SE Model Methodology and Parameterisation used for Calculating O3 Flux

DO3SE estimates hourly stomatal conductance to O3 (gsto_O3, mmol O3 m−2 PLA s−1) using the

following algorithm [18,19], which takes a species-specific maximum gsto value (gmax) and modifies it

by a series of factors relating to environmental variables:

gsto_O3 = gmax ∗

[

min
(

fphen, fO3

)]

∗ flight ∗ max
{

fmin,
(

ftemp ∗ fVPD ∗ fSWP

)

(A1)

where f phen, f O3, f light, f temp, f VPD, and f SWP represent the influence of phenology, O3,

photosynthetically active radiation (PAR), air temperature, vapour pressure deficit (VPD), and soil

water potential on gmax, respectively; and f min represents the minimum gsto_O3. A detailed description

of how parameters relating to the different DO3SE f -functions are derived can be found in the CLRTAP

mapping manual [83].

Stomatal flux of O3—FST (nmol m−2 PLA s−1)—is calculated following the assumption that the

concentration of O3 at the top of the canopy represents a reasonable estimate of the concentration at

the upper surface of the laminar layer of the flag leaf, using the following algorithm:

FST = c(zi) ∗ gsto_O3 ∗
rc

rb + rc
(A2)

where c(zi) is the concentration of O3 at the top of the canopy of height i (m), and rc and rb represent

the leaf surface and quasi-laminar resistances, respectively. The derivation of rc and rb based on leaf

dimension and wind speed are described in detail in the CLRTAP mapping manual [83]. Once hourly
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FST has been derived, the hourly FST is then accumulated over a species-specific accumulation period

using the following equation:

PODYSPEC = ∑[(FST − Y) ∗

(

3600

106

)

(A3)

where PODYSPEC stands for the species-specific phytotoxic O3 dose (mmol m−2 PLA), the term

(3600/106) converts to hourly fluxes and to mmol m−2 PLA, and the value Y represents the threshold

of flux above which negative O3 effects may occur (i.e., the detoxification capacity). In this study the

flux accumulation period was defined by the life of the flag leaf.

Model parameters used in the calculation of O3 flux in this study are presented in Table A1.

The same parameterisation was applied for both wheat cultivars and both years. The parameterisation

follows those that have been published for European wheat [49,50,83], with the exception of the

parameters fphen_e and fphen_h, which were calibrated so that the period of flux accumulation aligned

approximately with the observed life of the flag leaf in both experiments; and the two parameters which

define the fO3 function (the flux at senescence onset, and the exponent of the senescence function),

which were calibrated so that the end of flux accumulation in the highest O3 treatments in 2015 and

2016 aligned approximately with the observed date of leaf senescence in those treatments.

Table A1. Parameters applied in DO3SE to derive the species-specific accumulated O3 flux (POD0SPEC

and POD6SPEC) for the 2015 and 2016 experiments.

Function Parameter Units Parameter Description Parameter Value

gmax gmax mmol O3 m−2 PLA s−1 maximum rate of gsto_O3 500
fmin fmin Fraction Fraction of gmax at minimum gsto_O3 0.01
fphen Mid-anthesis DOY Decimal growth stage 65* 174 (2015); 181 (2016)

Astart DOY
Beginning of flux accumulation/flag leaf

emergence
146 (2015); 158 (2016)

Aend DOY End of flux accumulation/flag leaf senescence 207 (2015); 214 (2016)

fphen_a Fraction
Proportional fall in gsto between fphen_g and

fphen_h
0.3

fphen_b Fraction
Fraction of gmax that gsto_O3 takes at the

beginning of flag leaf senescence
0.7

fphen_e
◦C days Temperature sum at Astart –490

fphen_f
◦C days Temperature sum at mid-anthesis 0

fphen_g
◦C days

Temperature sum at end of maximum gsto_O3

following mid-anthesis
100

fphen_h
◦C days Temperature sum at start of flag leaf senescence 525

fphen_i
◦C days Temperature sum at Aend 795

flight light_a Constant
The rate of saturation of gsto in response to
photosynthetically active radiation (PAR)

0.0105

ftemp

Tmin
◦C Temperature below Topt where gsto reaches fmin 12

Topt
◦C Optimum temperature for gsto 26

Tmax
◦C Temperature above Topt where gsto reached fmin 40

fVPD

VPDmax kPa
Value where vapour pressure deficit (VPD)

begins to limit gsto
1.2

VPDmin kPa Value of VPD where fmin is reached 3.2

ΣVPDcrit kPa
Sum of hourly VPD values after sunrise above
which afternoon stomatal reopening will not

occur
8.0

fPAW PAWt % Minimum non-limiting percentage of soil water 50

fSWP SWPmax MPa
Maximum soil water potential (SWP) below

which gsto will start to decline
N/A

SWPmin MPa SWP at which gsto reaches fmin N/A

fO3 POD0SPEC/POD6SPEC mmol m−2 Threshold flux at which O3-induced
senescence begins

28

exponent constant
Rate of gsto decline with increasing flux

accumulation
25
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A2. Timelines for 2015 and 2016 Experiments

Figure A1. Timeline for sowing, seedling emergence, O3 exposure, and plant harvest for (A) the 2015

experiment and (B) the 2016 experiment.

A3. Comparisons of Chlorophyll Content Index (CCI) Measurements in Skyfall Made in 2015

and 2016

Figure A2. Chlorophyll content index (CCI) measurements made in the cultivar Skyfall in 2015 (red

circles) and 2016 (blue triangles). The 2016 observations align approximately with the 2015 observations

recorded during the same thermal time period.
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A4. Physiological Observations Aligned with Accumulated POD6SPEC

–

– –

respiration (Γ*).

404.9 ∗ exp(79403(𝑇𝐾 − 298.15)298.15 ∗ 𝑅 ∗ 𝑇𝐾 )
278.4 ∗ exp(36380(𝑇𝐾 − 298.15)298.15 ∗ 𝑅 ∗ 𝑇𝐾 )

Γ* 42.75 ∗ exp(37830(𝑇𝐾 − 298.15)298.15 ∗ 𝑅 ∗ 𝑇𝐾 )

Figure A3. Flag leaf data for (A) Asat, (B) Vcmax, (C) Jmax, and (D) gsto, combined across all cultivar–year

combinations. The hue of each data point corresponds to the accumulated POD6SPEC at the moment

of measurement. Vertical lines on the plots indicate the divisions between thermal time groups. Mean

values of physiological parameters in low O3-treated plants (averaged across 2015 LB and 2015 LP2

treatments) and high O3-treated plants (averaged across 2015 VHP and 2016 VHP treatments) are

shown as black data points on the plots.

A5. Equations Used in the Derivation of Vcmax Using the One-Point Method

Table A2. Equations used to derive the Michaelis–Menten constant for CO2 (KC), the Michaelis–Menten

constant for O2 (KO), and the CO2 compensation point in the absence of mitochondrial respiration (Γ*).

Parameter Unit Equation Used in Derivation

KC µmol mol−1 404.9 ∗ exp
(

79403(TK−298.15)
298.15∗R∗TK

)

KO mmol mol−1 278.4 ∗ exp
(

36380(TK−298.15)
298.15∗R∗TK

)

Γ*. µmol mol−1 42.75 ∗ exp
(

37830(TK−298.15)
298.15∗R∗TK

)

TK = leaf temperature in Kelvin; R = universal gas constant, 8.314 J mol−1 K−1.
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A6. Statistical Summary of LMM Analysis on Physiological Parameters

Table A3. Outcome of linear mixed models (LMM) analysis investigating which O3 treatments in 2015

and 2016 exhibited an early decline in leaf chlorophyll (CCI) relative to the control treatments.

Cultivar–Year
Combination

Ozone
Treatment Code

Accelerated Senescence in
Treatment Relative to
Control? **

Mean POD0SPEC*Thermal
Time Interaction Variable
p-Value

Mulika, 2015 LP No n.e.
MB No n.e.
MP No n.e.
HB No n.e.
HP No n.e.
VHB No n.e.
VHP Yes p < 0.001

Skyfall, 2015 LP Yes p < 0.001
MB Yes p < 0.0001
MP Yes p < 0.0001
HB Yes p < 0.0001
HP Yes p < 0.0001
VHB Yes p < 0.0001
VHP Yes p < 0.0001

Skyfall, 2016 LP1 No n.e.
MP Yes p < 0.0001
HP Yes p < 0.05
VHP Yes p < 0.0001

** Control treatment was defined as the lowest treatment in terms of mean daily POD0SPEC for each season (i.e.,
treatment LB in 2015 and treatment LP2 in 2016).; n.e. = no significant effect at p < 0.05.

Table A4. Statistics summarising the effect of accumulated POD0SPEC on flag leaf chlorophyll (CCI) in

the six thermal time groups.

Cultivar–Year
Combination.

Thermal Time-Bin
(◦Cdays)

Number of
Observations

POD0SPEC
Variable p-Value

Direction of Effect

Mulika, 2015 649–879 44 n.e.
880–1108 18 n.e.

1109–1337 16 n.e.
1338–1567 34 n.e.
1568–1796 52 p < 0.01 −ve
1797–2026 17 n.e.

Skyfall, 2015 649–879 36 p < 0.05 +ve
880–1108 16 n.e.

1109–1337 16 p < 0.05 −ve
1338–1567 38 p < 0.05 −ve
1568–1796 38 p < 0.001 −ve
1797–2026 16 n.e.

Skyfall, 2016 649–879 0
880–1108 0

1109–1337 50 p < 0.001 −ve
1338–1567 55 p < 0.01 −ve
1568–1796 0
1797–2026 0

n.e. = no significant effect at p < 0.05.
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Table A5. Statistics summarising the effect of accumulated POD0SPEC on flag leaf Asat.

Cultivar–Year
Combination

Thermal Time-Bin
(◦Cdays)

Number of
Observations

POD0SPEC
Variable p-Value

Direction of Effect

Mulika, 2015 649–879 9 n.e.
880–1108 6 n.e.

1109–1337 0
1338–1567 0
1568–1796 16 p < 0.05 −ve
1797–2026 0

Skyfall, 2015 649–879 8 n.e.
880–1108 8 p < 0.01 +ve

1109–1337 0
1338–1567 0
1568–1796 7 p < 0.05 −ve
1797–2026 8 p < 0.001 −ve

Skyfall, 2016 649–879 0
880–1108 52 p < 0.001 +ve

1109–1337 28 p < 0.05 −ve
1338–1567 118 p < 0.05 −ve
1568–1796 56 p < 0.001
1797–2026 66 p < 0.001

n.e. = no significant effect at p < 0.05.

Table A6. Statistics summarising the effect of accumulated POD0SPEC on flag leaf Vcmax.

Cultivar–Year
Combination

Thermal Time-Bin
(◦Cdays)

Number of
Observations

POD0SPEC
Variable p-Value

Direction of Effect

Mulika, 2015 649–879 9 n.e.
880–1108 6 n.e.

1109–1337 0
1338–1567 0
1568–1796 16 p < 0.01 −ve
1797–2026 0

Skyfall, 2015 649–879 8 n.e.
880–1108 8 n.e.

1109–1337 0
1338–1567 0
1568–1796 7 n.e.
1797–2026 8 p < 0.001 −ve

Skyfall, 2016 649–879 0
880–1108 54 p < 0.001 +ve

1109–1337 28 n.e.
1338–1567 118 n.e.
1568–1796 56 p < 0.001 −ve
1797–2026 66 p < 0.001 −ve

n.e. = no significant effect at p < 0.05.

Table A7. Statistics summarising the effect of accumulated POD0SPEC on flag leaf Jmax.

Cultivar–Year
Combination

Thermal Time-Bin
(◦Cdays)

Number of
Observations

POD0SPEC
Variable p-Value

Direction of Effect

Mulika, 2015 649–879 9 p < 0.05 +ve
880–1108 6 n.e.

1109–1337 0
1338–1567 0
1568–1796 16 p < 0.01 −ve
1797–2026 0
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Table A7. Cont.

Cultivar–Year
Combination

Thermal Time-Bin
(◦Cdays)

Number of
Observations

POD0SPEC
Variable p-Value

Direction of Effect

Skyfall, 2015 649–879 8 n.e.
880–1108 8 n.e.

1109–1337 0
1338–1567 0
1568–1796 7 p < 0.05 −ve
1797–2026 8 p < 0.001 −ve

Skyfall, 2016 649–879 0
880–1108 16 n.e.

1109–1337 28 n.e.
1338–1567 48 n.e.
1568–1796 0
1797–2026 14 n.e.

n.e. = no significant effect at p < 0.05.

Table A8. Statistics summarising the effect of accumulated POD0SPEC on flag leaf gsto.

Cultivar–Year
Combination

Thermal Time-Bin
(◦Cdays)

Number of
Observations

POD0SPEC
Variable p-Value

Direction of Effect

Mulika, 2015 649–879 9 n.e.
880–1108 6 n.e.

1109–1337 0
1338–1567 0
1568–1796 15 p < 0.05 −ve
1797–2026 0

Skyfall, 2015 649–879 8 n.e.
880–1108 59 p < 0.01 +ve

1109–1337 28
1338–1567 116
1568–1796 63 n.e.
1797–2026 74 p < 0.001 −ve

Skyfall, 2016 649–879 8
880–1108 7 n.e.

1109–1337 0 n.e.
1338–1567 0 p < 0.01 −ve
1568–1796 7 p < 0.001 −ve
1797–2026 8 p < 0.001 −ve

n.e. = no significant effect at p < 0.05.
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