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Abstract

Relativistic protocols have been proposed to overcome certain impossibility results in classical and
quantum cryptography. In such a setting, one takes the location of honest players into account, and
uses the signalling limit given by the speed of light to constraint the abilities of dishonest agents.
However, composing such protocols with each other to construct new cryptographic resources is
known to be insecure in some cases. To make general statements about such constructions, a
composable framework for modelling cryptographic security in Minkowski space is required.
Here, we introduce a framework for performing such a modular security analysis of classical and
quantum cryptographic schemes in Minkowski space. As an application, we show that (1) fair and
unbiased coin flipping can be constructed from a simple resource called channel with delay; (2)
biased coin flipping, bit commitment and channel with delay through any classical, quantum or
post-quantum relativistic protocols are all impossible without further setup assumptions; (3) it is
impossible to securely increase the delay of a channel, given several short-delay channels as
ingredients. Results (1) and (3) imply in particular the non-composability of existing relativistic bit
commitment and coin flipping protocols.

1. Introduction

1.1. Motivation

As global efforts for quantum communication in space boom with the first satellite implementations of
quantum key distribution [1-3], it becomes crucial to develop the theoretical tools to guarantee that these
communications are secure. In order to do so, we must take into account not only quantum effects but also
relativistic ones. Our manuscript is the first to provide a complete framework for composable security analysis of
quantum and post-quantum cryptography in relativistic settings. As a first application of this tool set, we prove
several construction and impossibility results.

Composability. To understand composability and why it matters, it is helpful to look at a classical example. In
modern chess, the Elo ranking system is vulnerable to man-in-the-middle attacks (MITM:s), where a weak player
could play two online games in parallel against stronger players, playing a different colour in each game, and
simply forward the moves of the opponents to each other. At the end, the player will lose one of the games and
win the other (or tie in both games), but given that the Elo system favours lower-rated players, the attacker ends
up with a net gain of points, independently of the result. Such a vulnerability could not be detected by a stand-
alone security analysis (which checks what happens if the games are considered individually), but only by a
composable security analysis, which considers the possibility of games being used in a modular fashion, as part
of alarger strategy. Similarly, several known proposals for quantum cryptographic protocols that exploit
relativistic constraints are proven insecure by our paper.

Cryptography as a resource theory. We follow the approach of Abstract Cryptography [4], which views
cryptography as a resource theory: a protocol between some players constructs a resource (e.g. a system that
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produces a random coin flip) from some other resource (e.g. a system that allows bit commitment)’. Here we
address construction of resources in relativistic quantum cryptography, and security definitions that are robust
under composition of constructions. By ‘relativistic’ we mean simple special relativity: Minkowski space—time
with limited signalling speed.

A cryptographic resource: bit commitment. To illustrate the need for a composable analysis of relativistic
quantum cryptography, we focus on bit commitment protocols, which have attracted interest in recent years
[6-9]. Bit commitment is a crucial cryptographic primitive, from which we can construct oblivious transfer’
[10], multi-party computation (see footnote 5) [10], coin flipping [12], and zero-knowledge proofs [13, 14].

A bit commitment protocol (3C) between two players (say Alice and Bob) typically involves two phases. In
the commit phase, Alice commitstoabit a € {0, 1} with Bob by exchanging information with him. In the open
phase, Alice chooses to open her commitment to Bob and reveals her bit to him through an exchange of
information. Intuitively speaking, security of bit commitment has three requirements.

Hiding: when Alice is honest, Bob has no information about a before the open phase.

Binding: when Bob is honest, Alice must not be able to change the value of a between the commit and open
phases without him detecting her malicious behavior.

Complete: honest Alice always has the possibility of opening her commitment, and in this case, Bob always receives a.

These requirements can be formalized under different security definitions. Not all models of security of 5C
are composable: for example the e-weakly binding definition of [8] is not. There, Alice is allowed to committo a
bit without knowing its value, which if used as a subroutine in a coin flipping protocol, would allow dishonest
players to perfectly correlate the coin flips from different coins. Similar weaknesses in current definitions of
relativistic bit commitment have been exploited to show that using these protocols as subroutine in a larger
cryptosystem is insecure [ 15, appendix A]. In this work, we model security such that the constructed BC
resource can be securely used in arbitrary context. Let us first review some known results.

1.2. Previous results

Impossiblity of classical bit commitment. In 2001, Canetti and Fischlin showed that constructinga BC resource
without any setup assumptions is impossible [16]. They proved this for a classical non-relativistic setting
through a classical MITM. Consider a cheating Alice simultaneously running two 3C protocols: one with Bob,
in which she is the committer, and one with Charlie, in which she is the receiver. She can commit to Charlie’s bit
with Bob by simply forwarding their messages to each other during the commit phase. Note that the proof from
[16] is restricted to the classical setting, and does not imply the impossibility of constructing a 3C resource in
either quantum or relativistic settings.

Impossibility of quantum bit commitment. Using a stand-alone definition with information-theoretic
security, Mayers, and Lo and Chau [17-19] independently showed between 1996 and 1997 that no secure
quantum bit commitment protocol can be constructed without further assumptions (for example regarding the
operations that (dishonest) parties can perform on their systems), because due to Uhlmann’s theorem, if Bob
cannot distinguish between the commitment to a 0 or a 1, then there exists a unitary on Alice’s system allowing
her to change the commitment from 0 to 1.

Possibility results. Positive results are obtained by either restricting the adversary’s capabilities or making extra
setup assumptions. For example, along with their impossiblity result, Canetti and Fischlin also show thata BC
resource can be constructed if we assume a common reference string (CRS) shared between the players and
computationally bounded players [16]. In the quantum case, Unruh showed in [20] that if the adversary has bounded
quantum memory, bit commitment that is composable in certain restricted settings is possible”. In [21] Unruh also
shows that everlasting quantum bit commitment is achievable, if we assume signature cards as trusted setup.

Relativistic protocols. In the hope of avoiding such attacks without making unrealistic setup assumptions or
unproven assumptions on the adversary’s capabilities, one turns to relativistic protocols and imposes relativistic
causal constraints on agents located in Minkowski space—no-signalling between space-like separated agents
and a maximum propagation speed for signals. An example is Kent’s 2012 relativistic BC protocol [7], which is
immune to the Mayers-Lo-Chau attack, since the sender splits into two space-like separated agents who can no

For comparison, in the universal Composability (UC) framework [5], resources correspond to ideal functionalities.

Constructing oblivious transfer (and thus multi-party computation) from bit commitment requires agents to have access to quantum
operations [10]. An alternative model and construction of (delegated) quantum multi-party computation has been proposed in [11].

The model used in [20] does not guarantee security when a protocol is composed with itself. There is thus no contradiction with the
impossibility proof for bit commitment in the bounded storage model in this work, which shows that any bit commitment protocol run in
parallel with another instance ofitselfis insecure.
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Figure 1. Summary of our results. We assume Minkowski space—time with limited speed of signalling (upper-bounded by the speed of
light). Existing results are represented in black and the new contributions of this paper in blue and red. Anarrow R — & means that it
is possible to construct resource S from resource R. When the arrow is crossed, that means that no such construction exists without
further setup assumptions such as shared resources. For example, theorem 3 shows that Coin Flipping between 2 parties can be
securely constructed from a Channel with Delay, and theorem 7, corollaries 5 and 6 show that it is impossible to construct Coin
Flipping (biased or unbiased), Channel with Delay or Bit Commitment between two mutually distrusting parties solely through direct
communication between them. Theorem 7 implies that starting with n channels with delay, it is impossible to construct a channel with
a ‘larger delay’ without further setup assumptions. Note that all impossibility results in this figure hold for any classical, quantum or
relativistic protocol. For BC and CF , impossibility through classical/quantum protocols was previously known [16—18] but the
generalisation to the relativistic case is one of the key contributions of this paper.

longer perform suitable unitaries on their joint systems. Like other relativistic BC protocols, this protocol
implements a timed commitment which is secure only within a time window given by the time taken by light to
travel between remote agents. However, it only satisfies a non-composable, weakly-binding security definition
[8]. As we will see, this protocol is susceptible to a MITM and therefore cannot be securely run as a subroutine in
arbitrary protocols®.

Composability of relativistic protocols. In relativistic settings, the existing negative results are obtained by
analyzing specific examples of protocols and attacks where composition fails [8, 15]. However, without an
overall coherent framework for modelling composability in relativistic cryptography, it is impossible to obtain
general positive and negative results.

1.3. Overview and scope of our results

In this work we introduce a framework for modelling composable cryptographic security in the presence of
classical, quantum and no-signalling adversaries, and apply it to prove new positive and negative results in
relativistic quantum cryptography. We do this by modelling the abstract information-processing systems of the
Abstract Cryptography framework [4] as Causal Boxes [22], which we instantiate with Minkowski space—time.
Our framework can also be applied to situations where agents exchange a superposition of different numbers of
messages in a superposition of orders in time, and provides an operational formalism for studying indefinite
causal structures. We note that the model of computation used in the UC framework [20] does not support
Minkowski space—time, so UC cannot be used to analyze relativistic protocols.

We analyse three cryptographic resources, defined in section 2. Coin flipping (CF , including biased
variations) and bit commitment (3C) are standard in the composable security literature, though in this work our
formalization involves space—time—inputs and outputs are produced at certain locations in Minkowski space.
We also introduce a channel with delay (CD), which is motivated by the fact that in relativistic bit commitment
protocols, the commitment is automatically opened after some (predefined) time, thus resembling a CD more
thana BC”. The following results are summarized in figure 1.

Constructibility results. We show that an unbiased coin flipping resource CF can be constructed froma
channel with delay resource, CD (theorem 3). For comparison, Blum’s protocol [12], constructs a weaker,
biased'” coin flipping resource from a bit commitment resource [23]. We provide an explicit protocol to

8 Sharing an authentic channel does not help the players to avoid the MITM attack, since the issue is not a third party intercepting and
changing the messages, but a dishonest player running two protocols in parallel, and forwarding the messages from one protocol to the
other.

There may be different ways of modeling a relativistic bit commitment resource, e.g. the committer may have the option of aborting before
the commitment is opened, see the discussion in section 2.3.3.

10 Originally, Blum’s protocol constructs an unfair coin flip, in which one party can abort after seeing the flip [12]. This may be transformed
into a biased coin flip if the honest party flips a coin locally when the dishonest party aborts [23].
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construct CF from CD and prove its security. The proof holds even in the presence of adversaries that are not
bounded by quantum physics, but only non-signalling constraints.

Impossibility results. In theorem 4 we show that constructing a (biased) coin flipping resource is impossible in
the relativistic setting without additional setup assumptions (e.g. the presence of a shared resource such as CD).
This result holds even if the players are only bounded by non-signalling constraints'', or if we restrict the
adversary to being computationally bounded or having bounded storage'”. Impossibility of bit commitment
follows from Blum’s construction [12, 23] of CF from BC (corollary 6), and impossibility of constructing a
channel with delay CD follows from theorem 3 (corollary 5).

Since the literature on relativistic bit commitment also studies the case of extending the time during which
such a commitment remains secure, we also look at the task of constructing a channel with along delay CD,y,
from multiple channels (labelled by #) with shorter delays {CD}..,} ;. We show that this again is impossible
without other setup assumptions than the assumed channels with delays {CD', .} ; (theorem 7). This
impossibility result holds irrespective of whether the protocol is classical, quantum or non-signalling (see
footnote 10), and also holds if the adversary is computationally bounded.

Consequences of these results. Many quantum protocols have been proposed in the relativistic setting to
circumvent classical impossibility results for 3C. To the best of our knowledge, none of these protocols have
been successfully used as subroutines in larger cryptosystems (which is the main motivation for constructing
such primitives), and some attempts to do so are known to be insecure [ 15, appendix A]. But due to the lack of
composable framework that can model Minkowski space, it has been impossible to prove whether composable
constructions of these resources do exist. Our results show that allowing quantum (and even non-signalling (see
footnote 10)) protocols that respect relativistic constraints is not sufficient to construct BC, CF, or CD without
additional assumptions. This implies that none of the proposed relativistic bit commitment schemes are
composable (e.g. [6-9]). This also extends to the non-relativistic setting (e.g. [24]), since a non-relativistic
protocol corresponds to the special case where all players are in the same position in space (and thus do not have
any constraints on the speed of communication). Our proof also holds against computationally bounded
adversaries, and adversaries with bounded storage, which implies that results in the bounded storage model are
not composable either (e.g. [25]).

Another problem considered in the literature on relativistic bit commitment is that of extending the time
during which commitment remains secure. Our results show that this cannot be done with a composable
definition of timed relativistic commitment (see the definition of CD in section 2.3 and following discussion),
even when one starts off with arbitrarily many (composably) secure commitments of shorter duration. Hence
the techniques used in [9, 26] to extend the time of a relativistic bit commitment cannot be used in a composable
way. Just as the previous results, this also holds when the adversary is computationally limited or has bounded
quantum memory.

The framework naturally allows positive results to be proven as well—by making extra setup assumptions.
This approach was used by Canetti and Fischlin [16] who show that one can construct a BC resource assuming a
shared CRS and computationally bounded players, and Unruh [21], who showed (everlasting) quantum bit
commitment is achievable if we assume signature cards as trusted setup. In this work we constructa CF resource
from a CD, and leave open the problem of finding weaker assumptions that still allow CF or BC to be
constructed.

A takeaway message from this work is that one cannot achieve BC or CF simply from relativity or quantum
mechanics without further setup assumptions. This implies that existing quantum and relativistic protocols for
these primitives can not be securely used as subroutines in arbitrary constructions. It is currently unknown
whether there exist assumptions weaker than what is possible classically to justify the use of such quantum or
relativistic protocols.

1.4. Structure of this paper

In section 2 we introduce the model that we use to prove our results. We provide a pedagogical introduction to
the Abstract Cryptography framework in section 2.1. We give an overview of Causal Boxes instantiated with
Minkowski space in section 2.2—a formal presentation of Causal Boxes is given in appendix A. And in

section 2.3 we define the two party resources CF, CD, and BC. Our results are then presented in section 3 and
the proofs are given in appendix B. Finally, we conclude in section 4 with a discussion of these results.

11 . . . . . . . .

A non-signalling player can generate non-signalling correlations between their own trusted agents at different locations. Note however
that if we were to allow two distrusting players (Alice and Bob) to generate non-signalling correlations between them, this would have to be
modeled as an extra setup assumption, namely a shared resource.

12, . . . . . .
This excludes in particular protocols where players are not necessarily spatially separated, but can meet at some location, as do the
impossiblity results in the classical case [16].
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Figure 2. Starting from a resource R, converters , (3 and y construct a new resource S = oy 5475 R. The sequences of arrows at the
interfaces between objects represent (arbitrary) rounds of communication. For simplicity, we may omit the indices, S = aFR~, so
that converters to the left of the resource (v, (3) are implicitly connected to Alice’s interface, and converters on the right () are
connected to Bob’s.

Real Ideal
System System
Distinguisher Distinguisher
0,1 0,1

Figure 3. Security in terms of distinguishers. Composable security of a real resource is defined in terms of the success probability of a
class of distinguishers (for example computationally bounded or unbounded, classical, quantum or non-signalling) in distinguishing
the real system from the ideal one. A distinguisher, modelling all the environment of a resource, is given black-box access to either the
real or the ideal systems and a complete description of the input—output behaviour of both systems and must guess which one it was
interacting with by outputting either a 0 or a 1. The distinguishing advantage is then given by the statistical distance between the two
random bits output when interacting with the real and ideal systems, respectively.

2. Framework

2.1. Composable security: the abstract cryptography framework [4]

2.1.1. Resources, converters and distinguishers

Let us review the basics of the abstract cryptography framework [4]. The following is adapted from [27] for the
case of protocols between two mutually distrusting parties (e.g. bit commitment, coin flipping) and has been
simplified for our purposes. We refer the reader to [4, 27] for more general definitions and further examples.

Abstract systems. Abstract cryptography views cryptography as a resource theory: a protocol constructs a
resource from some other resource, e.g. Blum’s protocol [ 12] constructs a coin flipping resource from a bit
commitment resource. In this section we introduce the building blocks of the framework—resources,
converters (e.g. protocols) and a notion of distance (distinguishability) between resources—and in section 2.2
we explain how these objects are instantiated with Causal Boxes [22].

A resource R in a two party setting is an (abstract) system with interfaces i € {A, B}, each accessible to a user
i (and their trusted agents) providing them with certain controls. An operation that is performed by a party at
their interface is modeled as a converter: a system a with an outside and an inside interface, the inner interface
connects to an interface i of the resource, and the outer interface becomes the new interface of the resulting
resource. We write ;'R to denote the resource resulting from connecting « to the 7 interface of R. This is
illustrated in figure 2.

Distinguishing resources. The security of a cryptographic system is quantified in terms of distinguishability
from a corresponding ideal system (figure 3). For example, the ideal resource ‘random bit generator’, S, would
be a black box that generates and outputs a uniformly random bit at a time ¢ which is independent of everything
outside the box. A specific practical implementation R of this functionality could be a quantum protocol:
prepare a qubitin a state %(|0> + |1)), measure it in the Z-basis and output the measurement result at time 7.

Treated as black boxes, both resources R and S output a uniformly random classical bit and cannot be
distinguished by an outsider.

For more complex resources, we may ask: distinguishability from whose perspective? Here, the traditional
notion of an adversary is generalized to an arbitrary distinguisher which models not only possible adversarial
behaviour but also the whole environment of a cryptographic protocol /resource. The main motivation for
composable security is that a resource remains secure even when it is used as a sub-routine in arbitrary protocols.
While doing so, protocols can in general access all interfaces of the resource and perform information processing
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steps before, after or during the protocol run by the resource under consideration. The distinguisher models all
such operations. Standard property-based security notions (e.g. a ciphertext is uncorrelated to a plaintext; or
with high probability the message received is the same as the message sent) are covered by such a distinguisher-
based notion of security: the ideal system has the required property, and if the real system does not, then a
distinguisher will be able to guess with which system it is interacting by verifying whether this property holds.

Definition 1 (Distinguishing advantage [27]). A distinguisher (figure 3) for two resources R, S isa system D
with two interfaces: an inside interface that connects to all the interfaces of a resource, R or S, and an outside
interface that outputs a single bit: a guess whether it is interacting with R or S. The advantage of a specific
distinguisher D is then given by

dP(R, 8) = |Pr[D(R) = 0] — Pr[D(S) = 01|,

where D(R) is the output of D when interacting with R.
The distinguishing advantage for a class of distinguishers I is defined as

dA°(R, S) = sup dP(R, S).

DeD

The distinguishing advantage is a pseudo-metric on the space of resources satisfying the identity, symmetry and
triangle inequality properties [27]. If a class of distinguishers I is such that for every D € ), Do € I, then the
pseudo-metric is non-increasing under application of the converter o, i.e. d” (aR, aS) < dP(R, S).

Classes of distinguishers. Changing the power of the distinguisher (e.g. with some computational or memory
bound, or performing only classical, quantum or non-signalling operations) results in different metrics and
different levels of security. For example, if a protocol provides classical computational security, this means that
the resource constructed may be perfectly indistinguishable from an ideal resource when considering only
computationally bounded distinguishers, but they could be easily distinguished using computationally
unbounded (or quantum) distinguishers. This is addressed in more detail in the following.

2.1.2. Cryptographic security

We want to address questions such as ‘does a protocol II construct the ideal resource S from an initial resource
R? The resource constructed will essentially depend on which players may be honest. For example, in the case of
coin flipping, if both parties are honest we expect the protocol to construct a resource that provides each party
with a copy of the same uniformly random bit. But if a party is dishonest, this might be a too strong requirement.
Instead, we ‘only’ construct a resource that allows the dishonest party to either abort if she does not like the value
of the generated bit, or to bias the bit towards either 0 or 1. [23]

In the case of two party protocols, we want to make a statement about three cases: where both parties are
honest, Alice is dishonest, and Bob is dishonest. The resources available to the players are given by a tuple
(R, R4, Rp), where R denotes the shared resource when both are honest, R, is available to an honest Bob and
dishonest Alice (presumably, providing more functionalities to Alice than R), and Ry is shared between an
honest Alice and dishonest Bob. For example, R could be a perfectly fair coin, R4 a coin biased in favour of Alice
and Rpa coin that Bob can bias (we will explore this and other examples in section 2.3). Likewise, the constructed
resources are also given by such a tuple (S, Sy, Sp). The reason for considering three distinct resources as above is
that dishonest players, by virtue of their dishonesty could, in general gain access to additional controls on their
interface.

A two-player protocol Il = (I1,, IIp) is essentially a pair of converters that can be connected to the
interfaces of the shared resources (R, Ry, Rp). When both are honest, the resulting system is given by I R Il
which denotes the ‘real system’ where Alice and Bob share the resource R and implement their protocols 114 and
Iy at their respective interfaces of R. This should be close to indistinguishable from the ideal resource S.

When Alice is dishonest, the protocol I1, is removed in the corresponding real system, because we do not
know what protocol a dishonest player would follow. On the ‘real’ side we now have R, I1z. On the ideal side, we
have S 4, butin most cases Ry I1g and S, are trivially distinguishable since Alice’s interface of R4 11 is generally
very different from her interface of S4: S4 provides an idealized interface, which, in the case of coin flipping,
might allow Alice to abort. In the real system, R, I Alice receives messages from Bob, and could provoke an
abort by sending invalid messages or not responding.

To allow for the comparison and define security against dishonest Alice, we require the existence of a
converter (or simulator) g4 which when connected to Alice’s interface of S, makes these two systems close to
indistinguishable. Note that connecting this simulator o4 only makes Alice weaker, since any operation
performed by the simulator could equivalently be performed by an adversary connected directly to the interface

6
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of the ideal resource. Further, the simulator’s behaviour is independent of the internal workings of the ideal
functionality S,. Security in the case of a dishonest Bob is defined similarly.

Definition 2 (Cryptographic security [27]). A protocol IT = (II, IIp) constructs S = (S, Sy, Sp) from
R = (R, Ry, Rp)within a distance ¢, with respect to a set ID of distinguishers and aset S > Il, Il of converters,
if the following conditions hold:

dP(II4 R, S) < &,

Joa €S, d’(Rullp, 04Sy) <&,
dog €S, dm(HARB, Spop) < €.

We sometimes write R — S to denote such constructions. These conditions are illustrated in figure 4.

R, . II . .
A possibility result for a construction R — S with parameters (¢, S, D) is a statement of the form: there
exists a protocol IT = (T4, IIp) that e-constructs S from R, i.e.

3 HA: HB7 04> Op € S; VDec HD) dD(HARHB) S) < & (1)
dP(RaIlg, 04S4) < &, (2)
dP(I14R, Spop) < e. (3)

We then say that R is stronger than S. An impossibility result with the same parameters has the form: there exists
no protocol IT = (I, IIp) that e-constructs S from R,

V s, I, 04, 0 €S, I DeD, either condition (1), (2), or (3)does not hold.

The strength of a security proof depends on the range of the class S of simulators and protocols, the class D
of distinguishers used in the security definition, as well as the assumed and constructed resources R and S. For
construction results, a strong statement has the form ‘we can easily construct S from R, and we can easily
simulate any cheating behaviour, such that even a very powerful distinguisher could not tell apart our
construction from the ideal system.” Therefore, ideally we would want S to be restricted to converters that are
easy to implement physically, and we want the set of distinguishers ID to be as general as possible. For
impossibility results, a strong statement has the form ‘we can always easily distinguish any system constructed
from R from the resource S, even if we allow for very powerful protocols and simulators.” Therefore, we try to
make S to be as general as possible, and we restrict ID to correspond to efficient or otherwise easy to implement
distinguishers'”.

We do not specify what S and D should be used in definition 2, since this will be different for different
theorems. For example, when we prove that no protocol can construct a biased coin flipping resource in
theorem 4, the proof holds for converters 1, Iz, 04, 05 € S thathave unbounded memory, unbounded
computational power, and are post-quantum—they are only restricted to be non-signalling. The distinguisher
D that is used to distinguish the real from ideal system runs these converters internally, and thus has the same
computational and memory requirements as these converters.

Remark 1 (Capturing bounded systems). Note that when a statement we want to prove involves an existence
quantifier (over the set of converters S for a possibility result, and over the set of distinguishers ID for an
impossibility proof), it is not necessary to define the entire set (S, ID), it is sufficient to convince oneself that the
corresponding system does belong in this set. We use this to prove impossibility results for computationally
bounded adversaries as well as in the bounded and noisy storage models in section 3 without defining either the
complexity of the systems or the bound on the storage. We achieve this by finding a distinguisher that can
distinguish real from ideal systems, and does so by internally running instances of these systems. This means that
security already breaks down when the rest of the world (captured by the distinguisher D) has the same memory
bounds as the honest players and simulator in the protocol. Since a model needs the distinguisher to have at least
the same power as the players and simulator for a protocol to be composable with itself, our impossibility results
holds for any such model, regardless of the exact bounds on the computational power or storage, and irrespective
of how this is defined.

' Insome settings, we may want to give more power to one of the players. This is the case for blind computation results [28—30], where for
example Bob represents a client with limited computational power and Alice a powerful server (which may for example perform arbitrary
quantum operations). In other examples, we may want to restrict honest players to use efficient protocols, while allowing the simulators of
dishonest behaviour to be arbitrary. In these and other cases, we can adjust the sets for 14, Ilg, 04, o and D to suit the scenario. For the
results in this paper, this will not be necessary.
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Figure 4. (a) When both parties are honest, the composition of Alice’s and Bob’s protocol with their shared resource must be
e-indistinguishable from the constructed resource S. (b) When Alice is dishonest and Bob is honest, the resulting real system obtained
by removing Alice’s honest protocol must be €-simulatable by connecting a converter o (called a simulator) to Alice’s interface of
corresponding ideal system, S4. () When Bob is dishonest and Alice is honest, the resulting real system obtained by removing Bob’s
honest protocol must be e-simulatable by connecting a converter op to Bob’s interface of the corresponding ideal system, Sp. The
three conditions from definition 2.

2.2. Cryptography in relativistic settings: the causal boxes framework [22]
The abstract cryptography framework [4] follows a top-down approach to modelling cryptographic security
starting from the highest level of abstraction and proceeding downwards, introducing at each level only the
minimum necessary specifications. The composability of abstract systems in the abstract cryptography
framework makes it possible to provide a general, composable security definition, which is independent from
the models of communication or computation. It can then be instantiated with whatever model is needed—
here, Causal Boxes to model relativistic cryptography. In this section we give a brief, informal overview of the
Causal Boxes framework. A formal introduction may be found in appendix A.

Causal boxes [22] are a model of information-processing systems which may interact with each other in
arbitrary ways, so long as they respect causality (figure 5(a)). In broad lines, a causal box disa system with input
and output wires which may carry quantum or classical information. A concrete example is a physical box
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Figure 5. (a) Causal boxes are information-processing systems that respect causality and are closed under composition (serial, parallel
orloops). Arbitrary composition of the causal boxes &, ¥ and A is a causal box €. (b) Minkowski space—time. The causal diamond of
the space—time points A and B (shaded in gray) with A < Bisdenoted by D (A, B).In this figure, point C € D(A, B),and point D is
space-like separated from A since the future light cone of neither of the points completely contains the future light cone of the other.

containing some optical elements (like beam-splitters) and connected to optical fiber cables: each wire may carry
several messages at different times (or even in a superposition of different times). A single instance of a message is
modelled as a quantum state in the joint Hilbert space H ® I?(7), where H is the Hilbert space of the actual
classical/quantum message, 7 is a partially ordered set that defines an ordering on the space of messages and
I2(T) is the sequence space with bounded two-norm'*. In the simple cases where a quantum state p € H is sent
atawell-defined space—time coordinate P € 7, 7 can be taken to be Minkowski space—time and we can simply
represent the total state as a pair (p, P). In this paper we only need to consider such cases.

Causality condition. Causality requires that outputs produced at space—time point P € 7 can depend only
oninputs produced in its causal past, P’ < P (at this stage, 7 could be any set of points equipped with any
partial order to represent causality). In general, a causal box is a map from the space of the inputs to the space of
the outputs that respects this notion of causality'”. Composition of causal boxes may be done in series, in parallel
or through (feedback) loops (figure 5(a)), and arbitrary composition of causal boxes results in a causal box. A
more technical and detailed description of the framework can be found in appendix A.

Minkowski space—time. In this paper we apply the formalism of Causal Boxes to Minkowski space—time 7, where
each coordinate corresponds to avector P = (x, t) with three dimensions of space and one of time. In special
relativity, 7 has a natural partial order, ‘P; = (x;, ;) < P, = (%, 1) iflight can reach x, from x; intime t, — ¢,
thatisif||x, — x| < c(#2 — 1), where cis the speed of light.” In this case we say that space—time point P, is in the
causal past of P,. If two points are not ordered, we say that they are space-like separated. The causal diamond of a pair of
space—time points, P, < P,,denotedby D (P}, P,) is the intersection of the future light cone of P; with the past light
cone of P,. This represents the maximal space—time region that can be affected by events at P; and also affect events at
P, (figure 5(b)). So that there is no ambiguity in the space—time locations at which various agents are supposed to meet
during the protocol, the players must agree upon a coordinate system to represent all space—time points. The players
are allowed to have different proper frames to describe their own operations. Security does however not depend on this
choice of reference, but only on the partial order between the points, which is invariant under a Lorenz transformation.

Remark 2 (Range of causal boxes). Causal Boxes can model not only quantum processes, but also non-
signalling systems with quantum and classical inputs (for example, PR-boxes are causal boxes) [22]. This will be
useful in security proofs, for example to cover very powerful adversaries, so let us denote by C the set of all
allowed causal boxesin 7, and by D¢ C C the subset of systems that are valid distinguishers.

When proving the possibility result in section 3.1 (theorem 3), we show that

IMM,ce€S, VYVDeDe dPIIR So)<e,

where S are just efficient classical systems. This means that even distinguishers bounded only by non-signalling
constraints cannot distinguish the real from ideal systems, and the construction still holds in the presence of
such unrestricted adversaries.

' This is the state space of a single input/output message. More generally, wires which can carry messages in a superposition of different
numbers and time orderings can be represented by the symmetric Fock space of this message space [22]. The symmetry comes from the fact
that there is no special ordering of the messages other than the space—time ordering, which is already given in the state description itself. See
appendix A for further details.

15 . .. . . o .
Technically, this implies that there must necessarily be a finite time gap between an input to a causal box and an output that depends on
this input modelling the fact that any causal information processing task takes a strictly non-zero amount of time.
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When proving impossibility results in sections 3.2 and 3.3, we show that
VII,oceS, IDeDs, dPUIIR,So)> e,

where S C Cisany set of systems (e.g. classical, computationally limited or with bounded memory) and Dg is a
set of distinguishers with similar requirements. This means firstly that our impossibility results hold even if we
consider protocols that are bounded only by non-signalling constraints (the case were S = C). And secondly, if
we consider a setting where adversaries are limited, then the results carry over to this setting. For example, our
impossibility proofs also hold in the bounded storage model (where S and Dg have bounded memory) or a
computational setting (where S and Dg are computationally limited). See also remark 1 in section 2.1.

2.3. Two-party resources

We may now define the resources needed to model and prove our results. In this section, we model these
resources by defining their output values and space—time positions given input values and space—time positions.
As in illustration of how this is a special case of the more complete Causal Box model instantiated with
Minkowski space, we provide in appendix A.5 a formal definition of a CD as a causal box.

2.3.1. Coin flipping (CF )

A coin flip resource provides two distrustful players with a random coin flip—if they both behave honestly. If one of
them is dishonest, then the literature defines different resources that could be constructed. The most common, e.g.
[12], is to allow the coin flip to be unfair: a dishonest player who does not like the outcome can abort before the
honest player gets to see this outcome. In [23], the authors define a biased coin flip, where instead of aborting, a
dishonest party can bias the outcome. In this section we follow [23] and define a p-biased coin flip CF?. We define
an unfair coin flip CF* in appendix C.1, where we prove that CF'/2 can be constructed from CFf.

Definition 3 (Coin flipping, CF?). A p-biased coin flip, CF? = {CF, CF{, CFf}, is defined as follows.
CF: Alice receives a uniformly random bit c at space—time location P, and Bob receives the same bit at another

location P2,

CFE}: Dishonest Bob receives his uniformly random coin flip output, ¢’ before Aliceat P, < PAandat P, > P,
he may input a bit b (which may depend on the value of ¢’). Alice receives a bit ¢! atlocation P4 = P,: with
probability p she receives ¢! = b, else ¢! = ¢’. Causality requirement: P, < P, < P4,

CFY: analogous to CFf, with the roles reversed.

(c, P4 (c, PP)
Alice <«<— CF |—> Bob

(<", )
(¢, € {c',b}, PA) —
K Ay

P, <P, < PA

Note that by definition of CF, it should be clear that the uniformly random bit, ¢ is generated independently by
the resource CF and cannot be correlated with anything outside it because the honest resource CF takes no
inputs that could possibly influence this output. This is the reason why we label the outputs of CFat P* and that
of CF{ at P, differently (cand ¢’ respectively) even though they are both uniformly distributed, they are
generated independently by different coin flip resources'°. Further, a bias of 0 means that the coin flip is
uniform, a bias of 1 means that the dishonest player has complete control over the outcome, and a bias of p
means that any outcome can occur with probability at most1/2 + p/2.

2.3.2. Bit commitment (BC )

As mentioned in the introduction, bit commitment is an important cryptographic primitive and its security relates
to its hiding and binding properties which were also introduced in section 1. Here, we formally define what an ideal
bit commitment resource behaves like in Minkowski space—time.

16 . . ol e . e . .
In order to reduce the number of variables in the proofs, we may drop this distinction in places where it is inconsequential. Nevertheless, it
is to be kept in mind.

10
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Definition 4 (Bit commitment, BC). A bit commitment resource tuple BC := { BC, BC,, BCg} is defined by the
single resource BC (with BC, and BCj identical to BC), which behaves as follows.

1. Alice selects a classical bit a € {0, 1} to commit to and inputs it at her interface of BC at a time of her choice
f.

2. Bob receives the message ‘comm’ at time t{ > t; at his interface, indicating that Alice has committed to a bit.

3. Alice then inputs the command ‘open’ at her interface at a time of her choice t,.

4. Her original commitment ‘a’ is then revealed to Bob at time ¢, > t,.

(a,t) (comm, t')

Alice  (open, ) BC [(a, ;)  Bob

For simplicity, we only mention the times at which the messages are input and output in definition 4. This
should naturally also include the location in space of the players. We chose this formalization of the BC resource
asitis the closest to the standard, non-relativistic references, e.g. from Blum’s and Demay et al’s works [12, 23];
we only added the space—time stamps. Nevertheless, our proofs go through even in the cases mentioned by the
reviewer, such as when Alice chooses the commitment time and Bob gets the commit message, when Bob can
infer Alice’s commitment, or when agree on all the time stamps beforehand.

In relativistic protocols (like Kent’s [7]), the commit message may be absent, and the commitments may be
valid only within a time window (depending on the time taken by light to travel between multiple agents) and
thus, relativistic bit commitment looks more like a channel with delay, which we formalize in the next section.

2.3.3. Channel with delay (CD )

In special relativity, unless two agents meet at the exact same space—time location to exchange messages, there is
necessarily a finite communication delay between them. A channel with delay is a cryptographic primitive between
two parties based on this physical intuition: Alice sends a message and Bob receives it unaltered with some delay.

Definition 5 (Channel with delay). A channel with delay CD = (CD, CD,, CDj3) between a sender Aliceand a
receiver Bob is a tuple of resources characterized by four space—time locations, P < P’ < Q" < Q, and defined
as follows.

CD: honest Alice inputs a quantum state a into the channel at location P, i.e. the input message is (a, P). Honest
Bob receives (a, Q) atlocation Q.

CDy: dishonest Alice inputs (a, P’). Honest Bob receives (a, Q).

CDg: honest Alice inputs (a, P). Dishonest Bob receives (a, Q’).

The trusted region of the channel is defined as the causal diamond of P’ and Q’: theset D(P’, Q') := {S: P'<

S< Q.

Bob ~Q

t D

L X P Alice

O trusted region

a, P a,
Alice ( ) CD @ Q Bob

P<Q

The dishonest resources CD, and CDp are the same except with Preplaced by P’ > P in the former and Q
replacedby Q" < Qin the latter case.

11
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That s, the CD acts as an identity channel on the message, and as a shift on the space—time stamp.
Furthermore, it allows dishonest players to send (respectively, receive) the message after (respectively, before)
the honest player. A formal definition of the causal box that implements the CD can be found in appendix A.5.
The trusted region of the CD is the region where both players can be sure that the information in the channel
remains secure, even when the other is dishonest; as we will see, it is the region where the CD can be used to
construct other resources such as CF (section 3.1).

Relation to relativistic bit commitment protocols. Typically, in a non-relativistic bit commitment resource, Alice is
free to choose when to open her commitment and also has the choice to not open her commitment at all. In
relativistic protocols, however, the commitment time is usually restricted by the time taken by light to travel between
the remote agents, in which case Alice does not have the freedom of choosing arbitrary #; and t, as in definition 4:
once f, is fixed, the commitment must be opened at the latestby ; + At for some At which depends on the
protocol. Bob typically does not know whether Alice is committed before time #; + At. If the opening is successful,
then Bob knows that Alice ran the honest protocol at t;, and retroactively decide that she has been committed to her
bit. Furthermore, in some relativistic protocols, e.g. [7], Alice cannot choose to not open: if she honestly committed
attime t;, then after A¢, the commitment is always opened. The CD resource from definition 5 captures exactly this,
and hence we analyze the (im)possibility of extending the delay of such a channel in this work.

Other protocols, e.g. [9], additionally offer the possibility to Alice of aborting before Bob receives the bit to which
she committed. We thus define a variation of definition 5 in appendix C.2, where after inputting her message into
the channel, Alice may still change her mind and abort before Bob receives it. We prove in appendix C.2 that our
main results presented in section 3 still go through with this alternative definition of a channel with delay.

3. Results

3.1. Constructing CF

It was shown in [23] thata 1/2-biased coin flipping resource can be perfectly constructed from a bit
commitment resource (definition 4), by using Blum’s protocol [12]. Here we show that it is in fact possible to
construct an even stronger resource (an unbiased coin flip) from a channel with delay.

Theorem 3 (Construction CD — CF). Given a classical channel with delay CD, there exists a classical protocol
ep_cr = {ILa, g} that perfectly constructs an unbiased coin flipping resource CF°.

The constructed and ideal resources are indistinguishable for any possible distinguisher (including quantum and
non-signalling distinguishers, see remark 2 in section 2.2). The honest protocol as well as the simulator require only
elementary local operations and classical communication.

The protocol is described in definition 6, and the security proofis given in appendix B.1.

Definition 6 (Protocol I1¢p_,¢r). Given a channel with delay CD = (CD, CD,, CDg) characterized by
locations A < A’ < B’ < B (see definition 5), we define the following honest protocol Ilep_,cr = (I1, IIp).

1. Alice picks a uniformly random bit, 4 and sends it through CD from her space—time location A. Bob receives
this bit from CD at his location B.

2.Bob meets Alice at S in the trusted region, i.e. the causal diamond D(A’, B’) to pass on Bob’s uniformly
random bit, b.

3. After receiving b from her agent, Alice computes a @ b = ¢ and outputs this value at some point P4 = S.If
Bob did not turn up for the meeting at S, she picks a uniform b herself, and outputs a & b = ¢ as before.

4. After receiving a from the channel, Bob computes a @& b = ¢ and outputs the result at a point P? > B. If Bob
does not receiving anything from the channel, he picks a uniform a himself, and outputs a & b = ¢ as before.

In this case, if both players are honest (and in particular their inputs a and b are uniformly random), then
their output ¢ = a @ bisalso perfectly random and the protocol succeeds. If one of the players (say Alice) is
dishonest, we only care about whether Bob’s output is uniformly random; but since Bob is honest, b is uniformly
random, and so is ¢ (independently of a).

Note that it is important that the point S in the above protocol lies in the trusted region, otherwise the
protocol would not be secure'”. Furthermore, this protocol can be run by a single player on each side without the
need for trusted agents since S lies in the causal future of A and A’ and in the causal past of Band B'.

17 The existence of the simulators 0, and o3 used in the proof of theorem 3 relies cruciallyon S € D(A’, B').
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In appendix C.2 we define a weaker channel with delay, namely one which allows Alice to abort and prevent
her message from reaching Bob, CD. We show in the same appendix (lemma 11), that if the protocol above is
used with CD instead of CD, then we construct an unfair coin flip CF* instead of an unbiased one CF°.

3.2. Impossibility of CF, CD and BC

Impossibility of coin flipping. In the previous section, we showed that an unbiased coin flipping resource can be
constructed from a suitable channel with delay. Here we show that in the absence of any such shared resource, it
is impossible to construct any (biased) coin flip resource solely through the exchange of messages.

Theorem 4 (Impossibility of CF). It is impossible to construct, with ¢ < %(1 — D), ap-biased coin flipping
resource between two mutually distrusting parties solely through the exchange of messages through any relativistic or
non-relativistic protocol, be it classical, quantum or non-signalling.

The distinguisher required to distinguish the real from ideal systems has the same complexity and memory
requirements as the protocol I, Il and simulators o, op. In particular, if these are efficient, classical or have
bounded or noisy memory, then so does the distinguisher.

Note that this theorem includes as special case protocols that may send messages in superpositions of
different causal orders. This follows from the fact that the impossibility holds for any causal boxes, thus in
particular for causal boxes that use such superpositions of causal orders.

The proof of theorem 4 can be found in appendix B.2. Here below we provide some intuition.

A coin flip CFP does not only guarantee that the output bit is uniform (or biased with probability p), but also
that itis independent of any other bit produced in parallel by some other resource (up to the bias). This is
essential so that a dispute that is resolved with a coin flip would not only be settled fairly, but also independently
from any other dispute. The man in the middle attack mentioned in section 1 would allow dishonest players to
perfectly correlate the outcome of two coin flips that are expected to be independent: if Alice and Bob run a coin
flipping protocol, Charlie and Danielle run a second one in parallel, and Bob and Charlie collude to forward all
the communication between Alice and Danielle, Bob and Charlie could force them to agree on the same coin
flip. The proof of theorem 4 consists in showing that this is essentially possible for any protocol that does not use
any resource other than communication between the parties involved. A sketch of the main proofideais
provided in figure B2 in appendix B.2. It generalizes the techniques used in [4] to prove the analogous result for
the non-relativistic case. Note that even though we define the p-biased coin flip resource symmetrically in
definition 3 (i.e. both dishonest players have the same bias), all our results can be easily generalised to the
asymmetric case and we will not consider this explicitly.

Impossibility of BC and CD. Combined with theorem 3 and Blum’s construction [12, 23], theorem 4 implies
impossibility of constructing any channel with delay CD or any commitment BC if no initial resource is shared
by the players.

Corollary 5 (Impossibility of CD). It is impossible to construct CD, with € < %, between two mutually distrusting
parties solely through the exchange of messages through any classical, quantum or relativistic protocol.

The distinguisher required to distinguish the real from ideal systems has the same complexity and memory
requirements as the distinguisher used in theorem 4 composed with the protocol I1,, Ilg used in theorem 3. In
particular, if these are efficient, classical and have bounded or noisy memory, then so does the distinguisher.

Proof. Follows directly from the impossibility of CF in theorem 4 together with the construction of unbiased
CF from CD (theorem 3). O

Corollary 6 (Impossibility of 3C). It is impossible to construct BC, with € < %, between two mutually distrusting
parties solely through the exchange of messages through any classical, quantum or relativistic protocol. This rules out
both arbitrarily long and timed commitments.

The distinguisher required to distinguish the real from ideal systems has the same complexity and memory
requirements as the distinguisher used in theorem 4 composed with the protocol 11y, 1lg used in Blum’s protocol
[12, 23]. In particular, if these are efficient, classical and have bounded or noisy memory, then so does the
distinguisher.

Proof. Follows directly from the impossibility of CF in theorem 4 together with the construction of %—biased
CF from BC using Blum’s protocol [12, 23]. O

Using the same techniques, we show in appendix C.2 that an abort channel cannot be constructed either.
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3.3. Impossibility of extending delays

One may wonder whether, in relativistic settings, players could extend the time commitment of a message. For
example, if Alice and Bob moved further apart, perhaps this could increase the delay of a channel. However,
while honest, collaborative agents can always increase the time taken by a message to travel between them by
simply moving apart, in a cryptographic setting where agents don’t trust each other, they cannot be sure that, for
example, Alice is moving farther and not closer to Bob.

What our next result shows is precisely that there is no way for mutually distrustful agents to ensure that the
time duration within which the message in a channel is inaccessible to dishonest players can increase. This notion
is captured by the trusted region of the channel, and is essential for cryptographic security. Moreover, we show
thatitis not possible to use several channels with delay to construct a better channel with delay. We find that
given n shared channels with delay between Alice and Bob, the trusted region of the constructed channel will be
smaller than the trusted region of at least one of the individual channels used. In fact, the result is even stronger:
the trusted region of the constructed channel is contained inside the trusted regionof at least one of the assumed
channels used in the construction. This means the maximal space—time region within which the information in
the channel is guaranteed to be secure from both dishonest parties cannot be increased even with n copies of a
channel. If we view such a channel with delay as a relativistic bit commitment (Alice inputs a bit into the channel
and is then committed to it, but the commitment is only opened when the bit arrives with a delay at Bob), this
implies that it is not possible to increase the time within which the commitment is both hiding and binding even
if n timed commitment resources are given.

Theorem 7 (Impossibility of extending CD). Given n channels with delay CD', ..., CD" between two parties, it is
impossible to construct with € < % a channel CD’ between the two parties with a trusted region that is larger than the
trusted region of all of the individual channels used.

This holds for all protocols Ty, 1y in C, which includes inefficient and non-signalling systems. The distinguisher
needed to distinguish the real from ideal system has the same complexity requirements as the protocol 114, Ilg. In
particular, if it is efficient or classical, then so is the distinguisher. Furthermore, if the channels constructed and used
are classical, then the distinguisher also has the same quantum memory requirements as the protocol I1,, 11p.

The proof of theorem 7 is given in appendix B.3. Note that this proof includes as special case protocols and
distinguishers that may send messages in a superposition of going through one channel CD’ or another CD/, or
in which a channel may be in a superposition of being used and not used. This follows from the fact that the
impossibility holds for any causal boxes, thus in particular for causal boxes that use such superpositions of causal
orders.

One may consider variations of this result in which slightly different resources are used or constructed. For
example, one could wonder whether having channels with delay going from Bob to Alice may help. It is however
easy to verify from that proof, that these have no impact on the impossibility. Another variation worth
considering is if the channels are abort channels, as defined in appendix C.2. We prove in the same appendix that
one cannot extend the delay of abort channels either.

4. Discussion

The general framework for modelling composable security of relativistic quantum protocols developed here
naturally lends itself to the study of novel possibility and impossibility results in relativistic cryptography and
could provide key insights into classifying possible and impossible information-processing tasks.

Composability issues raised previously. Composability issues with Kent’s 2012 protocol [7] have been briefly
discussed in [8]. A definition which is labeled ‘composable’ is proposed in [8, appendix B], but it is not derived
using any composable framework. In fact, it is argued in [8] that bit commitment in the bounded and noisy
storage models could satisfy this definition. Since our results carry over to these settings as well, it follows that
either the proposed definition is not composable or it cannot be satisfied. Note that the impossibility of 3C in the
bounded storage model is already hinted at in [20], where the author points out that the model he developed for
concurrent composition does not guarantee that a protocol is secure when run in parallel with another instance
of itself.

Superpositions of causal orders. A unique feature of the causal boxes formalism [22], is that it can model
superpositions of messages exchanged in a superposition of orders in (space-)time (e.g. the quantum switch
[31]) by assigning different space—time stamps (or superpositions thereof) to different messages. Combining this
with the abstract cryptography framework [4], as done in this paper, allows us to model security in settings where
such superpositions are actively used. For example, this allows us to consider protocols where a message isin a
superposition of being sent from Alice to Bob and from Alice to Charlie, i.e. where Bob and Charlieareina
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superposition of having received no message and one message from Alice. Even for protocols that do not use
such structures, possibility results consider distinguishers that have this capability. And impossibility results
show that even such superpositions of causal orders, the desired resource cannot be constructed. This is the case
for all our results presented in this work.

Aknown example of a process involving a superposition of temporal orders of operations is the quantum
switch [31]. It was physically realized in [32, 33], and can be represented in the Causal Box framework as shown
in [22]. Further, the quantum switch was shown to have an operational advantage over fixed ordering of (or
classical mixtures thereof) operations in solving certain computational tasks [34, 35]. By modelling
cryptographic protocols involving such superpositions of orders, one can study the operational advantage
provided by quantum ordering of messages/operations over classical orderings. Such an approach to studying
causal structures in terms of their operational advantages would be useful for characterising the properties of
physically implementable causal structures. This is still an important open question since there exist more
general frameworks for modelling causal structures, such as the process matrix framework [36] which predict
causal structures that are logically possible and yet, have no known physical implementation.

Error tolerance. Realistic protocols, like those implemented with quantum preparations and measurements,
always come with a small probability of error (for example, in Kent’s protocol as in QKD schemes, this depends
on the number of quantum states exchanged between the parties). The ideal resources we prove cannot be
constructed are, by definition, not subject to any errors. But it follows directly from the composable framework
used that impossibility to construct perfect resources (with some error €) implies impossibility to construct
noisy versions of the resources. To see this, consider a resource CD¢ that is €-close to CD according to the
distinguishing advantage. By the triangle inequality, if a real protocol implements a resource that is A-
distinguishable from the ideal CD, it will be atleast (A — &)-distinguishable from CD¢. For example, for an
unbiased CF,wehave A = é, soitis still impossible to perfectly build any CF that has an error tolerance
smaller than that.

Minimal resources for constructions. Our results show that existing bit commitment protocols [7, 9] cannot
construct the target resource 3C from an assumption of a shared resource. Nevertheless, we may still look for
initial resources R that allow BC to be constructed. It would be interesting to explore the minimal resources
necessary to achieve this. For example, an assumption (or assurance) that dishonest players cannot interact with
third parties is a good candidate for such an initial resource R. It remains open to formalize such a resource R
within the framework and prove that it is sufficient to construct 5C. We note however that in the classical case
one can construct BC assuming a CRS shared between all parties and standard complexity assumptions [16].
Thus, to justify a quantum or relativistic protocol, one would need weaker assumptions.

Alternative space—time. We have proved our results taking the background physical theory to be special
relativity (in the sense of Minkowski space—time with a finite speed of signalling). The results would still hold
even for other space—time geometries with a fixed background causal structure i.e. for different choices of the
partially ordered set 7. However, if we consider a general relativistic framework (one where the causal order is
not fixed until one solves for the metric by considering the mass distribution) that is compatible with quantum
mechanics, there could arise situations where the background causal structure itself is subject to quantum
uncertainty and is no longer fixed'®. Such causal structures can no longer be explained by a single partially
ordered set 7 and cannot be modelled within the Causal Boxes framework. In fact, there is currently no
framework that can model this and has the properties required to define cryptographic security'”. Thus it
remains open to define a quantum, general relativistic framework for composable cryptography, and study the
problem of constructing bit commitment using it.
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Appendix A. The causal box framework

The causal box [22] formalism models information-processing systems that are closed under composition even
when the order of operations indefinite (such as a superposition of orders) or dynamically determined duringa
protocol’s runtime. Similar formalisms (e.g. [39—41]) have been previously developed but they are only suitable
for modelling systems where the order of messages is predefined, they fail to be closed under composition when
considering simple cryptographic protocols that involve dynamical ordering of messages during runtime [22].
In particular, the formalism allows us to model quantum causal systems in Minkowski space and construct new
causal systems by composing them. This makes it suitable for modelling composable security of relativistic
quantum protocols as done in this paper. We now review the formal definitions of the objects of the causal box
framework [22].

A.1.Message space and wires

1. Space of ordered messages: Every message is modelled as a pair, (v, t) where v € V denotes the (classical/
quantum) message and t € T provides ordering information, where 7 is a countable, partially ordered set.
The space of a single message is thus a Hilbert space with the orthonormal basis {|v, )} ,e, ;e 7. For a finite
V and infinite 7', this Hilbert space corresponds to CV! @ 1>(7) where I>(7) is the sequence space with a
bounded two-norm. Thus |¢) can be seen as a sequence which consists of a 1 in position t € 7 and 0
everywhere else.

2. Wires: The inputs and outputs to a causal box are sent/received through wires which can carry any number
(or a superposition of different numbers) of messages of a fixed dimension, which defines the dimension of
the wire””. Thus the state space of a wire is defined to be a symmetric Fock space. It is modelled as a Fock
space to allow for superpositions of different numbers of messages and it is a symmetric Fock space since all
ordering information associated with the arriving qudits is already contained in the label # € 7 and given
this label, there is no other ordering on the qudits. For the Hilbert space, H = C? @ I2(T), the
corresponding bosonic Fock space is given as

FCT o (D) = @ V' (€ ® B(T)), @

n=0

where V""H denotes the symmetric subspace of H®" and H®" is the one-dimensional space containing the
vacuum state |(2).

For example, the state space corresponding to a wire A carrying d, dimensional messages is denoted by
FI = F(C% @ IX(T)). The joint space of two wires can be written as 72 ® F2 = F2 and it can be shown
[22] that for any two Hilbert spaces H, = C% ® I*(T)and Hg = C% @ 1*(7T),

F(Hy) ® F(Hp) = F(Hy @ Hp). (%)

Isomorphism (5) tells us that each valid state in the combined state space of two wires, one carrying d,
dimensional messages and the other carrying d dimensional messages, can be mapped to a valid state in the state

20 . . . . . . . .
For example a two-dimensional wire can carry any number of qubits, or can be in a superposition of carrying 2 and 3 qubits but cannot
carry qutrits.
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space of a single wire carrying d,+d dimensional messages. Hence 7 ;, can be interpreted as the state space of a
wire carrying (d4 + dg) dimensional messages”'.

We now proceed to formally review the definition of causality that causal boxes satisfy, we first define the
notion of cuts on a partially ordered set 7 which forms an important part of the definition.

A.2. Cuts and causality

Definition 7 (Cuts [22]). A cut of a partially ordered set 7 is any subset C C 7 such that C = |J 7<', where
teC
T<t={pe T p< t}).Acut Cisboundedif there exists a point t € 7 such that C C T<'. Thesetofall cuts

of 7 is denoted as €(7") and the set of all bounded cuts as (7).

In this paper, we have taken the partially order set 7 to be Minkowski space-time, this allows us to restrict to
bounded cuts. This is because every cut in Minkowski space—time is a bounded cuts: any two space—time points
(even those that are unordered i.e. space-like separated) necessarily share a common causal future. Note that this
is not true for a general partially ordered set 7 .

Definition 8 (Causality function [22]). A function x: €(7) — €(7)isa causality function if it satisfies the
following conditions:

Ve, DedT), x(CUD=x©O U xD, (6a)
VG, De&T), CCD= x(C C x(D), (6b)
VCe &TH\{o}, x(© cCC (6¢)
VCe&T),VteC,IneN, t&x"0), (6d)

where y" denotes n compositions of y with itself, x"* = yo --- ox.

Conditions (6a) and (6b) follow from the considerations that: If the output on C and D can be computed
from x (C) and x (D) respectively, the outputon C U D can be computed from x (C) U x (D), if x (C) is needed
to compute the output on C, then certainly it is needed to compute the outputon D 2 C. Condition (6¢) is
essentially the causal condition that requires that outputs of a causal box can depend only on inputs produced in
its causal past and Condition (64) is to ensure that a causal box does not produce an infinite number of messages
in a finite interval of time (see [22] for details). Definition 8 is the general definition of the causality function and
it simplifies for special choices of the set 7 [22]. We are now in a position to review the formal definition of a
causal box.

A.3. General definition of a causal box

Definition 9 (Causal box [22]). A (dy, dy)-causal box ® is a system with input wire X and output wire Y of
dimension dx and dy”’, defined by a set”’ of mutually consistent (equation (8)), completely positive, trace-
preserving (CPTP) maps (equation (7))

® = {0 TFY') — T(FY)} ceury (7)
These maps much be such that forall C, D € €(7)with C C D,
trp\coq)D = (I)CO'[I"]'\X(C), (8)

where T(F') denotes the set of all trace class operators on the space F and the causality function y (.) satisfies all
the conditions of definition 8. 7 is the subspace of F7 that contains only messages in positionst € C C T
and trp\ ¢ traces out the messages occurring at positions in D\ C.

Equation (8) can be seen as the combination of the two requirements ®¢ = trp, co®” and & = PCotrp y ().
The first one embodies the mutual consistency requirement while the second, that of causality.

21 Conversely, any wire A of messages of dimension d, can be split in two sub-wires A; and A, of messages of dimensions d 4, + da, = da:
FL = F © FL, . Further, forany subset P C T, F = Fh @ Fy,where P = T\Pand F; = C% ® *(P).
22 . . . . . . . . .

Itis enough to define a causal box as a map from one input wire to one output wire since a single wire of dimension d can always be
decomposed into n wires of dimensions d, ..., d, withd = d, + d, + ... + d, using the isomorphism of equation(5).

1n general, it is modelled as a set of maps and not a single map because this allows systems to be included which produce an unbounded
number of messages and are thus not well-defined as a single map on the entire set 7', but only on subsets of 7" that are upper bounded by a
set of unordered points. For example [22].
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A D A D
—_— —_—
P C—B P
B CD|AB C s 5 CD|AB c
—_—

Figure A1. Classical example for loop composition: a system with classical inputs A, Band classical outputs C, D can be described by
the probability distribution Pcp)4p. The new system obtained by adding a loop from the output C'to input Bis then described by the
distribution Qpja = Y-, Pepjas(cdlac) and is a valid probability distribution as long as the system obeys causality [22].

Remark 8. Note that definition 9 only considers trace-preserving causal boxes. The definition can be easily
generalised to non-trace preserving causal boxes or sub-normalised causal boxes to account for post-selection.
This is done in [22] by defining a suitable projector on the space of normalised causal boxes.

Further, just like CPTP maps on quantum states, causal boxes also admit Choi-Jamiotkowski and
Stinespring representations, and in addition, they also admit sequence representations that describe their
sequential action over subsequent, disjoint sets of 7. We refer the reader to the original paper [22] for details
regarding these as they are not of particular relevance to the results of this paper.

A.4. Composition of causal boxes

Having defined causal boxes, we are in a position to see how they can be composed. Due to Isomorphism (5), an
input/output wire to a causal box of dimension d can be split into sub-wires of dimensions dy, 5, ..., d, such
thatd; + d, + ... + d, = d and similarly, wires can also be combined to form a wire with dimensions equal
to the sum of the dimensions of the individual wires. Taking Ports(®P) to represent a particular partition of the
input and output wires of a causal box ® into sub-wires, arbitrary composition of causal boxes can be achieved
by combining the following two steps.

1. Parallel composition: two causal boxes ® and ¥ can be composed in parallel to obtain a new causal box
I' = ®||¥ whose input and output ports are given by the union of the input and output ports of & and ¥
respectively.

2. Loops: selected output ports of the causal box I" can be connected with input ports of the same dimension to
form loops.

A classical example of composition through loops can be found in figure A 1. The formal definitions of parallel
composition and loop composition of causal boxes, which generalise thisintuition to the quantum case can be
found in the original paper [22], where it is also shown that causal boxes are closed under these arbitrary
composition operations.

A.5. The channel with delay as a causal box

The channel with delay was defined in section 2.3.3. In this section, we show how to model the channel with
delay using the causal box formalism, i.e. by defining it in terms of a set of mutually consistent maps { ®€}. Recall
that a channel with delay is defined by the tuple of resources CD := {CD, CD,, CDg}, each of the resources

CD, CD, and CDjg can be equivalently described by the causal boxes ®¢p, ®cp, and ®¢p,. In the following, we
consider the channel with delay resource characterised by the 4 space~time points A < A’ < B’ < B.

Definition 10 (Causal box ®¢p description of the channel with delay resource CD). V bounded cuts

C > B C T inMinkowski space 7 , the causal box ®cp = {BE): T(F }‘((C)) — TFDY e &) is defined by the
maps B, = Ta.potrye)\a with Zy g = Ty ® [|B) (A| + |A) (Bll2(7)- X and Ylabel the input and output
wires to the causal box, 7y, denotes the identity operation on the Hilbert space V of the quantum message, [*(7)
is the sequence space (with bounded two-norm) of the space—time stamps and  (C) is any causality function
that satisfies the conditions of definition 8 and the conditionthat B € C = A € x(C).

Similarly, the resources CDy and CDj can be defined by replacing A with A”and Bwith B’ in definition 10
respectively. Note that for any subset P C 7, F T~ FP @ FP where P = I\'P.Further, anatural
embedding of 77 in F7 canbe obtained [22] by appending the vacuum state™* to F 7

24 5 ) ) N '
|€2)” represents the one dimensional subspace of F” that contains the vacuum state.
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FP=FTo|Q)P C FT

This allows us to equivalently view the trace trp\ ¢ for any two cuts C C D, as the operation of tracing out all the
messages in space—time locations that belong to the cut D, but not to the cut C and replacing all of them by the
vacuum state |€2). With this, we can see that in definition 10, tr, ¢, \a(p) for an arbitrary input state
p € T(FYO) will always result in a state of the form o @ |A) (A| ® [Q) (Q4 where o € F(V), which without
loss of generality, we denote by o ® |A) (A| where itis understood that there is ‘nothing’ i.e. the vacuum state |2)
atall other space—time locations A € 7.

Itis easy to verify that ®¢p is indeed a causal box i.e. that it satisfies equation (8). The left-hand side of the
equation gives, for an arbitrary input state p € T(FX)andanycut D 5 B2 C

trpn coPp(p) = trps colu— potry ()~ A(p)
B {trD\C(U ® [B)(BI), A € x(D)
|QMQIT, otherwise 9)
o ® |B)YB|, BeC
- { [QNQIT,  otherwise.

cI)gD (p)

Similarly, the right-hand side of equation (8) becomes

PEpotren (o) (p) = La—potry ) a0tres (o) (p)
_ [o@ BB, Acx(©O (10)
B | OXQ|Y,  otherwise.

ep(p)

Sincewehave” B € C < A € x(C) by definition 10, and equations (9) and (10) hold for arbitrary input
state p, the expressions in equations (9) and (10) are equal giving trD\coq)gD = ®f, otrey y(c) as required by
definition 9 of a causal box. This shows that @, of definition 10 (and similarly ®¢p, and ®¢p,) isindeed a
causal box.

Remark 9. Note that definition 10 and the fact that ®¢p, is a causal box imply that ®¢p cannot produce any (non-
vacuum) output on cuts that do not contain the point B. This is due to the fact that in Minkowski space, for any
cut Cwith B ¢ C,wecanfindacut D O C containing B. The mutual consistency condition (equation (8))
would then demand that no non-vacuum outputs are produced in the cut C as the only non-vacuum output in
D willbe produced at B ¢ C. Thusitis enough to define ®cp only on cuts that include B as done in definition 10.

Appendix B. Proofs of all results
B.1. Constructing CF

Theorem 3 (Construction CD — CF). Given a classical channel with delay CD, there exists a classical protocol
Uep_cr = {14, 11} that perfectly constructs an unbiased coin flipping resource CF°.

The constructed and ideal resources are indistinguishable for any possible distinguisher (including quantum and
non-signalling distinguishers, see remark 2 in section 2.2). The honest protocol as well as the simulator require only
elementary local operations and classical communication.

Proof. The protocol I¢p_, ¢ (definition 6) constructs CF° from CD iff all three conditions of figure B1 are
satisfied. The condition of figure B1(a) trivially holds. To see that the conditions in figures B1(b) and (c) also
hold, consider the following simulators.

o, is defined as follows.

1. Receive the input a at the space—time location A’ at the outer interface. If no a is received, pick one
uniformly at random.

2. Onreceiving input c at P, at the inner interface, output b = a @ c at the outer interface at S.

23 Note that the implication B € C = A € x(C) follows from the definition of the causality function while the implication
A € x(C) = B € C follows from the fact that for any x (C) 3 A, the causal box ®cp when acting on an arbitrary input state p, always
produces an output on a cut containing B (by definition).
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Figure B1. (a) Honest Alice and Bob: IT,CDII; ~, CF (b) Dishonest Alice: 3 o such that CD4 ITg & 0 CFY. (c) Dishonest Bob:
J o such that IT, CDy &, CFjop. Conditions for constructibility of a fair and unbiased coin flip CF° from a channel with delay CD.
Since the coin flip has p = 0 the biasing bit that a dishonest party may input has no effect, so we do not draw it.

For the above construction of o4 to work, both P, and A’ must lie in the causal past of S. Since Slies in the
trusted region, A’ < S necessarily holds. Since there are no constraints on the space~time points at which CF}
can produce an output, we can always make it outputata point P, < S.

op is defined as follows.

1. Receive the input b at the space—time location S at the outer interface. If no b is received, pick one uniformly
atrandom.

2. Onreceiving input cat P; at the inner interface, output a = b @ c at the outer interface at B'.

For the above construction of o5 to work, both P; and S must lie in the causal past of B’. Again, Sbeingin the
trusted regionensures that S < B’ necessarily holdsand P; < B’ holds since there are no restrictions on the
space—time points at which CFy can produce an output.

Itis easy to see that for the above mentioned constructions of the simulators o, and op, the real and ideal
systems of figures B1(a)—(c) are perfectly indistinguishable (for any distinguisher D) since a, b and c always
satisfy the condition that any two of them sum bit-wise to the third. Further, Alice can learn the value of both bits
aand b before Bob does but she cannot bias the value of Bob’s output, a & b in any way. Neither can she prompt
Bob to abort the protocol after learning the value of her bit a, because she has to send a into the channel before he
receives b at the point S (by the non empty trusted region condition). Hence the protocol perfectly constructs an
unbiased coin flipping resource CF° from a channel with delay CD. O
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B.2. Impossibility of CF

Theorem 4 (Impossibility of CF). It is impossible to construct, with € < é(l — p), ap-biased coin flipping
resource between two mutually distrusting parties solely through the exchange of messages through any relativistic or
non-relativistic protocol, be it classical, quantum or non-signalling.

The distinguisher required to distinguish the real from ideal systems has the same complexity and memory
requirements as the protocol 11, 1l and simulators o, op. In particular, if these are efficient, classical or have
bounded or noisy memory, then so does the distinguisher.

Proof. For the construction to be valid, all conditions of figure B2 must hold. As explained in the figure caption,
the first step is to combine the three conditions and use the triangle inequality to obtain figure B2(d).

Next we will show that for any causal order of the messages ¢, ¢/, band b’ in figure B2(d), the best possible
classical, quantum or non-signalling strategy of ¢ leads to a distinguishing advantage of at least %(1 -p)
between CF{ oCF} and CF. We present here only the optimal strategy—it is a straight-forward if tedious
calculation to verify that all other causal orderings and possible input—output correlations in each case do not
yield alower distinguishing advantage.

The simulator’s task is to ensure to the best of its capabilities that ¢/* and ¢ are equal. The causal order of the
messages that provide o with the maximum information to achieve this task is the one depicted by the directed
acyclic graph (DAG)’® in figure B3, where 0 can learn the values of cand ¢’ first and accordingly correlate the
values of b and b’ which are then input to CFf and CF}, respectively. In this case, the best possible strategy that
the simulator could adopt would be one where it produces the input—output correlations b = b’ = cor
b = b’ = ¢’ all the time. The probability that ¢ equals ¢ for such a strategy (say, b = b’ = ¢)is:

P(cuA = cf) = P(coA = coBl c= c/).P(c = c') + P(coA = cuB| c= c/).P(c = c/)
= % + %[P(COA = cfl ¢ = ¢, both biased).P (both biased)
+ P(c? = cP| ¢ = ¢/, A biased).P(A biased)
+ P(caA = cf| ¢ = ¢, B biased).P(B biased)

+ P((:oA = cf | ¢ = ¢/, none biased).P(none biased)]

- % + %[Lpz +0.p(1 = p) + 1p( — p) + 0.(1 — p)’]
1
= 5(1 + p).

A distinguisher connected to CE{ oCF¥, or CF can access the two outputs produced at the outer interfaces of
these systems. If the distinguisher guesses CFf oCF} every time the two outputs differ in value and CFf CF} or
CFwith uniform probability every time the two outputs are equal, the distinguishing advantage would be:

3¢ > d(CELoCFE, CF) > P(¢) = ¢f) = %(1 - p). (11)

This distinguishing advantage € is equal to zero only when p = 1 (totally biased coin) and thus, for a non-trivial
P, itis not possible to make the distinguishing advantage € arbitrarily small.

The distinguisher used to distinguish the left and right-hand sides in figure B2(d) is quite a trivial system, that
only needs one bit of memory and compare the two output bits. The existence of such a distinguisher with
advantage 3e implies that there exists another distinguisher with advantage € that can distinguish the left and
right-hand sides from either figures B2(a)—(c). We now go through the steps of this argument more slowly, to
determine the exact complexity (both in terms of memory and computation) of the distinguisher that we have
proven to exist. To construct figure B2(d) from the three first conditions in figure B2, we use the following two
arguments several times.

The first is the triangle inequality, namely that

R~
S~ c T}=>RR15+€/ T.
~e!
Note that this holds for individual distinguishers, hence the contrapositive states that if there exists a
distinguisher that can distinguish R from T with advantage ¢ + ¢, then exactly the same distinguisher can
distinguish either R from S with advantage € or S from T'with advantage &’.

26 . . . . . .
DAGs are widely used in the literature to represent causal structures. For classical causal structures (as is the case here, given that the
inputs and outputs to o are classical bits), the nodes (circles) represent random variables and the edges (arrows) represent causal influences.

21



I0P Publishing

NewJ. Phys. 21 (2019) 043057 V Vilasini et al
114 Iip
(d, PY) (d, PB) (c, PA) (¢, PP)
e «— CF (——
(a)
I
oA
BN (¢, P3)
(d, PP) — L e P
(1) R (2) — v, Py) CFy, ——
(b)
114
0B
A — A pA (e 1)
(d, PA) (i, P -
(1) e D — CFII; (b, PZ) [ (2)
(c)
OAB
(c, P1) (¢, Ps)
@ P L ez ) (c. PY) (. PP)
] CFB (b, Pz) (b/, P4) CFA —> 3¢ CF

Py, < PA Py < PB
(d)

Figure B2. (a) IIzIIg ~. CF (b) Dishonest Alice: 3o4: Il =, op CF}ZA (c) Dishonest Bob: op:  TI4 =&, CF};’ op (d) oap:

CF5 045 CFY ~5, CF Impossibility of coin flipping: proof sketch. For a p-biased Coin Flipping to be e-constructible solely through
the exchange of messages, conditions (a)—(c) must be satisfied. The composition (1) of the system on the lhs of (¢) (I14) with that on the
lhs of (b) (I1p) yields the system on the lhs of (a) (IL4I1z) which gives the condition (d) for the corresponding right hand sides (2) with
oap = 0p0a. To prove impossibility, we show in appendix B.2 that for any causal order of the messages ¢, ¢/, band b, the best possible
classical, quantum or non-signalling strategy of o leads to a distinguishing advantage of at least 3¢ = %(1 — p) between CF} oCF},
and CFin (d). Note that if the parties had access to a shared resource R, a condition analogous to (d) could not be obtained by
composing (b) and (¢c), and the same impossibility proof would no longer be applicable.

Figure B3. The causal ordering of inputs and outputs of simulator o (see figure B2(d)) that provide it the maximum information
about the outputs ¢,and ¢,. C, C’, Band B’ (€{0, 1}) represent the random variables of which the corresponding lower case alphabets
are specific instances of. In addition, Band B’ may causally influence each other, but this does not offer any advantage to o because the
optimal strategy is where both b and b’ depend on ¢ (or ¢’).

The second generic argument—contractivity—uses the fact that for any resources R, S and any other system «,

R~. S = aR =, asS.

Unlike the previous argument, this one involves a change of distinguisher, namely if for some D,
dP(aR, aS) > ¢,then dP*(R, S) > ¢, where Da corresponds to the composition of D with c.
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We now start with the existence of the trivial distinguisher D for figure B2(d) described above, and which
has dP (CF} oCF{, CF) > 3e¢.From the triangle inequality we know that one of the three following conditions
must hold

dP ({14115, CF) > ¢, (12)
dD(HAO'ACFf, 1I41I) > €, (13)
dP(CF{ opoa CFY, 1404 CFf) > €. (14)

Ifitis (12) that holds, we are done, since we have a trivial distinguisher that can break the condition from figure
B2(a). Ifitis either (13) or (14), then using the contractivity rule, we find that either DIl can distinguish the left
and right-hand sides of figure B2(b) or 04 CF{ D can distinguish the left and right-hand sides of figure B2(c).

Thus, both the computational requirements and memory requirements of the distinguisher are the same as
the computational and memory requirements of either I1, or 0,4 CF¥. O
The proof of theorem 4 is completely general and applies to quantum and non-signalling protocols as well. The
apparent ‘classicality’ of the proofis due to the fact that all inputs and outputs are classical bits as per the
definition of the resources used. However, we only talk about the input—output correlations produced by the
simulator ¢ and not the internal machinery used to produce these correlations, which could be classical,
quantum or non-signalling and the impossibility holds for all classical, quantum and non-signalling strategies
that o could adopt to produce these correlations. A particular input—output correlation could be generated
through many different strategies but it turns out in this particular case that there exists a simple classical strategy
that perfectly produces these correlations (look at the value of cand set b = b’ = c all the time), which is why we
use correlations produced by o and strategy adopted by o quite interchangeably. But one must keep in mind that
this in no way restricts the simulator to classical strategies.

B.3. Impossibility of extending delays

Theorem 7 (Impossibility of extending CD). Given n channels with delay CD', ..., CD" between two parties, it is
impossible to construct with ¢ < % a channel CD’ between the two parties with a trusted region that is larger than the
trusted region of all of the individual channels used.

This holds for all protocols 11, Il in C, which includes inefficient and non-signalling systems. The distinguisher
needed to distinguish the real from ideal system has the same complexity requirements as the protocol I1, Ilp. In
particular, ifit is efficient or classical, then so is the distinguisher. Furthermore, if the channels constructed and used
are classical, then the distinguisher also has the same quantum memory requirements as the protocol 114, Tlp.

Proof. Let CD), ..., CD" denote the n given channels with CD' = (CD’, CDA, CDé) and associated locations
P, < P/ < Q/ < Q;.Our goalis to construct a channel CD’, characterized by points P < P/ < Q' < Q, given
those channels and additional (direct) communication taking place in a space—time region R. The conditions
given in figure B4 must be satisfied such that e is a small, non-negative number V distinguishers D € D.In the
following we write CD = CD!||---||CD" to denote the resource consisting of the parallel composition of the n
resources CD' that are available to Alice and Bob (similarly CD and CDj for dishonest Alice and Bob
respectively).

Note that for each channel with delay, there exists a converter &', such that §’, CD} = CD': this is simply a
system that takes the input a from Alice at position P;and outputs it at position P/. Let 4 = 84| --+||6"} denote
the parallel composition of these converters such that §4 CDy = CD.

From figure B4(c) we have

CDy 1y ~, 04 CD, = 1II4 8, CDy Il ~, II, 64 04CD,

. (15)
— HA CD HB e HA (SA OA CDA

If we look at the right-hand side of (15), the joint system I14 64 o4 produces an output at position P/, but nothing
after. Hence, communication that does not reach o, before P/ cannot influence the output and is not relevant to
the output of IT, 8, 04. Let L, denote a converter that blocks all channels CD’ with P/ £ P’ and also blocks all
communication in the region R at points Py 4 P’. Wethenhave IT4 14 6404 = 1464 04. Combining this with
figure B4(c), (15), and figure B4(a), we get

HAJ_A 6ACDAHB e HAJ_A (SAO'ACD;‘ = HA(SAO'ACD/C\ e HACDHB e CD/,
from which we conclude that

HAJ_A CDHB 3¢ CD/ (16)
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Figure B4. (a) ITyCD!||...||CD"TI3 =, CD’(b) 3 0o such that T[,CD}|...|CDj ~, CD}0p.(c) 3 04 such that
CD} ||...|CD;1I ~, 04 CD}.Conditions for building a channel with delay CD’ out of # channels with delay CD' ..., CD".

We now turn our attention to figure B4(b). Similarly to the argument above, we define a converter 65 such
that CDp g = CD and a converter g that blocks exactly the same channels and points as L 4, but whichis
plugged into Bob’s interface. We then get from figure B4(b) that

HACDBéBLB HB e CDéUBégLB HB- (17)

If we look at the left-hand side of (17), we see that CDgég Ly = CD 1z = 1, CD,henceitfollows from (16) and
(17) that

CDjopép Ly Il =4, CD'. (18)

Equation (18) can only hold with ¢ < 1/8 ifinformation flows from the left interface of CD3' to the right
interface of ITz. Communication between CDg’ and o3 only occurs in position Q’, so for the message to make its
way through to Iz, there must also be communication between op and I1p at some point P > Q’. The region R
cannot be used for this, as P’ < Q' and L 3 blocks all communication after P’. The only remaining option is for
there to exist a channel CD’ with Q] = Q' and which is not blocked by L, i.e. P < P’. Butin this case we
wouldhave P/ < P’ < Q' < Q/, i.e.the trusted region of CD would contain the trusted region of CD'.
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To finish the proof, we still need to analyze the complexity of the distinguisher used to distinguish the real
and ideal systems. The proof assumes that the protocol is secure, and then concludes that (18) must hold, which
implies that the trusted region of the constructed channel must be contained in the trusted region of one of the
assumedchannels. Taking the contrapositive, we assume that the constructed CD’ has a larger trusted region
than the assumed channels, which implies that there exists a distinguisher that can distinguisher the left and
right-hand sides of (18), which in turn implies that there exists a distinguisher that can distinguisher the real
from ideal in one of the equations from figure B4. We will now go through the arguments of the proof to
determine the complexity of this distinguisher that we have proven to exist.

The systems on the left and right-hand sides of (18) just take a message as input and output a message of the
same dimension. CD’ performs an identity operation on the value of the message, whereas CDj 0385 L 113
must trace out the input and output some fixed state, since by assumption CD’ has a larger trusted region than
the assumed channels, so there is no communication from Alice’s interface to Bob’s interface. If the channel is
classical, an optimal system that distinguishes a fixed (possibly probabilistic) output from the identity channel,
inputs a fixed message (that has low probability of being output by the channel on the left-hand side of (18)), and
checks to see if the same message is output. This has probability of success at least 1/2, and requires no memory
and one equality check. If the channel is quantum, the distinguisher may perform the same (which then involves
preparing one quantum state and performing a projective measurement). Alternatively, the distinguisher may
input half of an EPR pair, keep the purification, and perform the projective measurement on the joint system of
the output and the purification, which has a probability of success of at least 3 /4, but now involves quantum
memory of the size of the message.

There are two generic arguments used in the proof to construct the distinguisher for one of the equations in
figure B4 from the distinguisher for (18). The first is the triangle inequality, namely that

~. S
-

R~ T.
SzET}:} 2

Note that this holds for individual distinguishers, hence the contrapositive states that if there exists a
distinguisher that can distinguish R from T with advantage 2¢, then exactly the same distinguisher can distinguish
either R from S or S from T with advantage €.

The second generic argument uses the fact that for any resources R, S and any converter o,

R=~. S = aR =~; aS.

Unlike the previous argument, this one involves a change of distinguisher, namely if for some D, d” (aR, aS) >
g,then dP*(R, S) > ¢, where Da corresponds to the composition of D with . This was used several times in
the proof with o = T4 14 64, @ = 1484, and o = 85 Ly 1. Putting this together, we prove that there exists a
distinguisher than can distinguish at least one of the pairs of systems from figure B4, and this distinguisher has
the same computational requirements as either I, or IIz along with one extra measurement needed to
distinguish the left and right-hand sides of (18) (since ¢ and L and forward and trace out messages, respectively,
they do not perform any computation). Furthermore, if the channels are classical, then the distinguisher has the
same quantum memory requirements as either 114 or I1g, since  and _L do not require any quantum

memory. 0

Appendix C. Unfair resources

C.1. Unfair coin flipping

In section 2.3.1, we defined the p-biased coin flipping resource tuple CF¥? = {CF, CF}, CF{}. Here we define
another variation, the unfair coin flipping resource tuple CF " and prove that a 1/2-biased coin flip resource
CF'/? can be constructed from it. Then, by reduction, theorem 7 implies the impossibility of unfair coin flipping
solely through the exchange of messages.

Definition 11 (Unfair coin flipping, CF ). An unfair coin flip CF* = (CF, CF4f, CES!) has the same resource
CFas CF?,and CFY' and CF}! are given by:

CF3: Bob receives a uniformly random bit catlocation P;. Atlocation P, > Pj,he caninputabitb € {1, T}
that may depend on the value of c received at P;. Alice then receives message c;* at the location P4 >~ P,
depending on Bob’sinputbat P,:if b = |, then ¢/* = L, else ¢! = ci.e. dishonest Bob can promptan
abort (1) on Alice’s interface by setting b = L.

CF4!: analogous to CFE, with the roles reversed.
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Figure C1. An unfair coin flip resource with honest Alice and dishonest Bob.

This is illustrated in figure C1.

Lemma 10. There exists a protocol I cru_,cmn = {114/, I’} that perfectly constructs a 1/2-biased coin flipping
resource CF'/? from an unfair coin flipping resource CF °f.

The constructed and ideal resources are indistinguishable for any possible distinguisher (including quantum and
non-signalling distinguishers). The honest protocol as well as the simulator require only elementary local operations
and classical communication.

Proof. In the following, we will drop the space—time labels corresponding to the messages to avoid unnecessary
annotations and it is easy to see that there exist space—time labels for each message involved such that the
construction presented below is satisfied. We define the honest protocol Igru ¢z = {I1,', g’} as follows.

1. Receive the coin flip outcome from the corresponding interface of the unfair coin flipping resource CFf at
the inner interface.

2.If this outcome has a bit value (say c), output c at the outer interface. If this outcome is an abort (L), then
output ¢, = 0 or ¢, = 1eachwith probability p = 1/2 at the outer interface.

Iz, oz perfectly constructs a 1/2-biased coin flipping resource for the following simulators (the same
for Sim, and Simg).

1. Receive the output bit ¢’ from the biased coin flipping resource on the inner interface and output the same
bit at the outer interface.

2. Upon receiving the additional input of L or I at the outer interface, forward b’ = ¢’ to the resource at the
inner interface if this input is not an abort (L) and forward b’ = ¢/ = ¢/ @ 1to the resource if the input at
the outer interface is an abort (L).

One can easily verify that the real and ideal systems are identical, for convenience, we have drawn this in
figure C2. 0

C.2. Abort channel

Insection 2.3.3,a CD is defined such that once Alice inputs her message at P (respectively, P/, if she is dishonest),
Bob is guaranteed to receive it at Q (or Q' if he is dishonest). In this section we consider a version of a channel
with delay in which Alice may additionally abort, and prevent Bob from getting her message. We call this an
abort channel, and write CD+.

Definition 12 (Abort channel, CD~). An abort channel CD+ = (CD, CDy, CDg) between a sender Alice and a
receiver Bob is a tuple of resources characterized by five space~time locations, P < P’ < R < Q' < Q.CDand
CDg are defined identically to a standard CD (definition 5). CDy is defined as follows.

CDx: Dishonest Alice inputs (a, P’). She may also input (L, R). If sheinput (L, R), Bob does not receive
anything. Otherwise, Bob receives (a, Q).

Nearly the same protocol as used in theorem 3 can be used to construct an unfair coin flip from an abort
channel.

Lemma 11 (Construction CD — CF ). Given a classical abort channel CD™, there exists a classical protocol
Hep: . cpu = {1y, Ig} that perfectly constructs an unfair coin flipping resource CF .

26



I0OP Publishing NewJ. Phys. 21 (2019) 043057 V Vilasini et al

. A CFuf . =~ ] CF1/2 —

(e, L — ey T —

. CFgf =~ - CFl/Z

{¢,cy _
By =Ty

Figure C2. (a) When both parties are honest, the outcomes of the unfair resource CF“f are never equal to | and the protocols IT, and
I1g simply forward the bit c received at the inner interface to their outer interface. This is a perfect construction since the honest
resources CF* and CF!/2 are the same. (b) The simulator Simg for dishonest Bob simply forwards ¢’ received at its inner interface to
its outer interface and sets b’ = ¢’ ifit receives | at the outer interface and b’ = ¢’ otherwise. Now the protocol I, may also receive
the abortinput L from the unfair CF resource, in which case it forwards the uniformly random bit ¢, which equals either 0 or 1 each
with probability 1/2 and simply forwards the input ¢ from the unfair CF resource otherwise. The construction is perfect because the
probability distribution of inputs and outputs from the real system is the same as the input and output probability distribution of the
ideal system and hence the two are perfectly indistinguishable. More specifically, whenever a dishonest player does not abort, the
outputs at both interfaces will be equal to an independently generated, uniformly random bit (labelled as ¢ for the real system and ¢’
for the ideal system. If the dishonest player aborts, the two outputs will be equal to an independently generated, uniformly random bit
(cor ¢’) with a probability of 1/2 and they will be uniformly random but completely uncorrelated (c, and c for the real system and b’
and ¢’ for the ideal system) with a probability of 1/2. The argument for dishonest Alice is identical. Constructibility of a 1/2-biased CF
resource from an unfair CF resource.

The constructed and ideal resources are indistinguishable for any possible distinguisher (including quantum and
non-signalling distinguishers). The honest protocol as well as the simulator require only elementary local operations
and classical communication.

Proof. The protocol is the same as the one used to construct CF° from CD, except that if Bob does not receive
anything from the channel, he outputs L instead of picking a uniform a himself. The simulator o4 has to be
changed in the same way: if it does not receive an input (a, A’) or if it recives (a, A’), butlater gets an abort L
(which is now allowed by CD1), it notifies the resource CF5 to abort and output | at Bob’s interface. Drawing
up a figure similar to figure B1, one can see that here too we have perfect security. O

It then follows from theorem 4 that an abort channel cannot be constructed without any setup assumptions
either.

Corollary 12 (Impossibility of CD). It is impossible to construct CD+, with € < %, between two mutually

distrusting parties solely through the exchange of messages through any classical, quantum or relativistic protocol.
The distinguisher required to distinguish the real form ideal systems has the same complexity and memory

requirements as the distinguisher used in theorem 4 composed with the protocols used in lemmas 10 and 11. In

particular, if these are efficient, classical and have bounded or noisy memory, then so does the distinguisher.

Proof. Lemma 11 constructs CF Y from CD+, and lemma 10 constructs CF!/2 from CF . Thus, the
impossiblity of constructing CF? from theorem 4 immediately implies the impossibility of constructing
CD+. O

Finally, we can show that theorem 7 also holds for abort channels.
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Lemma 13 (Impossibility of extending CD™). Given n abort channels with delay CDY, ..., CD;r between two
parties, it is impossible to construct with € < ~ a channel CD'* between the two parties with a trusted region that is
larger than the trusted region of all of the individual channels used.

This holds for all protocols 11, Il in C, which includes inefficient and non-signalling systems. The distinguisher
needed to distinguish the real from ideal system has the same complexity requirements as the protocol I, Ilp. In
particular, if it is efficient or classical, then so is the distinguisher. Furthermore, if the channels constructed and used
are classical, then the distinguisher also has the same quantum memory requirements as the protocol 114, Tlp.

The proof of lemma 13 is identical to the proof of theorem 7 found in appendix B.3, because the
distinguisher used runs the honest protocol Piy, Pig, and CD and CD~ only differ on the adversarial interface
(a dishonest Alice can provoke an abort). So we omit it.
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