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Abstract

Relativistic protocols have been proposed to overcome certain impossibility results in classical and

quantum cryptography. In such a setting, one takes the location of honest players into account, and

uses the signalling limit given by the speed of light to constraint the abilities of dishonest agents.

However, composing such protocols with each other to construct new cryptographic resources is

known to be insecure in some cases. Tomake general statements about such constructions, a

composable framework formodelling cryptographic security inMinkowski space is required.

Here, we introduce a framework for performing such amodular security analysis of classical and

quantum cryptographic schemes inMinkowski space. As an application, we show that (1) fair and

unbiased coin flipping can be constructed from a simple resource called channel with delay; (2)

biased coin flipping, bit commitment and channel with delay through any classical, quantum or

post-quantum relativistic protocols are all impossible without further setup assumptions; (3) it is

impossible to securely increase the delay of a channel, given several short-delay channels as

ingredients. Results (1) and (3) imply in particular the non-composability of existing relativistic bit

commitment and coin flipping protocols.

1. Introduction

1.1.Motivation

As global efforts for quantum communication in space boomwith thefirst satellite implementations of

quantumkey distribution [1–3], it becomes crucial to develop the theoretical tools to guarantee that these

communications are secure. In order to do so, wemust take into account not only quantum effects but also

relativistic ones. Ourmanuscript is the first to provide a complete framework for composable security analysis of

quantumand post-quantum cryptography in relativistic settings. As afirst application of this tool set, we prove

several construction and impossibility results.

Composability.Tounderstand composability andwhy itmatters, it is helpful to look at a classical example. In

modern chess, the Elo ranking system is vulnerable toman-in-the-middle attacks (MITMs), where aweak player

could play two online games in parallel against stronger players, playing a different colour in each game, and

simply forward themoves of the opponents to each other. At the end, the player will lose one of the games and

win the other (or tie in both games), but given that the Elo system favours lower-rated players, the attacker ends

upwith a net gain of points, independently of the result. Such a vulnerability could not be detected by a stand-

alone security analysis (which checkswhat happens if the games are considered individually), but only by a

composable security analysis, which considers the possibility of games being used in amodular fashion, as part

of a larger strategy. Similarly, several knownproposals for quantum cryptographic protocols that exploit

relativistic constraints are proven insecure by our paper.

Cryptography as a resource theory.We follow the approach of Abstract Cryptography [4], which views

cryptography as a resource theory: a protocol between some players constructs a resource (e.g. a system that
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produces a random coin flip) from some other resource (e.g.a system that allows bit commitment)5. Here we

address construction of resources in relativistic quantum cryptography, and security definitions that are robust

under composition of constructions. By ‘relativistic’wemean simple special relativity:Minkowski space–time

with limited signalling speed.

A cryptographic resource: bit commitment.To illustrate the need for a composable analysis of relativistic

quantum cryptography, we focus on bit commitment protocols, which have attracted interest in recent years

[6–9]. Bit commitment is a crucial cryptographic primitive, fromwhichwe can construct oblivious transfer6

[10], multi-party computation (see footnote 5) [10], coinflipping [12], and zero-knowledge proofs [13, 14].

A bit commitment protocol () between two players (say Alice and Bob) typically involves two phases. In
the commit phase, Alice commits to a bit Î { }a 0, 1 with Bob by exchanging informationwith him. In the open

phase, Alice chooses to open her commitment to Bob and reveals her bit to him through an exchange of

information. Intuitively speaking, security of bit commitment has three requirements.

Hiding:whenAlice is honest, Bob has no information about a before the open phase.

Binding:whenBob is honest, Alicemust not be able to change the value of a between the commit and open

phases without himdetecting hermalicious behavior.

Complete:honestAlice always has thepossibility of openingher commitment, and in this case, Bob always receivesa.

These requirements can be formalized under different security definitions. Not allmodels of security of 
are composable: for example the ò-weakly binding definition of [8] is not. There, Alice is allowed to commit to a

bit without knowing its value, which if used as a subroutine in a coin flipping protocol, would allowdishonest

players to perfectly correlate the coin flips fromdifferent coins. Similar weaknesses in current definitions of

relativistic bit commitment have been exploited to show that using these protocols as subroutine in a larger

cryptosystem is insecure [15, appendix A]. In this work, wemodel security such that the constructed 
resource can be securely used in arbitrary context. Let usfirst review some known results.

1.2. Previous results

Impossiblity of classical bit commitment. In 2001, Canetti and Fischlin showed that constructing a  resource
without any setup assumptions is impossible [16]. They proved this for a classical non-relativistic setting

through a classicalMITM.Consider a cheating Alice simultaneously running two  protocols: onewith Bob,
inwhich she is the committer, and onewithCharlie, inwhich she is the receiver. She can commit toCharlie’s bit

with Bob by simply forwarding theirmessages to each other during the commit phase. Note that the proof from

[16] is restricted to the classical setting, and does not imply the impossibility of constructing a  resource in
either quantumor relativistic settings.

Impossibility of quantum bit commitment.Using a stand-alone definitionwith information-theoretic

security,Mayers, and Lo andChau [17–19] independently showed between 1996 and 1997 that no secure

quantumbit commitment protocol can be constructedwithout further assumptions (for example regarding the

operations that (dishonest) parties can performon their systems), because due toUhlmann’s theorem, if Bob

cannot distinguish between the commitment to a 0 or a 1, then there exists a unitary onAlice’s system allowing

her to change the commitment from0 to 1.

Possibility results.Positive results are obtainedby either restricting the adversary’s capabilities ormaking extra

setup assumptions. For example, alongwith their impossiblity result, Canetti andFischlin also show that a 
resource canbe constructed ifwe assumea common reference string (CRS) sharedbetween theplayers and

computationally boundedplayers [16]. In the quantumcase,Unruh showed in [20] that if the adversary has bounded

quantummemory, bit commitment that is composable in certain restricted settings is possible7. In [21]Unruhalso

shows that everlastingquantumbit commitment is achievable, ifwe assume signature cards as trusted setup.

Relativistic protocols. In the hope of avoiding such attacks withoutmaking unrealistic setup assumptions or

unproven assumptions on the adversary’s capabilities, one turns to relativistic protocols and imposes relativistic

causal constraints on agents located inMinkowski space—no-signalling between space-like separated agents

and amaximumpropagation speed for signals. An example is Kent’s 2012 relativistic  protocol [7], which is
immune to theMayers-Lo-Chau attack, since the sender splits into two space-like separated agents who can no

5
For comparison, in the universal Composability (UC) framework [5], resources correspond to ideal functionalities.

6
Constructing oblivious transfer (and thusmulti-party computation) frombit commitment requires agents to have access to quantum

operations [10]. An alternativemodel and construction of (delegated) quantummulti-party computation has been proposed in [11].
7
Themodel used in [20] does not guarantee security when a protocol is composedwith itself. There is thus no contradictionwith the

impossibility proof for bit commitment in the bounded storagemodel in this work, which shows that any bit commitment protocol run in
parallel with another instance of itself is insecure.
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longer perform suitable unitaries on their joint systems. Like other relativistic  protocols, this protocol
implements a timed commitment which is secure only within a timewindow given by the time taken by light to

travel between remote agents.However, it only satisfies a non-composable, weakly-binding security definition

[8]. Aswewill see, this protocol is susceptible to aMITMand therefore cannot be securely run as a subroutine in

arbitrary protocols8.

Composability of relativistic protocols. In relativistic settings, the existing negative results are obtained by

analyzing specific examples of protocols and attacks where composition fails [8, 15]. However, without an

overall coherent framework formodelling composability in relativistic cryptography, it is impossible to obtain

general positive and negative results.

1.3.Overview and scope of our results

In this workwe introduce a framework formodelling composable cryptographic security in the presence of

classical, quantumand no-signalling adversaries, and apply it to prove newpositive and negative results in

relativistic quantum cryptography.We do this bymodelling the abstract information-processing systems of the

Abstract Cryptography framework [4] asCausal Boxes [22], whichwe instantiate withMinkowski space–time.

Our framework can also be applied to situationswhere agents exchange a superposition of different numbers of

messages in a superposition of orders in time, and provides an operational formalism for studying indefinite

causal structures.We note that themodel of computation used in theUC framework [20]does not support

Minkowski space–time, soUC cannot be used to analyze relativistic protocols.

We analyse three cryptographic resources, defined in section 2. Coinflipping ( , including biased

variations) and bit commitment () are standard in the composable security literature, though in this work our

formalization involves space–time—inputs and outputs are produced at certain locations inMinkowski space.

We also introduce a channel with delay (), which ismotivated by the fact that in relativistic bit commitment

protocols, the commitment is automatically opened after some (predefined) time, thus resembling a more

than a 9. The following results are summarized infigure 1.

Constructibility results.We show that an unbiased coinflipping resource  can be constructed from a

channel with delay resource,  (theorem3). For comparison, Blum’s protocol [12], constructs aweaker,

biased10 coinflipping resource froma bit commitment resource [23].We provide an explicit protocol to

Figure 1. Summary of our results.We assumeMinkowski space–timewith limited speed of signalling (upper-bounded by the speed of
light). Existing results are represented in black and the new contributions of this paper in blue and red. An arrow   means that it
is possible to construct resource  from resource .When the arrow is crossed, thatmeans that no such construction exists without
further setup assumptions such as shared resources. For example, theorem 3 shows that Coin Flipping between 2 parties can be
securely constructed from aChannel withDelay, and theorem 7, corollaries 5 and 6 show that it is impossible to construct Coin
Flipping (biased or unbiased), Channel withDelay or Bit Commitment between twomutually distrusting parties solely through direct
communication between them. Theorem7 implies that startingwith n channels with delay, it is impossible to construct a channel with
a ‘larger delay’without further setup assumptions. Note that all impossibility results in thisfigure hold for any classical, quantumor
relativistic protocol. For  and  , impossibility through classical/quantumprotocols was previously known [16–18] but the
generalisation to the relativistic case is one of the key contributions of this paper.

8
Sharing an authentic channel does not help the players to avoid theMITMattack, since the issue is not a third party intercepting and

changing themessages, but a dishonest player running two protocols in parallel, and forwarding themessages fromone protocol to the
other.
9
Theremay be different ways ofmodeling a relativistic bit commitment resource, e.g. the committermay have the option of aborting before

the commitment is opened, see the discussion in section 2.3.3.
10

Originally, Blum’s protocol constructs an unfair coin flip, inwhich one party can abort after seeing theflip [12]. Thismay be transformed
into a biased coin flip if the honest party flips a coin locally when the dishonest party aborts [23].
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construct  from  and prove its security. The proof holds even in the presence of adversaries that are not

bounded by quantumphysics, but only non-signalling constraints.

Impossibility results. In theorem4we show that constructing a (biased) coinflipping resource is impossible in

the relativistic settingwithout additional setup assumptions (e.g. the presence of a shared resource such as ).
This result holds even if the players are only bounded by non-signalling constraints11, or if we restrict the

adversary to being computationally bounded or having bounded storage12. Impossibility of bit commitment

follows fromBlum’s construction [12, 23] of  from  (corollary 6), and impossibility of constructing a

channel with delay  follows from theorem 3 (corollary 5).

Since the literature on relativistic bit commitment also studies the case of extending the time duringwhich

such a commitment remains secure, we also look at the task of constructing a channel with a long delay long

frommultiple channels (labelled by i)with shorter delays { }i
ishort .We show that this again is impossible

without other setup assumptions than the assumed channels with delays { }i
ishort (theorem7). This

impossibility result holds irrespective of whether the protocol is classical, quantumor non-signalling (see

footnote 10), and also holds if the adversary is computationally bounded.

Consequences of these results.Many quantumprotocols have been proposed in the relativistic setting to

circumvent classical impossibility results for  . To the best of our knowledge, none of these protocols have
been successfully used as subroutines in larger cryptosystems (which is themainmotivation for constructing

such primitives), and some attempts to do so are known to be insecure [15, appendix A]. But due to the lack of

composable framework that canmodelMinkowski space, it has been impossible to provewhether composable

constructions of these resources do exist. Our results show that allowing quantum (and even non-signalling (see

footnote 10)) protocols that respect relativistic constraints is not sufficient to construct  ,  , or  without

additional assumptions. This implies that none of the proposed relativistic bit commitment schemes are

composable (e.g. [6–9]). This also extends to the non-relativistic setting (e.g. [24]), since a non-relativistic

protocol corresponds to the special case where all players are in the same position in space (and thus do not have

any constraints on the speed of communication). Our proof also holds against computationally bounded

adversaries, and adversaries with bounded storage, which implies that results in the bounded storagemodel are

not composable either (e.g. [25]).

Another problem considered in the literature on relativistic bit commitment is that of extending the time

duringwhich commitment remains secure. Our results show that this cannot be donewith a composable

definition of timed relativistic commitment (see the definition of  in section 2.3 and following discussion),

evenwhen one starts off with arbitrarilymany (composably) secure commitments of shorter duration.Hence

the techniques used in [9, 26] to extend the time of a relativistic bit commitment cannot be used in a composable

way. Just as the previous results, this also holds when the adversary is computationally limited or has bounded

quantummemory.

The framework naturally allows positive results to be proven aswell—bymaking extra setup assumptions.

This approachwas used byCanetti and Fischlin [16]who show that one can construct a  resource assuming a

sharedCRS and computationally bounded players, andUnruh [21], who showed (everlasting) quantumbit

commitment is achievable if we assume signature cards as trusted setup. In this workwe construct a  resource

froma , and leave open the problemoffindingweaker assumptions that still allow  or  to be
constructed.

A takeawaymessage from this work is that one cannot achieve  or  simply from relativity or quantum

mechanics without further setup assumptions. This implies that existing quantum and relativistic protocols for

these primitives can not be securely used as subroutines in arbitrary constructions. It is currently unknown

whether there exist assumptionsweaker thanwhat is possible classically to justify the use of such quantumor

relativistic protocols.

1.4. Structure of this paper

In section 2we introduce themodel that we use to prove our results.We provide a pedagogical introduction to

the Abstract Cryptography framework in section 2.1.We give an overview of Causal Boxes instantiatedwith

Minkowski space in section 2.2—a formal presentation of Causal Boxes is given in appendix A. And in

section 2.3we define the two party resources  , , and  . Our results are then presented in section 3 and
the proofs are given in appendix B. Finally, we conclude in section 4with a discussion of these results.

11
Anon-signalling player can generate non-signalling correlations between their own trusted agents at different locations. Note however

that if wewere to allow two distrusting players (Alice andBob) to generate non-signalling correlations between them, this would have to be
modeled as an extra setup assumption, namely a shared resource.
12

This excludes in particular protocols where players are not necessarily spatially separated, but canmeet at some location, as do the
impossiblity results in the classical case [16].
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2. Framework

2.1. Composable security: the abstract cryptography framework [4]

2.1.1. Resources, converters and distinguishers

Let us review the basics of the abstract cryptography framework [4]. The following is adapted from [27] for the

case of protocols between twomutually distrusting parties (e.g. bit commitment, coin flipping) and has been

simplified for our purposes.We refer the reader to [4, 27] formore general definitions and further examples.

Abstract systems.Abstract cryptography views cryptography as a resource theory: a protocol constructs a

resource from some other resource, e.g. Blum’s protocol [12] constructs a coin flipping resource from a bit

commitment resource. In this sectionwe introduce the building blocks of the framework—resources,

converters (e.g. protocols) and a notion of distance (distinguishability) between resources—and in section 2.2

we explain how these objects are instantiatedwithCausal Boxes [22].

A resource in a two party setting is an (abstract) systemwith interfaces Î { }i A B, , each accessible to a user

i (and their trusted agents) providing themwith certain controls. An operation that is performed by a party at

their interface ismodeled as a converter: a systemαwith an outside and an inside interface, the inner interface

connects to an interface i of the resource, and the outer interface becomes the new interface of the resulting

resource.Wewrite ai to denote the resource resulting from connectingα to the i interface of. This is

illustrated infigure 2.

Distinguishing resources.The security of a cryptographic system is quantified in terms of distinguishability

from a corresponding ideal system (figure 3). For example, the ideal resource ‘randombit generator’,  , would
be a black box that generates and outputs a uniformly randombit at a time twhich is independent of everything

outside the box. A specific practical implementation of this functionality could be a quantumprotocol:

prepare a qubit in a state ñ + ñ(∣ ∣ )0 1
1

2
, measure it in theZ-basis and output themeasurement result at time t.

Treated as black boxes, both resources and  output a uniformly random classical bit and cannot be

distinguished by an outsider.

Formore complex resources, wemay ask: distinguishability fromwhose perspective?Here, the traditional

notion of an adversary is generalized to an arbitrary distinguisherwhichmodels not only possible adversarial

behaviour but also thewhole environment of a cryptographic protocol/resource. Themainmotivation for

composable security is that a resource remains secure evenwhen it is used as a sub-routine in arbitrary protocols.

While doing so, protocols can in general access all interfaces of the resource and perform information processing

Figure 2. Starting from a resource , converters a b, and γ construct a new resource  a b g= A A B . The sequences of arrows at the
interfaces between objects represent (arbitrary) rounds of communication. For simplicity, wemay omit the indices,  ab g= , so
that converters to the left of the resource (a b, ) are implicitly connected to Alice’s interface, and converters on the right (γ) are
connected to Bob’s.

Figure 3. Security in terms of distinguishers. Composable security of a real resource is defined in terms of the success probability of a
class of distinguishers (for example computationally bounded or unbounded, classical, quantumor non-signalling) in distinguishing
the real system from the ideal one. A distinguisher,modelling all the environment of a resource, is given black-box access to either the
real or the ideal systems and a complete description of the input–output behaviour of both systems andmust guess which one it was
interacting with by outputting either a 0 or a 1. The distinguishing advantage is then given by the statistical distance between the two
randombits output when interactingwith the real and ideal systems, respectively.

5

New J. Phys. 21 (2019) 043057 VVilasini et al



steps before, after or during the protocol run by the resource under consideration. The distinguishermodels all

such operations. Standard property-based security notions (e.g. a ciphertext is uncorrelated to a plaintext; or

with high probability themessage received is the same as themessage sent) are covered by such a distinguisher-

based notion of security: the ideal systemhas the required property, and if the real systemdoes not, then a

distinguisher will be able to guess withwhich system it is interacting by verifying whether this property holds.

Definition 1 (Distinguishing advantage [27]).A distinguisher (figure 3) for two resources , is a system 
with two interfaces: an inside interface that connects to all the interfaces of a resource, or  , and an outside
interface that outputs a single bit: a guess whether it is interactingwith or  . The advantage of a specific
distinguisher  is then given by

      = = - =( ) ∣ [ ( ) ] [ ( ) ]∣d , Pr 0 Pr 0 ,

where  ( ) is the output of  when interactingwith.

The distinguishing advantage for a class of distinguishers is defined as

   





=
Î

( ) ( )d d, sup , .

The distinguishing advantage is a pseudo-metric on the space of resources satisfying the identity, symmetry and

triangle inequality properties [27]. If a class of distinguishers is such that for every  Î ,  a Î , then the

pseudo-metric is non-increasing under application of the converterα, i.e.  a a( ) ( )d R S d R S, , .

Classes of distinguishers.Changing the power of the distinguisher (e.g. with some computational ormemory

bound, or performing only classical, quantumor non-signalling operations) results in differentmetrics and

different levels of security. For example, if a protocol provides classical computational security, thismeans that

the resource constructedmay be perfectly indistinguishable from an ideal resourcewhen considering only

computationally bounded distinguishers, but they could be easily distinguished using computationally

unbounded (or quantum)distinguishers. This is addressed inmore detail in the following.

2.1.2. Cryptographic security

Wewant to address questions such as ‘does a protocolΠ construct the ideal resource  from an initial resource

?’The resource constructedwill essentially depend onwhich playersmay be honest. For example, in the case of

coinflipping, if both parties are honest we expect the protocol to construct a resource that provides each party

with a copy of the same uniformly randombit. But if a party is dishonest, thismight be a too strong requirement.

Instead, we ‘only’ construct a resource that allows the dishonest party to either abort if she does not like the value

of the generated bit, or to bias the bit towards either 0 or 1. [23]

In the case of two party protocols, wewant tomake a statement about three cases: where both parties are

honest, Alice is dishonest, and Bob is dishonest. The resources available to the players are given by a tuple

( )R R R, ,A B , whereR denotes the shared resourcewhen both are honest,RA is available to an honest Bob and

dishonest Alice (presumably, providingmore functionalities to Alice thanR), andRB is shared between an

honest Alice and dishonest Bob. For example,R could be a perfectly fair coin,RA a coin biased in favour of Alice

andRB a coin that Bob can bias (wewill explore this and other examples in section 2.3). Likewise, the constructed

resources are also given by such a tuple ( )S S S, ,A B . The reason for considering three distinct resources as above is

that dishonest players, by virtue of their dishonesty could, in general gain access to additional controls on their

interface.

A two-player protocolP = P P( ),A B is essentially a pair of converters that can be connected to the

interfaces of the shared resources ( )R R R, ,A B .When both are honest, the resulting system is given byP PRA B

which denotes the ‘real system’where Alice and Bob share the resourceR and implement their protocols PA and

PB at their respective interfaces ofR. This should be close to indistinguishable from the ideal resource S.

WhenAlice is dishonest, the protocol PA is removed in the corresponding real system, becausewe do not

knowwhat protocol a dishonest player would follow.On the ‘real’ sidewe nowhave PRA B. On the ideal side, we

have SA, but inmost cases PRA B and SA are trivially distinguishable since Alice’s interface of PRA B is generally

very different fromher interface of SA: SA provides an idealized interface, which, in the case of coin flipping,

might allowAlice to abort. In the real system, PRA B Alice receivesmessages fromBob, and could provoke an

abort by sending invalidmessages or not responding.

To allow for the comparison and define security against dishonest Alice, we require the existence of a

converter (or simulator) sA whichwhen connected toAlice’s interface of SAmakes these two systems close to

indistinguishable. Note that connecting this simulator sA onlymakes Alice weaker, since any operation

performed by the simulator could equivalently be performed by an adversary connected directly to the interface

6
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of the ideal resource. Further, the simulator’s behaviour is independent of the internal workings of the ideal

functionality SA. Security in the case of a dishonest Bob is defined similarly.

Definition 2 (Cryptographic security [27]).AprotocolP = P P( ),A B constructs  = ( )S S S, ,A B from

 = ( )R R R, ,A B within a distance ò, with respect to a set of distinguishers and a set   P P,A B of converters,

if the following conditions hold:


 
 







e
s s e
s s e

P P
$ Î P
$ Î P

( )

( )

( )

d R S

d R S

d R S

, ,

, , ,

, , .

A B

A A B A A

B A B B B

We sometimeswrite 
P

to denote such constructions. These conditions are illustrated infigure 4.

A possibility result for a construction 
P

with parameters  e( ), , is a statement of the form: there

exists a protocol P = P P( ),A B that e-constructs  from, i.e.

   s s e$ P P Î " Î P P( ) ( )d R S, , , , , , , 1A B A B A B

 s eP( ) ( )d R S, , 2A B A A

 s eP( ) ( )d R S, . 3A B B B

We then say that is stronger than  . An impossibility resultwith the same parameters has the form: there exists

no protocolP = P P( ),A B that e-constructs  from,

 s s" P P Î $ Î ( ) ( ) ( ), , , , , either condition 1 , 2 , or 3 does not hold.A B A B

The strength of a security proof depends on the range of the class  of simulators and protocols, the class
of distinguishers used in the security definition, as well as the assumed and constructed resources and  . For
construction results, a strong statement has the form ‘we can easily construct  from, andwe can easily

simulate any cheating behaviour, such that even a very powerful distinguisher could not tell apart our

construction from the ideal system.’Therefore, ideally wewouldwant  to be restricted to converters that are
easy to implement physically, andwewant the set of distinguishers to be as general as possible. For

impossibility results, a strong statement has the form ‘we can always easily distinguish any system constructed

from from the resource  , even if we allow for very powerful protocols and simulators.’Therefore, we try to

make  to be as general as possible, andwe restrict to correspond to efficient or otherwise easy to implement

distinguishers13.

We do not specify what  and should be used in definition 2, since this will be different for different

theorems. For example, whenwe prove that no protocol can construct a biased coin flipping resource in

theorem4, the proof holds for converters s sP P Î, , ,A B A B that have unboundedmemory, unbounded

computational power, and are post-quantum—they are only restricted to be non-signalling. The distinguisher

 that is used to distinguish the real from ideal system runs these converters internally, and thus has the same

computational andmemory requirements as these converters.

Remark 1 (Capturing bounded systems).Note that when a statement wewant to prove involves an existence

quantifier (over the set of converters  for a possibility result, and over the set of distinguishers for an

impossibility proof), it is not necessary to define the entire set (,), it is sufficient to convince oneself that the
corresponding systemdoes belong in this set.We use this to prove impossibility results for computationally

bounded adversaries as well as in the bounded and noisy storagemodels in section 3without defining either the

complexity of the systems or the bound on the storage.We achieve this by finding a distinguisher that can

distinguish real from ideal systems, and does so by internally running instances of these systems. Thismeans that

security already breaks downwhen the rest of theworld (captured by the distinguisher ) has the samememory

bounds as the honest players and simulator in the protocol. Since amodel needs the distinguisher to have at least

the same power as the players and simulator for a protocol to be composable with itself, our impossibility results

holds for any suchmodel, regardless of the exact bounds on the computational power or storage, and irrespective

of how this is defined.

13
In some settings, wemaywant to givemore power to one of the players. This is the case for blind computation results [28–30], where for

example Bob represents a client with limited computational power andAlice a powerful server (whichmay for example perform arbitrary
quantumoperations). In other examples, wemaywant to restrict honest players to use efficient protocols, while allowing the simulators of
dishonest behaviour to be arbitrary. In these and other cases, we can adjust the sets for s sP P, , ,A B A B and  to suit the scenario. For the
results in this paper, this will not be necessary.
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2.2. Cryptography in relativistic settings: the causal boxes framework [22]
The abstract cryptography framework [4] follows a top-down approach tomodelling cryptographic security

starting from the highest level of abstraction and proceeding downwards, introducing at each level only the

minimumnecessary specifications. The composability of abstract systems in the abstract cryptography

frameworkmakes it possible to provide a general, composable security definition, which is independent from

themodels of communication or computation. It can then be instantiatedwithwhatevermodel is needed—

here, Causal Boxes tomodel relativistic cryptography. In this sectionwe give a brief, informal overview of the

Causal Boxes framework. A formal introductionmay be found in appendix A.

Causal boxes [22] are amodel of information-processing systemswhichmay interact with each other in

arbitrary ways, so long as they respect causality (figure 5(a)). In broad lines, a causal box F̂ is a systemwith input

and outputwires whichmay carry quantumor classical information. A concrete example is a physical box

Figure 4. (a)Whenboth parties are honest, the composition of Alice’s and Bob’s protocol with their shared resourcemust be
e-indistinguishable from the constructed resource S. (b)WhenAlice is dishonest and Bob is honest, the resulting real systemobtained
by removing Alice’s honest protocolmust be e-simulatable by connecting a converter sA (called a simulator) to Alice’s interface of
corresponding ideal system, SA. (c)WhenBob is dishonest andAlice is honest, the resulting real system obtained by removing Bob’s
honest protocolmust be e-simulatable by connecting a converter sB to Bob’s interface of the corresponding ideal system, SB. The
three conditions fromdefinition 2.
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containing some optical elements (like beam-splitters) and connected to opticalfiber cables: eachwiremay carry

severalmessages at different times (or even in a superposition of different times). A single instance of amessage is

modelled as a quantum state in the jointHilbert space Ä ( )l2 , where is theHilbert space of the actual

classical/quantummessage,  is a partially ordered set that defines an ordering on the space ofmessages and

( )l2 is the sequence spacewith bounded two-norm14. In the simple cases where a quantum state r Î is sent

at awell-defined space–time coordinate ÎP ,  can be taken to beMinkowski space–time andwe can simply

represent the total state as a pair r( )P, . In this paperwe only need to consider such cases.

Causality condition.Causality requires that outputs produced at space–time point ÎP can depend only

on inputs produced in its causal past, ¢ P P (at this stage,  could be any set of points equippedwith any

partial order to represent causality). In general, a causal box is amap from the space of the inputs to the space of

the outputs that respects this notion of causality15. Composition of causal boxesmay be done in series, in parallel

or through (feedback) loops (figure 5(a)), and arbitrary composition of causal boxes results in a causal box. A

more technical and detailed description of the framework can be found in appendix A.

Minkowski space–time. In this paperwe apply the formalismofCausalBoxes toMinkowski space–time  ,where

each coordinate corresponds to a vector = ( )P tx, with threedimensionsof space andoneof time. In special

relativity,  has anatural partial order, ‘ = =( ) ( )P t P tx x, ,1 1 1 2 2 2 if light can reach x2 from x1 in time -t t2 1,

that is if - -  ( )c t tx x2 1 2 1 ,where c is the speedof light.’ In this casewe say that space–timepointP1 is in the

causal past ofP2. If twopoints arenot ordered,we say that they are space-like separated.The causal diamondof apair of

space–timepoints, P P1 2, denotedby ( )D P P,1 2 is the intersectionof the future light coneofP1with thepast light

coneofP2. This represents themaximal space–time region that canbe affectedby events atP1 andalso affect events at

P2 (figure5(b)). So that there is no ambiguity in the space–time locations atwhichvarious agents are supposed tomeet

during theprotocol, theplayersmust agreeupona coordinate systemto represent all space–timepoints. Theplayers

are allowed tohavedifferent proper frames todescribe their ownoperations. Security doeshowevernotdependon this

choiceof reference, butonly on thepartial order between thepoints,which is invariantunder aLorenz transformation.

Remark 2 (Range of causal boxes).Causal Boxes canmodel not only quantumprocesses, but also non-

signalling systemswith quantum and classical inputs (for example, PR-boxes are causal boxes) [22]. This will be

useful in security proofs, for example to cover very powerful adversaries, so let us denote by  the set of all

allowed causal boxes in  , and by  Ì the subset of systems that are valid distinguishers.

When proving the possibility result in section 3.1 (theorem 3), we show that

   s s e$P Î " Î P( )d R S, , , , ,

where  are just efficient classical systems. Thismeans that even distinguishers bounded only by non-signalling

constraints cannot distinguish the real from ideal systems, and the construction still holds in the presence of

such unrestricted adversaries.

Figure 5. (a)Causal boxes are information-processing systems that respect causality and are closed under composition (serial, parallel

or loops). Arbitrary composition of the causal boxes F̂, Ŷ and L̂ is a causal box Ŵ. (b)Minkowski space–time. The causal diamond of
the space–time pointsA andB (shaded in gray)with A B is denoted by ( )D A B, . In thisfigure, point Î ( )C D A B, , and pointD is
space-like separated fromA since the future light cone of neither of the points completely contains the future light cone of the other.

14
This is the state space of a single input/outputmessage.More generally, wires which can carrymessages in a superposition of different

numbers and time orderings can be represented by the symmetric Fock space of thismessage space [22]. The symmetry comes from the fact
that there is no special ordering of themessages other than the space–time ordering, which is already given in the state description itself. See
appendix A for further details.
15

Technically, this implies that theremust necessarily be afinite time gap between an input to a causal box and an output that depends on
this inputmodelling the fact that any causal information processing task takes a strictly non-zero amount of time.
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When proving impossibility results in sections 3.2 and 3.3, we show that

  s s e"P Î $ Î P >( )d R S, , , , ,

where  Ì is any set of systems (e.g. classical, computationally limited orwith boundedmemory) and is a
set of distinguishers with similar requirements. Thismeansfirstly that our impossibility results hold even if we

consider protocols that are bounded only by non-signalling constraints (the case were  = ). And secondly, if

we consider a settingwhere adversaries are limited, then the results carry over to this setting. For example, our

impossibility proofs also hold in the bounded storagemodel (where  and have boundedmemory) or a

computational setting (where  and are computationally limited). See also remark 1 in section 2.1.

2.3. Two-party resources

Wemaynowdefine the resources needed tomodel and prove our results. In this section, wemodel these

resources by defining their output values and space–time positions given input values and space–time positions.

As in illustration of how this is a special case of themore complete Causal Boxmodel instantiatedwith

Minkowski space, we provide in appendix A.5 a formal definition of a  as a causal box.

2.3.1. Coin flipping ( )

Acoinflip resource provides twodistrustful playerswith a randomcoinflip—if they both behavehonestly. If oneof

them is dishonest, then the literature defines different resources that could be constructed.Themost common, e.g.

[12], is to allow the coinflip to beunfair: a dishonest playerwhodoes not like the outcome can abort before the

honest player gets to see this outcome. In [23], the authors define a biased coinflip,where insteadof aborting, a

dishonest party canbias the outcome. In this sectionwe follow [23] anddefine a p-biased coinflip  p.Wedefine
anunfair coinflip  uf in appendixC.1,whereweprove that 1 2 canbe constructed from  uf .

Definition 3 (Coinflipping,  p).A p-biased coin flip,  = { }CF CF CF, ,p
A
p

B
p , is defined as follows.

CF: Alice receives a uniformly randombit c at space–time location PA, and Bob receives the same bit at another

location PB.

CFB
p: Dishonest Bob receives his uniformly random coin flip output, ¢c before Alice at P P A

1 and at P P2 1

hemay input a bit b (whichmay depend on the value of ¢c ). Alice receives a bit co
A at location P PA

2: with

probability p she receives =c bo
A , else = ¢c co

A . Causality requirement:  P P P A
1 2 .

CFA
p: analogous to CFB

p, with the roles reversed.

Note that by definition ofCF, it should be clear that the uniformly randombit, c is generated independently by

the resourceCF and cannot be correlatedwith anything outside it because the honest resourceCF takes no

inputs that could possibly influence this output. This is the reasonwhywe label the outputs ofCF at PB and that

of CFB
p atP1 differently (c and ¢c respectively) even though they are both uniformly distributed, they are

generated independently by different coin flip resources16. Further, a bias of 0means that the coin flip is

uniform, a bias of 1means that the dishonest player has complete control over the outcome, and a bias of p

means that any outcome can occurwith probability atmost + p1 2 2.

2.3.2. Bit commitment ( )
Asmentioned in the introduction, bit commitment is an important cryptographic primitive and its security relates

to its hiding and bindingpropertieswhichwere also introduced in section 1.Here, we formally definewhat an ideal

bit commitment resource behaves like inMinkowski space–time.

16
In order to reduce the number of variables in the proofs, wemay drop this distinction in places where it is inconsequential. Nevertheless, it

is to be kept inmind.
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Definition 4 (Bit commitment, ).Abit commitment resource tuple  ≔ { }BC BC BC, ,A B is defined by the

single resourceBC (with BCA and BCB identical toBC), which behaves as follows.

1. Alice selects a classical bit Î { }a 0, 1 to commit to and inputs it at her interface of BC at a time of her choice

t1.

2. Bob receives themessage ‘comm’ at time ¢ >t t1 1 at his interface, indicating that Alice has committed to a bit.

3. Alice then inputs the command ‘open’ at her interface at a time of her choice t2.

4.Her original commitment ‘a’ is then revealed to Bob at time ¢ >t t2 2.

For simplicity, we onlymention the times at which themessages are input and output in definition 4. This

should naturally also include the location in space of the players.We chose this formalization of the  resource
as it is the closest to the standard, non-relativistic references, e.g. fromBlum’s andDemay et al’s works [12, 23];

we only added the space–time stamps.Nevertheless, our proofs go through even in the casesmentioned by the

reviewer, such as whenAlice chooses the commitment time andBob gets the commitmessage, whenBob can

infer Alice’s commitment, or when agree on all the time stamps beforehand.

In relativistic protocols (like Kent’s [7]), the commitmessagemay be absent, and the commitmentsmay be

valid only within a timewindow (depending on the time taken by light to travel betweenmultiple agents) and

thus, relativistic bit commitment looksmore like a channel with delay, whichwe formalize in the next section.

2.3.3. Channel with delay ( )

In special relativity, unless two agentsmeet at the exact same space–time location to exchangemessages, there is

necessarily afinite communicationdelay between them.A channelwith delay is a cryptographic primitive between

twoparties basedon this physical intuition:Alice sends amessage andBob receives it unalteredwith somedelay.

Definition 5 (Channel with delay).A channel with delay  = ( )CD CD CD, ,A B between a sender Alice and a

receiver Bob is a tuple of resources characterized by four space–time locations, ¢ ¢  P P Q Q, and defined

as follows.

CD: honest Alice inputs a quantum state a into the channel at location P, i.e. the inputmessage is ( )a P, . Honest

Bob receives ( )a Q, at locationQ.

CDA: dishonest Alice inputs ¢( )a P, . Honest Bob receives ( )a Q, .

CDB: honest Alice inputs ( )a P, . Dishonest Bob receives ¢( )a Q, .

The trusted regionof the channel is definedas the causal diamondof ¢P and ¢Q : the set ¢ ¢ ¢( ) ≔ {D P Q S P, :

¢ }S Q .

The dishonest resources CDA and CDB are the same except withP replaced by ¢ P P in the former andQ

replaced by ¢ Q Q in the latter case.

11
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That is, the  acts as an identity channel on themessage, and as a shift on the space–time stamp.

Furthermore, it allows dishonest players to send (respectively, receive) themessage after (respectively, before)

the honest player. A formal definition of the causal box that implements the  can be found in appendix A.5.

The trusted region of the  is the regionwhere both players can be sure that the information in the channel

remains secure, evenwhen the other is dishonest; as wewill see, it is the regionwhere the  can be used to

construct other resources such as  (section 3.1).

Relation to relativistic bit commitment protocols. Typically, in anon-relativistic bit commitment resource, Alice is

free to choosewhen toopenher commitment and alsohas the choice tonot openher commitment at all. In

relativistic protocols, however, the commitment time is usually restricted by the time takenby light to travel between

the remote agents, inwhich caseAlice does not have the freedomof choosing arbitrary t1 and t2 as indefinition4:

once t1 isfixed, the commitmentmust be opened at the latest by + Dt t1 for someDt whichdependson the

protocol.Bob typicallydoes not knowwhetherAlice is committed before time + Dt t1 . If the opening is successful,

thenBobknows thatAlice ran the honest protocol at t1, and retroactively decide that she has been committed toher

bit. Furthermore, in some relativistic protocols, e.g. [7], Alice cannot choose tonot open: if she honestly committed

at time t1, then afterDt , the commitment is always opened. The  resource fromdefinition 5 captures exactly this,

andhencewe analyze the (im)possibility of extending the delay of such a channel in thiswork.

Other protocols, e.g. [9], additionally offer the possibility toAlice of aborting beforeBob receives the bit towhich

she committed.We thus define a variationof definition5 in appendixC.2,where after inputtinghermessage into

the channel, Alicemay still changehermind and abort beforeBob receives it.Weprove in appendixC.2 that our

main results presented in section3 still go throughwith this alternative definitionof a channelwith delay.

3. Results

3.1. Constructing 
It was shown in [23] that a 1/2-biased coinflipping resource can be perfectly constructed from a bit

commitment resource (definition 4), by using Blum’s protocol [12]. Herewe show that it is in fact possible to

construct an even stronger resource (an unbiased coinflip) from a channel with delay.

Theorem3 (Construction   ).Given a classical channel with delay , there exists a classical protocol
 P = P P { },A B that perfectly constructs an unbiased coin flipping resource  0.

The constructed and ideal resources are indistinguishable for any possible distinguisher (including quantum and

non-signalling distinguishers, see remark 2 in section 2.2). The honest protocol as well as the simulator require only

elementary local operations and classical communication.

The protocol is described in definition 6, and the security proof is given in appendix B.1.

Definition 6 (Protocol  P  ).Given a channel with delay  = ( )CD, CD , CDA B characterized by

locations ¢ ¢  A A B B (see definition 5), we define the following honest protocol  P = P P ( ),A B .

1. Alice picks a uniformly randombit, a and sends it throughCD fromher space–time locationA. Bob receives

this bit fromCD at his locationB.

2. Bob meets Alice at S in the trusted region, i.e. the causal diamond ¢ ¢( )D A B, to pass on Bob’s uniformly

randombit, b.

3. After receiving b fromher agent, Alice computes Å =a b c and outputs this value at some point P SA . If

Bob did not turn up for themeeting at S, she picks a uniform bherself, and outputs Å =a b c as before.

4. After receiving a from the channel, Bob computes Å =a b c and outputs the result at a point P BB . If Bob

doesnot receiving anything from the channel, he picks a uniform ahimself, andoutputs Å =a b c as before.

In this case, if both players are honest (and in particular their inputs a and b are uniformly random), then

their output = Åc a b is also perfectly randomand the protocol succeeds. If one of the players (say Alice) is

dishonest, we only care aboutwhether Bob’s output is uniformly random; but since Bob is honest, b is uniformly

random, and so is c (independently of a).

Note that it is important that the point S in the above protocol lies in the trusted region, otherwise the

protocol would not be secure17. Furthermore, this protocol can be run by a single player on each sidewithout the

need for trusted agents since S lies in the causal future ofA and ¢A and in the causal past ofB and ¢B .

17
The existence of the simulators sA and sB used in the proof of theorem3 relies crucially on Î ¢ ¢( )S D A B, .
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In appendix C.2we define aweaker channel with delay, namely onewhich allowsAlice to abort and prevent

hermessage from reaching Bob, ^.We show in the same appendix (lemma 11), that if the protocol above is
usedwith ^ instead of , thenwe construct an unfair coin flip  uf instead of an unbiased one  0.

3.2. Impossibility of  ,  and 
Impossibility of coin flipping. In the previous section, we showed that an unbiased coin flipping resource can be

constructed froma suitable channel with delay. Herewe show that in the absence of any such shared resource, it

is impossible to construct any (biased) coinflip resource solely through the exchange ofmessages.

Theorem4 (Impossibility of  ). It is impossible to construct, with  < -( )p1
1

6
, a p-biased coin flipping

resource between twomutually distrusting parties solely through the exchange ofmessages through any relativistic or

non-relativistic protocol, be it classical, quantum or non-signalling.

The distinguisher required to distinguish the real from ideal systems has the same complexity andmemory

requirements as the protocol P P,A B and simulators s s,A B. In particular, if these are efficient, classical or have

bounded or noisymemory, then so does the distinguisher.

Note that this theorem includes as special case protocols thatmay sendmessages in superpositions of

different causal orders. This follows from the fact that the impossibility holds for any causal boxes, thus in

particular for causal boxes that use such superpositions of causal orders.

The proof of theorem4 can be found in appendix B.2.Here belowwe provide some intuition.

A coinflip  p does not only guarantee that the output bit is uniform (or biasedwith probability p), but also

that it is independent of any other bit produced in parallel by some other resource (up to the bias). This is

essential so that a dispute that is resolvedwith a coin flipwould not only be settled fairly, but also independently

from any other dispute. Theman in themiddle attackmentioned in section 1would allow dishonest players to

perfectly correlate the outcome of two coin flips that are expected to be independent: if Alice and Bob run a coin

flipping protocol, Charlie andDanielle run a second one in parallel, and Bob andCharlie collude to forward all

the communication betweenAlice andDanielle, Bob andCharlie could force them to agree on the same coin

flip. The proof of theorem4 consists in showing that this is essentially possible for any protocol that does not use

any resource other than communication between the parties involved. A sketch of themain proof idea is

provided infigure B2 in appendix B.2. It generalizes the techniques used in [4] to prove the analogous result for

the non-relativistic case. Note that even thoughwe define the p-biased coinflip resource symmetrically in

definition 3 (i.e. both dishonest players have the same bias), all our results can be easily generalised to the

asymmetric case andwewill not consider this explicitly.

Impossibility of  and . Combinedwith theorem 3 andBlum’s construction [12, 23], theorem 4 implies

impossibility of constructing any channel with delay  or any commitment  if no initial resource is shared
by the players.

Corollary 5 (Impossibility of ). It is impossible to construct , with  < 1

6
, between twomutually distrusting

parties solely through the exchange ofmessages through any classical, quantum or relativistic protocol.

The distinguisher required to distinguish the real from ideal systems has the same complexity andmemory

requirements as the distinguisher used in theorem 4 composedwith the protocol P P,A B used in theorem 3. In

particular, if these are efficient, classical and have bounded or noisymemory, then so does the distinguisher.

Proof. Follows directly from the impossibility of  in theorem 4 togetherwith the construction of unbiased

 from  (theorem3). ,

Corollary 6 (Impossibility of ). It is impossible to construct  , with  < 1

12
, between twomutually distrusting

parties solely through the exchange ofmessages through any classical, quantum or relativistic protocol. This rules out

both arbitrarily long and timed commitments.

The distinguisher required to distinguish the real from ideal systems has the same complexity andmemory

requirements as the distinguisher used in theorem 4 composedwith the protocol P P,A B used in Blum’s protocol

[12, 23]. In particular, if these are efficient, classical and have bounded or noisymemory, then so does the

distinguisher.

Proof. Follows directly from the impossibility of  in theorem 4 togetherwith the construction of
1

2
-biased

 from  using Blum’s protocol [12, 23]. ,

Using the same techniques, we show in appendix C.2 that an abort channel cannot be constructed either.
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3.3. Impossibility of extending delays

Onemaywonder whether, in relativistic settings, players could extend the time commitment of amessage. For

example, if Alice and Bobmoved further apart, perhaps this could increase the delay of a channel. However,

while honest, collaborative agents can always increase the time taken by amessage to travel between themby

simplymoving apart, in a cryptographic settingwhere agents don’t trust each other, they cannot be sure that, for

example, Alice ismoving farther and not closer to Bob.

What our next result shows is precisely that there is noway formutually distrustful agents to ensure that the

time durationwithinwhich themessage in a channel is inaccessible to dishonest players can increase. This notion

is captured by the trusted region of the channel, and is essential for cryptographic security.Moreover, we show

that it is not possible to use several channels with delay to construct a better channel with delay.Wefind that

given n shared channels with delay betweenAlice and Bob, the trusted region of the constructed channel will be

smaller than the trusted region of at least one of the individual channels used. In fact, the result is even stronger:

the trusted region of the constructed channel is contained inside the trusted regionof at least one of the assumed

channels used in the construction. Thismeans themaximal space–time regionwithinwhich the information in

the channel is guaranteed to be secure fromboth dishonest parties cannot be increased evenwith n copies of a

channel. If we view such a channel with delay as a relativistic bit commitment (Alice inputs a bit into the channel

and is then committed to it, but the commitment is only openedwhen the bit arrives with a delay at Bob), this

implies that it is not possible to increase the timewithinwhich the commitment is both hiding and binding even

if n timed commitment resources are given.

Theorem7 (Impossibility of extending ).Givenn channels with delay 1,K, n between two parties, it is

impossible to construct with   1

8
a channel ¢ between the two parties with a trusted region that is larger than the

trusted region of all of the individual channels used.

This holds for all protocols P P,A B in , which includes inefficient and non-signalling systems. The distinguisher

needed to distinguish the real from ideal system has the same complexity requirements as the protocol P P,A B. In

particular, if it is efficient or classical, then so is the distinguisher. Furthermore, if the channels constructed and used

are classical, then the distinguisher also has the same quantummemory requirements as the protocol P P,A B.

The proof of theorem7 is given in appendix B.3. Note that this proof includes as special case protocols and
distinguishers thatmay sendmessages in a superposition of going through one channel i or another  j, or

inwhich a channelmay be in a superposition of being used and not used. This follows from the fact that the

impossibility holds for any causal boxes, thus in particular for causal boxes that use such superpositions of causal

orders.

Onemay consider variations of this result inwhich slightly different resources are used or constructed. For

example, one couldwonder whether having channels with delay going fromBob toAlicemay help. It is however

easy to verify from that proof, that these have no impact on the impossibility. Another variationworth

considering is if the channels are abort channels, as defined in appendix C.2.We prove in the same appendix that

one cannot extend the delay of abort channels either.

4.Discussion

The general framework formodelling composable security of relativistic quantumprotocols developed here

naturally lends itself to the study of novel possibility and impossibility results in relativistic cryptography and

could provide key insights into classifying possible and impossible information-processing tasks.

Composability issues raised previously.Composability issues withKent’s 2012 protocol [7] have been briefly

discussed in [8]. A definitionwhich is labeled ‘composable’ is proposed in [8, appendix B], but it is not derived

using any composable framework. In fact, it is argued in [8] that bit commitment in the bounded and noisy

storagemodels could satisfy this definition. Since our results carry over to these settings as well, it follows that

either the proposed definition is not composable or it cannot be satisfied.Note that the impossibility of  in the
bounded storagemodel is already hinted at in [20], where the author points out that themodel he developed for

concurrent composition does not guarantee that a protocol is securewhen run in parallel with another instance

of itself.

Superpositions of causal orders.Aunique feature of the causal boxes formalism [22], is that it canmodel

superpositions ofmessages exchanged in a superposition of orders in (space-)time (e.g. the quantum switch

[31]) by assigning different space–time stamps (or superpositions thereof) to differentmessages. Combining this

with the abstract cryptography framework [4], as done in this paper, allows us tomodel security in settingswhere

such superpositions are actively used. For example, this allows us to consider protocols where amessage is in a

superposition of being sent fromAlice to Bob and fromAlice toCharlie, i.e. where Bob andCharlie are in a
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superposition of having received nomessage and onemessage fromAlice. Even for protocols that do not use

such structures, possibility results consider distinguishers that have this capability. And impossibility results

show that even such superpositions of causal orders, the desired resource cannot be constructed. This is the case

for all our results presented in this work.

A known example of a process involving a superposition of temporal orders of operations is the quantum

switch [31]. It was physically realized in [32, 33], and can be represented in theCausal Box framework as shown

in [22]. Further, the quantum switchwas shown to have an operational advantage over fixed ordering of (or

classicalmixtures thereof) operations in solving certain computational tasks [34, 35]. Bymodelling

cryptographic protocols involving such superpositions of orders, one can study the operational advantage

provided by quantumordering ofmessages/operations over classical orderings. Such an approach to studying

causal structures in terms of their operational advantages would be useful for characterising the properties of

physically implementable causal structures. This is still an important open question since there existmore

general frameworks formodelling causal structures, such as the processmatrix framework [36]which predict

causal structures that are logically possible and yet, have no knownphysical implementation.

Error tolerance.Realistic protocols, like those implementedwith quantumpreparations andmeasurements,

always comewith a small probability of error (for example, inKent’s protocol as inQKD schemes, this depends

on the number of quantum states exchanged between the parties). The ideal resources we prove cannot be

constructed are, by definition, not subject to any errors. But it follows directly from the composable framework

used that impossibility to construct perfect resources (with some error e) implies impossibility to construct

noisy versions of the resources. To see this, consider a resource e that is e-close to  according to the

distinguishing advantage. By the triangle inequality, if a real protocol implements a resource that isΔ-

distinguishable from the ideal , it will be at least eD -( )-distinguishable from e. For example, for an

unbiased  , we haveD = 1

6
, so it is still impossible to perfectly build any  that has an error tolerance

smaller than that.

Minimal resources for constructions.Our results show that existing bit commitment protocols [7, 9] cannot

construct the target resource  from an assumption of a shared resource. Nevertheless, wemay still look for

initial resources that allow  to be constructed. It would be interesting to explore theminimal resources

necessary to achieve this. For example, an assumption (or assurance) that dishonest players cannot interact with

third parties is a good candidate for such an initial resource. It remains open to formalize such a resource
within the framework and prove that it is sufficient to construct  .We note however that in the classical case

one can construct  assuming aCRS shared between all parties and standard complexity assumptions [16].

Thus, to justify a quantumor relativistic protocol, onewould needweaker assumptions.

Alternative space–time.We have proved our results taking the background physical theory to be special

relativity (in the sense ofMinkowski space–timewith afinite speed of signalling). The results would still hold

even for other space–time geometries with a fixed background causal structure i.e. for different choices of the

partially ordered set  . However, if we consider a general relativistic framework (onewhere the causal order is

notfixed until one solves for themetric by considering themass distribution) that is compatible with quantum

mechanics, there could arise situations where the background causal structure itself is subject to quantum

uncertainty and is no longer fixed18. Such causal structures can no longer be explained by a single partially

ordered set  and cannot bemodelledwithin theCausal Boxes framework. In fact, there is currently no

framework that canmodel this and has the properties required to define cryptographic security19. Thus it

remains open to define a quantum, general relativistic framework for composable cryptography, and study the

problemof constructing bit commitment using it.
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AppendixA. The causal box framework

The causal box [22] formalismmodels information-processing systems that are closed under composition even

when the order of operations indefinite (such as a superposition of orders) or dynamically determined during a

protocol’s runtime. Similar formalisms (e.g. [39–41]) have been previously developed but they are only suitable

formodelling systemswhere the order ofmessages is predefined, they fail to be closed under compositionwhen

considering simple cryptographic protocols that involve dynamical ordering ofmessages during runtime [22].

In particular, the formalism allows us tomodel quantum causal systems inMinkowski space and construct new

causal systems by composing them. Thismakes it suitable formodelling composable security of relativistic

quantumprotocols as done in this paper.We now review the formal definitions of the objects of the causal box

framework [22].

A.1.Message space andwires

1. Space of ordered messages: Every message is modelled as a pair, ( )v t, where Îv denotes the (classical/

quantum)message and Ît provides ordering information, where  is a countable, partially ordered set.

The space of a singlemessage is thus aHilbert spacewith the orthonormal basis  ñ Î Î{∣ }v t, v t, . For afinite

 and infinite  , thisHilbert space corresponds to  Ä ( )∣ ∣ l2 where ( )l2 is the sequence space with a

bounded two-norm. Thus ñ∣t can be seen as a sequencewhich consists of a 1 in position Ît and 0

everywhere else.

2.Wires: The inputs and outputs to a causal box are sent/received through wires which can carry any number

(or a superposition of different numbers) ofmessages of afixed dimension, which defines the dimension of

thewire20. Thus the state space of awire is defined to be a symmetric Fock space. It ismodelled as a Fock

space to allow for superpositions of different numbers ofmessages and it is a symmetric Fock space since all

ordering information associatedwith the arriving qudits is already contained in the label Ît and given
this label, there is no other ordering on the qudits. For theHilbert space, = Ä ( )ld 2 , the

corresponding bosonic Fock space is given as

   Ä  Ä
=

¥
( ( )) ≔ ⨁ ( ( )) ( )l l , 4d

n

n d2

0

2

where n denotes the symmetric subspace ofÄn andÄ0 is the one-dimensional space containing the

vacuum state Wñ∣ .

For example, the state space corresponding to awireA carrying dA dimensionalmessages is denoted by

   = Ä( ( ))lA
d 2A . The joint space of twowires can bewritten as     Ä =A B AB and it can be shown

[22] that for any twoHilbert spaces = Ä ( )lA
d 2A and = Ä ( )lB

d 2B ,

Ä @ Å( ) ( ) ( ) ( )F H F H F H H . 5A B A B

Isomorphism (5) tells us that each valid state in the combined state space of twowires, one carrying dA
dimensionalmessages and the other carrying dB dimensionalmessages, can bemapped to a valid state in the state

20
For example a two-dimensional wire can carry any number of qubits, or can be in a superposition of carrying 2 and 3 qubits but cannot

carry qutrits.
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space of a single wire carrying dA+dB dimensionalmessages.Hence AB, can be interpreted as the state space of a

wire carrying +( )d dA B dimensionalmessages21.

We nowproceed to formally review the definition of causality that causal boxes satisfy, we first define the

notion of cuts on a partially ordered set  which forms an important part of the definition.

A.2. Cuts and causality

Definition 7 (Cuts [22]).Acut of a partially ordered set  is any subset  Í such that  


=
Î
⋃
t

t , where

  = Î{ }t p p t: . A cut  is bounded if there exists a point Ît such that   Í t . The set of all cuts

of  is denoted as ( )C and the set of all bounded cuts as ( )C .

In this paper, we have taken the partially order set  to beMinkowski space–time, this allows us to restrict to

bounded cuts. This is because every cut inMinkowski space–time is a bounded cuts: any two space–time points

(even those that are unordered i.e. space-like separated)necessarily share a common causal future. Note that this

is not true for a general partially ordered set  .

Definition 8 (Causality function [22]).A function  c ( ) ( )C C: is a causality function if it satisfies the

following conditions:

      È Èc c c" Î =( ) ( ) ( ) ( ) ( )C a, , , 6

      c c" Î Í  Í( ) ( ) ( ) ( )C b, , , 6

   c" Î Æ Ì( )⧹{ } ( ) ( )C c, , 6

    c" Î " Î $ Î Ï( ) ( ) ( )C t n t d, , , , 6n

where cn denotes n compositions ofχwith itself, c c c= ◦ ◦n .

Conditions (6a) and (6b) follow from the considerations that: If the output on  and  can be computed

from c( ) and c( ) respectively, the output on  È can be computed from  Èc c( ) ( ), if c( ) is needed
to compute the output on  , then certainly it is needed to compute the output on  Ê . Condition (6c) is

essentially the causal condition that requires that outputs of a causal box can depend only on inputs produced in

its causal past andCondition (6d) is to ensure that a causal box does not produce an infinite number ofmessages

in afinite interval of time (see [22] for details). Definition 8 is the general definition of the causality function and

it simplifies for special choices of the set  [22].We are now in a position to review the formal definition of a

causal box.

A.3. General definition of a causal box

Definition 9 (Causal box [22]).A ( )d d,X Y -causal boxΦ is a systemwith inputwireX and outputwireY of

dimension dX and dY
22, defined by a set23 ofmutually consistent (equation (8)), completely positive, trace-

preserving (CPTP)maps (equation (7))

F = F c
Î{ ( ) ( )} ( )( )

( )T T CF F: . 7C
X

C
Y
C

C T

Thesemapsmuch be such that for all   Î ( )C, with  Í ,

 
 

 F = F c◦ ◦ ( )⧹ ⧹ ( )tr tr , 8

where ( )T denotes the set of all trace class operators on the space  and the causality function c( ). satisfies all
the conditions of definition 8.   is the subspace of   that contains onlymessages in positions Î Ít T

and  ⧹tr traces out themessages occurring at positions in  ⧹ .

Equation (8) can be seen as the combination of the two requirements 
 

F = F◦⧹tr and  
 F = F c◦ ⧹ ( )tr .

Thefirst one embodies themutual consistency requirement while the second, that of causality.

21
Conversely, anywireA ofmessages of dimension dA can be split in two sub-wiresA1 andA2 ofmessages of dimensions + =d d dA A A1 2 :

    @ ÄA A A1 2
. Further, for any subset  Í ,     @ Ä

~

A A A , where   =
~

⧹ and   = Ä ( )lA
d 2A .

22
It is enough to define a causal box as amap fromone input wire to one output wire since a single wire of dimension d can always be

decomposed into nwires of dimensions ¼d d, , n1 with = + + +d d d d... n1 2 using the isomorphismof equation(5).
23

In general, it ismodelled as a set ofmaps and not a singlemap because this allows systems to be includedwhich produce an unbounded
number ofmessages and are thus not well-defined as a singlemap on the entire set  , but only on subsets of  that are upper bounded by a
set of unordered points. For example [22].
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Remark 8.Note that definition 9 only considers trace-preserving causal boxes. The definition can be easily

generalised to non-trace preserving causal boxes or sub-normalised causal boxes to account for post-selection.

This is done in [22] by defining a suitable projector on the space of normalised causal boxes.

Further, just like CPTPmaps on quantum states, causal boxes also admit Choi-Jamiołkowski and

Stinespring representations, and in addition, they also admit sequence representations that describe their

sequential action over subsequent, disjoint sets of  .We refer the reader to the original paper [22] for details

regarding these as they are not of particular relevance to the results of this paper.

A.4. Composition of causal boxes

Having defined causal boxes, we are in a position to see how they can be composed. Due to Isomorphism (5), an

input/outputwire to a causal box of dimension d can be split into sub-wires of dimensions ¼d d d, , , n1 2 such

that + + + =d d d d... n1 2 and similarly, wires can also be combined to form awirewith dimensions equal

to the sumof the dimensions of the individual wires. Taking F( )Ports to represent a particular partition of the

input and outputwires of a causal boxΦ into sub-wires, arbitrary composition of causal boxes can be achieved

by combining the following two steps.

1.Parallel composition: two causal boxes Φ and Ψ can be composed in parallel to obtain a new causal box

G = F Y whose input and output ports are given by the union of the input and output ports ofΦ andΨ

respectively.

2. Loops: selected output ports of the causal box Γ can be connected with input ports of the same dimension to

form loops.

A classical example of composition through loops can be found infigure A1. The formal definitions of parallel

composition and loop composition of causal boxes, which generalise thisintuition to the quantum case can be

found in the original paper [22], where it is also shown that causal boxes are closed under these arbitrary

composition operations.

A.5. The channel with delay as a causal box

The channel with delay was defined in section 2.3.3. In this section, we showhow tomodel the channel with
delay using the causal box formalism, i.e. by defining it in terms of a set ofmutually consistentmaps F{ }. Recall
that a channel with delay is defined by the tuple of resources  ≔ { }CD CD CD, ,A B , each of the resources

CD CD, A and CDB can be equivalently described by the causal boxes F F,CD CDA
and FCDB

. In the following, we

consider the channel with delay resource characterised by the 4 space–time points ¢ ¢  A A B B.

Definition 10 (Causal box FCD description of the channel with delay resourceCD). " bounded cuts
  ÍB inMinkowski space  , the causal box    

 F = F c
Î{ ( ) ( )}( )

( )T T C:CD CD X Y is defined by the

maps 
F c≔ ◦ ( ) ⧹trCD A B A, with   = Ä ñá + ñá [∣ ∣ ∣ ∣] ( )B A A BA B l2 .X andY label the input and output

wires to the causal box,  denotes the identity operation on theHilbert space  of the quantummessage, ( )l2

is the sequence space (with bounded two-norm) of the space–time stamps and c( ) is any causality function
that satisfies the conditions of definition 8 and the condition that  cÎ  Î ( )B A .

Similarly, the resources CDA and CDB can be defined by replacingAwith ¢A andBwith ¢B in definition 10

respectively. Note that for any subset  Í ,     @ Ä ˜
, where   =˜ ⧹ . Further, a natural

embedding of   in   can be obtained [22] by appending the vacuum state24 to  

Figure A1.Classical example for loop composition: a systemwith classical inputsA,B and classical outputsC,D can be described by
the probability distribution ∣PCD AB. The new systemobtained by adding a loop from the outputC to inputB is then described by the
distribution = å ( ∣ )∣ ∣Q P cd acD A c CD AB and is a valid probability distribution as long as the systemobeys causality [22].

24 Wñ∣ ˜
represents the one dimensional subspace of  ̃ that contains the vacuum state.
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     @ Ä Wñ Í∣ ˜

This allows us to equivalently view the trace  ⧹tr for any two cuts  Í , as the operation of tracing out all the

messages in space–time locations that belong to the cut , but not to the cut  and replacing all of themby the

vacuum state Wñ∣ .With this, we can see that in definition 10,  rc ( )( ) ⧹tr A for an arbitrary input state

 r Î c( )( )
T X will always result in a state of the form s Ä ñá Ä WñáW∣ ∣ ∣ ∣ ˜

A A A where  s Î ( ), whichwithout
loss of generality, we denote by s Ä ñá∣ ∣A A where it is understood that there is ‘nothing’ i.e. the vacuum state Wñ∣
at all other space–time locations ÎÃ .

It is easy to verify that FCD is indeed a causal box i.e. that it satisfies equation (8). The left-hand side of the

equation gives, for an arbitrary input state  r Î c( )( )
T X and any cut   ÊB

  



r r r

s c

s

F = F =

=
Ä Î

W W

=
Ä Î

W W

c  
⎧
⎨
⎩

⎧
⎨
⎩

( ) ( ) ( )

( ∣ ⟩⟨ ∣) ( )

∣ ⟩⟨ ∣

∣ ⟩⟨ ∣

∣ ⟩⟨ ∣

( )

( )I

B B A D

B B B C

tr tr tr

tr ,

, otherwise

,

, otherwise.

9

CD
C

D C CD
D

D C A B D A

D C

T

T

Similarly, the right-hand side of equation (8) becomes

  r r r

s c

F = F =

=
Ä Î

W W

c c c  
⎧
⎨
⎩

( ) ( ) ( )

∣ ⟩⟨ ∣ ( )

∣ ⟩⟨ ∣

( )

( ) ( ) ( )I

B B A C

tr tr tr

,

, otherwise.

10

CD
C

CD
C

C C A B C A C C

T

Sincewe have25  cÎ  Î ( )B A by definition 10, and equations (9) and (10) hold for arbitrary input

state ρ, the expressions in equations (9) and (10) are equal giving  
 

 F = F c◦ ◦⧹ ⧹ ( )tr trCD CD as required by

definition 9 of a causal box. This shows that FCD of definition 10 (and similarly FCDA
and FCDB

) is indeed a

causal box.

Remark 9.Note that definition 10 and the fact that FCD is a causal box imply that FCD cannot produce any (non-

vacuum) output on cuts that do not contain the pointB. This is due to the fact that inMinkowski space, for any

cut  with ÏB , we can find a cut  É containingB. Themutual consistency condition (equation (8))

would then demand that no non-vacuumoutputs are produced in the cut  as the only non-vacuumoutput in

 will be produced at ÏB . Thus it is enough to define FCD only on cuts that includeB as done in definition 10.

Appendix B. Proofs of all results

B.1. Constructing 

Theorem3 (Construction   ).Given a classical channel with delay , there exists a classical protocol
 P = P P { },A B that perfectly constructs an unbiased coin flipping resource  0.

The constructed and ideal resources are indistinguishable for any possible distinguisher (including quantum and

non-signalling distinguishers, see remark 2 in section 2.2). The honest protocol as well as the simulator require only

elementary local operations and classical communication.

Proof.The protocol  P  (definition 6) constructs  0 from  iff all three conditions offigure B1 are

satisfied. The condition offigure B1(a) trivially holds. To see that the conditions infigures B1(b) and (c) also

hold, consider the following simulators.

sA is defined as follows.

1. Receive the input a at the space–time location ¢A at the outer interface. If no a is received, pick one

uniformly at random.

2.On receiving input c atP2 at the inner interface, output = Åb a c at the outer interface at S.

25
Note that the implication  cÎ  Î ( )B A follows from the definition of the causality functionwhile the implication

 cÎ  Î( )A B follows from the fact that for any  c( ) A, the causal box FCD when acting on an arbitrary input state ρ, always
produces an output on a cut containingB (by definition).
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For the above construction of sA towork, bothP2 and ¢A must lie in the causal past of S. Since S lies in the

trusted region, ¢ A S necessarily holds. Since there are no constraints on the space–time points at which CFA
0

can produce an output, we can alwaysmake it output at a point P S2 .

sB is defined as follows.

1. Receive the input b at the space–time location S at the outer interface. If no b is received, pick one uniformly

at random.

2.On receiving input c atP1 at the inner interface, output = Åa b c at the outer interface at ¢B .

For the above construction of sB towork, bothP1 and Smust lie in the causal past of ¢B . Again, S being in the

trusted regionensures that ¢S B necessarily holds and ¢P B1 holds since there are no restrictions on the

space–time points at which CFB can produce an output.

It is easy to see that for the abovementioned constructions of the simulators sA and sB, the real and ideal

systems offigures B1(a)–(c) are perfectly indistinguishable (for any distinguisher ) since a, b and c always
satisfy the condition that any two of them sumbit-wise to the third. Further, Alice can learn the value of both bits

a and b before Bob does but she cannot bias the value of Bob’s output, Åa b in anyway.Neither can she prompt

Bob to abort the protocol after learning the value of her bit a, because she has to send a into the channel before he

receives b at the point S (by the non empty trusted region condition). Hence the protocol perfectly constructs an

unbiased coinflipping resource  0 from a channel with delay . ,

Figure B1. (a)Honest Alice and Bob: P P »CD CFA B 0 (b)Dishonest Alice: s$ A such that sP »CD CFA B A0 A
0 . (c)Dishonest Bob:

s$ B such that sP »CD CFA B B0
0

B. Conditions for constructibility of a fair and unbiased coin flip  0 from a channel with delay  .
Since the coin flip has =p 0 the biasing bit that a dishonest partymay input has no effect, sowe do not draw it.
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B.2. Impossibility of 

Theorem4 (Impossibility of  ). It is impossible to construct, with  < -( )p1
1

6
, a p-biased coin flipping

resource between twomutually distrusting parties solely through the exchange ofmessages through any relativistic or

non-relativistic protocol, be it classical, quantum or non-signalling.

The distinguisher required to distinguish the real from ideal systems has the same complexity andmemory

requirements as the protocol P P,A B and simulators s s,A B. In particular, if these are efficient, classical or have

bounded or noisymemory, then so does the distinguisher.

Proof. For the construction to be valid, all conditions offigure B2must hold. As explained in thefigure caption,

thefirst step is to combine the three conditions and use the triangle inequality to obtainfigure B2(d).

Next wewill show that for any causal order of themessages c, ¢c , b and ¢b infigure B2(d), the best possible

classical, quantumor non-signalling strategy of s leads to a distinguishing advantage of at least -( )p1
1

2

between sCF CFB
p

A
p andCF.We present here only the optimal strategy—it is a straight-forward if tedious

calculation to verify that all other causal orderings and possible input–output correlations in each case do not

yield a lower distinguishing advantage.

The simulator’s task is to ensure to the best of its capabilities that co
A and co

B are equal. The causal order of the

messages that provide s with themaximum information to achieve this task is the one depicted by the directed

acyclic graph (DAG)26 infigure B3, where s can learn the values of c and ¢c first and accordingly correlate the

values of b and ¢b which are then input to CFA
p and CFB

p respectively. In this case, the best possible strategy that

the simulator could adoptwould be onewhere it produces the input–output correlations = ¢ =b b c or

= ¢ = ¢b b c all the time. The probability that co
A equals co

B for such a strategy (say, = ¢ =b b c) is:

= = = = = + = ¹ ¹

= + = ¹

+ = ¹

+ = ¹

+ = ¹

= + + - + - + -

= +

¢ ¢ ¢ ¢

¢

¢

¢

¢

( ) ( ∣ ) ( ) ( ∣ ) ( )

[ ( ∣ ) ( )

( ∣ ) ( )
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p
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1
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1
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o
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o
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o
A

o
B

o
A

o
B

o
A

o
B

2 2

Adistinguisher connected to sCF CFB
p

A
p orCF can access the two outputs produced at the outer interfaces of

these systems. If the distinguisher guesses sCF CFB
p

A
p every time the two outputs differ in value and sCF CFB

p
A
p or

CFwith uniformprobability every time the two outputs are equal, the distinguishing advantage would be:

  s ¹ = -( ) ( ) ( ) ( )d CF CF CF P c c p3 ,
1

2
1 . 11B

p
A
p

o
A

o
B

This distinguishing advantage ò is equal to zero onlywhen =p 1 (totally biased coin) and thus, for a non-trivial

p, it is not possible tomake the distinguishing advantage ò arbitrarily small.

The distinguisher used to distinguish the left and right-hand sides infigure B2(d) is quite a trivial system, that

only needs one bit ofmemory and compare the two output bits. The existence of such a distinguisher with

advantage 3ò implies that there exists another distinguisher with advantage e that can distinguish the left and
right-hand sides from either figures B2(a)–(c).We now go through the steps of this argumentmore slowly, to

determine the exact complexity (both in terms ofmemory and computation) of the distinguisher thatwe have

proven to exist. To constructfigure B2(d) from the threefirst conditions infigure B2, we use the following two

arguments several times.

Thefirst is the triangle inequality, namely that

»
»

»e

e
e e

¢
+ ¢

⎫
⎬
⎭

⟹
R S

S T
R T .

Note that this holds for individual distinguishers, hence the contrapositive states that if there exists a

distinguisher that can distinguishR fromTwith advantage e e+ ¢, then exactly the same distinguisher can

distinguish eitherR from Swith advantage e or S fromTwith advantage e¢.

26
DAGs arewidely used in the literature to represent causal structures. For classical causal structures (as is the case here, given that the

inputs and outputs toσ are classical bits), the nodes (circles) represent randomvariables and the edges (arrows) represent causal influences.
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The second generic argument—contractivity—uses the fact that for any resources R S, and anyother systemα,

a a» »e e⟹R S R S.

Unlike the previous argument, this one involves a change of distinguisher, namely if for some ,
 a a e>( )d R S, , then  e>a ( )d R S, , where a corresponds to the composition of  withα.

Figure B2. (a) P P » CFA B (b)Dishonest Alice: s s$ P » CF:A B A
b

A (c)Dishonest Bob: s s$ P » CF:B A B
b

B (d) s$ :AB

s »CF CF CFB
b

AB A
b

3 Impossibility of coin flipping: proof sketch. For a p-biasedCoin Flipping to be ò-constructible solely through
the exchange ofmessages, conditions (a)–(c)must be satisfied. The composition (1) of the system on the lhs of (c) (PA)with that on the
lhs of (b) (PB) yields the system on the lhs of (a) (P PA B)which gives the condition (d) for the corresponding right hand sides (2)with
s s s=AB B A. To prove impossibility, we show in appendix B.2 that for any causal order of themessages c, ¢c , b and ¢b , the best possible

classical, quantumor non-signalling strategy of s leads to a distinguishing advantage of at least  = -( )p3 1
1

2
between sCF CFB

p
A
p

andCF in (d). Note that if the parties had access to a shared resource , a condition analogous to (d) could not be obtained by
composing (b) and (c), and the same impossibility proofwould no longer be applicable.

Figure B3.The causal ordering of inputs and outputs of simulator s (see figure B2(d)) that provide it themaximum information
about the outputs co and ¢co .C, ¢C ,B and ¢B Î( { })0, 1 represent the randomvariables of which the corresponding lower case alphabets
are specific instances of. In addition,B and ¢B may causally influence each other, but this does not offer any advantage to s because the
optimal strategy is where both b and ¢b depend on c (or ¢c ).
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Wenow start with the existence of the trivial distinguisher  forfigure B2(d) described above, andwhich
has  s >( )d CF CF CF, 3B

p
A
p . From the triangle inequality we know that one of the three following conditions

must hold

 P P >( ) ( )d CF, , 12A B

 sP P P >( ) ( )d CF , , 13A A A
p

A B

 s s sP >( ) ( )d CF CF CF, . 14B
p

B A A
p

A A A
p

If it is (12) that holds, we are done, sincewe have a trivial distinguisher that can break the condition from figure

B2(a). If it is either (13) or (14), then using the contractivity rule, wefind that either PA can distinguish the left

and right-hand sides offigure B2(b) or s CFA A
p can distinguish the left and right-hand sides offigure B2(c).

Thus, both the computational requirements andmemory requirements of the distinguisher are the same as

the computational andmemory requirements of eitherPA or s CFA A
p. ,

The proof of theorem4 is completely general and applies to quantumand non-signalling protocols as well. The

apparent ‘classicality’ of the proof is due to the fact that all inputs and outputs are classical bits as per the

definition of the resources used.However, we only talk about the input–output correlations produced by the

simulator s and not the internalmachinery used to produce these correlations, which could be classical,

quantumor non-signalling and the impossibility holds for all classical, quantum and non-signalling strategies

that s could adopt to produce these correlations. A particular input–output correlation could be generated

throughmany different strategies but it turns out in this particular case that there exists a simple classical strategy

that perfectly produces these correlations (look at the value of c and set = ¢ =b b c all the time), which is whywe

use correlations produced by s and strategy adopted by s quite interchangeably. But onemust keep inmind that

this in noway restricts the simulator to classical strategies.

B.3. Impossibility of extending delays

Theorem7 (Impossibility of extending ).Givenn channels with delay 1,K, n between two parties, it is

impossible to construct with   1

8
a channel ¢ between the two parties with a trusted region that is larger than the

trusted region of all of the individual channels used.

This holds for all protocols P P,A B in , which includes inefficient and non-signalling systems. The distinguisher

needed to distinguish the real from ideal system has the same complexity requirements as the protocol P P,A B. In

particular, if it is efficient or classical, then so is the distinguisher. Furthermore, if the channels constructed and used

are classical, then the distinguisher also has the same quantummemory requirements as the protocol P P,A B.

Proof. Let  ¼, , n1 denote the n given channels with  = ( )CD CD CD, ,i i
A
i

B
i and associated locations

¢ ¢  P P Q Qi i i i. Our goal is to construct a channel ¢, characterized by points ¢ ¢  P P Q Q, given

those channels and additional (direct) communication taking place in a space–time regionR. The conditions

given in figure B4must be satisfied such that ò is a small, non-negative number " distinguishers  Î . In the

followingwewrite = CD CD CDn1 to denote the resource consisting of the parallel composition of the n

resources CDi that are available to Alice and Bob (similarly CDA and CDB for dishonest Alice and Bob

respectively).

Note that for each channel with delay, there exists a converter dA
i such that d =CD CDA

i
A
i i: this is simply a

system that takes the input a fromAlice at position Pi and outputs it at position ¢Pi . Let d d d= A A A
n1 denote

the parallel composition of these converters such that d =CD CDA A .

From figure B4(c)wehave

 



s d d s

d s

P » P P » P

P P » P

¢ ¢

¢

⟹

⟺
( )

CD CD CD CD

CD CD .
15

A B A A A A A B A A A A

A B A A A A

If we look at the right-hand side of (15), the joint system d sPA A A produces an output at position ¢P , but nothing

after. Hence, communication that does not reach sA before ¢P cannot influence the output and is not relevant to
the output of d sPA A A. Let Â denote a converter that blocks all channels i with ¢ ¢P Pi and also blocks all
communication in the regionR at points  ¢P PR .We then have d s d sP ^ = PA A A A A A A. Combining this with

figure B4(c), (15), and figure B4(a), we get

  d d s d sP ^ P » P ^ ¢ = P ¢ » P P » ¢CD CD CD CD CD ,A A A A B A A A A A A A A A A B

fromwhichwe conclude that

P ^ P » ¢ ( )CD CD . 16A A B 3
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Wenow turn our attention tofigure B4(b). Similarly to the argument above, we define a converter dB such
that d =CD CDB B and a converter B̂ that blocks exactly the same channels and points as Â, but which is

plugged into Bob’s interface.We then get from figure B4(b) that

d s dP ^ P » ¢ ^ P ( )CD CD . 17A B B B B B B B B B

If we look at the left-hand side of (17), we see that d ^ = ^ = ^CD CD CDB B B B A , hence it follows from (16) and

(17) that

s d¢ ^ P » ¢ ( )CD CD . 18B B B B B 4

Equation (18) can only holdwith  < 1 8 if information flows from the left interface of ¢CDB to the right

interface of PB. Communication between ¢CDB and sB only occurs in position ¢Q , so for themessage tomake its

way through toPB, theremust also be communication between sB andPB at some point ¢P QC . The regionR

cannot be used for this, as ¢ ¢P Q and B̂ blocks all communication after ¢P . The only remaining option is for
there to exist a channel i with ¢ ¢Q Qi andwhich is not blocked by B̂, i.e. ¢ ¢P Pi . But in this casewe

would have ¢ ¢ ¢ ¢  P P Q Qi i , i.e. the trusted region of i would contain the trusted region of ¢.

Figure B4. (a) P P » ¢ CD CD CD...A
n

B
1 (b) s$ B such that  sP » ¢ CD CD CD...A B B

n
B B

1 .(c) s$ A such that

 sP » ¢ CD CD CD...A A
n

B A A
1 . Conditions for building a channel with delay ¢ out ofn channelswithdelay  ,..., n1 .
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Tofinish the proof, we still need to analyze the complexity of the distinguisher used to distinguish the real

and ideal systems. The proof assumes that the protocol is secure, and then concludes that (18)must hold, which

implies that the trusted region of the constructed channelmust be contained in the trusted region of one of the

assumedchannels. Taking the contrapositive, we assume that the constructed ¢ has a larger trusted region
than the assumed channels, which implies that there exists a distinguisher that can distinguisher the left and

right-hand sides of (18), which in turn implies that there exists a distinguisher that can distinguisher the real

from ideal in one of the equations fromfigure B4.Wewill now go through the arguments of the proof to

determine the complexity of this distinguisher that we have proven to exist.

The systems on the left and right-hand sides of (18) just take amessage as input and output amessage of the
same dimension. ¢CD performs an identity operation on the value of themessage, whereas s d¢ ^ PCDB B B B B

must trace out the input and output some fixed state, since by assumption ¢ has a larger trusted region than
the assumed channels, so there is no communication fromAlice’s interface to Bob’s interface. If the channel is

classical, an optimal system that distinguishes a fixed (possibly probabilistic) output from the identity channel,

inputs afixedmessage (that has low probability of being output by the channel on the left-hand side of (18)), and

checks to see if the samemessage is output. This has probability of success at least 1/2, and requires nomemory

and one equality check. If the channel is quantum, the distinguishermay perform the same (which then involves

preparing one quantum state and performing a projectivemeasurement). Alternatively, the distinguishermay

input half of an EPRpair, keep the purification, and perform the projectivemeasurement on the joint systemof

the output and the purification, which has a probability of success of at least 3/4, but now involves quantum

memory of the size of themessage.

There are two generic arguments used in the proof to construct the distinguisher for one of the equations in

figure B4 from the distinguisher for (18). Thefirst is the triangle inequality, namely that

»
»

»e

e
e

⎫
⎬
⎭

⟹
R S

S T
R T .2

Note that this holds for individual distinguishers, hence the contrapositive states that if there exists a

distinguisher that can distinguishR fromTwith advantage e2 , then exactly the same distinguisher can distinguish

eitherR from S or S fromTwith advantage e.
The second generic argument uses the fact that for any resources R S, and any converterα,

a a» »e e⟹R S R S.

Unlike the previous argument, this one involves a change of distinguisher, namely if for some ,  a a >( )d R S,
e, then  e>a ( )d R S, , where a corresponds to the composition of  withα. This was used several times in

the proof with a d= P ^A A A, a d= PA A, and a d= ^ PB B B. Putting this together, we prove that there exists a

distinguisher than can distinguish at least one of the pairs of systems from figure B4, and this distinguisher has

the same computational requirements as either PA or PB alongwith one extrameasurement needed to

distinguish the left and right-hand sides of (18) (since δ and^ and forward and trace outmessages, respectively,

they do not perform any computation). Furthermore, if the channels are classical, then the distinguisher has the

same quantummemory requirements as eitherPA orPB, since δ and^do not require any quantum

memory. ,

AppendixC.Unfair resources

C.1.Unfair coinflipping

In section 2.3.1, we defined the p-biased coinflipping resource tuple  = { }CF CF CF, ,p
A
p

B
p . Herewe define

another variation, the unfair coin flipping resource tuple  uf and prove that a 1/2-biased coinflip resource
1 2 can be constructed from it. Then, by reduction, theorem7 implies the impossibility of unfair coin flipping

solely through the exchange ofmessages.

Definition 11 (Unfair coinflipping,  uf ).An unfair coin flip  = ( )CF CF CF, ,A B
uf uf uf has the same resource

CF as  p, and CFA
uf and CFB

uf are given by:

CFB
uf : Bob receives a uniformly randombit c at location P1. At location P P2 1, he can input a bit Î ^ ^{ }b ,

thatmay depend on the value of c received at P1. Alice then receivesmessage co
A at the location P PA

2

depending onBob’s input b atP2: if = ^b , then = ^co
A , else =c co

A i.e. dishonest Bob can prompt an

abort (̂ ) onAlice’s interface by setting = ^b .

CFA
uf : analogous to CFB

p, with the roles reversed.
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This is illustrated in figureC1.

Lemma10.There exists a protocol  P = P ¢ P ¢ { },A Buf 1 2 that perfectly constructs a 1/2-biased coin flipping

resource 1 2 from an unfair coin flipping resource  uf .

The constructed and ideal resources are indistinguishable for any possible distinguisher (including quantum and

non-signalling distinguishers). The honest protocol as well as the simulator require only elementary local operations

and classical communication.

Proof. In the following, wewill drop the space–time labels corresponding to themessages to avoid unnecessary

annotations and it is easy to see that there exist space–time labels for eachmessage involved such that the

construction presented below is satisfied.We define the honest protocol  P = P ¢ P ¢ { },A Buf 1 2 as follows.

1. Receive the coin flip outcome from the corresponding interface of the unfair coin flipping resource  uf at

the inner interface.

2. If this outcome has a bit value (say c), output c at the outer interface. If this outcome is an abort (̂ ), then

output =c 0u or =c 1u eachwith probability =p 1 2 at the outer interface.

 P uf 1 2 perfectly constructs a 1/2-biased coinflipping resource for the following simulators (the same

for SimA and SimB).

1. Receive the output bit ¢c from the biased coin flipping resource on the inner interface and output the same

bit at the outer interface.

2. Upon receiving the additional input of ^ or ^ at the outer interface, forward ¢ = ¢b c to the resource at the

inner interface if this input is not an abort (̂ ) and forward ¢ = ¢ = ¢ Å¯b c c 1 to the resource if the input at

the outer interface is an abort (̂ ).

One can easily verify that the real and ideal systems are identical, for convenience, we have drawn this in

figureC2. ,

C.2. Abort channel

In section 2.3.3, a  is defined such that onceAlice inputs hermessage atP (respectively, ¢P , if she is dishonest),

Bob is guaranteed to receive it atQ (or ¢Q if he is dishonest). In this sectionwe consider a version of a channel

with delay inwhichAlicemay additionally abort, and prevent Bob fromgetting hermessage.We call this an

abort channel, andwrite ^.

Definition 12 (Abort channel, ^).An abort channel  =^ ^( )CD CD CD, ,A B between a sender Alice and a
receiver Bob is a tuple of resources characterized byfive space–time locations, ¢ ¢   P P R Q Q.CD and

CDB are defined identically to a standard  (definition 5). ^CDA is defined as follows.

^CDA : Dishonest Alice inputs ¢( )a P, . Shemay also input ^( )R, . If she input ^( R, ), Bob does not receive

anything.Otherwise, Bob receives ( )a Q, .

Nearly the same protocol as used in theorem3 can be used to construct an unfair coin flip from an abort

channel.

Lemma11 (Construction  ^ uf ).Given a classical abort channel ^, there exists a classical protocol
P = P P^ { },CF A Buf that perfectly constructs an unfair coin flipping resource  uf .

FigureC1.Anunfair coinflip resourcewith honest Alice and dishonest Bob.
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The constructed and ideal resources are indistinguishable for any possible distinguisher (including quantum and

non-signalling distinguishers). The honest protocol as well as the simulator require only elementary local operations

and classical communication.

Proof.The protocol is the same as the one used to construct  0 from , except that if Bob does not receive
anything from the channel, he outputs^ instead of picking a uniform ahimself. The simulator sA has to be

changed in the sameway: if it does not receive an input ¢( )a A, or if it recives ¢( )a A, , but later gets an abort^
(which is now allowed by ^), it notifies the resource ^A to abort and output^ at Bob’s interface. Drawing

up afigure similar tofigure B1, one can see that here toowe have perfect security. ,

It then follows from theorem4 that an abort channel cannot be constructedwithout any setup assumptions

either.

Corollary 12 (Impossibility of ^). It is impossible to construct ^, with  < 1

12
, between twomutually

distrusting parties solely through the exchange ofmessages through any classical, quantum or relativistic protocol.

The distinguisher required to distinguish the real form ideal systems has the same complexity andmemory

requirements as the distinguisher used in theorem 4 composedwith the protocols used in lemmas 10 and 11. In

particular, if these are efficient, classical and have bounded or noisymemory, then so does the distinguisher.

Proof. Lemma 11 constructs  uf from ^, and lemma 10 constructs 1 2 from  uf . Thus, the

impossiblity of constructing  p from theorem4 immediately implies the impossibility of constructing

^. ,

Finally, we can show that theorem7 also holds for abort channels.

FigureC2. (a)When both parties are honest, the outcomes of the unfair resource CFuf are never equal to ^ and the protocols PA and
PB simply forward the bit c received at the inner interface to their outer interface. This is a perfect construction since the honest

resources CFuf and CF1 2 are the same. (b)The simulator SimB for dishonest Bob simply forwards ¢c received at its inner interface to

its outer interface and sets ¢ = ¢b c if it receives^ at the outer interface and ¢ = ¢̄b c otherwise. Now the protocol PA may also receive
the abort input ^ from the unfair CF resource, inwhich case it forwards the uniformly randombit cuwhich equals either 0 or 1 each
with probability 1/2 and simply forwards the input c from the unfair CF resource otherwise. The construction is perfect because the
probability distribution of inputs and outputs from the real system is the same as the input and output probability distribution of the
ideal system and hence the two are perfectly indistinguishable.More specifically, whenever a dishonest player does not abort, the
outputs at both interfaces will be equal to an independently generated, uniformly randombit (labelled as c for the real system and ¢c
for the ideal system. If the dishonest player aborts, the two outputs will be equal to an independently generated, uniformly randombit
(c or ¢c )with a probability of 1/2 and theywill be uniformly randombut completely uncorrelated (cu and c for the real system and ¢b
and ¢c for the ideal system)with a probability of 1/2. The argument for dishonest Alice is identical. Constructibility of a 1/2-biasedCF
resource from anunfair CF resource.
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Lemma13 (Impossibility of extending ^).Givenn abort channels with delay ^1 ,K, ^n between two

parties, it is impossible to construct with   1

8
a channel ¢^ between the two parties with a trusted region that is

larger than the trusted region of all of the individual channels used.

This holds for all protocols P P,A B in , which includes inefficient and non-signalling systems. The distinguisher

needed to distinguish the real from ideal system has the same complexity requirements as the protocol P P,A B. In

particular, if it is efficient or classical, then so is the distinguisher. Furthermore, if the channels constructed and used

are classical, then the distinguisher also has the same quantummemory requirements as the protocol P P,A B.

The proof of lemma 13 is identical to the proof of theorem7 found in appendix B.3, because the

distinguisher used runs the honest protocol Pi Pi,A B, and  and ^ only differ on the adversarial interface
(a dishonest Alice can provoke an abort). Sowe omit it.

ORCID iDs

Lídia del Rio https://orcid.org/0000-0002-2445-2701

References

[1] Yin J et al 2017 Satellite-based entanglement distribution over 1200 kilometers Science 356 1140–4

[2] Ren J-G et al 2017Ground-to-satellite quantum teleportationNature 549 70

[3] Liao S-K et al 2017 Satellite-to-ground quantumkey distributionNature 549 43

[4] MaurerU andRenner R 2011Abstract cryptography 2nd Symp. Innovations in Computer Science, ICS 2011 ed BChazelle (Tsinghua:

TsinghuaUniversity Press)pp 1–21

[5] Canetti R 2001Universally composable security: a new paradigm for cryptographic protocols Proc. 42nd IEEE Symp. on Foundations of

Computer Science, FOCS ’01 (Piscataway,NJ: IEEE)p 136

[6] Kent A 1999Unconditionally secure bit commitment Phys. Rev. Lett. 83 1447–50

[7] Kent A 2012Unconditionally secure bit commitment by transmittingmeasurement outcomesPhys. Rev. Lett. 109 130501

[8] Kaniewski J, TomamichelM,Hanggi E andWehner S 2013 Secure bit commitment from relativistic constraints IEEETrans. Inf. Theory

59 4687–99

[9] Lunghi T et al 2015 Practical relativistic bit commitment Phys. Rev. Lett. 115 030502

[10] UnruhD2010Universally composable quantummulti-party computationAdvances in Cryptology—EUROCRYPT 2010 (LectureNotes

in Computer Science vol 6110) (Berlin: Springer) pp 486–505

[11] KashefiE and PappaA 2017Multiparty delegated quantum computingCryptography 1 12

[12] BlumM1983Coinflipping by telephone a protocol for solving impossible problemsACMSIGACTNews 15 23–7

[13] Kilian J 1988 Founding crytpography on oblivious transfer Proc. 20th annual ACMSymp. onTheory of Computing—STOC ’88 (New

York: ACM) pp 20–31

[14] Hallgren S, SmithA and Song F 2011Classical cryptographic protocols in a quantumworld Int. J. Quantum Inf. 13 1550028

[15] Kaniewski J 2015Relativistic quantum cryptography PhDThesisNationalUniversity of Singapore

[16] Canetti R and FischlinM2001Universally composable commitmentsAdvances in Cryptology—CRYPTO2001: 21st Annual Int.

Cryptology Conf. Proc. (Santa Barbara, CA, 19–23, August 2001) (Berlin: Springer) pp 19–40

[17] MayersD 1997Unconditionally secure quantumbit commitment is impossible Phys. Rev. Lett. 78 3414–7

[18] LoH-K andChauHF 1997 Is quantumbit commitment really possible? Phys. Rev. Lett. 78 3410–3

[19] LoH-K andChauH1998Why quantumbit commitment and ideal quantum coin tossing are impossible PhysicaD 120 177–87

[20] UnruhD2011Concurrent composition in the bounded quantum storagemodelAdvances in Cryptology—EUROCRYPT 2011 (Lecture

Notes in Computer Science) (Berlin: Springer) pp 467–86

[21] UnruhD2013 Everlastingmulti-party computationAdvances in Cryptology—CRYPTO2013 ed RCanetti and JAGaray (Berlin:

Springer) pp 380–97

[22] PortmannC,Matt C,MaurerU, Renner R andTackmannB 2017Causal boxes: quantum information-processing systems closed

under composition IEEETrans. Inf. Theory 63 1

[23] DemayG andMaurerU 2013Unfair coin tossing 2013 IEEE Int. Symp. on Information Theory (Piscataway,NJ: IEEE) pp 1556–60

[24] ChaillouxA andKerenidis I 2013Optimal quantum strong coinflipping Proc. 54th Symp. on Foundations of Computer Science,

FOCS’13 (Piscataway,NJ: IEEE) pp 527–33

[25] Damgård I B, Fehr S, Salvail L and Schaffner C 2008Cryptography in the bounded-quantum-storagemodel SIAM J. Comput. 37

1865–90

[26] Chakraborty K, ChaillouxA and Leverrier A 2015Arbitrarily long relativistic bit commitment Phys. Rev. Lett. 115 250501

[27] PortmannC andRenner R 2014Cryptographic security of quantumkey distribution arXiv:1409.3525

[28] Broadbent A, Fitzsimons J andKashefiE 2009Universal blind quantum computation 2009 50th Annual IEEE Symp. on Foundations of

Computer Science (Piscataway,NJ: IEEE) pp 517–26

[29] DunjkoV, Fitzsimons J F, PortmannC andRenner R 2014Composable Security of DelegatedQuantumComputation (Berlin: Springer)

pp 406–25

[30] DunjkoV andKashefiE 2016 Blind quantum computingwith two almost identical states arXiv:1604.01586

[31] Chiribella G, D’ArianoGM, Perinotti P andValiron B 2013Quantum computations without definite causal structurePhys. Rev.A 88

022318

[32] Procopio LM et al 2015 Experimental superposition of orders of quantumgatesNat. Commun. 6 7913

[33] RubinoG et al 2017 Experimental verification of an indefinite causal order Sci. Adv. 3 e1602589

[34] Colnaghi T,D’ArianoGM, Perinotti P and Facchini S 2012Quantum computationwith programmable connections between gates

Phys. Lett.A 376 2940–3

28

New J. Phys. 21 (2019) 043057 VVilasini et al

https://orcid.org/0000-0002-2445-2701
https://orcid.org/0000-0002-2445-2701
https://orcid.org/0000-0002-2445-2701
https://orcid.org/0000-0002-2445-2701
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1038/nature23675
https://doi.org/10.1038/nature23655
https://doi.org/10.1103/PhysRevLett.83.1447
https://doi.org/10.1103/PhysRevLett.83.1447
https://doi.org/10.1103/PhysRevLett.83.1447
https://doi.org/10.1103/PhysRevLett.109.130501
https://doi.org/10.1109/TIT.2013.2247463
https://doi.org/10.1109/TIT.2013.2247463
https://doi.org/10.1109/TIT.2013.2247463
https://doi.org/10.1103/PhysRevLett.115.030502
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.3390/cryptography1020012
https://doi.org/10.1145/1008908.1008911
https://doi.org/10.1145/1008908.1008911
https://doi.org/10.1145/1008908.1008911
https://doi.org/10.1142/S0219749915500288
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1103/PhysRevLett.78.3414
https://doi.org/10.1103/PhysRevLett.78.3414
https://doi.org/10.1103/PhysRevLett.78.3414
https://doi.org/10.1103/PhysRevLett.78.3410
https://doi.org/10.1103/PhysRevLett.78.3410
https://doi.org/10.1103/PhysRevLett.78.3410
https://doi.org/10.1016/S0167-2789(98)00053-0
https://doi.org/10.1016/S0167-2789(98)00053-0
https://doi.org/10.1016/S0167-2789(98)00053-0
https://doi.org/10.1007/978-3-642-20465-4_26
https://doi.org/10.1007/978-3-642-20465-4_26
https://doi.org/10.1007/978-3-642-20465-4_26
https://doi.org/10.1007/978-3-642-40084-1_22
https://doi.org/10.1007/978-3-642-40084-1_22
https://doi.org/10.1007/978-3-642-40084-1_22
https://doi.org/10.1109/TIT.2017.2676805
https://doi.org/10.1109/ISIT.2013.6620488
https://doi.org/10.1109/ISIT.2013.6620488
https://doi.org/10.1109/ISIT.2013.6620488
https://doi.org/10.1109/FOCS.2009.71
https://doi.org/10.1109/FOCS.2009.71
https://doi.org/10.1109/FOCS.2009.71
https://doi.org/10.1137/060651343
https://doi.org/10.1137/060651343
https://doi.org/10.1137/060651343
https://doi.org/10.1137/060651343
https://doi.org/10.1103/PhysRevLett.115.250501
http://arXiv.org/abs/1409.3525
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.1007/978-3-662-45608-8_22
https://doi.org/10.1007/978-3-662-45608-8_22
https://doi.org/10.1007/978-3-662-45608-8_22
http://arxiv.org/abs/1604.01586
https://doi.org/10.1103/PhysRevA.88.022318
https://doi.org/10.1103/PhysRevA.88.022318
https://doi.org/10.1038/ncomms8913
https://doi.org/10.1126/sciadv.1602589
https://doi.org/10.1016/j.physleta.2012.08.028
https://doi.org/10.1016/j.physleta.2012.08.028
https://doi.org/10.1016/j.physleta.2012.08.028


[35] AraújoM,Costa F andBruknerČ 2014Computational advantage fromquantum-controlled ordering of gates Phys. Rev. Lett. 113

250402

[36] OreshkovO,Costa F andBruknerČ 2012Quantum correlations with no causal orderNat. Commun. 3 1092

[37] ZychM,Costa F, Pikovski I and Brukner C 2017 Bell’s theorem for temporal order arXiv:1708.00248

[38] Hardy L 2005 Probability theories with dynamic causal structure: a new framework for quantumgravity arXiv:gr-qc/0509120

[39] Chiribella G, D’ArianoGMandPerinotti P 2009Theoretical framework for quantumnetworks Phys. Rev.A 80 022339

[40] Gutoski G 2010On ameasure of distance for quantum strategies J.Math. Phys. 53 032202

[41] Hardy L 2012The operator tensor formulation of quantum theory Phil. Trans. R. Soc.A 370 3385–417

29

New J. Phys. 21 (2019) 043057 VVilasini et al

https://doi.org/10.1103/PhysRevLett.113.250402
https://doi.org/10.1103/PhysRevLett.113.250402
https://doi.org/10.1038/ncomms2076
http://arXiv.org/abs/1708.00248
http://arXiv.org/abs/gr-qc/0509120
https://doi.org/10.1103/PhysRevA.80.022339
https://doi.org/10.1063/1.3693621
https://doi.org/10.1098/rsta.2011.0326
https://doi.org/10.1098/rsta.2011.0326
https://doi.org/10.1098/rsta.2011.0326

	1. Introduction
	1.1. Motivation
	1.2. Previous results
	1.3. Overview and scope of our results
	1.4. Structure of this paper

	2. Framework
	2.1. Composable security: the abstract cryptography framework [4]
	2.1.1. Resources, converters and distinguishers
	2.1.2. Cryptographic security

	2.2. Cryptography in relativistic settings: the causal boxes framework [22]
	2.3. Two-party resources
	2.3.1. Coin flipping (CF )
	2.3.2. Bit commitment (BC )
	2.3.3. Channel with delay (CD )


	3. Results
	3.1. Constructing CF
	3.2. Impossibility of CF, CD and BC
	3.3. Impossibility of extending delays

	4. Discussion
	Acknowledgments
	Author contributions
	Competing interests
	Appendix A.
	A.1. Message space and wires
	A.2. Cuts and causality
	A.3. General definition of a causal box
	A.4. Composition of causal boxes
	A.5. The channel with delay as a causal box

	Appendix B.
	B.1. Constructing CF
	B.2. Impossibility of CF
	B.3. Impossibility of extending delays

	Appendix C.
	C.1. Unfair coin flipping
	C.2. Abort channel

	References

