
This is a repository copy of Collective cell migration and metastases induced by an 
epithelial-to-mesenchymal transition in Drosophila intestinal tumors..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/146642/

Version: Published Version

Article:

Campbell, K., Rossi, F., Adams, J. et al. (6 more authors) (2019) Collective cell migration 
and metastases induced by an epithelial-to-mesenchymal transition in Drosophila intestinal
tumors. Nature Communications, 10. 2311. p. 2311. ISSN 2041-1723 

https://doi.org/10.1038/s41467-019-10269-y

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


ARTICLE

Collective cell migration and metastases induced
by an epithelial-to-mesenchymal transition
in Drosophila intestinal tumors
Kyra Campbell1,8, Fabrizio Rossi2, Jamie Adams1, Ioanna Pitsidianaki1, Francisco M. Barriga 3,

Laura Garcia-Gerique4, Eduard Batlle2,5, Jordi Casanova 2,6 & Andreu Casali7,8

Metastasis underlies the majority of cancer-related deaths yet remains poorly understood

due, in part, to the lack of models in vivo. Here we show that expression of the EMT master

inducer Snail in primary adult Drosophila intestinal tumors leads to the dissemination of tumor

cells and formation of macrometastases. Snail drives an EMT in tumor cells, which, although

retaining some epithelial markers, subsequently break through the basal lamina of the

midgut, undergo a collective migration and seed polyclonal metastases. While metastases

re-epithelialize over time, we found that early metastases are remarkably mesenchymal,

discarding the requirement for a mesenchymal-to-epithelial transition for early stages of

metastatic growth. Our results demonstrate the formation of metastases in adult flies, and

identify a key role for partial-EMTs in driving it. This model opens the door to investigate the

basic mechanisms underlying metastasis, in a powerful in vivo system suited for rapid genetic

and drug screens.

https://doi.org/10.1038/s41467-019-10269-y OPEN

1 Bateson Centre, Department of Biomedical Science, University of Sheffield, Western Bank S10 2TN Sheffield, UK. 2 Institute for Research in Biomedicine

(IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain. 3Cancer Biology and Genetics Program,

Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. 4Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundació Sant

Joan de Déu, Sant Joan de Déu, Barcelona 08950, Spain. 5 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain. 6 Institut de

Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac, 10, 08028 Barcelona, Spain. 7 Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré

(IRBLleida), 25198 Lleida, Spain. 8These authors contributed equally: Kyra Campbell, Andreu Casali. Correspondence and requests for materials should be

addressed to K.C. (email: kyra.campbell@sheffield.ac.uk) or to A.C. (email: acasali@irblleida.cat)

NATURE COMMUNICATIONS |         (2019) 10:2311 | https://doi.org/10.1038/s41467-019-10269-y | www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

http://orcid.org/0000-0002-0996-7707
http://orcid.org/0000-0002-0996-7707
http://orcid.org/0000-0002-0996-7707
http://orcid.org/0000-0002-0996-7707
http://orcid.org/0000-0002-0996-7707
http://orcid.org/0000-0001-6121-8589
http://orcid.org/0000-0001-6121-8589
http://orcid.org/0000-0001-6121-8589
http://orcid.org/0000-0001-6121-8589
http://orcid.org/0000-0001-6121-8589
mailto:kyra.campbell@sheffield.ac.uk
mailto:acasali@irblleida.cat
www.nature.com/naturecommunications
www.nature.com/naturecommunications


W
ith metastasis being responsible for 90% of cancer-
related deaths, there is a pressing need to understand
the underlying mechanisms by which tumor cells

colonize distant organs1. The metastatic cascade is a multistep
process, which starts with the local invasion of the primary tumor
into adjacent tissue, followed by dissemination of cancer cells and
formation of secondary tumors at distant sites2. Over the past
years, the prevalent view in the cancer field has been that tumor
cells exploit the epithelial-to-mesenchymal transition (EMT) to
increase their motility and invasive capabilities during the early
stages of the metastatic cascade, a process by which epithelial cells
acquire mesenchymal characteristics3–7. More recently, however,
it has been shown that EMT is not necessary for the generation of
metastases8,9, a matter that has raised an intense debate and
conflicting views on the importance of EMT in cancer10–13.

In all, 80–90% of human colorectal cancers (CRCs) are initi-
ated by loss of the tumor-suppressor gene adenomatous polyposis
coli (APC), which leads to the constitutive activation of WNT
signaling pathway. A second common event is activating muta-
tions of KRAS, mutated in 40–50% of human CRCs, which sti-
mulates cell growth by rendering cancer cells independent of
epidermal growth factor receptor (EGFR) signaling. Combined
mutations in the WNT and EGFR pathways are the most frequent
initial events of CRC14. There are striking similarities between the
guts of mammalians and of Drosophila15 and we and others have
previously shown that it is possible to model CRC in Drosophila
by inducing clonal activation of the Wnt and Ras signaling
pathways in the adult midgut16,17. These intestinal epithelial Apc-
Ras clones were mutant for the negative regulators of the Wnt
pathway, Apc and Apc2, and overexpressed the oncogenic form of
Ras, UAS-RasV12. We showed that this genetic manipulation led
to the formation of tumor-like overgrowths with many hallmarks
of human CRC such as increased proliferation, a block in cell
differentiation and cell polarity, and disrupted organ archi-
tecture16. Notably, we found that these tumors were confined to
the gut, never being detected in other tissues16. These findings
indicate that, as in the case of human CRC, combined APC and
Ras mutations are not sufficient to drive tumor dissemination in
Drosophila.

Here we leverage this Drosophila melanogaster model for CRC
to revisit the requirement of EMT in epithelial tumor cells for
metastatic dissemination. We find that expression of Snail (Sna)
in adult Drosophila intestinal Apc-Ras tumors leads to the for-
mation of macrometastases, which shows remarkable parallels to
human metastases. We find that Snail activates a partial EMT in
tumor cells and that tumor cells undergo collective cell migration
and seed polyclonal metastases. While flies and fish have emerged
as powerful tools to investigate malignancy and perform large-
scale genetic and drug screens, to date studies have been limited
by a lack of metastatic models where cells can be followed from
primary tumor development to growth of macrometastases in
adult organisms. We now overcome this issue as we have devel-
oped highly sensitive assays that enable the detection of circu-
lating tumor cells, which, combined with in vivo imaging, makes
all steps of the process accessible to analysis.

Results
Sna activation triggers formation of macrometastases. To
investigate whether EMT might facilitate the formation of
metastases in the Apc-Ras model, we expressed Sna, a master
EMT transcription factor18. Similarly to Apc-Ras, we found that
midgut Apc-Ras-Sna clones increased in size over time, gen-
erating tumor-like overgrowths between 2 and 4 weeks after clone
induction (Supplementary Fig. 1). Remarkably, and in contrast to
Apc-Ras clones, we found Apc-Ras-Sna metastatic tumors

(TMets) in multiple distant locations outside the gut, including
the abdomen, thorax, and head (Fig. 1a, b, arrows), as well as the
ovaries and legs, within 2–3 weeks of induction (Fig. 1c, arrows).
Disseminated tumor cells were also observed to colonize the
brain, indicating that they were able to cross the blood–brain
barrier (Fig. 1c). Macroscopic TMets, visible externally in whole
flies were rare (1.2% of the flies analyzed, Fig. 1d). We conclude
that induction of an EMT program in primary tumor cells
induces rapid metastatic dissemination in Drosophila intestinal
tumors driven by APC and Ras mutations (Fig. 1e).

To test the growth potential of tumor cells present in
metastases, we carried out tumor allografts into adult host flies,
an assay routinely used to assess the tumorigenic potential of
mutant tissues19. We dissected metastases present in the abdo-
men of flies bearing Apc-Ras-Sna clones (Supplementary Fig. 2,
arrow) and subsequently transplanted them into adult hosts,
where they grew aggressively, and invasively, killing all hosts
within 14 days (Fig. 2a, Transplant 1 (T1)). We carried out 10
consecutive rounds of transplantation (T1–T10), during which
time the tumors continued to proliferate, implying that
metastases have unlimited growth potential. Transplanted tumor
cells were invasive, as shown by colonization of the eye (Fig. 2b)
or the ovaries (Fig. 2c).

EMT facilitates dissemination into the hemolymph. To further
characterize the process of primary tumor cell dissemination, we
developed a highly sensitive luciferase-based assay to investigate
the presence of circulating tumor cells (CTCs). We introduced a
UAS-luciferase transgene into the Apc-Ras-Sna genetic back-
ground20 and, as proof-of-principle, analyzed the luciferase
activity in lysates from whole flies bearing Apc-Ras-Sna clones.
We observed an increase in luciferase activity between 1 and
4 weeks after clone induction (Supplementary Fig. 3a), in
accordance with the increase in the number of tumor cells
observed in the midgut (Supplementary Fig. 1). To understand
how luciferase activity related to cell number, we sorted the GFP+

cells from gut-induced Apc-Ras-Sna clones by fluorescence-
activated cell sorting. A linear correlation (r= 0.9994, p= 0.0006)
was observed between the number of cells isolated and the
amount of luciferase activity detected, allowing us to detect down
to 10 cells (Supplementary Fig. 3b).

We next leveraged this methodology to test for the presence of
CTCs in hemolymph extracted from individual flies. First, we
measured the luciferase activity in the hemolymph extracted from
flies bearing midgut-induced clones of green fluorescent protein
(GFP) alone or overexpressing Sna and did not detect any CTCs
(Supplementary Fig. 3c). Next, we measured CTCs in Apc-Ras-
Sna flies 2, 3, and 4 weeks after clone induction. We observed
6.8% of the flies (n= 59) with levels of luciferase indicating >10
CTCs 2 weeks after Apc-Ras-Sna clone induction, a percentage
that increased to 15% at 3 weeks (n= 80) and 19.4% at 4 weeks
(n= 108) (Fig. 2d). This shows remarkable parallels with some
human cancers; for example, in several human breast cancer
series, up to 19% of patients with ductal carcinoma in situ had
detectable CTCs. Yet, the risk of developing overt metastases was
<1% among these patients21–25. We also observed a wide
distribution in the number of CTCs per fly, ranging from ten
to over a thousand cells per fly (Fig. 2e). Consistently, in sections
of whole flies we observed the presence of small TMets that were
not visible from outside, ranging from duplets to tens of cells
(Fig. 2f). Of note, we also examined the hemolymph of flies
bearing clones of just Apc-Ras, and a small number of flies had
some cells in the hemolymph, but the percentage of flies bearing
CTCs and the amount found was extremely low in comparison to
those found in Apc-Ras-Sna flies (Supplementary Fig. 3c). Taken
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together, these data suggest that Sna overexpression in Apc-Ras
clones greatly increases the ability of tumor cells to push out of
the gut, invade through the surrounding muscle and basal lamina,
and out into the hemolymph.

Sna induces collective cell migration. EMT has generally been
linked to the dispersion of individual primary tumor cells, yet
cancer invasion is often visualized as collective migration of large
groups of cells2,26–29. We thus investigated how Sna-induced
EMT may contribute to the mode of migration and phenotypes
adopted by Apc-Ras-Sna cells. We first analyzed the integrity of
the basal lamina by immunohistochemical analysis of midguts
bearing Apc-Ras and Apc-Ras-Sna clones. As we reported before,
Apc-Ras tumors displayed loss of apico-basal polarity, became
highly disorganized, and de-localized E-Cadherin16, but they
never appeared to break the basal lamina, as seen by continuous
Laminin staining (Fig. 3a). In contrast, high levels of Sna
expressed in Apc-Ras cells were associated with large disruption
and apparent reorganization of the basal lamina (Fig. 3a, arrow).
These images were particularly arresting, as despite the

conceptual importance of basal lamina breakdown for tumor
evasion, this phenomenon is rarely visualized in vivo. Con-
comitantly, we observed groups of GFP+ cells that migrated out
of the gut and that were positioned near the areas where the basal
lamina has been disrupted, suggesting that its breakdown facil-
itates collective migration of tumor cells (Fig. 3a, arrow). Fur-
thermore, we occasionally observed primary tumor cells
extending out from the gut to envelope surrounding tracheal
tubes (Fig. 3b), suggesting that trachea might serve as substrate
for their migration, as has been shown in mammalian models of
metastasis30.

Whereas a complete transition from epithelial-to-mesenchymal
state is theoretically possible, it has been proposed that tumor
cells can undergo a “partial EMT” by which they attain a hybrid
epithelial/mesenchymal phenotype. These intermediate states are
characterized by a combination of epithelial and mesenchymal
features, which may enable collective cell migration (reviewed in
refs. 31–33). Consistent with this notion, we found that Apc-Ras-
Sna cells lose epithelial characteristics such as their regular shape
and polarity, which can be seen by a dramatic reorganization of
F-actin (Fig. 3c) and loss of apico-basal proteins from the cell
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membrane (Fig. 3d, e), and they gain mesenchymal traits,
including numerous protrusive membranes (Fig. 4) and the
ability to migrate through the basal lamina (Fig. 3a). Yet, at the
same time these cells retained the expression of E-Cadherin,
which was no longer restricted to the apical membrane but often
relocalized around the cell surface or to intracellular punctae
(Fig. 3e, arrows). These data are striking when considering a
recent study that exploited a lineage-labeled mouse model of
pancreatic ducal adenocarcinoma to study for the presence of
different EMT imtermediates in vivo. This study revealed that
most tumor cells undergo a partial EMT, which they showed is
characterized by the internalization and intracellular accumula-
tion of E-Cadherin and other epithelial proteins, rather than
transcriptional repression, as well as migration in clusters34.
Taken together with our observation of groups of tumor cells
found outside the gut and associated along the trachea, our results

suggest that Sna overexpression in CRC tumors induces a partial
EMT and collective migration of the cells. This type of partial
EMT may not be detected by the markers that were recently used
to lineage trace EMT processes in mouse models for breast
cancer8, as markers such as fibroblast-specific protein 1 and
Vimentin are likely not activated by a cell that only proceeds part-
way toward a fully mesenchymal state11,13.

Polyclonal composition of metastases. A prediction from the
collective migratory mode observed in Apc-Ras-Sna tumors is
that circulating cell clusters seed metastases, and therefore
metastases must be polyclonal in origin, as seen recently in mouse
models for breast and pancreatic cancer metastases35–37. To test
this hypothesis, we performed lineage-tracing experiments using
the dBrainbow reporter construct38. This approach enables the
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tracing of multi-cell lineages within a single tissue, as the Cre-
induced recombination used to generate clones also drives the
selection of one of the three fluorescent proteins, with the green
and red fluorescence detectable in unfixed samples38. We added
dBrainbow to the genetic Apc-Ras-Sna background and, follow-
ing just the green and red fluorescence, found that this gave rise
to polyclonal tumors within the midgut (Fig. 5a, Supplementary
Fig. 4). We next examined the color make-up of metastases and
found that they were multicolored and thus must have had a
polyclonal origin (Fig. 5b). This is further supported by the
observation that small TMets appear extremely heterogeneous in
cell composition, with cells varying greatly in size, shape, and
organization (Fig. 6a–c). As previously noted, in a few Apc-Ras
flies we observe a low number of CTCs that occur in the absence
of any visible breaks in the basal lamina. As we have never

observed TMets in these flies, taken together, our data suggest
that large breaks and collective dissemination of tumor cells is
required for TMets to form. Thus, while we cannot rule out a role
for individual CTCs, these results strongly support a model
whereby Sna induces a partial EMT, collective migration of cell
clusters, and the seeding of polyclonal tumors. Future live cell
imaging studies will help to fully characterize this process of
collective cell migration and discern whether individual cell
migration and a complete EMT may also contribute to the for-
mation of metastases.

Re-epithelization of secondary tumors. Metastases generated by
epithelial cancers in humans are often highly epithelial and dif-
ferentiated. It has been shown that disseminated tumor cells
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undergo the reverse process of the mesenchymal-to-epithelial
transition (MET) and re-epithelialize to form metastases25,39–42.
We noted that, upon serial transplants, macroscopic TMets
became less aggressive and more compact in shape (Fig. 2b, c), in
contrast to transplanted larval brain tumors that drive increased
host lethality after repeated transplants43. Thus we next aimed to
further analyze how they evolved over time. TMets do not display
any epithelial characteristics (Fig. 6a–c). Apico-basal polarity
markers such as F-Actin and Armadillo are found throughout the
cell membrane and the cells appear irregular and highly dis-
organized (Fig. 6a, b). Staining for basal lamina shows that entire
TMets are enclosed in a sheath of lamina, and it is absent from
within the tumors (Fig. 6c). We examined E-Cadherin after the
TMet had been allowed to grow further and found that, in
T1 stages, cells continue to display a non-epithelial organization,
with E-Cadherin delocalized throughout cell membranes
(Fig. 7a). Upon re-examination after 70 days of growth (in T10),
we found that some regions of the tumor exhibited a striking
epithelial organization, with E-Cadherin tightly localized to the
apical domain of the cells, and lumens clearly visible (Fig. 7a,
arrow). Electron microscopic analysis showed the presence of a
clear columnar epithelial shape in T10s compared to non-
polarized organization of cells in TMets (Fig. 7b). Moreover, T10s
contained adherens junctions, apical villi-like structures, lumens,
and tracheas within the tumor that were surrounded by basal
lamina (Fig. 7c). Consistently, transcriptional analysis confirmed
upregulation of epithelial genes in T10 compared to T1 and T2
(Table 1). These results show that, over time, metastases abandon
mesenchymal traits and progressively self-organize into complex
epithelial structures. The association of tracheal cells with epi-
thelial metastases suggests that they may be recruited to supply
oxygen and sustain tumor growth.

These results were very striking as they suggest that MET is not
strictly necessary for early stages of metastases but occurs as the
tumors grow. This is surprising given previous studies in mouse
models for spontaneous squamous cell carcinomas and breast
cancer, which suggested that MET needs to occur in order for
metastases to form25,44. However, our results are supported by a
recent study that identified many intermediate EMT states in skin
and mammary primary tumors in mice and found by injecting
these isolated cells back subcutaneously into host mice that the
cell subpopulations that were best at undergoing MET during
tumor metastasis did not correlate with the most metastatic
populations45. Taken together with our in vivo results, this
suggests that other mechanisms than just MET are critical factors
for metastatic seeding to occur.

Discussion
While it has been shown for many years now that model
organisms such as flies and fish can develop cancer46–48, models
in which macrometastases develop from primary tumors induced
in adult organisms have remained elusive. However, transplant
experiments have shown that injected tumor cells do have the
capacity to disseminate through adult flies49,50. More recently, it
was demonstrated that specific genetic mutations in the hindgut
leads to the appearance of small foci of tumor cells outside the
gut, thus demonstrating that fly tumors can execute early steps of
metastasis51. Here, by driving constitutive expression of Sna in
CRC tumors, we induced cells to break through the muscle and
basement membrane surrounding the gut, migrate away, and seed
metastases that grew and re-epithelialized over time.

Sna is a master regulator of EMT, which has generally been
linked to the dispersion of individual primary tumor cells.
However, a number of results suggest that Sna drives the

formation of metastases through activation of a partial EMT and
collective cell migration. First, large breaks in the basal lamina
near Apc-Ras-Sna clones are associated with groups of tumor
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Fig. 7 Metastases re-epithelialize over time. a E-Cadherin localizes

throughout the cell membranes at T1 stage (red, left), whereas in T10 it can

be found tightly localized to the apical domain of cells, with lumen clearly

visible (right, arrow). b, c Images taken by electron microscope of a

metastatic tumor (TMet) and a stage T10 metastases. b Cells in TMets are

highly irregular and disorganized (left), whereas in T10 they are organized,

with a columnar shape, and form lumen (right). c Stage T10 metastases

contain trachea within the tumor (left, arrow), are surrounded by a basal

lamina (middle, arrow), and make apical villi-like structures (right, arrow).

Scale bars: (a) 50 µm; (b, left) 200 nm; (b, right) 5 µm; (c) 100 nm

Table 1 Epithelial genes become highly expressed after

several rounds of transplants

Gene Biological function T1–T10

Crumbs Adherens junctions 2.16

Bitesize Apical junction 4.33

Fat Cell adhesion 19.38

Stranded at second Apical plasma membrane 25.95

Cadherin 74A Cell adhesion 23.27

Vermiform Chitin binding, trachea 51.18
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cells, which are found in large clusters outside the gut. Such
groups of tumor cells can also often be observed extending out
from the midgut and enveloping gut-associated tracheal tubes.
Second, groups of tumor cells in the gut are highly protrusive at
the edges. Third, lineage-tracing experiments revealed that TMets
to be polyclonal, strong evidence that they are seeded by het-
erogeneous clusters of cells. Finally, the time between the
induction of the clones and observation of macrometastases at
just 2–3 weeks is extremely short. While all these data strongly
suggest that Sna is driving a partial EMT and collective cell
migration, it is possible that cells that have undergone a complete
EMT and individual cell migration may also contribute to
metastases. Future studies using innovative new techniques that
enable live imaging of the midguts of adult flies52 and imaging
inside intact adult Drosophila53 will be key to unraveling the
relative contributions of each of these cell behaviors.

Even though we cannot recapitulate the entire metastatic cas-
cade54, as Drosophila have an open circulatory system, it is
remarkable the number of cellular and organismic aspects of
tumorigenesis shared between flies and mammals, despite their
divergence over 550 million years ago. Given the power of Dro-
sophila genetics and its amenability to state-of-the-art live ima-
ging, this model has enormous potential for dissecting the basic
mechanisms underlying tumor dissemination, colonization, and
metastatic growth. A unique strength of this model is the ability
to visualize the entire process. Combined with assays that act as
readouts for each step, rapid screens can be performed, targeted
at finding ways to block distinct stages of metastasis through both
genetic and pharmaceutical means.

Methods
Clone generation. MARCM clones were generated by a 1-h heat shock at 37 °C of
2–5-day-old females and were marked by the progenitor cell marker escargot (esg)
Gal4 line driving the expression of UAS GFP.

Genotypes. yw hsp70-flp; esg Gal4 UAS-GFP UAS-RasV12/CyO; UAS-Luciferase
FRT82B Gal80/TM6b flies were crossed with yw hsp70-flp;Sp/CyO; FRT82B
Apc2N175KApcQ8/TM6b flies to generate Apc-Ras clones and to yw hsp70-flp;UAS-
Sna/CyO; FRT82B Apc2N175KApcQ8/TM6b flies to generate Apc-Ras-Sna clones. yw
hsp70-flp; esg Gal4 UAS-GFP/CyO; UAS-Luciferase FRT82B Gal80/TM6b flies were
crossed with yw hsp70-flp;UAS-Sna/CyO; FRT82B/TM6b flies to generate Sna
clones and to yw hsp70-flp;Sp/CyO; FRT82B/TM6b flies to generate GFP clones.
Apc2N175K is a loss-of-function allele, ApcQ8 is a null allele, UAS-RasV12 is a gain-
of-function transgene, and UAS-Sna is a wild-type transgene. Stocks were obtained
from Bloomington Stock Center and VDRC. UAS-dBrainbow was a gift from
Stefan Luschnig55.

Staining and antibodies. Adult female flies were dissected in phosphate-buffered
saline (PBS). All the digestive tract was removed and fixed in PBS and 4% electron
microscopic-grade paraformaldehyde (Polysciences, USA) for 35 min. Samples
were rinsed 3 times with PBS, 4% bovine serum albumin (BSA), and 0.1% Triton
X-100 (PBT-BSA) and incubated with the primary antibody overnight at 4 °C and
with the secondary antibody for 2 h at room temperature. Finally, the samples were
rinsed 3 times with PBT-BSA and mounted in DAPI-containing media (Vecta-
shield, USA). All the steps were performed without mechanical agitation. Primary
antibodies were mouse anti-Armadillo (1:100, Hybridoma Bank, N2 7A1); mouse
anti-Discs large (1:500; Hybridoma Bank, 4F3); rat anti-E-Cadherin (1:100,
Hybridoma Bank, DCAD2); goat anti-GFP (1:500; Abcam, ab6673); rabbit anti-
Laminin (1:500, Abcam, ab47651); mouse anti-RFP (1:300; Life Technologies,
MA5–15257). Secondary antibodies were from Invitrogen (USA). TRICT-
conjugated Trachael chitin was visualized with CBP (chitin-binding protein) at
1:300 (a gift from Jordi Casanova). Phalloidin (Sigma, USA, P1951) was used at 5
µg/ml. Confocal image were acquired with a Leica SP5 or Zeiss LSM 880. Images
were analyzed with the Fiji software [National Institutes of Health (NIH) Bethesda,
MD] and assembled into figures using Fiji, the Adobe Photoshop software, and
Microsoft Powerpoint.

Luciferase assays. Luciferase assays were performed using the Dual-Luciferase(R)
Reporter Assay System. Samples were loaded into 96-well plates and read on a
Varioskan plate reader. For whole-fly lysates, flies were squashed using a pipette tip
into the Luciferase buffer. For hemolymph analysis, hemolymph was extracted

from whole flies according to the instructional video published by Laura Mussel-
man (https://www.youtube.com/watch?v=im78OIBKlPA).

Transplants. Three-week-old adult flies bearing Apc-Ras-Sna clones showing
macroscopic TMets visible under the scope were washed in distilled water and
dissected in 0.7% NaCl on a siliconized microscope slide and cut into five small
pieces. Young female adult hosts (genotype was yw) were anesthetized with CO2

and stuck on a microscope slide, ventral side up, with double-sided sticky
tape. Each piece of a TMet was picked up with the tip of a glass needle and
injected tangentially in the mid-ventral part of the abdomen of one adult host.
Implanted hosts were kept at 29 °C. For the next round of transplantations, a
transplanted fly was dissected, the GFP+ tumor mass was cut into several small
pieces and injected again in five adult host flies. This process was repeated for 10
rounds.

Gene expression analysis. TMets (GFP+) were dissected from Apc-Ras-Sns flies
between 3 and 4 weeks after induction and incubated for 15 min at 65 °C in Lysis
buffer (20 mM DTT, 10 mM Tris.HCl ph 7.4, 0.5% sodium dodecyl sulfate, 0.5 µg/
µl proteinase K). RNA was isolated with a RNA clean XP Kit (Agencourt
Bioscience). cDNA synthesis and amplification was performed by a TransPlex®
Complete Whole Transcriptome Amplification Kit (WTA2–50RXN, Sigma-
Aldrich).

Microarray processing. Microarray samples from each experiment were processed
separately using packages affy56 and affyPLM57 from R58 and Bioconductor59. Raw
cel files were normalized using RMA background correction and summarization60.
Technical metrics described by ref. 61 were computed and recorded as additional
features for each sample. Standard quality controls were performed in order to
identify abnormal samples and relevant sources of technical variability62 regarding:
(a) spatial artifacts in the hybridization process (scan images and pseudo-images
from probe-level models); (b) intensity dependences of differences between chips
(MvA plots); (c) RNA quality (RNA digest plot); (d) global intensity levels (boxplot
of perfect match log-intensity distributions before and after normalization and RLE
plots); and (e) anomalous intensity profile compared to the rest of samples (NUSE
plots, Principal Component Analyses). No samples were excluded according to the
results of these quality-control checks. Chip probeset were annotated using the
information provided by Affymetrix.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The microarray data have been deposited in the Gene Expression Omnibus (GEO)

database under the accession code GSE125312. All the other data supporting the findings

of this study are available within the article and its supplementary information files and

from the corresponding authors upon reasonable request.
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