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1. Introduction

Linear models with endogenous regressors are commonly employed in time series econometric analysis.! In many
cases, the parameters of these models are assumed constant throughout the sample. However, given the span of many
economic time series data sets, this assumption may be questionable and a more appropriate specification may involve
parameters that change value during the sample period. Such parameter changes could reflect legislative, institutional
or technological changes, shifts in governmental and economic policy, political conflicts, or could be due to large
macroeconomic shocks such as the oil shocks experienced over the past decades and the productivity slowdown. It is
therefore important to test for parameter - or structural — change. Various tests for structural change have been proposed
with one difference between them being in the type of structural change against which the tests are designed to have
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E-mail addresses: o.boldea@uvt.nl (O. Boldea), adriana.cornea-madeira@york.ac.uk (A. Cornea-Madeira), Alastair.Hall@manchester.ac.uk
(AR. Hall).

1 For example, Brady (2008) examines consumption smoothing by regressing consumption growth on consumer credit, the latter being endogenous
because it depends on liquidity constraints. Zhang et al. (2008), Kleibergen and Mavroeidis (2009), Hall et al. (2012) and Kim et al. (2014) investigate
the New Keynesian Phillips curve, where inflation is driven by expected inflation and marginal costs, both endogenous since they are correlated
with inflation surprises. Bunzel and Enders (2010) and Qian and Su (2014) estimate the forward-looking Taylor rule, a model where the Federal
fund rate is set based on expected inflation and output, both endogenous as they depend either on forecast errors or on current macroeconomic
shocks. All these studies test for structural change in their estimated equations as part of their analysis.
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power. In this paper, we focus on the scenario in which the potential structural change consists of discrete changes in the
parameter values at unknown points in the sample, known as break - (or change-) points. Within this framework, two
types of hypotheses tests are of natural interest: tests of no parameter change against an alternative of change at a fixed
number of break-points, and tests of whether the parameters change at ¢ break-points against an alternative that they
change at £+ 1 points. These hypotheses tests are of interest in their own right, and also because they can form the basis
of a sequential testing strategy for estimating the number of parameter break-points, see Bai and Perron (1998).

Hall et al. (2012) propose various statistics for testing these hypotheses in linear models with endogenous regressors
based on Two Stage Least Squares (2SLS).2 Their tests are the natural extensions of the analogous tests for linear models
with exogenous regressors estimated via Ordinary Least Squares (OLS) that are introduced in the seminal paper by Bai and
Perron (1998). A critical issue in the implementation of these tests in a 2SLS setting is whether or not the reduced form (RF)
for the endogenous regressors is stable. If it is then, under certain conditions, Hall et al.’s (2012) test statistics converge
in distribution to the same distributions as their OLS counterparts and are pivotal, see Hall et al. (2012) and Perron
and Yamamoto (2014). However, if the reduced form itself is unstable and/or there is unconditional heteroskedasticity,
then these limiting distributions no longer apply (Hall et al., 2012), and are, in fact, no longer pivotal (Perron and
Yamamoto, 2014). This is a severe drawback as in most cases of interest the reduced form is likely to be unstable. This
problem has been circumvented in two ways. Hall et al. (2012) suggest a testing strategy based on dividing the sample
into sub-samples over which the RF is stable but this is inefficient compared to inferences based on the whole sample,
and can be infeasible if the sub-samples are small. Perron and Yamamoto (2015) propose using a variant of Hansen'’s
(2000) fixed regressor bootstrap to calculate the critical values of the test. Their simulation evidence suggests the use of
this bootstrap improves the reliability of inferences but they do not establish the asymptotic validity of the method.?

In this paper, we explore the use of bootstrap versions of 2SLS-based tests for parameter change in far greater detail
than previous studies. We consider inferences based on two different types of bootstrap versions of the structural change
tests, provide formal proofs of their asymptotic validity and report simulation results that demonstrate that the bootstrap
tests provide reliable inferences in the finite sample sizes encountered in practice. More specifically, we consider the
case where the right-hand side variables of the equation of interest contain endogenous regressors, contemporaneously
exogenous variables, lagged values of both and lagged values of the dependent variable. This equation of interest is part
of a system of equations that is completed by the reduced form for the endogenous regressors and equations for the
contemporaneously exogenous variables. This system of equations is assumed to follow a Structural Vector Autoregressive
(SVAR) model in which the parameters of the mean are subject to discrete shifts at a finite number of break-points
in the sample. Both the number and location of the break-points are unknown to the researcher. These break-points
define regimes over which the parameters are constant, and it is assumed that the implied reduced form VAR is stable
within each such regime. The errors of the VAR are assumed to follow a vector martingale difference sequence (m.d.s.)
that potentially exhibits both conditional and unconditional heteroskedasticity. Given this error structure, we explore
methods for inference based on the wild bootstrap proposed by Liu (1988) because it has been found to replicate
the conditional and unconditional heteroskedasticity of the errors in other contexts. In particular, we consider two
versions of the wild bootstrap: the wild recursive bootstrap (which generates recursively the bootstrap observations)
and the wild fixed-regressor bootstrap (which adds the wild bootstrap residuals to the estimated conditional mean, thus
keeping all lagged regressors fixed). These bootstraps have been proposed by Goncalves and Kilian (2004) to test the
significance of parameters in autoregressions with (stationary) conditional heteroskedastic errors. Our primary focus is
on bootstrap versions of sup-Wald-type statistics to test for structural changes in the parameters of the equation of interest
(with endogenous variables) estimated by 2SLS, but our validity arguments also extend straightforwardly to analogous
sup-F-type statistics.

While our primary focus is on models where the reduced form for the endogenous regressors is unstable, our results
also cover the case where this reduced form is stable. In the latter case, the test statistics have a pivotal limiting
distribution under conditions covered by our framework, specialized to errors that are unconditionally homoskedastic. For
these situations, the bootstrap methods we propose are expected to provide a superior approximation to finite sample
behavior compared to the limiting distribution because the bootstrap, by its nature, incorporates sample information.
Thus bootstrap versions of the tests are attractive in this setting as well.

In the case where there are no endogenous regressors in the equation of interest, our framework reduces to a linear
model estimated by OLS. For this set-up, Hansen (2000) proposes the wild fixed-design bootstrap to test for structural
changes using a sup-F statistic. Very recently Georgiev et al. (2018) consider Hansen’s (2000) bootstrap for versions
of sup-F-type tests for parameter variation in predictive regressions with exogenous regressors. Both Hansen (2000)
and Georgiev et al. (2018) establish the asymptotic validity of this bootstrap within the settings they consider.* There
are some similarities and important differences between our framework (specialized to the no endogenous regressor
case) and those in Hansen (2000) and Georgiev et al. (2018). We adopt similar assumptions about the error process to

2 Pperron and Yamamoto (2015) propose an alternative approach based on OLS.

3 An alternative approach is to estimate the number and location of the breaks via an information criteria, see Hall et al. (2015). However, this
approach has the drawback that inferences can be sensitive to the choice of penalty function.

4 fact, Georgiev et al. (2018) demonstrate that Hansen’s (2000) proof of the asymptotic validity of the bootstrap needs an amendment when
the predictive regressors are (near-) unit root processes.

Please cite this article as: O.Boldea, A.Cornea-Madeira and A.R.Hall, Bootstrapping structural change tests. Journal of Econometrics (2019),
https://doi.org/10.1016/j.jeconom.2019.05.019.
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Georgiev et al. (2018) and like both Hansen (2000) and Georgiev et al. consider fixed regressor bootstrap tests of a null of
constant parameters versus an alternative of parameter change. Important differences include: Georgiev et al. (2018) allow
for strongly persistent variables whereas our framework assumes the system is stable within (suitably defined) regimes;
our analysis covers tests for additional breaks in the model, the use of the recursive bootstrap and also inferences based
on sup-Wald tests. Thus our results for this case complement those of Hansen (2000) and Georgiev et al. (2018).”

Although the frameworks are different, Hansen (2000), Georgiev et al. (2018) and our own study all find their bootstrap
versions of the structural change tests work well in finite samples. Interestingly, Chang and Perron (2018) find that
bootstrap-based inferences about the location of breaks have similar advantages in finite samples.® Collectively, our paper
and these other recent studies suggest the use of the bootstrap can yield reliable inferences in linear models with multiple
break-points in the sample sizes encountered in practice.

An outline of the paper is as follows. Section 2 lays out the model, test statistics and their bootstrap versions.
Section 3 details the assumptions and contains theoretical results establishing the asymptotic validity of the bootstrap
methods. Section 4 contains simulation results that provide evidence on the finite sample performance of the bootstrap
tests. Section 5 concludes. Appendix A contains all the tables for Section 4, with additional simulations relegated to
a Supplementary Appendix.” Appendix B contains the proofs, with some background results relegated to the same
Supplementary Appendix.

Notation: Matrices and vectors are denoted with bold symbols, and scalars are not. Define for a scalar N, the generalized
vec operator vect,_q.y(As) = vect(Aq,...,Ay), stacking in order the columns of the matrices A;,s = 1,...,N. Let
diag,_,.y(A;) = diag(A;, ..., Ay) be the matrix that puts the blocks Ay, ..., Ay on the diagonal. If it is clear over which
set vect and diag operations are taken, then the subscript s = 1 : N is dropped on these operators. T denotes the number
of time series observations. If N is the number of breaks in a quantity then Ty, ..., Ty are the ordered change-points.
Also, Ty = (7o, vects—1.n(7s), Tvo1) iS a partition of the interval [1, T] where each element is divided by T, such that
[Tts] = Ts 4y, fors=1,...,N,and 1o = 0 and ty41 = 1. Define the regimes where parameters are assumed constant as
Ly =[T—1+1,T] fors =1, ..., N+ 1. Below the breaks in the structural equation are denoted by Ty = An, and those
in the reduced form by 7y = &, where m an h are the number of breaks in each equation. A superscript zero on any
quantity refers to the true quantity, which is a fixed number, vector or matrix. For any random vector or matrix Z, denote
by ||Z|| the Euclidean norm for vectors, or the Frobenius norm for matrices. Finally, 0, and 0,4, denote, respectively, an
a x 1 vector and a a x b matrix of zeros, and 14 denotes an indicator function that takes the value one if event A occurs.
Let ml, be the a x a identity matrix.

2. The model and test statistics with their bootstrap versions

This section is divided into three sub-sections. Section 2.1 outlines the model. Section 2.2 outlines the hypotheses of
interest and the test statistics. Section 2.3 presents the bootstrap versions of the test statistics.

2.1. The model

Consider the case where the equation of interest takes the form

yi = w, By +u, i=T1,....m+1, tel,o, (1)
S—— ———

1x(p1+41) (p1+4q1)x 1

where w; = vect(x;, z1), z1,; includes the intercept, r; and lagged values of y;, ¥;, and r, and ﬂg) are the parameters in
regime i. The key difference between x; and r; is that x; represents the set of explanatory variables which are correlated
with u;, and r; represents the set of explanatory variables that are uncorrelated with u,. We therefore refer to x; as the
endogenous regressors and r; as the contemporaneously exogenous regressors.® Eq. (1) can be re-written as:

/ 0 ’ 0 / @0
Ye = xtﬂx,t + zl,[ﬁz,t +ue = wh + uy,

where ﬂo = ﬂg) ift e ILX%, i=1,...,m+1 and similar notation holds for 8, , and B, ,. For simplicity, we refer to (1) as
the “structural equation” (SE).

5 The wild fixed-regressor bootstrap is also included in the recent simulation study exploring the finite sample properties of inference methods
about the location of the break-point in models estimated via OLS reported in Chang and Perron (2018).

6 Chang and Perron (2018) report results from a comprehensive simulation study that investigates the finite sample properties of various methods
for constructing confidence intervals for the break fractions in linear regression models with exogenous regressors. They consider variants of the
intervals based on i.i.d., wild and sieve bootstraps.

7 The Supplementary Appendix is available at https://sites.google.com/site/otiliaboldea/ and in the supplementary material archive of the Journal
of Econometrics.

8 This terminology is taken from Wooldridge (1994)[p.349] and reflects that fact r, may be correlated with u, for t # n.

Please cite this article as: O.Boldea, A.Cornea-Madeira and A.R.Hall, Bootstrapping structural change tests. Journal of Econometrics (2019),
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The SE is assumed to be part of a system that is completed by the following equations for x; and r.. The reduced form
(RF) equation for the endogenous regressors x; is a regression model with h breaks (h 4 1 regimes), that is:

X =z A% + v, i=1,...,h+1, tel o. (2)
t t (i) t i,y

~——— S N — ~——

1xpy 1xq  qxpq 1xpq

The vector z; includes the constant, r; and lagged values of y;, %; and r;. It is assumed that the variables in z; ; are a strict
subset of those in z; and therefore we write z;, = vect(z1, z,). Eq. (2) can also be rewritten as:

/' _ o/ AO /
x = z, A + v,

where A? = Af’i) ift e Ii’ng, i=1,..., h+1.The contemporaneously exogenous variables r, are assumed to be generated
as follows,
reo=2,, 80 + & i=1...d+1 tel,. (3)
N N
1xpy 1xpy

where z3; includes the constant and lagged values of r;, y; and x;.

Egs. (1), (2) and (3) imply z; = vect(y;, X, r;) evolves over time via a SVAR process whose parameters are subject to
discrete shifts at unknown points in the sample. To present the reduced form VAR version of the model, define n = dim(z,)
and let Ty denote the partition of the sample such that all three equations have constant parameters within the associated
regimes.” We can then write Egs. (1), (2) and (3) as:

14
Zo= o+ ) CZite, [naTl+1<t<[tT], s=1,2,...,N+1, 4)
i=1

where e, = A "¢,
07 [
1 _ﬂx,s _ﬂr;,s
— 0
A = 0,, L
0P2 01’2 xp1 IPz

; (5)

1 r,s

Y’ denotes the sub-vector of B’ that contain the coefficients on r. in (1) (87 and BY are the values of B2, and B’ for
[t_1T1+1 <t < [%T]); Agfs denotes the sub-matrix of A that contains the coefficients on r; in (2) (A, and AY

are the values of A‘r)ft and A?/ for [t,_1T]+1 <t <[zT]), and € = vect(u,, v;, ;). For ease of notation, we assume the
order of the VAR is the same in each regime, but our results easily extend to the case where the order varies by regime.

2.2. Testing parameter variation

As stated in the introduction, this paper focuses on the issue of testing for structural change in the SE. Within the
model described above, there are two types of test that are of particular interest. The first tests the null hypothesis of
no parameter change against the alternative of a fixed number of parameter changes in the sample that is, a test of
Hp : m = 0 versus Hy : m = k. The second tests the null of a fixed number of parameter changes against the alternative
that there is one more, that is, it tests Hp : m = £ versus H; : m = ¢ + 1. We consider appropriate test statistics for each
of these scenarios in turn below.

As the tests are based on the Wald principle, calculation of the test statistics here requires 2SLS estimation of the SE
under H;. On the first stage, the RF is estimated via least squares methods. If the number and location of the breaks in
the RF are known then this estimation is straightforward. However, in general, neither the number nor the location of the
breaks are known and so they must be estimated. For our purposes here, it is important that both h and Jrg are consistently
estimated and that 7y, the estimator of ng, converges sufficiently fast (see Lemma 7 in Appendix B). These properties can
be achieved by estimating the RF either as a system or equation by equation, and using a sequential testing strategy to
estimate h; see, respectively Qu and Perron (2007) and Bai and Perron (1998). Provided the significance levels of the tests
shrink to zero slowly enough, h approaches h with probability one as the sample size T grows; e.g. see Bai and Perron
(1998) [Proposition 8]. The same consistency result holds if we estimate h via the information criteria; e.g. see Hall et al.
(2013). For this reason, in the rest of the theoretical analysis, we treat h as known. However, we explore the potential
sensitivity of the finite sample performance of the tests for structural change in the SE to the estimation of h in our
simulation study. Let A be the estimator of Af), A; = ZJ’.’;] A(f)]teij*' where [ = {[#j1T1+ 1, [# 4TI+ 2, ..., [%T1},

A ~! . A . . .
and X, = A,z; that is, X; is the predicted value for x; from the estimated RF.

Case (i): Hy: m=0versus Hy: m=k

9 For example, suppose m = 1, h = 2 and d = 1 with A = [0,05,17, =) = [0,0.3,0.5,1]" and @} = [0,0.7,1], then N = 3 and
™ =[0,0.3,0.5,0.7, 1].

Please cite this article as: O.Boldea, A.Cornea-Madeira and A.R.Hall, Bootstrapping structural change tests. Journal of Econometrics (2019),
https://doi.org/10.1016/j.jeconom.2019.05.019.
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Under Hy, the second stage estimation involves estimation via OLS of the model,
Yo = WPy + error, i=1,....k+1, tely, (6)

for all possible k-partitions Ay. Let ﬁ(:‘) denote the OLS estimator of B; in (6), Bxk = vect,-:tkﬂ(ﬁ(i)) = vect,-:1;k+1(;§,-’xk)
denote the OLS estimator of vecti—1..+1(B;)) = vect,-zlzkﬂ(ﬂ,;kk) in (6) (that is, Bxk is the OLS estimator of vect—1..+1(8;)
based on partition Ay). To present the sup-Wald test, we define Ry = Ry ® I,, where Ry is the k x (k 4 1) matrix whose
(i, /)™ element, Ry(i, j), is given by: Re(i,i) = 1, Ri(i,i+ 1) = —1, Ry(i,j) =0 fori= 1,2, ...,k and j # i, j # i + 1. Also
let Ac x = {Ak @ [Aix1 — Ail> €, 11 = €, Ay < 1 — €}. With this notation, the test statistic is:

sup-Waldy = sup Waldr,,, (7)
e e k
n AN A

Waldp, = T B, R} (RkakRk) R B,,. ®8)

where:
A ) A A PO BN A _ ..
Vi, = diagi_q, (Vi) Viy = Qy MpQy . Quy=T" Z Wiy, (9)
[E’i,lk
~ )4 . — / / @0
My = Tler;oVar T~1/2 ,Z Yz (u +vBY) | (10)
te i Ay

BY is the true value of B ; fori=1,2,...,m+ 1 under Hy, and ¥} = (A, IT) and II' = (I, Og, x(gq,))-

As mentioned in the introduction, our framework assumes the errors are a m.d.s. that potentially exhibits heteroskedas-
ticity, and so the natural choice of M(; is the Eicker-White estimator, see Eicker (1967) and White (1980). This can be
constructed using the estimator of 8, ; in (6) under either Ho or Hy, where B, ; are the elements of 8; containing the
coefficients on X;. For the purposes of the theory presented below, it does not matter which is used because the null
hypothesis is assumed to be true. However, the power properties may be sensitive to this choice. In our simulation study
reported below, we use the Eicker-White estimator based on ﬁx,(i)' the estimator of ﬁxv(,-) under Hy, that is,

A — A ~ N
Mgy = EW [ tht(ur + v;ﬂx,(i)); Ii,).k] s

where i, = y, — wé,@m fort € Iy, by = % — A;zr, f‘t = [At, 7], At is defined before (6), Bx,(,-) are the first p; elements
of ﬂ(i), and for any vector @; and I € {1,2, ..., T}, EW[a;; I|=T"! Zte, a.a;,.
Case (ii): Hy: m={£ versusHy : m=4¢+1

Following the same approach used by Bai and Perron (1998) for OLS based inferences, suitable tests statistics can be
constructed as follows. The model with ¢ breaks is estimated via a global minimization of the sum of squared residuals
associated with the second stage of the 2SLS estimation of the SE. For each of the £+ 1 regimes of this estimated model, the
sup-Wald statistic for testing no breaks versus one break is calculated. Inference about Hy : m = £ versus H; : m = £+ 1
is based on the largest of these ¢ 4+ 1 sup -Wald statistics. A

More formglly, let the gstimateq SE breAak fractions for the ¢-break model be A, and the associated break points
be denoted {Ti}f=l where T; = [TA;]. Let [; = Im, the set of observations in the ith regime of the £-break model
and partition this set as il- = fim(wi) U ii(z)(zzri) where ii“)(wi) = {t : [AioaT] + 1, [hioqT] + 2,...,[wT]} and
I.(z)(wi) ={t: [oyT]+ 1, [wiT] + 2, ..., [AT]}. Consider the estimation of the model

1

Ve = By + error, j=1,2, tel(@), (11)

for all possible choices of @; (where for notational brevity we suppress the dependence of B on i). Let ﬁ(w,-) =
vect (ﬁ(l)(w,-), B(z)(wi)) be the OLS estimators of vect(f,), B,)) from (11). Also let Ni(h¢) = [Ai_1+€, Ai—e€]. The sup -Wald
statistic for testing Hp : m = £ versus H; : m = £ + 1 is given by

sup-Waldr(¢ 4+ 1| ¢) = max { sup Tis(w,-)/RQ[Rn?(w,-)R;]1R1B(w,-)} (12)
i=1,2,....0+1 &
@ieNi(h)
where !0

V() = diag (Vi(@), Vo)), V() = (@)™ M) (Qy(m0)) ",

10 The comment above (after (10)) about the calculation of M(i) applies equally to I\?Ij(wi).

Please cite this article as: O.Boldea, A.Cornea-Madeira and A.R.Hall, Bootstrapping structural change tests. Journal of Econometrics (2019),
https://doi.org/10.1016/j.jeconom.2019.05.019.
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A -1 A A ’ =7 | A ~ NG ]
Qo) =T Y iy, WMy(em) = BW [ Fizulic + 8By ): i) |
reiiU)

where i, = y; — w}ﬁu)(wi) fort e iig)(zzri),j =1,2,0 =X — A Zt, T[ [At, I, A[ is defined before (6), and ,IAJXAU)(wi)
are the first p; elements of B(,-)(wi).

2.3. Bootstrap versions of the test statistics

In this section, we introduce the bootstrap analogues of the test statistics presented in the previous section. As noted
above, our framework assumes the error vector €; to be a m.d.s that potentially exhibits conditional and unconditional
heteroskedasticity, and so we use the wild bootstrap proposed by Liu (1988) because it has been found to replicate the
conditional and unconditional heteroskedasticity of the errors in other contexts.!! We consider both the wild recursive
(WR) bootstrap and the wild fixed regressor (WF) bootstrap. These procedures differ in their treatment of the right-hand
side variables in the bootstrap samples as described below.

Generation of the bootstrap samples:

Let 22 = vect(y?, x?,r,) where y? and x? denote the bootstrap values of y; and .. Note that because r; is
contemporaneously exogenous its sample value is used in the bootstrap samples. In all cases below, the bootstrap residuals
are obtained as uf = 1;v; and vl; = ,v;, where iI, and 9, are the (non-centered) residuals under the null hypothesis and
v; is a random variable that is discussed further in Section 3 (Assumption 10).

For the WR bootstrap, {y”'} and {x"'} are generated recursively as follows:

x' = z/Ac+ v, (13)
b bl b3 b
Ve = xr/ﬁxﬁt + zlftﬂz,t + U, (14)
where the vector z? contains a constant, r, and lags of y°, > and r;; Bx,t and [3“ are the sample estimates of ﬁgyt and
ﬂ;{[ under Hy of the test in question.

For the WF bootstrap, z; is kept fixed and, following Goncalves and Kilian (2004), the bootstrap samples are generated
as follows:

o=z A+, (15)
ylt) = x?/ﬁx,t + z/l,tﬂz,t + u?v (16)

where again Bm and ﬁu are the sample estimates of ﬂﬂ,t and /32,[ under Hy of the test in question.

Case (i): Hy: m=0vsH;: m=k
First consider the WR bootstrap. 2SLS estimation is implemented in the bootstrap samples as follows. On the first stage,
the following model is estimated via OLS

xf/ = zf’Aj—f—error, tefj*, j=1,2,...,h+1,

. ab h+1 ob N ob .
to obtain 4; = {Ztel* zbz? } Ztel* zbxY. Define A =3 te,*A & =2 A and i} = vect(x;, 2% ). For a given

k-partition ),k, the second stage of the ZSLS in the bootstrap samples involves OLS estimation of

¥ o= w)By +error, i=1,....k+1, tely, (17)

~b ~b ~b
and let ﬂxk = vect,-=1;k+1(/3(i)) = vectiztk“(ﬁi,xk) be the resulting OLS estimator of vecti—1..+1(8;)) = vect,-=1;k+1(ﬂi,xk)
based on partition A,. The WR bootstrap version of the sup-Waldr statistic is:

sup-Wald) = sup Wald“k, (18)
Ae€Ack
b, ~b -1 ~b
Waldn, = T B\ Ry (Rkvkak) Ry By, (19)
where:
A b . A b A b Ab 4 ~b oAb _ b _ b by
V,, = diagi_1,;1(V;), Vi = Q) ' My Q)" Qy=T" Z wow, (20)
telin,

~ b — ~ by b N
Mg =EW [ T z (”r + v, By, (1)) ; Iﬁlk] ; (21)

11 The wild bootstrap has been developed in Liu (1988) following suggestions in Wu (1986) and Beran (1986) in the context of static linear
regression models with (unconditionally) heteroskedastic errors.
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~b _ b b P b AV 4P A0 b
wbhere ul =y, —w/B, fort e I,-,Al,;, b, =% —-A4,2, T, =(A,,II), At is defined before (17), w} = vect(x{,z} ), and
ﬁxm are the first p; elements of '@(i)'

Now consider the WF bootstrap, for which y? and xf are generated via (15)-(16). The first stage of the 2SLS involves
LS estimation of

X’ =z A; + error, tei-*, j=1,2,...,h+1,

AL h+1 2 Ab/
to obtain A Iztel* 2z, ] > ,oi 2eX”. Now re-define A, = Dt te,*A X =z At, and ! = vect(x’, z1,).

For a given k partltlons Ak, the second stage of the 2SLS in the bootstrap samples mvolves OLS estimation of (17) and let
ﬂx, vect;_. kﬂ(ﬂ )) be the resulting OLS estimator of vecti—1..+1(B;) based on partition Ax. The WF bootstrap sup -Wald

A b
statistic is defined as in (18) with Waldl}kk defined as in (19) only with ﬁ)l[’ and A, redefined in the way described in this

b/

N ~ b — [ &b b
paragraph, and M; in (21) replaced by M, = EW [T /zt(u + 0, ,BX o ilk] where u = yt w’t’/ﬂm for t € Iy,

ab Ab
vf =xb— At/z[, T, = (A IT), w? = vect(x?, z; ), and ﬂx (i) are the first p; elements of ﬂ
Case (ii): Hy: m={£ versusHy : m={¢+1

For each bootstrap the first stage of the 2SLS estimation and the construction of w; is the same as described under
Case (i) above. Let I ) be defined as in the discussion of Case (ii) in Section 2.2, and consider

¥ = @By +error, j=1,2 tel?, (22)
~b ~b
for all possible choices of @; (where, once again, we suppress the dependence of B, on i). Let B (w;) = vect (,B(U(w,-),

Ab
ﬁ(z)(wi)) be the OLS estimators of vect(f;), B,)) from (22). The bootstrap version of sup -Waldr(¢ + 1 | £) is given by

b N b
sup-Waldb(¢ +1¢) =  max { sup TS (zzr,»)’R’l[Rlvb(wi)R/l]_lRlﬂ (w,-)} (23)
? lU,'GN():[)

where
A b ) A b A b A b 4 b ~b 1
V (wi) = dlag<V1(lUi), Vz(wi)), V(i) = {Q;(m)}” M;(wi) {Q;(wi)},
~b ~b ~br
Q@) =T"Y wjwy.
teifj)
~ b — T b ~b
and Mj(wi) = EW LT z"(u[ + v[ ﬂx 0 (7)); I (zv,)] for the WR bootstrap, where i yt — w[’ﬁo)(wl) fort e I ( i)
W= — Ab/z” ) (A , H) , ® is defined before (17), wf = vect(x!, z} ), and ﬂx ()(@i) are the first p; elements
b
of ﬁm(w,-)' and Mb [ T zt u + v ﬂxu (1)); IU)( )] for the WF bootstrap, where ut = y[ - w[ ﬂm(zzr,)
~ b7 A ~ b
fort € IU (i), vf = xf - Az, T[ (At, IT), A, is defined in the last paragraph of Case (i) in this section,
~b ~b
wlt’ = vect(xt ,Z1¢) and B, (i) are the first pi elements of B ().
3. The asymptotic validity of the bootstrap tests

In this section, we establish the asymptotic validity of the bootstrap versions of the test statistics described above. To
this end we impose the following conditions.

Assumption 1. If m > 0, T = [TA?], where 0 < A9 <--- <10 < 1.

Assumption 2. If m > 0, ﬂgﬂ) — ﬁg) is a non-zero vector of constants fori =1,..., m.

Assumption 3. If h > 0, then T} = [Tn?], where 0 < 70 < --- <7) < 1.

Assumption 4. If h > 0, A(1+1 Ag) is a non-zero matrix of constants forj=1, ..., h.

Assumption 5. If k > 0, then 0 < a)? << a)k < 1and 45 (+1)~ 458-) is a non-zero matrix of constants fori =1, ..., k.

Assumption 6. The first and second stage estimations in 2SLS are over respectively all partitions of & and A such that

T; — T_1 > max (q — 1, €T) for some € > 0 and € < min;(A{,; — 1) and € < mmj(ﬂ]Jrl njo).
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Assumption 7. (i) p < oo; (i) |[In — C15a — C250> — ... — CpsaP| #0,foralls=1,...,N+1,and all a] < 1.
Assumption 8. 1k (T7) = p; + qi.

Assumption 9. The innovations can be written as €, = SD;l;, where:

(i) § is a n x n lower triangular non-stochastic matrix with real-valued diagonal elements s; = 1 and elements below
the diagonal equal to s; (which are also zero for i > p1+1, j < p1+1), such that SS’ is positive definite; D, = diag;_,.,(di),
a non-stochastic matrix where d;; = d;(t/T) : [0, 1] — D"[0, 1], the space of cadlag strictly positive real-valued functions
equipped with the Skorokhod topology;

(ii) I, = vect(ly ¢, Ly, I;) is a n x 1 vector m.d.s. w.r.t to 7 = {I;,I;_q, ...} to which it is adapted, with conditional

covariance matrix X1 = E(Il; | Fr—1) = diag (E(tllt)_l, 25‘22_1
|4+6

(iii) sup, E ||| < oo for some § > 0; E [|&,1|* < oo, where & = vect(Zg,Z_1,...,Z_pi1).
(iv) E ((I1}) ® ;) = p; for all i > 0, with sup;. [|p;]l < co.
(V) E((1) @ (I—il;_))) = pyj, for all i, j > 0 with sup; ;- [| 0; | < oo

) and unconditional variance E(I;l}) = I,.

Assumption 9'. Let n, = vect(l,,, I, ;). Then:

(i) Assumption 9(iv) holds with E[(n:n;) ® n,_;] = 0, 1 12x(py4+1) fOr alli > 1.

(ii) Assumption 9(v) holds with E[(n:n;) ® (nt_in;ﬂ.)] =00, 112x(p412 foralli,j> 1andi#j.

(iii) Assumption 9(v) holds with E[(n;n;) ® (il )] = O 4 112x(p,+1)p, fOr alli > Tandj > 0.

(iv) sup, E [[I]|® < oo.
Assumption 10. (i) v, He (0, 1) independent of the original data generated by (1), (2) and (3); (ii) Eb |vt|4+‘5* =C < 00,
for some 8* > 0, for all t, where E? denotes the expectation under the bootstrap measure.

Before presenting our main theoretical results, we discuss certain aspects of the assumptions.

Remark 1. Assumptions 1-5 indicate that the breaks are “fixed” in the sense that the size of the associated shifts in the
parameters between regimes is constant and does not change with the sample size.

Remark 2. It follows from Assumption 7 that Z; follows a finite order VAR in (4) that is stable within each regime.

Remark 3. Assumption 8 is the identification condition for estimation of the structural equation parameters; see Hall
et al. (2012) for further discussion.

Remark 4. From Assumption 9 it follows that €; is a vector m.d.s. relative to F;_; with time varying conditional and
unconditional variance given by E(e:€;|F:—1) = SD; X;;_1D,S" and E(e;€;) = SD.D;S’ respectively. The m.d.s. property
implies that all the dynamic structure in the SE for y, and RF for x; is accounted for by the variables in z;; and
z, respectively. As noted by Boswijk et al. (2016) and Georgiev et al. (2018), Assumption 9 allows for €; to exhibit
conditional and unconditional heteroskedasticity of unknown and general form that can include single or multiple variance
shifts, variances that follow a broken trend or follow a smooth transition model. When D; = D, the unconditional
variance is constant but we may have conditional heteroskedasticity. When X';_; = I,, the unconditional variance
may still be time-varying. Note that Assumption 9(i)-(ii) imply that x; is endogenous and r; is contemporaneously
exogenous in the SE. Assumption 9(iii) is a moment condition about I; (similar to Assumption A(iv) in Gongalves and
Kilian (2004) and Assumption 2(iv) in Boswijk et al. (2016)) and a moment condition on the initial values of the VAR in
(4). Assumption 9(iv) allows for leverage effects (the correlation between the conditional variance and I;_; is nonzero,
when i > 1). Assumption 9(v) allows for (asymmetric) volatility clustering (the conditional variance is correlated with
cross-products I, il _j, fori,j > 1).1

Remark 5. Assumption 9’ is only imposed in the case of the WR bootstrap. Assumption 9'(i)-(iii) is needed because the
WR bootstrap sets to zero certain covariance terms in the distribution of the bootstrapped parameter estimates given the
data. This happens because these moments depend on products of bootstrap errors at different lags and these terms have
zero expectation under the bootstrap measure due to the fact that v, is mean zero and i.i.d. Assumption 9'(i) is a restriction
on the leverage effects and Assumption 9'(ii) is a restriction of the asymmetric effects allowed in volatility clustering. Note
that Assumption 9'(i) is only needed when we have an intercept in (4). Assumption 9'(iii) arises because the WR design
bootstraps the lags of y; and x; in (4), but it does not bootstrap r; and its lags. Therefore, certain fourth cross-moments
involving both types of quantities are set to zero by the WR bootstrap, leading to the restriction on clustering effects in
Assumption 9'(iii) (where i = j is imposed for replicating certain variances, and i # j is imposed for replicating certain

12 The clustering is asymmetric if p;j # 0 when i # j.
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covariances in the asymptotic distribution of the parameter estimates). Assumption 9'(iv) is needed in order to verify one
of the conditions of the CLT for m.d.s., by ensuring the convergence of the WR bootstrap variance to the correct limiting
variance. Assumption 9'(iv) is similar to Assumption A’(vi’) in Gongalves and Kilian (2004) and Assumption 2" in Boswijk
et al. (2016). However, Assumption 9/(iv) can be replaced with Assumption 9(iii) if v; (in Assumption 10) used in the WR
bootstrap follows the Rademacher two point distribution suggested in Liu (1988).13

Remark 6. There are several choices for the distribution of v;, the random variable used in construction of the
bootstrap errors: Gongalves and Kilian (2004) use the standard normal distribution, while Mammen (1993) suggested
an asymmetric two-point distribution and Liu (1988) suggested the Rademacher two-point distribution. In this paper,
we report simulation results for Liu's (1988) two-point distribution, which we found performed the best compared to
the other distributions in simulations not reported here. This conclusion is similar to Davidson and Flachaire (2008)
and Davidson and MacKinnon (2010).

The following theorems establish the asymptotic validity of the bootstrap versions of the sup-Wald tests.

Theorem 1. If the WF bootstrap is used let Assumptions 1-10 hold and if the WR bootstrap is used let Assumptions 1-10 and
9" hold. If y;, x; and r, are generated by (1), (2) and (3) and m = 0 then it follows that

sup |P? (sup-Wald? < c) — P(sup -Waldr < c)| 20
ceR
as T — oo, where PP denotes the probability measure induced by the bootstrap.

Theorem 2. If the WF bootstrap is used let Assumptions 1-10 hold and if the WR bootstrap is used let Assumptions 1-10 and
9" hold. If y;, x; and r, are generated by (1), (2) and (3) and m = £ then it follows that:

sup |P? (sup-Wald?(¢ 4+ 1| €) < ¢) — P(sup-Waldr(€ + 1| £) < ¢ 20

ceR

as T — oo, where P’ denotes the probability measure induced by the bootstrap.

Remark 7. The proof rests on showing the sample and bootstrap statistics have the same limiting distribution. Although
this distribution is known to be non-pivotal if the RF is unstable (see Perron and Yamamoto, 2014), to our knowledge this
distribution has not previously been presented in the literature. A formal characterization of this distribution is provided
in the Supplementary Appendix.

Remark 8. Theorem 1-2 cover the case where the reduced form is stable and the errors are unconditionally
homoskedastic. In this case, the sup-Wald tests are asymptotically pivotal and so the bootstrap is expected to provide
a superior approximation to finite sample behavior compared to the limiting distribution because the bootstrap, by its
nature, incorporates sample information. However, a formal proof is left to future research.

Remark 9. Hall et al. (2012) also propose testing the hypotheses described above using sup-F tests. While F-tests are
designed for use in regression models with homoskedastic errors,'# wild bootstrap versions of the tests can be used as a
basis for inference when the errors exhibit heteroskedasticity. In the Supplementary Appendix, we present WR bootstrap
and WF bootstrap versions of appropriate sup-F statistics for testing both Hy: m =0 versus Hy: m=kand Hy: m = ¢
versus H; : m = £+ 1, and show that these bootstrap versions of the sup-F tests are asymptotically valid under the same
conditions as their sup-Wald counterparts. Simulation evidence indicated no systematic difference in the finite sample
behavior of the sup-Wald and sup-F tests for a given null and bootstrap method, and so further details about this approach
are relegated to the Supplementary Appendix.

Remark 10. In the special case where there are no endogenous regressors in the equation of interest then our framework
reduces to one in which a linear regression model is estimated via OLS. For this set-up, the asymptotic validity of wild fixed
bootstrap versions of sup-F test for parameter variation (our Case(i) above) has been established under different sets of
conditions by Hansen (2000) and Georgiev et al. (2018). Hansen (2000) considers the case where the marginal distribution
of the exogenous regressors changes during the sample. Georgiev et al. (2018) consider Hansen’s (2000) bootstrap in the
context of predictive regressions with strongly persistent exogenous regressors. Our results complement these earlier
studies because we provide results for the wild recursive bootstrap and a theoretical justification for tests of ¢ breaks
against £ 4+ 1 based on bootstrap methods.

13 See the proof of Lemma 10.
14 1f the reduced form is stable then the limiting distribution of the sup-F statistics are only pivotal if the errors are homoskedastic.
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4. Simulation results

In this section, we investigate the finite sample performance of the bootstrap versions of the sup-Wald and sup-F
statistics. We consider a number of designs that involve stability or instability in the SE and/or the RF. In all the designs
the variable x; is endogenous and the SE is estimated by 2SLS. Recalling from above that h and m denote the true number
of breaks in the RF and SE respectively, the four scenarios we consider are as follows.

e Scenario: (h,m)=(0,0)
The DGP is as follows:

X = ax+r’8°~|—8,?1xt 1+501_Vt—] + vy, for t=1,...,T, (24)
Ve = oy + XY +,3r1r1t+,3591yt—1+ut» for t=1,...,T, (25)
where the parameters of the SE - see Eq. (25) - are oy = 0.5, B¢ = 0.5, /30 =0.5, = 0.8; the parameters of the

RF in Eq. (24) are ay = 0.5, 80 (1.5,1.5,1.5,1.5) a4 x 1 parameter vector, 8 o = 0 5, 83] =021 = (re, 15,).

e Scenario: (h,m)=(1,0)
The DGP is as follows:

Xe = () + T80 1)+ 80 X1 + 00 e+ v, for t=1,... [T/4], (26)
=@ + 18 o) + 00 X1 +8) o+, for t=[T/4]14+1,...,T, (27)
Ye = ay+xcﬂf+ﬂgr1,t+ﬂy°1ym + ug, for t=1,...,T, (28)

where the parameters of the SE - Eq. (28) - are the same as in scenario (h, m) = (0, 0), and the RF parameters -

Egs. (26)-(27) - are: oy 1) = 0.1, ax 2y = 0.5, 6‘3’(1) = (0.1,0.1,0.1,0.1), 69,(2) = (1.5,1.5,1.5,1.5), 82 =01

8,91 2 = 0.5, 8 . =0.1,and 80 \.(2y = 0.2.In our simulation study, prior to testing the null hypothesis of zero breaks
in the SE parameters from (283, we test sequentially for breaks in the RF parameters (assuming for a maximum of
2 breaks) by applying our bootstrap sup-Wald test. More exactly we tested the null hypothesis Hy : h = ¢ against
Hy:h=1¢+1,¢ = 0,1 using the WR and WF bootstrap sup-Wald for OLS. If the bootstrap p-value (given by the
fraction of bootstrap statistics more extreme than the sup-Wald based on the original sample) was larger than 5%,
then we imposed the ¢ breaks (assumed under null Hy : h = £) in the RF and estimated their locations which were
subsequently accounted for in the estimation of the SE; see the first two columns of Table A.3.

e Scenario: (h ,m) = (0,1)
The DGP is as follows:

Xt = oy + r§6$ + 6,91xt71 + CSJ(,)I_Vt—] + vy, for t=1,...,T, (29)
Yo = oy +Xr/32(1) + ﬂ?l,(l)n.r + 13}?1,(1)%4 + U, for t =1,...,[3T/4], (30)
= ay@) + %Py + B @ + B o +u,  for t=[3T/4]+1,...,T, (31)

where the parameter values for the RF - Eq. (29) - are as in scenario (h, m) = (0, 0), and the parameters on the
SE - equations (30)-(31) - are: ay 1) = 0.5, oty ) = —0.5; X“ = 0.5, ﬂg(z) —0.5; r 1y =05, ,Br @ =05,
By, 1y =0.8,and B , =0.1.

e Scenario: (h,m)= (1,1)
The DGP is as follows:

Xt = Qy()+ T 6,(1 +8,‘1 HXe—1 +5y1 Ye-1+ Ve, for t=1,...,[T/4], (32)
= oy 2) + r[Sr’(z) + 6,‘1,(2))({,1 + 5y1,(z)J’r—1 + v, for t =[T/4]+1,...,T, (33)
Ve = ay )+ XeBoy + By + By a1 + U, for t=1,...,[3T/4l, (34)
= ay@) + XBoa) + By + B Vi1 + Ut for t = [3T/4]1+1,...,T, (35)

where the parameters of the RF - Egs. (32)-(33) - are as in scenario (h, m) = (1, 0) and the parameters in the SE -
Eqgs. (34)-(35) - are as in (h, m) = (0, 1). In our simulation study, prior to testing the null hypothesis of zero breaks
in the SE parameters from (28), we test sequentially for breaks in the RF parameters (assuming for a maximum of 2
breaks) by applying our bootstrap sup-Wald test as described in Scenario (h, m) = (1, 0); see the first two columns
of Table A.4. For Scenarios (h, m) = (0, 0) and (h, m) = (0, 1) the true number of breaks in RF (h = 0) is imposed
before testing for breaks in SE.

For the four scenarios above we consider the following choices for u;, v, and r;:

Case A: u; and v, Hg- N(0, 1), Cov(u;, v¢)=05,t=1,..., T, r ”Nd N(0451, I4).
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Case B: u; and v; are GARCH(l 1) processes ie. u; = i,/y/Var(ii;) and v, = f)f/,/Var v) with @, = o395, and ﬁt =
05,51, Ve and 5 ¢ ~ N(O 1), COV(ﬂut,l9 ):05-% —V0+)’1Uf 1+V2 ii—1 %% —J/O‘H/lvt 1+J/2 S—1°
whereyo—Olandyl_y2_04t_1 T,rtisasmCaseA

Case C: u; and v, e N(0, 1), Cov(u,v¢) = 05, t = 1,...,[T/3]; us and v,
[T/3]+1, ,T, r; is as in Case A.

ii

Case D: u; and v, are as in Case C and r; Hg- N(04x1,14) for t = 1,...,[3T/5], and r; ~  N(04x1, 1.514) for
t=[3T/5]+1,...,T.

B

ii.

Z

N(0,2), Cov(ug, v;) = 0.5, t =

In Case A, the errors u; and v, are homoskedastic and the contemporaneous exogenous regressors r; are stable. In
Case B, the errors are conditionally heteroskedastic. In Case C the errors have a contemporaneous upward shift in the
unconditional variance, while in Case D there is also an upward shift in the variance of r;.

In our simulations we consider the behavior of the bootstrap tests both under their null and alternative hypotheses.
For scenarios (h, m) = (0, 0) and (h, m) = (1, 0) we consider the behavior of the sup-Waldr. For scenarios (h, m) = (0, 1)
and (h, m) = (1, 1) we consider the performance of the sup-Waldr(2|1). In order to assess the power of our bootstrap tests
we also consider the case when the null hypotheses are not true and there is an additional break in the SE parameters at
[T /2]. Specifically, we consider in all the four scenarios described above the following:

Ve = (ay)+ &)+ %(BYy + &) + (B o)+ &rie + (B ) + &t + 1w, fort =[T/2]+1,....T, (36)

with g a constant; i = 1 and T = T for scenarios (h,m) = (0,0) and (h,m) = (1,0), and the equation for y; for
t < [T/2]+ 1 is the same as that given in the two scenarios (h, m) = (0, 0) and (h, m) = (1,0); i = 2 and T = [3T /4] for
scenarios (h, m) = (1, 0) and (h, m) = (1, 1), and the equation for y, for t < [T/2]+ 1 and t > [3T/4] is the same as that
given in the two scenarios (h, m) = (1, 0) and (h, m) = (1, 1). When g = 0, the null hypothesis is satisfied. We illustrate
the behavior of the tests under the alternative hypothesis for the following values of g: g = —0.007, —0.009 for scenario
(h, m) = (0, 0); g = —0.05, —0.07 for scenario (h, m) = (1, 0); g = 0.3, 0.4 for scenario (h, m) = (0, 1); g = —0.5,0.5
for scenario (h, m) = (1, 1).

For scenarios (h, m) = (1, 0) and (h, m) = (1, 1) we have tested for the presence of max 2 breaks in the RF for x; (in
(26)-(27) and (32)-(33) respectively) prior to testing for breaks in the SE. More exactly we tested the null hypothesis
Hp : h = £ against H; : h = £+ 1, £ = 0, 1 using the WR and WF bootstrap sup-Wald for OLS. If the bootstrap p-value
(given by the fraction of bootstrap statistics more extreme than the sup-Wald based on the original sample) was larger
than 5%, then we imposed the ¢ breaks (assumed under null Hy : h = ¢) in the RF and estimated their locations which
were subsequently accounted for in the estimation of the SE.

We now describe other features of the calculations before discussing the results. For the WR and the WF bootstraps
the auxiliary distribution (from Assumption 10) is the Rademacher distribution proposed by Liu (1988) which assigns
0.5 probability to the value v, = —1 and 0.5 probability to v; = 1,t = 1,...,T. The same v; is used to obtain the
bootstrap residuals u? = {i;v; and vf’ = ¥,V in order to preserve the contemporaneous correlation between the error
terms. We consider T = 120, 240, 480 for the sample size and B = 399 for the number bootstrap replications. All results
are calculated using N* = 1, 000 replications. )

The reported rejection rates of the WR and WF bootstraps are calculated as: Nl* Z]N'] 1[>tb R where o7 =

-

0.10,0.05, 0.01 are the nominal values of the tests; t; is the statistic (sup-Wald) computed from the original sample;
t{’ 1 . is 1 — oy quantile of the bootstrap distribution calculated as (1 — «1)(B + 1) bootstrap order statistic from the
sample of bootstrap statistics in simulationj = 1, ..., N*.

For the WR bootstrap, the bootstrap samples were generated recursively with start-up values for y1 and x being given
by the first observations from the sample (x1, y1); see Davidson and MacKinnon (1993).

In all settings, the bootstrap samples are generated by imposing the null hypothesis. The value of ¢, the trimming
parameter in Assumption 6, is set to 0.15 which is a typical value used in the literature.

We now turn to our results. We present results for the sup-Wald test under both the null and alternative hypotheses
in Tables A.1-A.4 of the paper. In Tables H.1-H.4 of Appendix H in the Supplementary Appendix we also present similar
results for the sup-F test. The first two columns of these tables give the rejection rates of the tests under the null
hypothesis, while columns 3-6 give the rejection rates of the tests under the alternative hypothesis.'”

From the first two columns of Tables A.1-A.4, it can be seen that the WR bootstrap works better in general than the WF
bootstrap. The latter has large size distortions for scenarios (h, m) = (0, 0), (h, m) = (0, 1) and (h, m) = (1, 0) whether the
errors are conditionally homoskedastic, are conditionally heteroskedastic or have a break in the unconditional variance.
For scenario (h, m) = (1, 1), the WF bootstrap is only slightly undersized or oversized. Regarding the behavior of the
sup-Wald test under the alternative hypothesis, the main conclusion that emerges from columns 3-6 of Tables A.1-A.4
is that the power is influenced in small samples (T = 120) by the number of breaks in RF and SE, the distribution of the

5 The rejection rates under the alternative are not level-adjusted, but since we have used the same sequence of random numbers for repetition
hi=1,..., N*, in the experiments under both null and the alternative hypotheses, one can always subtract (or add) the positive (or negative)
size discrepancy (relative to the nominal size) from the rejection rate under the alternative in order to obtain the level-adjusted power of the test;
see Davidson and MacKinnon (1998).
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errors u; and v, the distribution of r¢, as well as the number of breaks in the variance of the errors and in the variance
of r.. When there is a break in SE, we need a larger g in (36) to be able to see an increase in the power of the test,
compared with scenarios with no break in SE (g = 0.3, 0.4 for scenario (h, m) = (0, 1), and g = —0.5, 0.5 for scenario
(h, m) = (1, 1), while g = —0.007, —0.009 for scenario (h, m) = (0, 0) and g = —0.05, —0.07 for scenario (h, m) = (1, 0)).
This can be explained by the fact that the second break in the SE is tested over smaller samples than the first break in
the SE. Moreover, the power is lower for the smallest sample (T = 120) when the error terms have an upward shift in
the variance (Case C in Tables A.1-A.4) and the contemporaneous exogenous regressors also have an upward shift in their
variance (Case D). However, for T = 240, 480 the power increases sharply in all cases.

In Tables A.3 and A.4 we have sequentially tested for the presence of max 2 breaks in the RF for x; (in (26)-(27) and
(32)-(33) respectively) using the WR/WR sup-Wald for OLS, and the resulting number of RF breaks was imposed in each
simulation prior to estimating the RF and SE and computing the test statistics for 2SLS. The fraction of times that 0, 1, 2
breaks were detected in RF (out of 1,000 replications of the scenarios), is given in Tables H.7-H.8 from Appendix H of
the Supplementary Appendix. To assess the impact of the pre-testing in RF (in the first two columns of Tables A.3 and
A.4), we have obtained the rejection frequencies of the bootstrap tests when the number of breaks in the RF is held at
the true number; see (the first two columns of) Tables H.5 and H.6 from Appendix H of the Supplementary Appendix. To
complement our results, we have also considered a break in RF of smaller size than the one mentioned after (26)-(27)
by taking 6?‘(]) = (1,1, 1, 1) (and the rest of the parameter values are as mentioned after (26)-(27)); see Tables H.9 and
H.10 from Appendix H of the Supplementary Appendix.

Looking at the results for the sup-Wald our results suggest that in the smaller samples (T = 120, 240) the recursive
bootstrap is clearly to be preferred over the fixed regressor bootstrap. In the larger sample (T = 480), the case for the WR
over the WF is more marginal as the latter yields only slightly oversized tests. This relative ranking of the two methods
is intuitive from the perspective of Davidson’s (2016) first “golden rule" of bootstrap, which states: “The bootstrap DGP
[...] must belong to the model [...] that represents the null hypothesis”. The fixed regressor bootstraps treat the lagged
dependent variables in the RF and SE as fixed across bootstrap samples, and as such do not seem to replicate the true model
that represents the null hypothesis. This would seem to point toward a recommendation to use the WR but it is important
to note an important caveat to our results: our designs involve models for which both recursive and fixed bootstraps are
valid. As discussed in Section 3, the fixed regressor bootstrap is asymptotically valid under weaker conditions than the
recursive bootstrap. Therefore, while the recursive bootstrap works best in the settings considered here, there may be
other settings of interest in which only the fixed bootstrap is valid and so would obviously be preferred.

5. Concluding remarks

In this paper, we analyze the use of bootstrap methods to test for parameter change in linear models estimated via
Two Stage Least Squares (2SLS). Two types of test are considered: one where the null hypothesis is of no change and the
alternative hypothesis involves discrete change at k unknown break-points in the sample; and a second test where the
null hypothesis is that there is discrete parameter change at £ break-points in the sample against an alternative in which
the parameters change at £ + 1 break-points. In both cases, we consider inferences based on a sup-Wald-type statistic
using either the wild recursive bootstrap or the wild fixed regressor bootstrap. We establish the asymptotic validity of
these bootstrap tests under a set of general conditions that allow the errors to exhibit conditional and/or unconditional
heteroskedasticity and the regressors to have breaks in their marginal distributions. While we focus on inferences based
on sup-Wald statistics, our arguments are easily extended to establish the asymptotic validity of inferences based on
bootstrap versions of the analogous tests based on sup-F statistics; see Appendix G from the Supplementary Appendix
available online.

Our simulation results show that the wild recursive bootstrap is more reliable compared to the wild fixed regressor
bootstrap, yielding sup-Wald-type tests with empirical size equal or close to the nominal size. The gains from using the
wild recursive bootstrap are quite clear in the smaller sample sizes, but are more marginal in the largest sample size
(T = 480) in our simulation study. This would seem to point toward a recommendation to use the wild recursive bootstrap
but it is important to note that the wild fixed bootstrap is asymptotically valid under less restrictive conditions than the
wild recursive bootstrap. Thus, while both bootstraps are valid in our simulation design, there may be other circumstances
when the recursive bootstrap is invalid and the fixed bootstrap would be preferred. The powers of the bootstrap tests are
affected in small samples by the characteristics of the error distribution, but in moderate sample sizes often encountered
in macroeconomics, there is a very sharp increase in power.

Our analysis covers the cases where the first-stage estimation of 2SLS involves a model whose parameters are either
constant or themselves subject to discrete parameter change. If the errors exhibit unconditional heteroscedasticity and/or
the reduced form is unstable then the bootstrap methods are particularly attractive because the limiting distributions are
non-pivotal. As a result, critical values have to be simulated on a case-by-case basis. In principle it may be possible to
simulate these critical values directly from the limiting distributions presented in Appendix C from our Supplementary
Appendix replacing unknown moments and parameters by their sample estimates but this would seem to require
knowledge (or an estimate of) the function driving the unconditional heteroskedasticity. In contrast, the bootstrap
approach is far more convenient because it involves simulations of the estimated data generation process using the
residuals and so does not require knowledge of the form of heteroskedasticity. Furthermore, our results indicate that
the bootstrap approach yields reliable inferences in the sample sizes often encountered in macroeconomics.
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Table A1
Scenario:(hm) = (0,0) - rejection probabilities from testing Hy : m = 0 vs. H; : m = 1 with bootstrap sup-Wald test.
WR bootstrap WF bootstrap WR bootstrap WF bootstrap WR bootstrap WF bootstrap
Size Size Power Power Power Power
g=0 g=0 g = —0.007 g = —0.007 g = —0.009 g = —0.009
T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
Case A
120 11.8 6.1 1.6 15.1 87 24 59.2 483 25 61.1 553 315 794 703 49.1 845 75 56.3
240 9.3 4 0.8 129 64 09 99.7 99.7 99.6 99.8 99.7 99.7 100 100 99.9 100 100 100
480 10.08 5.09 1.15 9.76 552 1.04 100 100 100 100 100 100 100 100 100 100 100 100
Case B
120 12 59 07 144 85 1.7 65.5 542 326 713 61.1 386 83.2 759 547 87.1 803 62.6
240 9.5 47 1.1 119 62 14 99.8 99.8 995 99.9 999 99.7 100 100 100 100 100 100
480 10.1 49 05 115 6.1 13 100 100 100 100 100 100 100 100 100 100 100 100
Case C
120 9.9 56 15 157 83 19 46.8 33.6 125 589 45 221 70 568 294 784 68.1 43
240 9.9 51 07 152 84 1.2 99.6 995 99 99.6 995 99 99.8 99.8 99.5 99.9 999 99.7
480 8.8 51 13 12 65 21 100 100 100 100 100 100 100 100 100 100 100 100
Case D
120 107 53 1 138 73 19 50.1 37.7 14.1 576 442 227 70.7 58.7 344 76.1 658 432
240 9.8 45 09 141 72 17 100 99.8 98.6 100 100 994 100 100 99.9 100 100 100
430 10.1 43 09 122 6 1.2 100 100 100 100 100 100 100 100 100 100 100 100

Notes. The first two columns refer to the case when Hy : m = 0 is true (g = 0 in Eq. (36)). The next columns refer to the case when we test for
Ho :m =0, but H; : m =1 is true (g = —0.007, —0.009 in Eq. (36)). Under the null and the alternative hypotheses we impose h = 0 in the RF.

Table A.2
Scenario:(h,m) = (0,1) - rejection probabilities from testing Hy : m = 1 vs. H; : m = 2 with bootstrap sup-Wald test.
WR bootstrap WF bootstrap WR bootstrap WEF bootstrap WR bootstrap WEF bootstrap
Size Size Power Power Power Power
g=0 g=0 g=03 g=103 g=04 g=04
T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
Case A
120 107 5 1.2 155 99 56 549 369 108 615 456 19.8 78.1 603 2438 822 67.8 385
240 102 49 05 125 71 34 99.5 989 89.9 99.6 98.6 922 100 100 98.8 100 100 99.1
480 8 45 1 86 44 08 100 100 100 100 100 100 100 100 100 100 100 100
Case B
120 97 46 1 16 102 6.5 62.3 448 16.1 67.2 539 262 822 676 31.1 84.1 736 447
240 106 52 1.2 138 81 3 99.3 975 86.2 99.1 93 915 999 996 96.6 100 999 98.3
480 8 42 09 84 48 08 100 99.8 99.5 99.8 99.7 99.5 100 100 100 100 100 99.9
Case C
120 105 52 09 163 11 58 263 148 33 36.1 214 6.6 40.1 245 75 51.1 346 13
240 11 48 09 132 83 24 83.1 68.7 314 872 776 472 985 934 687 99 97 80.1
480 104 5.6 0.5 112 6.1 1.2 100 99.9 984 100 99.9 99.2 100 100 100 100 100 100
Case D
120 116 58 15 153 95 53 398 24.1 65 512 332 133 648 4333 14 725 548 242
240 115 6 1 149 9.1 29 989 946 73 989 97.1 827 100 99.8 95.6 100 999 979
480 96 4 13 95 53 15 100 100 100 100 100 100 100 100 100 100 100 100

Notes. The first two columns refer to the case when Hy : m = 1 is true (g = 0 in Eq. (36)). The next columns refer to the case when we test for
Hyp:m =1, but H; : m =2 is true (g = 0.3, 0.4 in Eq. (36)). Under the null and the alternative hypotheses we impose h = 0 in the RF.
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Table A3
Scenario:(hm) = (1,0) - rejection probabilities from testing Hy : m = 0 vs. H; : m = 1 with bootstrap sup-Wald test; number of breaks in the RF
was estimated and imposed in each simulation using a sequential strategy based on the WR/WF sup-Wald for OLS.

WR bootstrap WEF bootstrap WR bootstrap WEF bootstrap WR bootstrap

WEF bootstrap

Size Size Power Power Power Power
g=0 g=0 g=-0.05 g=-0.05 g =-0.07 g =-0.07
T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
Case A
120 102 3.7 09 153 7.1 13 52.3 428 225 60.5 50.6 293 67.9 58.3 38.1 749 66.3 456
240 108 5.7 08 14 67 12 946 913 845 95.1 92.1 86 98.1 96.7 917 98.7 97.1 927
480 109 52 09 125 6 08 99.9 998 993 100 99.8 99.5 100 100 99.8 100 100 99.7
Case B
120 10.1 48 1 133 78 15 545 449 28.1 63.1 515 337 68.9 59.6 434 77 68 489
240 10 54 12 122 68 15 945 92.1 837 95.8 933 859 97.9 96.7 92 98.8 975 933
480 11 54 07 128 59 1.2 100 100 100 100 99.7 99.2 100 999 99.8 100 99.9 99.8
Case C
120 96 43 09 156 75 1.7 396 287 113 50.8 374 184 549 438 229 66.6 53.8 335
240 118 6 06 156 86 14 88.8 835 718 91.3 87.3 76.2 943 92 835 96 93.7 86.7
480 108 59 1.1 126 71 14 999 99.6 98.6 999 995 985 99.9 99.9 99.8 100 999 994
Case D
120 102 48 12 148 6.7 1.6 409 299 129 49 373 16.8 56 45.1 243 645 523 319
240 106 5.7 09 142 75 1.8 89.6 852 732 91.1 87.2 766 949 924 853 95.7 93.7 86.9
480 116 6.2 09 135 74 1 99.4 99.1 98 99.5 99.3 98 100 99.8 98.9 99.8 99.8 99.1

Notes. The first two columns refer to the case when Hy : m = 0 is true (g = 0 in Eq. (36)). The next columns refer to the case when we test for
Ho:m =0, but H; : m =1 is true (g = —0.05, —0.07 in Eq. (36)). Prior to testing Hy : m = 0 vs H; : m = 1 (for all columns above), we tested
sequentially for the presence of maximum two breaks in the RF (we used the WR/WF bootstrap sup-Wald for OLS to test Hy : h=¢ vs. Hy : £ + 1,
£ =0, 1). If breaks are detected in the RF, the number of breaks and the estimated locations are imposed when estimating the SE.

Table A4
Scenario:(h,m) = (1,1) - rejection probabilities from testing Hy : m = 1 vs. H; : m = 2 with bootstrap sup-Wald test; number of breaks in the RF
was estimated and imposed in each simulation using a sequential strategy based on the WR/WF sup-Wald for OLS.

WR bootstrap

WEF bootstrap

WR bootstrap

WF bootstrap

WR bootstrap

WEF bootstrap

Size Size Power Power Power Power
g=0 g=0 g=05 g=05 g=-05 g=-05
T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
Case A
120 88 4.7 0.7 87 45 08 52 40.7 16 574 454 227 85 719 321 88.2 748 375
240 104 5.7 0.7 104 52 08 99.8 994 97.6 99.6 994 974 100 100 99.8 100 100 99.7
480 9.7 42 07 102 46 038 100 100 100 100 99.8 99.1 100 100 100 100 100 100
Case B
120 89 3.7 09 87 34 09 50.1 40.1 18.6 548 454 244 81.8 709 383 855 73 39.9
240 108 4.7 0.8 106 53 09 98.8 98.3 96 99.2 98.7 958 99.6 99.5 98.1 98 996 983
480 99 4.1 09 109 54 09 100 100 99.8 100 99.8 99.6 100 100 100 100 100 100
Case C
120 9.1 35 1 94 4 04 307 175 31 383 259 8 45.1 254 69 49.7 317 88
240 103 52 1 102 5 1 98.6 96.8 86.2 99 97.7 884 99.3 98.5 86.9 100 99.8 90.8
480 113 48 1 12.1 53 06 100 100 99.9 100 100 99.2 999 999 99.7 100 100 99.8
Case D
120 101 44 16 85 38 06 36.8 234 6.3 42.1 304 124 69.3 52,6 164 768 594 254
240 109 49 08 11.8 52 08 99.2 986 94 99.6 98.9 945 99.5 994 98 99.9 999 98.6
480 102 53 14 11 56 1.2 100 100 100 100 100 98.1 100 100 100 100 100 100

Notes. The first two columns refer to the case when Hy : m = 1 is true (g = 0 in Eq. (36)). The next columns refer to the case when we test for
Hop : m =1, but H; : m = 2 is true (g = —0.5,0.5 in Eq. (36)). Prior to testing Hy : m = 1 vs H; : m = 2 (for all columns above), we tested
sequentially for the presence of maximum two breaks in the RF (we used the WR/WF bootstrap sup-Wald for OLS to test Hy : h =€ vs. H; : £ + 1,
¢ =0, 1). If breaks are detected in the RF, the number of breaks and the estimated locations are imposed when estimating the SE.
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Appendix A. Tables

See Tables A.1-A.4
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Appendix B. Proof of Theorems 1 and 2

For the purposes of our analysis, it is convenient to write the system in (4) as a VAR(1) model.'® To this end, define:

-3 Cis Cps G35 ... Chqs Cps
2[ 1 In OHXH 0n><n e 0n><n oan
St = _ , F, = 0nxn I, Onxn - 0nxn 0nxn ,
— : - : : : : :
npx1 3. npxnp : : : .. : :
- t p+1 0n><n 0n><n 0n><n e In 0n><n
e Css
0, 0,
n = . ; and ns = .
—— : —— :
npx1 0n npx1 0n
Then Eq. (4) is the first n entries of:
& = n, + Fé | + 1y, (B.37)
where we have suppressed the dependence of &, and 7, on s for notational convenience,s = 1, ..., N+ 1 (there are N+ 1

stable regimes).
From Assumption 9 it follows that 7, is a vector m.d.s. relative to 7;_; with conditional covariance matrix

-Qt|t—1, for t =},

0,,xnp Otherwise, (B.38)

Een; | Feo1) = {

-1y -1

.Qm,1 E|: Ag /Z:t|t—1As onxn(p—l) :|’

— onxn(p—l) 0"(1’*U><"(P*1)
npxnp

where fm,1 = SD; ¥ ;_1D,S’, and time-varying unconditional covariance matrix

AT'ZATY Opne
2 =En n/)=[ o s =) ]
—— o 01/1><n(p71) On(p—1)xn(p—1)
npxnp

where X, = SD, E(I.1,)D;S’.
From (B.37), it follows that within each stable regime we have, for t = [t;_1T] + 1, [ts_1T]1 + 2, ..., [tT],

t—[rs_1T1-1
t—=[zs_1T]

& = F, E mtE+| D Fin (B.39)
1=0
where &, = ;;(515’1”4 Fin[_,, {n,} is a m.d.s. sequence, and, from Assumption 7, all the eigenvalues of F; have modulus
less than one.
The following lemmas (Lemmas 1-11) are used in proofs; Lemmas 2, 4-8 are proven in Appendix C from the
Supplementary Appendix, which also contains the asymptotic distributions of the sup-Wald test statistics. The rest of
the lemmas are proven below.

Lemma 1. If {0, %} is a mean-zero sequence of L'-mixingale random variables with constants {c;} that satisfy limy_, oo T~

ZL] ¢ < 00, and sup, E[9|°< oo for some b > 1, then supscig 7|7~ ZEE B> 0.

This follows from applying the LLN in Andrews (1988)[Theorem 1], modified to be a uniform LLN in the proof of Lemma
A2 of Andrews (1993).

Lemma 2. Fors = 1,...,N + 1, where N is the total number of breaks in the coefficients of the VAR(p) representation of
Z,, define the following functions: F(t) = Fs, A(t) = As, i(t) = pg, X(t) = X5 for 1,1 < v < 1. Also, define the function
Y(t)ont € [0, 1] as follows X(0) =0, and X (t) = X, fort € [(t —1)/T,t/T],t =1,...,T. Let S and S, be the selection
matrices such that z; = vect(1, S,&,, S&,_,) = vect(1, r., S&_,), and

1 {SrQq(T)Y {SQi(7)Y
Qi) = | &Qi(r) S5rQa(7)S; Se(m(T)Q)(T) + F(7)Qa(T))S" |,
SQi(t)  (Sr(m(T)Q;(r) + F(r)Qu(1))S"Y SQy(7)s’

16 gor example, see Hamilton (1994)[p.259].
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where Qq(t) = {I, — F(t)} u(t) and

e ¢] _— ’
A(T)i]z‘(t)A(T)i] 0 xnip—1) :| Iy /
7)= F(z) ; p F(t)) + T 7).
)= F( )[ 0 O e | FEN + Qi)
Also, let Q; = j{"q T'(7)Q,(7) Y(z)dx.
Under Assumptions 1-8,
Q(i) =T Z ‘f‘;z[z; . 2 o.

tEIi.Xk

Lemma 3. If (a;, 7;) is a o x 1 vector of m.d.s. with sup; E|a”|2+5*< oo for some §* > 0 and for all elements a;; of
the vector a;, if T~! Z[m [E(a:a;|F:—1) — E(a.a;)] 20 uniformly in r and if T~ Z[m E(a;a;) — rl, uniformly in r, then
T-1/2 [m 1a: = B(r), a 0 x 1 vector of independent standard Brownian motions.

Lemma 3 provides sufficient conditions so that Theorem 3 in Brown (1971) is satisfied.

Lemma 4. Under Assumption 9,17
(i) T~ 12”” E(IL | Fi_1) > rI, uniformly in r.
(ii)) T~ Z[m E((Ie) @ le—i | Fe—1) 2 rp; uniformly in r, for all i > 0.
(iii) T~V S E (L) ® (le—ile—j)| Fe—1) => 1py; uniformly in r, for all i, j > 0.

For the following lemmas and the rest of the proofs, we need additional notation. Define S; = [I,+1  Op,+1)xp,] and
S = [0y, x(p,+1) I, ] Also, define the following vectors of Brownian motions: By(r), a nx 1 vector with variance rl,, Bi(r),
a n? x 1 vector with variance rp; for each [ > 1, B¢(r) = vect(By(r), By (r)) with By (r) of dimension p; x 1 and B,(r) of
Pug00  Puwg00
Puveoo0  Pv00
Puto0 IS of dimension p, x p,. The covariances of these processes are: Cov(By(r1), B.(12)) = m1n(r1, r2)py, forall Ik >
1,17 «, and Cov(B(r1), By(r2)) = min(ry, 1S ® 52),00, for all I > 1 and Cov(B,(r1), Bo(r2)) = min(ry, 1S ® Sz)po
mm(rl, 12)pg o = Min(ry, r2)vect(p, o, p, o), Where pg | and po are given in Assumption 9(v) and (iv) respectively, and p,, o
is of dimension bpz x 1. Moreover, Pb denotes the probability measure induced by the bootstrap conditional on the original
sample; E?, Var® denote expectation and variance with respect to the bootstrap data, conditional on the original sample.

, where

dimension pyp; x 1, where the variance of B,(r) is 1(S1 ® 82) 09 o(S1 ® &) =T =T [

b
As in Gine and Zinn (1990), Hansen (1996), for any bootstrapped quantity a>(1), we write a2(2) P oor af(1) = op(1) in

probability uniformly in A when lim7_, o P[Pb(|al}(x)|> §) > €] =0 forany § > 0, ¢ > 0 that does not depend on 1. We
b

db
write aT(A) =% a(1) in probability uniformly in A for any distribution a()), when weak convergence under the bootstrap
probability measure P’ occurs in a set with probability converging to one, uniformly in A.

Lemma 5. For fixed n*, under Assumption 9,
[Tr]
T-1/2 Zvect(lt, L@l g, o b @by, Lyelee, L @ 1p) = vect(Bo(r), By(r), ... Bus(r), Be(r)),
t=1
where if t — 1 < 0 for any | > 0, the rest of the elements of this sum are artificially set to zero.
Now define for b = 1,2 and any n® x 1 vectors a, ay = vect(a, 05,5 1)), and for any n’ x n” matrices A, let
Ay = diag(A, onb(pb Dxnbpb—1)) except for B, 4 which is B, , = vect(0, B2 ol 0p2+n(p,1)) and the subscript s indicates

the value of ﬁx 0 in the stable regime IS = [[ts_1T]+1, [t:T]]. f m = 0, then ﬁx ) ﬂx, and B, , = vect(0, ﬂx, 0p,+n(p—1))-
Let Sy = vect(1,0,_1, Opp_1)) and S; = S, or S; = B, 4 Where the value S; takes is clarified in each context where
the distinction between the two values is necessary. Let S, defined in Assumption 9, and D(t), the function such that
D(t) =D, for T € [£, 1), be partitioned as follows:

1 olxp1 01><p2 u(T) 01><p1 01><p2
s = Spy SP] 0171><I72 , D(r)= 0P1><1 D,(t) 0P1><P2 ’ (B.40)
0P2><1 0P2 xpq SPz 0P2 x1 Opz xp1 D;(f)

where s, is of dimension p; x 1, §; and D,(7) are of dimension p; x pq, and S, and D(7) are of dimension p, x p,. For
any interval [[t;_1T] + 1, [t;T]] where the coefficients of the VAR representation in (4) are stable, let:

Ts
Mt 1) = S5 / D4(1)dBo 4(7)
Ts—1

17 All elements with negative subscripts in (ii)-(iii) are set to zero.
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My, 1(T5-1, T5) = Z((S%S#) ® (SrFL)) (|:/ S D#(T)dBo,#(f):| ® IL5>

=0 5—
00 7

My a(Ts-1, %) = ) ((SiS4)® (S,Fé“A;;S#))f (D4(7) ® Dy (7)) dBy1q #(7)
1=0 Ts—1

Y 7 =Sy [ AODEIBs(r)
Ts—1

M (11, 1) = B 501 /  G(TIDL B (1) + (B S, © S1) f " (Du(r) ® Dg(r))dBy (1)

M(T5-1, Ts) = My 1(Ts—1, Ts) + My (751, T5) + M(zll)g,(fsq, 7)), where j=1if &; =

M3(Ts-1, Ts) = M3 1(Ts—1, Ts) + M3 2(Ts5-1, T5)

((5;5#) ® (SFy)) ({ f S D#(T)dBo,#(T)] ®us>

S—

M3, 1(Ts-1, Ts) =

(2 I0e

M 2(T5-1, Ts) =
=0 s—1
M(75-1, Ts) = vect(M;(Ts_1, T5), Ma(Ts—1, Ts), M3(75-1, T5)),

where S, was defined in Lemma 2.

Lemma 6. Let the interval I; contain N; breaks from the total set of N breaks. Then, under Assumptions 1-9,

Ni
N M(Ai—1, T5) + D il M(Ts4j—1, Tsj) + M(Torn, Ai)
T2 "z = Mi = { M(hi_1. ) + M(t,. Ay)
teli M(%i-1, Ai)

with S; = 8. Similarly, T™'2 Y, z,v, By ;) = M but with S; = B, + = vect(0, B3 ;). Op, snip—1)). If m = 0, then 5; =

Lemma 7. Under Assumptions 1-9,
(i)if h > 0, then T(#; — 7)) = Op(1),i=1,...,h+ 1;
(i) TV2(Ag — A%) = 0p(1) fori=1,....,h+1;
(iii) if m > 0, T(hi = 20) = 0p(1),i=1,...,m+ 1.

Lemma 8. Under Assumption 9, uniformly in r,
(i) 7! Z[m {ece; — E(ece))} 2o,
(i) T Y1 {(ec€)) ® €r—i — El(ere}) ® €—i1} > 0 forall i > 0,
(i) T I {(€re)) @ (€r—i€)_;) — El(ec€;) ® (ec—i€;_)]} = O for all i,j > 0
(iv) Parts (i)-(iii) hold with I, I;_;, l;_j replacing €, €;_;, €;_j, uniformly in 18

~b b A , A b
Lemma9. Let Qy=T"'3 . ¥ z/z] T Then, under Assumptions 1-9, Q

Ai
Q= f T(r) Q1) T(r)dr.
Aim1

S, and j = 2 otherwise

(554) ® (SFIAT1S4)) / " (Dy(r) ® Dy (1)) dByy 1 (1)

=Qi+ Of,(l), where

17

:BX‘#'

(B.41)

Proof of Lemma 9. For the WF bootstraps, zb = z;, and therefore Lemma 9 holds by Lemma 2. Consider the WR bootstrap,

first for I; = I,. Define Z (yt,xt 1), and.
L as As Als R
y=T" ‘Z Tz =7, | sAb spbs. sBbs | T

tel; sAb  sBYs,  sBhs

where

b -1 b b -1 b
Ay =T an A =T th—l

tel; tel;

18

All elements with negative subscripts in (ii)-(iv) are set to zero.
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and

Bllj = 1Z§t s Bz =T lng t—1s = T7]ZE?_1§?/_1

tel; tel; tel;

Note that, because r; is kept fixed, S,A’l’ =T Z[di 5§ = SrAq, and S,B’]’S, = &5 B1S,, where A4, A; are the sample
counterparts of A%, Blf defined at the beginning of the proof of Lemma 2 in Appendix C from the Supplementary Appendix.
By Lemma 2, the result in Lemma 9 holds automatically for these terms. We now analyze the rest of the terms. To that
end, we first derive some preliminary results. _

e Preliminary results and bootstrap notation. Note that in any stable subinterval I,

p
Z =&+ Y CZl+e,  [naTl+1 <t <[xT], s=1,2,....N+1, (B.42)
i=1
A1 A . . .
where € = A; €, €® = vect(u?, v?, ¢,), of size n x 1, and the elements of A, €;,; and C;; corresponding to the equation
for r, are the true parameters not the estimated ones. Then,

- t—[ts_1T]—1 l t—[t5_1T]—1 l
A[ T A ~ A
= ot 'S[IS 1T] + Z FS M + Z an?_[, (B44)
1=0 1=0
b b = . A1 P ) ) .
where §, = vect(zlt’, zf_l, R zf_p+1), = As,#ei’,#, and Fg, ji; are defined as F;, p, but replacing the true coefficients

that are estimated by 2SLS with those estimated counterparts. Also, let §), = € » = /A\;;ét # where & = vect(il, ¥, &)
We now show two results that we repeatedly need in the proofs: T~ “ét = ob(l) and T— ngtg:t =0 (1) for any o > 0.
For this purpose, we first show that Eb(T‘“ ) =o0 ( ) and that Var®(T ‘“nlt’) ( ). Then, by Markov’s inequality, for
any C > 0, P’(T~||p? — E’(y})|| > C) < C2T~ Z”Varb||nt | 2 0, completing the proof.
Let T = vect(0p, 11, tp,, Op,1np+1)) and 7 = [diag(J,, 41, Jp, )]s, where ¢4 is a a x 1 vector of ones, and J, = tqt;. Let
b = vect(vttplﬁ, tp,) and v; = ¥, 4. Then E°(v;) = 7 and EP(v,v)) = 7.
Also, let gt = eb# = €& .4 O v, where @ is the element-wise multiplication. Then gt = AS # WI[- and letting g, = € »,
it follows that g2 = 8, © v,. Further, let &, ; = vect(il;, d;, 0p,n(p—1)) and g, , = vect(0p, 11y, &, Onp—1)). Also, note that

”t = 5_#(gt © Vt). Then:
P A_l
Eb("l;) - Eb(AS’#(g[ Ow)) = (gf 0I1)= s, #VeCt(o(mH)v & Ongp—1)) = s,#gt,z (B.45)

' A=l n A1 P ~A—1
E'(nin} ) = EP(As 4(& O v )8, O v YAy, ) = A 4 [(8:8)) O TIA, 4

o [ B Oy
=A5,# Ve Uy VeV, Oplxgjz Ay (B.46)
Opz 0112><IJ1 §[§r 4
b b b -1 ﬁ[ ﬁ[f); Oipr | -1
Var’(n}) = E°(nfnl ) — EX () EP(n ) = Ay | el Beb,  Opp, | Ay = A #g[ &1 A, 4. (B.47)

0P2 0P2><P1 0P2><P2 #

By Lemmas 7, 8 and standard 2SLS theory, &, ; = vect(il;, ¥;, 0p,+np—1)) = Op(1), and AS,# = A4 + 0p(1), therefore
P
A 481 = 0p(1), s0 E"[T“nl] = 0b(1).

Next, we show that T~ “&t =o0 (1) by induction, for & > 0. First, recall that 50 &,, and therefore, T“"i;‘l{ =T %n, +
I:'lT “E+T ™ 171 = op(l)because JLs—pg = 0p(1), FS FS =0p(1),and T nt =0 ( )and & = ( ) by Assumption 9(iii).

Now let T—£P_ = 0b(1); then for ¢, — 1 el T& =T, +F,T&_ 1+T —Op(1)+FsO b(1) 4 0h(1) = ob(1).
Therefore, it follows that:
T™& = ol(1). (B.48)

Next, we show that T*“Efsf/ = og(l), also by mathematical induction. Note that, from the results above,
T88) =T (s + Fs&l_y + n})itg + Fssi’,l +np)

A AL —a _0( —a A /oAl —a A AN
T, + E(T&_ & F. + T nin? + T & F, + (T & .y
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A ’ A / AS _ / AS _ /
HT gy (TRt Y + F T8 T + (F T2, T ny
_pop—agh &b g —a b b
=F(T™&_&_,)F; + nen, +0 ( ). (B.49)
Now consider T~*n’y”. We have

E (T~ nln!) = A, AL (T 8,8)0 T, = 0,(1X(T~g.g, + 0,(1)) © 7)05(1) = 0,(1),

where T™g,g; = 0,(1) since by arguments before (C.7) in the proof of Lemma 2 in Appendix C from the Supplementary
Appendix, sup, E [|g.g/|| < sup,(E |Ig.1%)"/? sup,(E |Ig./?)"/? < c* for some c¢* > 0 by Assumption 9, and by Markov’s
inequality, for any C, P(T™*|g.g;ll = C) < < T™*C'E lg.g:ll < T~*C~!c* — 0. Hence, from Assumption 10 and by
Markov’s inequality, for any C, P(T~*||pbp?|| > C) < T~*C~! B | 20?5 0.1t follows that T-*pbp?’ = o b(1). Using this
result in (B.49), by a similar mathematical induction argument as for T~ “Ef = og(]), it follows that

T£)E = ob(1). (B.50)
Besides (B.48) and (B.50), in the proof below we will assume (I, — fi.sa — éz,saz - .= f‘p,sal" # 0, for all
s=1,...,N+1,and all |[a] < 1; otherwise the estimated system is not stationary. Then we show in Appendix D of

N

the Supplementary Appendix, that Zfzoo ||Fi|| < 00, and similarly, it can be shown that Z,O:O IF |l < oo almost surely.
N

Moreover, the results in Appendix E of the Supplementary Appendix show that Ry; = F, — Fi is such that

o0
D IIRsll = IIFs — Fl| 0p(1) = 0,(1), (B51)
1=0

an argument which will be used repeatedly in the proofs.
e Now consider the case where I; = I first, and analyze Ab From (B.48),

A =T 25?71 = Tilgl[)rs_lnfi — T+ T ng =T 25? +0y(1)

tels tels tels
= A%+ o)(1). (B.52)
Therefore, we now derive the limit of .4%. Note that

t—[t5_1T]-1
f [Ts— ITJ ~b Al

b - & eb b .
§ = i, + F& _ +n = F &[IS 1T +& + F, | s,
=0
-b
where & = 3~ érs 1m=1 g snt .- Therefore, A2 = Y% | Ab ., where At,T = [r,T] — [T}, and
[zsT] b AtsT—1 |
Ay=T1" Y & A, =TALT Y o
t=lry_1TI+1 ary

AtsT AtsT—1 |
b -1 b -1 ol
Ajs = E F. 5[15 i Arg = T ( E lFs) Hs-
1=1

=1
We show that A% | = ob(1). First, we show E’(A% ;) = 0,(1). Second, we show Var’(4? ) = 0,(1) which IIJy Markov’s
inequality implies that A%, = 0b(1). Let f = ¢ — [,_;T] and consider E"(A% ) with E°(&;) = TOF B ) =

15
& FsAs# & 01). )
We have § = pu; + Fs§,_; + 0, = jis + Fs§,_; + i),. Then,

B = m+ (s — i) + (Fs — FE (B.53)
gt = As# ﬁt = As 41 +Asi#(”’s - ﬁ's) +A;, #(Fs — FS)E[—‘I' (B.54)
Also, we have 57 = (1, + (s — fi;) + (Fs — Fs)Ei 1) O

Note that i, — p, = (égs Cis)y = vect(ds, ds, 0,, )« where ds, d are of dimension 1 and p; x 1, respectlvely, and
this holds because the rows p, + 1 : n are not estimated since the equation for r; is not estimated. Let ai_.,Apl,.,Apz,.
be rows 1, 2 : p; + 1 and p; + 2 : n of the matrix As_] respectively. Note that like A; ', As_] is upper triangular with
fl,,z,. = [0y, x(p,+1)> I,] because the equation for r; is not estimated, and r, is assumed contemporaneously exogenous.
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Therefore,
. fll,- (éi,s - ci,s) &1,- (62,5 - ci,s)
A—1 ~ A7 (é~ — Cs ) Ap . (éf.s — €3 S) A . (é~ —Cz )
A (ﬂ — K ): |: s z,s z,s ] = AT R ’ = P1. £3 ©5 B (B55)
sHATs T 0np—1) Apy.« (€25 —Cz5) 0p,
0,p—1) 0n(p—1)

SO

(AS,#(ﬂs - ”’s)) OI= onP' (BSG)

By similar arguments, because the p; + 2 : n rows of I:'S are equal to the corresponding rows of Fj, As,#(ﬁs — F;), the
rows p; + 2 : n of A; #(Fs — F) are equal to zero, therefore

(As 4(Fs — F)§,_1) © T = Oy, (B57)
Using (B.56)—(B.57), and recalling that f =t — [t;_{T], we have:

-
|

N
m

NP R A
Hy=T71 Z FA,, ((As,#ﬂt—l) © I) =T Z Z (AS #Acu 8i1) © I)

tels =0 tels =0

Y P RN .
Ho =T3S By (Al — ) O T) =0y,

Since AS,#A;; = I + 0,(1), it follows that:

Hy=T" ]ZZFs*‘s# (81 OT)+T" 122%&# (810T) +0y(1)

tels I= tEIs I=
=n+ HQ’ + 0,(1).
From Assumptions 7 and 9, and using Zz 0 ||F’|| < oo and Z, —o IRs 1l < oo, both proven in the Supplementary

Appendix (Appendices D-E), it can be shown that Z[ 1FSAS 4+ (g 07)and that T-' )" 5 > R, A, (81 OT) are

L'-mixingales satisfying the conditions of Lemma 1, therefore H“) = 0p(1) and H(z) = 0p(1). Hence H; = 0y(1), so
E(A] ;) = 0p(1).
Second, we show that Varb(A’{’l) = 0p(1). To that end, note that

/ A1 -~ S naTly Al / A1y
Bl ) = Ag 4 B (81 O v )8 O vei)NA;y) = A (8 8:_) O EP(weev,_ ))Aq )

For | # «, Eb(vt_lv o) = IT' = [diag(0(, 1 1)x(p;+1),Jp,)l# = J2. Therefore, exploiting the upper triangular structure of
As_] with p, x p, lower right block equal to I,,,, for | # «,

A—=1 . ~/ ~A—1
Bt ) = A, 488 ) O D)A4) = (A, 480_) O TNA; 48_) OT) = oW 2

N A1 ,
where 7, , = g, , = [vect(0p, 1, )]s For I = «, Eb(ﬂl:,[ﬂf,,l) = Asir#((gt,,gt,l) © Eb("t—l"éfl))(As_#)/v where Eb("t—l"tf,() =
J,so T ! Z[E;s(ﬁt,lﬁé,,) OF=T" > tci, 8c-18;_ +0p(1) by Assumption 9, Lemma 8 followed by standard 2SLS theory.
So,

Aol A1 ,
7! Z E"Cne_mi)) = Ay [ T thflg/t—l (Agy) +0p(1)=T7" Z Me—iMe—; + 0p(1).
tels tels tels
Hence,
~b=l/
Var’ (A} ) = T72 ) E(&E, ) = Vi + Va2 + 0p(1) (B.58)

tels
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Vi =T" ZZZFSm M ,f? (B.59)

[els =0
t—1 |
_ A AK
Vo =T N Fanomi o(F) (B.60)
teis Lk =0,l#x

Consider V;. We analyze first Vj, where

Vi=T" ‘ZZF’ A g gl (ALY)(Fly =T~ 1ZZF Meil;iF}

tels I= tels =0

=B} + 822.1 + 0p(1) = By(te_1. 75) + 0p(1),

where the last three quantities above were already defined and analyzed in the proof of Lemma 2 in the Supplementary
Appendix, Appendix C, where it was shown that

o) s ,
B 5 Bi(t1, %)= Y _F. (AQ/ E(t)ths1) F!
1=0 Ts—1 #

and that 8(121 = 0,(1). By similar arguments that were employed to analyze those terms,
-1
Vit =TS Flpe i (FL) = B + 0,(1) = Bi(7s-1, ) + 0,(1).
tels =0

Now consider V;, where

= T*l(v(”+v(2’+( Y+ V) + 0p(1),

=T 122% i ((F5) = Vi* = 0y(1),

tel; 1=

=T 1221” Mool ((Rsa)

tel; 1=0

lZZRsl”t l”t 1Rsl)/-

tel; 1=

Al
Similarly to V¥, because F, — Fi = Rs; = 0p(1), we can show that v(z) = 0p(1). From (B.51), Ry is such that

Zfz"o Rsi1 = ||IA"5 —F;|| 0,(1) = 0,(1). Therefore, by the same arguments as for v(z = 0,(1), one can show that V§3) = 0y(1),
therefore TV; = B1(75—1, T5) + 05(1), and V1 = 0,(1).

By similar arguments to the analysis of the term B; ; in the Supplementary Appendlx Appendix C, proof of Lemma 2,
TV, = 0,(1). Substituting V, = op( ) and V; = o0,(1) into (B.58), it follows that Var (.Af{ 1) = V1 +V» = 0p(1), and, by
Markov’s inequality, that Al; ;=0 ( ). It also follows that:

TVar’(A} 1) = Bi(ts—1, 75) + 0p(1), (B.61)

a stronger result that we need later in this proof
Consider now A1 2 Aﬁ’ 3 A1 4 We have A1 , =T AT Y25 "Flpg + 0p(1) and by Assumption 7, it follows that

N
A’{z > Aty(Inp — Fs) f t)dz. Now consider A? ;. Because [T~ 1€[rs nl=o ( yand || Y12, F,ll = 0,(1),
AtsT
1Al = 1T S FL gl ol < “ZF I IT'E, il = Op(1)0h(1) = 0(1).
1=1 I=1

Since ZA“T ! F = 0,(1) and fiy — ps = 0p(1), A’]”4 = 0,(1). Combining these results, we obtain:

AL = Al = F) g+ o) = [ @edde +of(1) = Ay + (1)

Ts—1

Please cite this article as: O.Boldea, A.Cornea-Madeira and A.R.Hall, Bootstrapping structural change tests. Journal of Econometrics (2019),
https://doi.org/10.1016/j.jeconom.2019.05.019.




22 0. Boldea, A. Cornea-Madeira and A.R. Hall / Journal of Econometrics xxx (Xxxx) xxx

where A, = f (t)dt + 0y(1) from (C.1) in Supplementary Appendix, Appendix C and A;,i = 1, 2, are the sample

equivalents of Af’. From (B.52), it follows that A5 = A; + 05(1) = A; + ob( f’s Qi(r
e Next, analyze Bg. First, note that because T”!;‘fij’[’/ = og(l) as shown in the prellmmarles of this proof,

By =T 'Y && =T 'Y & & +05(1) =5} +0h(1), (B.62)
tels tels

so we analyze instead 5. Note that 58 = Y0 8%, + >0 { B0, +BY,; } . where

~ ’

Bll_TIZEtEt_T Z AI”?! Zs”tl

tels [eis =0
-1 | -1 | '

81122: _12 Fsﬁ’s ZFsﬁ's

tei; \ 1=0 1=0

b 1 f

Bis=T" ZF &l 11l m(F

tels

/

Bla=T1"Yk Zfﬂs

teg

1

By =T"Y ket (F

tek

-
b

Big=T" 12 SM‘S E[rs 1T]

tels =0

Recall that
Bi(t5-1, T5) = ( / T)d7A; ) Fi/'
#

We show B} | — By(z;—1. 7s) = 03(1) by showing that E°(8} | — By(zs—1. 7)) = 0,(1) and Var’(vects! ;) = 0,(1).

B?1=T‘ZZF77?M F, —T122F5As#gf & (A, (ELY

tels Lk=0 tels Lk=0

_ — .
E°(BY,) =T~ ') Y F Bl m} (F) = TVar’ (A} ) = By(zs 1, 7) + 0p(1),

tels Lx=0

where the last equality above follows from (B.61). We have:

vectst, =11 Y (FA»eFAL) (e, o8l)

tels Lx=0

=T 1 Z Z ( ;. ﬁ A7 )) ((gt—l( © v[—K‘) ® (ét—[ © v[_[))
tels k=0

=T Z Z (ﬁsA FSA;;)) ((gt—x ®§t71) Ok ® Vr—l)) .
tels Le=0

Var’(vects] ;) = E’(vects! | (vects] |)) — E°(vects! ;) E’(vects! | )

= E’(vects! | (vects] )) — vectB(t;_1, 7s) (VectBy(t,—1, 7)) + 0p(1).
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We need to show that E’(vect 5 1(vet:t B.)) L vectBy(t,_1, ) (vect By(ts_1, 7,)) . Letting £ = t* — [1,_1T],

, AK A71 ~A—1
E°(vect 5 \(vectB) V) = [T Z Z ( (F: GA ) FSAS,#)) (g, ®8l)
tEIS Lk=0

t*—1

x [T 3 (A Ao F A, W) (€ 0 )

[‘*EI *,k*=0

— t*—1
'\K'\ l Al A—=1 ~AkFA—1 AlFA—1
=772y Z 3" (FA) ® (FADGE, ALY ® (F,A,))

t,[*Els Lxk=0 I*,k*=0

9
= Zoi,
i=1

g = Eb ((gijfl( ®g?,[) (gl;*,,(* ®g?*7l*)/> )

where O; are the terms corresponding to nine cases when G # O(,22),(n2j2)- Case (1) is when t —x =t — L, t* — k" =
t* —I*,t — k # t* — k*; we show below that O; = vect B¢(t,_1, rs)(vectIEB](rS 1, Ts))" + 0p(1). For brevity, the rest of the
cases are defined and analyzed in Supplementary Appendix, Appendix F, where we show that

Op=o0y(1)fori=2,...,9. (B.63)

By Assumption 10, E°[(vv])®(v;_ )= [E°(v:v))I®[EP(v,_v;_;)'], because we know EP(v21? Vi) = Eb(Uf)Eb(VtZ_l) =1,
EP(veve—1) = 0 and E°(v?v;_;) = O (these are elements of E°((v;v}) ® (v,_v,_,)). Hence, conditional on the data, we have,
by Assumption 10,

G =FE(g]_ @) (8 @8k )
= Eb[[(ﬁt—x ® g,\.ffl() O (Vi ® Ve )][(ﬁr*—x* ®§f*7}(*) O (Vex—gx @ v —ex)]]
=8 ®8) OB W ® v (s o+ ®Zps o) O B _yx ®@ vpe_y#)]
= (gtﬂc ®§r—x)(§t*—»(* ®§t*—»<*)7
hence
i -1
0= | T (A e (FAL) (6, @8,)

telg k=0

TN (B A e (FAL) (€ @)

Ak ~—1 Ak ~—1 _ ~ A
= Z ((FSAS.#) ® (FsAS,#)) T ! Z(gt—/( ®gt—;<)
K,k*=0 [Eis
_ N N Ak* A1 Ak*a—1\'
T (e @) | (B A @ (B A) +o0,(1)
telg

= (vect By(7s_1, Ts) + 0p(1))(vect By (751, 7s) + 0p(1)) = vect By(zs_1, s)(vect By(ts_1, 7)) + 0p(1),

X

where the last two lines follow because g,_, ® g,_, = vect(g,_.g;_,), and

T (& @8 )=T"> vect(g_.g ) =plimvectT ' g._ g  +o0y1),

T—o0
tels tels tels

which follows by standard 2SLS theory and Lemma 8. So, O; = vectB1(ts_1, Ts)(vectB;(7s_1, 7)) + 0p(1).
Therefore, Varb(vectBll”l) = 0,(1), so by Markov’s inequality,

Bl;'] = B](ts—ls Ts) + Oz(])~

N N
Next, because fi, = p; + 0p(1), and Fs = Fs + 0,(1), and Y 5, IIF, — Féll = 0p(1) as shown in Supplementary Appendix,
Appendix E, B’f’z = Biz + 0p(1) = By(Ts_1, Ts) + 0p(1), where By(ts_1, T5) = f;s_] Q1(7)Q)(r)dz, and By is the sample
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equivalent of B , (and in general, B ;,i =1, ..., 6 are the sample equivalents of Bbyi, defined in the proof of Lemma 2 in
Supplementary Appendrx Appendix C). Also we have 13’1 3 =Bi3+ ob(l) b(]), because, as shown in the preliminaries,

*""g'ti;'t = op( ), and FS is exponentially decaying with L
Consider 8‘1’, 4 Which is equal to

/ ’
-1 t—1

_ Al Al . _ Al A—1, Al
T ! Z an?—l ZFSI'LS =T ! Z Fs((As,#gt—l) O thl) Fs”’s

@

N
|
—_
-
|
—_
-

We show B , = ob(1). To that end, note that

!/
E°(B) ) =T" 12 ZFsﬂt 12 ZFS’I’S +0p(1) = 0p(1),

tels

by similar arguments as for its sample equivalent 5; 4 defined in the proof of Lemma 2. So, Eb(Bll’ 4) = 0p(1). Moreover by
similar arguments as before, it can be shown that |Var’(vect Bl]’ 2l = 0,(1). Hence, by Markov’s inequality, B 4 = og(l)
Similarly, because T~ “E[THT] = op( ) for any @ > 0, it can be shown that Bbys = 02( ), and Bb.G = op(l). Putting all the
results for B ; together, i = 1, ..., 6 we conclude B} = B1(ts_1, 7s)+Ba(Ts_1, r$)+ob(1) B(7_1, rs)—i—ob(l) B1+o (1),
where B(t,_ 1', T5) = ]B](‘L’S 1, Ts) + By(1s_1, T5), and By is the sample equivalents of Bb defined in the proof of Lemma 2.

Because 83 = B +o0 ( ), it follows that 83 = B(ts_1,Ts) + 0 ( ), where the same result was shown to hold for B;
defined in the proof of Lemma 2. Now consider B5. Using & = fi, + I:'séf,l + P, it follows that:

B) = A +FB5+ T~ Y & +ob(1).

tels
By similar arguments as for some elements of By, it can be shown that T~! D ieis g g = og(l). Therefore, B) =
I t)dt + [ F(z)Qu(z)dt + 03(1). So, for I = L,

~b T ,
Q; = / T(r)@z(r)T(r)dr+o§(l):@(i)+03(1)~
Ts—1
For other regimes, by similar arguments as in the end of the proof of Lemma 2,

Ai
a), =/ T/(2) Qalr) T ) + 0%(1) = @ + o)

A1

concluding the proof. O

,oodb o
Lemma 10. [f Assumptions 1-10 and 9" hold for the WR bootstrap, T~ 3", 278} S? = Mj in probability uniformly in A,
where M; is defined as in Lemma 6, and S =8, 0r8 = (ﬁx,(i))#' Ifm=0, then S} = S, or &} = By

Lemma 11. Let Assumptions 1-10 hold for the WF bootstrap. Then, T~'/> 3", z,gb SJr => M; in probability uniformly in Ay,
where S is as defined in Lemma 10.

For the proofs of Lemmas 10-11, it suffices to consider S? = S, or S? = [8&#, therefore considering m = 0. If

b — (ﬁx,(,-))#, by Lemma 7 followed by standard 2SLS theory, Bx,(,-) = B + 0p(T2) s0 St = S + 0,(T~"/2), and
the results follow in a similar fashion.

Additionally to the notation already defined at the beginning of the proof of Lemma 9, we use the following results

and notation, some relevant for both Lemmas 10 and 11. Consider the partition I, then for the WR bootstrap we have

- N A ~—1
20 = &+ Y, CisZ’ +e, and for both WR and WF bootstraps, we have e? = A_ €. We have for the WR bootstrap:

t—[rs_1T]-1 t—[rs_1T]-1

A t—[z5_1T] Al A\ L
B = +FE +n)=F & o+ Y. Em+| Y. F|i (B.64)
= 1=0
except that in (B.64) when s = 1 and we are in the first regime i1 = [1,...,[t1T]], we have that Eg = &,, where
Ef = vectj=0;(p,1)(§f_j). Let 7 = {v¢, vr_1, ..., v1}. Recall that, by Assumption 10,
EP(ve) = EP(ve|FL;) = vect(0p, 11, tp,, Ougp—1)x1) = (B.65)
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E'(vev)) = B (wvj|F) = (diagU, 11.d,,)), = T (B.66)
E’(vv;_) = E°(vev) | F0_y) = (diag(0p, 1.0, = o (B.67)
Furthermore, recall that & = p, + Fs&_, + 0, = Qs +F, &_, + 7, and therefore 7, = nt + (ps — i) + (Fs )5: 1- By

backward substitution of & = pu, + F; ijt 1+ n[, we have that: &,_, = F{~ Y+ Z, GFln_ 4+ (2,72 F') i, where
=t —[t;,_1T]. We also have n[ A s gt = A (g[ ®;), where recall that © is the element-wise multiplication. Hence:

ﬁt = As,# 7A7t = As.#m +As #(ILs - Ils) +As #(Fs - Fs)st 1
= A+ Ag (s — i)+ As w(Fs — FOF g i

(=]
+ AS,#(F - FS ZF Ne—1—1 +As #(Fs - Fs (B.68)
=0
8! = (Asum,) © ve) + (Asu(pts — i) © ve) + (Asy(F ) © vr)
=g .+85+E8 (B.69)
P A=l o~ N L -
! = Ay (Assm) © ) + Ay (As (s — ) © ve) + Ay (A 4(Fs — F)E,_1) O wp)
=+t (B.70)

Finally, for a vector o, we denote 0U172) jts sub-vector with elements j; to j, selected in order, and for a matrix 0, we
denote by 0U192J1%2) jts sub-matrix consisting of rows j; to j, and columns Jji to j5.

Proof of Lemma 10. ~ )
As for the proof of Lemma 9, consider the interval I; = I;. Let Sf = §, or S? = B, We derive the asymptotic
distribution of T~2 " ; zbgl's?,

1/2
s . 7; / Ztels g/ 5?
TV ZZ gl sb = Tl/2 i s,g'tgt sT = 5% ) (B.71)
tels DI S& 8l &

e Consider first £2. By (B.69),

b _ 7172 Zg?/‘S? -1/2 Zg Sb T- 1/2Zgb/ Sb+T 1/2 Zg?/c Sb

tels tel; tEIs rels
17123 8 ((Aswn) ©v) + T2 0 Y (Asnlis — i) © )
tels tels
+ 1723 SV (A s(Fs — E)_ 1) O 00)
tels

b b b
:511+512+513~

For ST = S, we have $T = S, For ST = ﬂx# we have ||ST — Sl = o0p(1), llfts — psll = 0p(1), ||As — Asll = o0y(1),

||A5 —AS | = 0,(1) and Z, 0 ||F F sl = 0p(1), whenever a Og(l) term is written with the estimated quantities instead
of the true one, the difference is ob(l) so asymptotically negligible. Therefore, we proceed in the rest of the proof by

p
replacing the estimated parameters mentioned above with their true values, and denote the remainder by oz(l).
Using these replacements, one can show that £/, = ob(1) and £ ; = ob(1). So, we have &} = &, =
123 i (Asem,) © we) + 0b(1). Since A 4, = g, = €4, it follows that
S{T2 (g, © w) + 0b(1). (B.72)
tels

First, let S; = Sy. Then £ = T~12 3" 5 upve +05(1) = T-V2 3" 4 duclueve + 05(1) = £7 | + 05(1), where recall that
dy: = dy; and I is the first element of I;.
We now derive the limiting distribution of 5?,1v in two parts: in part (i), we show that Lemma 3 holds for 8{{1 =

., d
T2 3 1, vy, ie. €2 =2 BY(r) in probability, where By (r) is the first element of Bo(r) defined just before Lemma 6;
in part (ii), we show that the condition of Theorem 2.1 of Hansen (1992) holds, that is, the bootstrap unconditional
variance of 6?1 converges in probability to the unconditional variance of T~1/2 Zteis dycly: = &. Note that here
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& = 84 (T‘l/2 Zreis gt) is the sample equivalent of £?, defined in the proof of Lemma 6 in the Supplementary Appendix,
Appendix C.

Part (i). First, v, is i.i.d, so conditional on the data, Eb(lu_rvt|]-‘tl’7]) = Iy Eb(vt|]-‘tb71) = 0, so I v is a m.d.s. Second,
for some C > 0, sup, E(E?|L, ;v [*T%") < sup, E|l,.¢|*™*"sup, E?|v|**?" < C by Assumption 9(iii) and Assumption 10(ii), so
sup, E? |, v |***" < 0,(1) + C. Third, by Lemma 8(iv) and Assumption 10(ii),

[Tr] [Tr]
Bl P =T"" ZE”( WE)=T" 121 2 r (uniformly in r).

Fourth, because E"(u | 7)) = b(vz) = 1, the conditional and unconditional bootstrap second moments are the same, so

db
E°[(e? )| FP_,] — E"(&? |)? = 0. This shows that £, = T~/ S 1, ve = BY(r) in probability (uniformly in r).
Part (ii). By Assumption 9(ii), E(d? , 2 )= d it~ Therefore, by Lemma 8(iv), uniformly in r,

u,tu,

[Tr]

E(eh)? — so—rlz[ditlﬁt E(d2,2,)] > 0.

b
Therefore, by Theorem 2.1 in Hansen (1992), T~/2 Z[m dy el tvt for (1) (t) = M;(ts_1, T5) in probability, where

M(7s5-1, T5) is defined just before Lemma 6. So for S; = Sy, S :> M(ts_1, T5) in probability.
Now let S; = B, » and note that 8” ;30 -172 Ztels VeV, Recall that by the decomposition of § and a decomposition
of D; exactly as D(t) in (B.40), we have

g, OV =€40Ov = (SDl )y Ov = [VeCt(du,tlu,tVt ) spldu,tlu,tvt +Sp1Dv,tlv,tv[ , szl{,t)]# s (B.73)

S0 ‘S? = ﬂg T-1/2 Zteis VpVr = (ﬁg spl) (T_l/z Zteis du-tluqfvf) + (ﬂg Sm) (T_Uz Zreis vaflv,tvt)'
db
Because E(l, I, ) = Ip,, by similar arguments as for T~/ S Ay il vy = fo dy()dB{"(z) in probability, it can

/ db / . .
be shown that (82 S,,) (T’”2 M Dy vt ) = (BYSH) fo D,(7)dBY V() in probability, where BY?'*"(.) refers to
selecting elements 2 : (p; + 1) in order from By(-). Moreover, because u;v;, v;v; share the same v, which is i.i.d and
for which EP(v?) = 1, (ﬂg/spl ( —1/2 Z[m d, [lu,[vt) and (,BS/S,,I) (T*l/2 ET=']1 D, I, v ) also jointly converge, and their
unconditional bootstrap covariance converges to the unconditional covariance of their respective limits. Therefore, also
for S = ﬂx.#'

db , s , Ts .
% (gs,) / (1)dB(x) + (BYS,,) / D,(r)dB2"+(r)

s—1 s—1

— (515) / ' D(1)d Bo () = My(rs 1. 75) (B.74)

s—1

&

-

in probability with variance matrix Vi, (r, ;) given in the Supplementary Appendix, Appendix C, proof of Lemma 6.
Af—1 RN | Foo Al A . ~
e Next, consider £2. From (B.64) we have that: g, = F; S’[’IHT] + th:g Fab , , + ( Lg FS) fis. Define I =
[[ts—1T] 4+ 2, [7sT]]. Then, replacing estimated parameters with the true ones and denoting the remainder by og(l) for
reasons discussed earlier,

]/ZZSEt lgt St

tek
—1/2 b 1/2 f—1gb
=T (Sigl, e XS )+ T2 ) (Sigl) [SFg E[rHﬂ]
teI
M [io2
s |s (Se)
tel’ =0
+T72) (sigh) SZFSnt 1 | Fob(D) =€, + &5, + €y + €5, + ob(1). (B.75)
teI L
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First, note that by (B.48), ||§f’THT]|| = 05(T~*), and also that ||gl[7r5,1r]+1 || = 05(T~*), for any « > 0. Therefore, £2 | = 0b(1).
For the same reason and by the fact that ||F £|| is exponentially decaying with [,

e, < 1T~ > sigll (nsn sup [Fil| (&, mu) =||e€’||<||sn sup ||FL||)oz(1):og(1).

tel’

Next, note that by similar derivations as for (C.13) in Supplementary Appendix, Appendix C, and artificially setting
8., =0,v._=0forallt <I(asin Boswijk et al. (2016)) we have, for n = [t;_1T] + 2,

AtsT—2
b 1| =12
&4= ZSFs /ZSTgt"tll
=1 tel
ArsT—2 1-1
—1/2 1 b\ b _gb
T2 %" SFLY (Sigh M e = Ea(ATT —2) — L. (B.76)
I=1 j=0

We now show that £ = of(1). Let Sg, = u;. Then,

2 2 / 2 /
U Ve UtV Vi Ut—i&p_ Ve

2.2
(S],LgtVt)(g[—l Ove )81 O vtfl)/(ségtvt) = Vel (utflvé_lvtz_l)/ vf*lvz_lv[z_[ vtflq_[vtfl
(T S V) B /ST S ) S ST SV

uPug ut Ur— lv[ L ufued :tz‘)fz ! (VEvE ey, (;rz‘)t—l)léz
= ”?(”H”H)/ u? VeV u?vf*lg/t—l o | (v t—l)‘m (v t—lllpl (v VH)‘m‘;z
uf(ur—lé'ﬁ_,)/ (u% vt—l;;_l)/ ur2§[71§;_1 # (Vtzvtfl)tpz (Vtzvtfl)[pz ti’l V[Z.Ipz #
Therefore, for [ > 1,
E(Eb[(S;g[vt)(gt,, Ove1)(8—1 O Vt—l)/(s]/tgtvt)]) =B (g8—ig_) © T)) (B.77)

By Assumption 9, the non-zero elements of E(u? ®(g;_18;_;))©J, do not depend on t, and are elements of linear functions
Po.» SO they are uniformly bounded in . Therefore, for element £®D) of the matrix £, and constants ¢ > 0, ¢c; > 0,

sup E(E?|£()])

fi+j
AtsT—2 -1
b b
<7712 Z I(SFLA;Y@P) | Z supEE I{(Sf i Vit [8risj(1) © Vitj—(+1) 1]
=1 j=0 "t
AtsT—2

<72 Z NS Zc <c1T‘”221||F’II - 0.

Therefore, £ =0 ( ) for S; = Sy, and by similar arguments, £ = o ( ) for Sy = By 4.
Next, we analyze 53 4(AT — 2). To that end, let for now S; = S, and note that a crucial term in 5;”4(ATST —2)
is 28 = T2 ™ wv(g,_; © wy) for | > 1. We can write S and D(z) in (B.40) as § = diag(S,, 1, S,,), D(t) =

diag(Dy, +1(7), D¢(7)), where Sp, 11 = s}, 0;:"1 ] Dy, +1(t) = diag(dy(t), D,(7)). Then, we have:
1

1

Ay, e—tly e—1ve—i
— Spi+1Dp, 41,1V
& 1OV = smdu,tlu,t—lvt—l+Sp1Dv,[lv,t—IVt—l =|™h LN s
Sy, Dol
p2 ; ;v #
#

SpDee—ilg.e-i
where n; is defined in Assumption 9'. Letting &, l = L, n;_y, Et, = ly¢l; -1 and Etl = Ly (M vrvey, Sﬁi)'b = lyelee—ive,
we have:
[Tr] (1),b
d, S D &l
b _T-1/2 _ u,t9Ip1+1Yp1+1,t-1 t,l
c)=T Urve(8— © ve1) = 2).b . (B.78)
1 ; t du tSPZDC t—, [5( ) #
We now proceed as for €2, in two parts: in part (i), we derive the limiting distribution of B{y’,(r) = T~/ Y\ &)

(i =1,2) and its equivalent for S; = B, , for each I, by verifying Lemma 3 (we verify this for both def1n1t10ns of 8¢ and
therefore replace St(?'b with the appropriate quantities when S; = B, ,); in part (ii), we derive the limiting distribution
of 5;”4(11*) using Theorem 2.1 in Hansen (1992) for fixed n*. Then we take the limit as n* — oo.
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. _ - (i).b — 1-1/2 Tl o(0).b P —

Part (i). Let S; = S,. First, we apply Lemma 3 to By ,(r) = > 16, for 1 > 1,1 = 1,2 where
note that even though VB(, by = plim;_, ., Var (BEI)T';( )) does not converge to rl;, j = 1+ py,pp fori = 1,2
respectively, as one cgndmon in Lemma 3 requires, it is symmetric and positive semi-definite, so by a decomposition
of Vs = Eil/inl/z, E_l/ng')TbA( ) converges to a process whose limiting variance is r times the identity matrix,
where I:"l is the generalized inverse. Therefore, in the rest of the analysis, we no longer need to verify this condition,
except for derlvmg the limit of the unconditional bootstrap variance, and proceed to verify the rest of the conditions.
First, Eb(é‘(1 ) = S(UEb(vrvt IFe ) = 0p1+1, E’(g (z)b) 8(2 E'(v| 7P ) = 0y, SO St(?b is a m.d.s. Second, for ¢\"""
denoting a typical element of 5['?b, and ¢>t denoting the correspondlng element of & rz- we have, for some §* > 0,
that sup, E(E?|¢{"?12+5") = sup, E(|¢{" 12" sup, E°luev—|2%") < oo by Markov's inequality, Assumption 9(iii) and
Assumption 10(ii) for SE}) or we have that sup, E(E?|¢°"?12+6") = sup, E|¢\” |2+ sup, E®|v|>** < oo by the same
assumptions, for 5(2“’.

Thlrd to facilitate showing that Var (B(’ bA( )|]—‘t”71) Var (Bg')Tl;( )) 0, note that, from (B.77) we have, Var® (& g b) =

(S ) Var (6“) b| Fiq) = 5[],) f » Var (5[(2) ) = Var (Ef?,)’b| r—1) = (5[(.21)5?2,) ). Therefore, we have by Lemma 8,
[Tr]
b — p B 1: 1,1: 1
Var’ (B (1) =T Z(li,r"t—l";q) L Var(B(r)!?1 1) = pf PP,
t=1
[Tr]
b 2:n, 2:
Var' (B R(r) =T~ (B de il ) > Var(B(rPr2m) = pif 2ot (B.79)
t=1

where By(r) was defined just before Lemma 5, Bl( r)tP1+1) By(r)P1+21) are the vectors stacking elements 1 : p; + 1, and
p1 + 2 : n respectively of Bi(r) in order, and p,”"“ 1p1+1) p§"l1““’““ ) are the left upper p1 + 1 x p1 + 1, p2 X ps
respectively, blocks of p ;.

Regarding the last condition in Lemma 3, notice that this is satisfied when i = 2 (the conditional and unconditional

bootstrap moments are the same). To verify the last condition in Lemma 3 for i = 1, because vt{, is ii.d. and

sup; E|ve|*t%" < 00, by Lemma 1 and Lemma 8(iv), we have:
[Tr]
Var’ (B}, (| 7)) — Var’(B{}5(r)) = T~ 12 2 mem_ (w2, — 1) = ob(1)
by Chebyshev inequality since for any C > 0, we have P’(||T~ 1Z[Tr] Eoaoem,_ v, — 1] = C)<C2TT!
ETE 112 Iu MM Aps || EP|(v2 Vi — 1)(v? Vi) — )|—> 0, where E?|(v? Vi — 1)(th ; — 1l< oo by Assumption 10(ii)
and ||T~! ZET;{ L mem_nemi, || = 0,(1) by Assumption 9'(iv) which requires the existence of the moments

of 8th order for lt Notice that Assumption 9'(iv) is only needed for the WR bootstrap, but not for the WF bootstrap for
which Assumption 9(iii) (which requires moments of 4th order only) is enough (as in Boswijk et al. (2016)) since z; is held
fixed when y[ and xb are generated (see Section 2.3). Moreover, notice that for the WR bootstrap, if v; is i.i.d. from the
Rademacher distribution then Varb(B,lﬁa(r)|ff_l) Var (B,lT) f‘( 1)) = 0 (because v, = +1) and therefore Assumption 9'(iv)

is not needed.

Therefore,
[Tr]
Bllgz T2 Zg“)b B(1m+1)( ), (B.80)
lTrJ
BEZ'I},Z -1/2 Z 5(2 p1+2 ”)(r) (B.81)

in probability. Moreover, because B,]T) f‘( ) and Bgzr)’f\(r) share the same v, (which is i.i.d.), they also jointly converge weakly
b
in probability: Bf; 4(r) = vect(BElr)z( ), Bﬁz( =T 23 vl © B ) 2’> Br:")(r) in probability. Notice that
so far, all the proofs went through using Assumptlons 1-10. The joint convergence above requires Assumption 9'(iii)
which imposes the block diagonal structure for ,o,l ™1 (equivalently, it imposes E[E2 e il ] = Opyup, for I > 1 and
n. = VeCt(lu,c, L)
Now let S; = B, 4. Then from (B.40):

[Tr] [Tr]
b 172 172 p1+1Dpg 1, 0=Vt
£o(1 T™ E Vv v =T E Ve
( ) ﬁx tVe gt 1 Oy l ﬂ |: szD;',tfll{,tfl .
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[Tr]
- Sp,+1D v
—(Bs T V25Nd 1 v | 2Pt 11+ te— M-V
(ﬁx Pl) Z u,t tu,t Ve SpZD;,[_ll;,[_[ )

t=1
ol Sp 1D
-1/2 +1Pp 1,611V
+ 17 E BiSp, Dy clycve [P S p‘]) ile i (B.82)
=1 p2Me, [ #

[Tr]
_ Sy, Dycly S D Ne_ VeV
—(B's 1+T1/2Z ﬁxpl v[vt p14+1Dp 41, =M Ve[V
(BySpy )£ 10 1Dotly ¢ Sp,Dee—ile v "

— Ti
— (Bisy (D +[(ﬁx®lm+1)(sm ® 1)1 31 (Dt ® Dpyene—t)lue ® Mep)veve 1]
#

(B @I, )(Sp, ® sz)T71/2 [Tr]( Dy @D )y @ lge—1)ve
Eb
hy

= (BSp, )5117(1) + |: :| = ﬁz 1t Ez 2 (B.83)

The distribution of 53 1= (ﬂ;sp1 )[;ﬁ’(l) follows from the joint convergence from (B.80)-(B.81) and part (ii) below. Following
similar steps as for £3(I) above (where S; = Sy), it can be shown that under Assumptions 1-10:

Tr]

Bng)g(r) =712 Z ot ® e VeVe_ :> vect(B (n+1: n+p1+l)( ). ’B§Hp1+1:np1+p1+1)(r))’ (B.84)
t=1
[Tr]

B =T (L ® L )ve =>vect(3““"+“">(r),...,BE”’”“"“:"(PW”(r)), (B.85)
t=1

in probability. And by Assumption 10(i) and Assumption 9’ (iii) which imposes E[b[nt,ll;’t_,] = 0y, xp, for b; being any

element of I, (I, ;, we have:

db .
Bl 5(r) = vect(B{5(r). B () = B """ V(1) in probability. (B.86)

Next we have to verify the second condition of Lemma 3 for B/ = vect(B?TYA(r), B?TYB(r)). To that end, define for a
matrix O whose rows and columns are multiples of n, the operation

thCk,(,K* (0) — O(H(K—l)+1:nK,ﬂ(K*—l)+l:nK*)’ (B.87)

that is, the operation that selects the («, k*) n x n sub-matrix of the matrix 0. Also, for a n x n square matrix 0,, define
the operation that makes 0, block diagonal at row j as follows:

blockdiag;(0;) = diag(0\"'?, oJ*' ™11y, (B.88)

Then, by similar arguments to S; = Sy,

db .
vect(B; ,(r), BY; 5(r) = B{"" (1), (B.89)

in probability, where the relevant bootstrap condition we have to show, by analogy to S; = S, is that EP (B, r.a(n )BZT, 5(1r2))
— min(ry, rz)E(Bﬁm)(r] )(B&"“:n(p‘“»(rz))/) = 0,(1), a condition proven below for r; = r, = r, because when r; # r, the
proof follows in a similar fashion. Recalling that B = vect(B{ ,(r), B 5(r)), note that

EP(BY; 4(r)BY; 5(r)) = [block, »(Var’(B;,)), block; 5(Var’(B;)), . .., block p,1(Var’(B; )],

so we proceed with each block 2, ...,p; + 1, and let by = I, (I, ¢, where I, is the element « of I, fork = 1,...,p;.
Then for | > 1, we have:

block Var’(B -1 % EP bette_yt;_yv¢ v‘ ! btnt_’l;*"lvfzvt_l
Te+1 lT btl{ t— ln[ Ivl’ Ve btlLt—ll/Ltflvtz
[Tr]
=T"") blockdiag,, ,(bl:_il; ;) LA blockdiag, ., (block; .1(p;,)) = blocky (11(p;,),
t=1

where the last equality follows by Lemma 8(iv) and by Assumption 9'(iii) which imposes a diagonal structure on
p{ M Einally, we have:
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[Tr]
bin, ln ]) btntfll, Ve
block; . {Var’(B:, |7’ ) — block; ,.{Var’(B5,) = T~ E (et (Ve gl
1,c+1 ( l,T| rf]) 1,k+1 ( I_T) bt’{‘t lnr lvt | 0P2><P2

= 02(1),

by Chebyshev’s inequality and Assumption 9'(iv) and Assumption 10(ii). The same comments mentioned before (B.80)
apply here as well.

Part (ii). First, let S; = Sy, and recall that, from (B.78), we need the distribution of L‘,b( ). By Hansen (1992), Theorem
2.1, because ||dy +S#D;_; | is bounded by Assumption 9(ii), and D(t — f) =D, ;whent e [f, %) we have:

r I b .
o) = / Q(0)85Ds(r — )BYy , (1) S / 0u(1)S4D4(1)dB (1)
0 0

= (554) ® 54) f (Du(1) ® Dy (1)) dByo(0). (8.90)
0

b
in probability, where the convergence follows because Var”(ﬁﬁ’(!)) — Var(£4(1) LN 0, which can be shown by similar
arguments to (B.79), and using Lemma 8(iii) instead of Lemma 8(iv), where £¢(I) is the sample counterpart of C’{(l).
Similarly, for ST = B4 we have from (B.83):

£5(0) 2 (BLsy,) / )84D, 4dB;"(7) + (B,Sp, ® S¢) / [D,() ® Dy(z)1dB "+ (z)

= [(S;S#) ® S#]/ (D#(t) ® D4 (7)) dB; #(7) in probability. (B.91)
0

Next, we derive the distribution of &5 4(n*). This follows by similar arguments as above if we can verify that the off-
diagonal elements of the bootstrap covariance Covb(B,’fT(r), Bl’i’T(r)) converge in probability to the counterpart elements
of the covariance Cov(B|""®"*"(r), B ") (r)) for | # I*. We only do so for block; 1(Cov’(B;1(r), B}. 1(r)); the rest
follows by similar reasoning.

[Tr] / b 2 b 2
ne . E(vive e ) me g e EP(Vivey)
block; 1(Cov’(B; (), B () =T"" E [ 3 t
M( ( ”T( ) ¥, |: l(,t—ln[_[* Eb(U[ZUtfl*) l;,t—llt,t—l* Eb(Vtz)

(1] b b
+ 71! Z Lol ["t—ln;*_[* E”(vevpr ve_vpe ) "t—ll;,t*—l* E”(vpvgs Vt—l)]
u,thut

b b
Sy l;,t—ln;*,l* E’(vevpeves ) Le iy o< EP(vpvpe )

[Tr]
=T 'Y B (lil;_.) © diag(0y,+1p,+1,J5) > blocky 1(py;.) = blocky 1(Cov(B(r), By(r)),

t=1
because of Assumption 9'(ii) which imposes that E[I el ] = O, 1 1yx(py+1) for L I* > 1,1 # I*, and Assumption 9'(iii)
which imposes that E[lu‘[n[_,lwf,*] = Oy, +1)xp, for L, I* > 1,1 # I*. In the general setting, for S; = S, or S; = B, 4, by
analogy we need E[(n[p;)®(n[_,n§_,* )] = 0(p1+1)zx(p]+1)z. for [, lf > 1 % I, and E[(nen)@me il 1)1 = 0y 412 ((py+1py)
for I, I* > 1,1 # I*, which are also satisfied by Assumptlon 9'(ii)-(iii).

Using (B.90)~(B.91) in the expression &3, =y OSF Al ( —1/2 Ztei;(s;‘gt)“t(gt—l—l ® vH,])), it follows that,

for a fixed n*,

Ts
53 4(n :> ZSF A7l STS#) ® S#)/ (D4(7) ® Dy (7)) dBi11.#(7) in probability.
Ts—1

Now as in the proof of Lemma 6, setting n* = T for some « € (0, 1), and noting that the remainder Sg J(ATT —2) —
53 J(n*) = op(l) it can be shown that:

. Ts
&anT =28 Y (159 (SFA S [ (Du(r)® Do (1) dBryr (1) = Misalricr, )
=0 K

s—1

in probability, where I\/gg,z(tsq, 75) as defined above is also the asymptotic distribution of the sample counterpart of
Sg’, 4(ATT — 2), that is &3 4, featuring in Supplementary Appendix, Appendix C on page 7. The variance of M3 (7s_1, T5)
exists and is derived in the Supplementary Appendix right after (C.16). Therefore,

db
€94 = M3 (751, 75) in probability. (B.92)
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Now consider Sb =T/ ZIE, ST gt) [ < (2 o F ) us] in (B.75). By similar analysis as for 53 4 it can be shown that:

@ = 5
£, ((5S#) ® (SFY) ({ / Dy (t)dBo 4(t )} ® [Ls> = Ms,1(Ts_1, T5) in probability. (B.93)
1=0 Ts—1
Also, &2, + £3, can be shown to jointly converge to Mi(;_1. %) = Ms1(Ts_1.7s) + Ma2(Te_1. 7s), provided that

Covb(Bg’T(r), B} (r)) — Cov(Bo(r), Bglzn(mﬂ))(r)) L) uniformly in r for all | > 1, where Bg.r =T"12 Z{Zl I; ® ¥, and
recall that B;ﬁT( r)= vect(B, r.a(); Bf,r,g( )). Now consider Cov® ( (r) B, rall)) = Covb(Bo,T(r), ijT(r)); the proof for the
rest of the elements is similar.

[Tr] [Tr]

Cov (Bb“( ), BlTA =T 12 Z Lieve (T 172 Zlurvr (=1 © V)

[Tr] [Tr]
=T 121 W OB )T Y il veves(lie -y © Brey)
t R =1, t£*
= £3,1 + £312.
Now note that by Lemma 8(iv),
[Tr] [Tr] ﬁtlu[ ! V2V
E"(£34) —T]ZI W OB ) =T utuz OE [ vZve_ity,
t=1 lutltt ! vtzlpz

[Tr]
=T 121 vect(014p,, Ir. 1) > Tlp|

. [Tr] lu,tlu,t*lu,t*—l b Ve Ve Vx|
E (53,2) =T"' Z biely ey | OE VeVes Vs _ilp, | = Oy,

£ R =1, t£L* lu,tlu.t*l;‘,t*fl Ve Vexlp,

(1:n,1:1) @I],

Therefore, Cov’(B g(r (r), B,TA( r)) — Cov(B ]( ), B“:")( )) = 0p(1), by the restriction in Assumption 9'(i), which ensures

that p“ mLD p (1) o 7; also note that for the rest of the terms of the covariance above, by analogy, we need
Eb[(nrn[) ®ne—i] = 0, 12 (p,+1) fOr I > 1, imposed in Assumption 9'(i). So,

db
5?,3 + 52_4 :p> Mi3(Ts—1, Ts) = M3 1(Ts5—1, Ts) + M3 2(T5_1, T5)

b

db
p(l) and Sé’.z = 0y(1), it follows that: Sé’ = M;(t_1, 75), in probability

in probability. Because we showed that 55,1 =o0

db
and that vect(e?, £2) = vect(M(zs_1, 75), M3(7s_1, 75)) in probability.
e Now consider 55. Note that r; = S, is not bootstrapped, and recall that § = u, + 5, + F&,_;. Therefore, replacing
again estimated parameters by the true values, because the rest of the terms are of,(]) (therefore also replacing, as before,

gl with g, © vy),

=T I5/(8 O vl { Srits+ T Y [S(8, O v)ISFeke_y + T2 [Si(8, © vi)ISem,

tels tels tels

=&, +&),+& 5+ 0y(1).

Now consider 531. From (B.72) and (B.74), without any restrictions on p;, p; except those in Assumption 9,

b Ts
gg,l = [giy +o0 ( )]Sr”'s i(STS#)/

s—1

D(T)dBo,#(T)] Srls

— ((S/S) ® (5,F) ([ / s D#(T)dBo,#(T):| ® us) : (B.94)

-
in probability, where the latter is the first term in M 1(7s_1, 7s) defined before Lemma 6 (the rest of the terms appear
from the distribution of £, as seen below).

Now consider £, = 712 > i, [Si(8 © v)ISen,. Recall from the arguments above (B.55) that A" is also upper
triangular with rows p; + 2 : n equal to [0,, 0,,.,, Ip,]. Therefore, as shown on page 10 of the Supplementary
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Appendix, Sy, = S;A;, 8 = &, 50, for S; = S,

=T [S|(g O vlsm, =T ) uweg,

tels tels
T2 Z(szD;,tdu,t)lu,tth;.t,
tels
and consider first BZ§ () =T71/2 Z[m L, tlc,tv[.
Part (l) Since v; is 11d Eb (Luely, | [vtl}‘t 1) = 0, for any element I, ; of l;[, k = 1,...,p,. Also, for some ¢ > 0,

sup, EE |l ¢y, tvt|2+“ < sup, Elly¢le, ¢ | 2+ sup, E?|v,|>+" < C. Because E° (V2| 7P ) = E”(vt) = 1 by Assumption 10, we

have Eb(lﬁ tli Vf |]—‘f’ )= Eb(lﬁ [I? ‘ ) therefore, the conditional and uncondltlonal bootstrap second moments are the

same, and it remains to verify that Var (Bz; 7(r)) — Var(By,(r)) = 0,(1), where B;(r) was defined just before Lemma 6.

[Tr] [Tr]
Var' (B, ((r) =T Y "1 Aol (E°O2) =T Y 1 Aol B 1py00 = Var(Bul(r)),
= t=1

where p, ;o o was defined before Lemma 5, and the convergence follows by Lemma 8(iv).
Part (ii). Because Var (BZC () 2 Var(By(r)), using Lemma 8(iii), it follows by Hansen (1992), Theorem 2.1, that:

db Ts
05 =T""2 (Sp, Dyl Mucvilec = Sp, / dy(T)Dg(7)dBye(7) = MY} (1, 7). (B.95)
T

telg s—1

in probability, where M(zg(rs_l, 75) was defined right before Lemma 6. Similarly, it can be shown that for S; = B, 4.
without restrictions on p, o besides those imposed in Assumption 9,

52 3 :> M2 3(rS 1, Ts) in probability. (B.96)
Next, consider 832. By backward substituting &1,
53,2 = SF T2 Z[S;(gt O )&,
tels
= SFT V28,8, © vy +SAFT T Y F IS © 0l [£1, ]

tei;

[ t—2
+S T2 S{ g 0 vl | | DOFL | [ +S- 772 ) ISi(8 @ vl | Y Fimeios
1=0

tely 1=0 tely

4
Z L (B.97)

First, note that £2, | = ob(1) because T~"/2g, ®v, = 05(1) (as shown before in the proof of £?) and &, 7 = 0,(1) (see
the proof of Lemma 2 in the Supplementary Appendix, Appendix C). Next, because Zio ||Fi|| is bounded, Varb(gt o) =
Op(1) and &, ) = 0p(1), we have &2, , = oj(1).

Next, by similar arguments as for Sé’j, and noting that no restrictions are needed on p;, p; besides those in
Assumption 9 (because 55’3 has at the basis the same random process as Sf),

&, 5= SFT 23 [sig ov)l | [ DFL|

tely

Z (S84) ® (SrFL)) <|:/ S D#(T)dBo,#(T):| ® ﬂs)
I=1 -1

S—

=My 1(Ts-1, T5) — ((SiS#) ® (5+F2)) <|:/ S D#(T)dBo,#(l'):| ® IL5> (B.98)

Please cite this article as: O.Boldea, A.Cornea-Madeira and A.R.Hall, Bootstrapping structural change tests. Journal of Econometrics (2019),
https://doi.org/10.1016/j.jeconom.2019.05.019.




0. Boldea, A. Cornea-Madeira and A.R. Hall / Journal of Econometrics Xxx (XXXx) xxx 33

in probability. Now consider 53’2’4,

E,4=5T"2) [si(g, Ov)l | Y Fimi
tely =
By similar arguments as for 83 4 in (B.76) and just below it,

AtsT—2
£,4=5 Y Fi[T72) sig 0vn_iy | +0)(1) = EXATT — 2) + 0f(1).
= tely
Next, we analyze £2(n*), first for a fixed n*. Let S; = S,. Note that a crucial term in £2(n*) is £2(1) = T-'2 "\ ung,
for | > 1, because 5,_, = A; 'g,_,. By the structure of § and D; in (B.40),

du,t llu,t 1
81 = sp1du,tfllu,rfl + splpv,tfllu,t = S#thl.#ltfl,#-
Sp,Dee-ilye #

Then, letting &5 = i~ and &, 5 = L di— v,

[Tr] [Tr]
A =T " du(SaDerphyclerwve =T (dueSsDe—)hueli-1ve ). (B.99)
t=1 t=1
Part (i). First, consider B,T c(r) = 17712 Zm{ Liel_yvg, for [ > 1. Because v; is i.i.d, it is m.d.s under the bootstrap

b
% B""(r) in probability, provided that

measure conditional on the data, so by arguments similar to before, BﬁT,C(r) =
Varb(B?T,C(r)) — Var(B(l ")( )), which we verify below:

[Tr] [Tr]
Var’(B); (1) =T"" Zlu Aol (B(02) =TV 4y 5 var(B{"™(r)) = block, 1(py ).
t=1

The previous to last statement above follows by Lemma 8(iv) without restrictions on the form of p,, besides the ones in
&
Assumption 9. Therefore, Bzrc( r = Bfl‘")(r)) in probability.
Part (ii). By Hansen (1992), Theorem 2.1, and Lemma 8(iii), £§(1) defined in (B.99) is such that:

b T T
2% f 0u()54D4(2)IB " (2) = ((5/54) ® S3) f (Du(1) ® Dy (1)) dBy4(7)
0 0

in probability. For §; = B, ., the same result can be shown by similar arguments, and with no restrictions on p; besides
being finite. '
db .
Now let S; = &, again. To derive the limiting distribution of Sé’(n*), we need not only that Bf’,T’C(r) = BE]'")(r))

db . .
in probability, but also that vect(B} (r), Bf. 1 (1)) = vect(B{""(r), B/"™(r)) in probability, which can be shown using
Lemmas 3 and 8(iv), because '

CovP(BY; (1), BS. 1 (1)) &> Cov(B{"™(r), Bl"™(r)) = blocki 1(p; +). The latter condition holds because:

. [Tr]
i (B?T C(r)(BI* ) C(r e Zl lt llt . Eb )+ T-1 Z lu,tlu.[*ltfll/t*—[* Eb(UtUt*)
t =1, 0AL
[Tr]
— 71 Z llz,’tltfll;—l* 2 block, 1(p; ),
t=1

where the last statement follows by Lemma 8(iv), and under Assumptions 1-10. By analogy, no other restrictions besides
Assumptions 1-10 are needed also when S; = B, 4.
Therefore, by Hansen (1992) and Lemma 8(iii), for a fixed n*

n*
)=5 ZFiA;1 1/22 Tgtgt -1
=0

tel

%

b N Ts
& ((S;S4) ® (S,FLA;'Sy)) / (D4(t) ® Dy (7)) dByy1 4(7)
1=0 Ts—1
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in probability. Letting as before n* = T, it can be shown that Eé’(ArsT -2)= Ssb(n*) + 02(1), and therefore

82,2,4

h Ts
EY(ATT — 2) + 0b(1) % D (SiS4) @ (SFLTAT'S) / (D#(7) ® Dy (1)) By 4(7)
=0 Ts—1

= M 2(7s—1, T5), in probability, (B.100)

where My 5(_1, 7) is defined just before Lemma 6. Substituting £} , | = 05(1), £2, , = 0}(1), and (B.98) and (B.100) into
(B.97), and then using (B.94), it follows that:

s—1

b Ts
55,2 g M 1(Ts-1, T) — ((S;S#) (|:/ D#(T)dBo,#(T):| ® ”’s) ® (SrFQ)) + My 5(Ts—1, T5)

db
531 + 532 = M, 1(Ts-1, Ts) + Ma 2(Te-1, T5) (B.101)

in probability, because the joint convergence of 62 2.3 &2,, and of 52 1 65 , can be shown as above under
Assumptions 1-10. Because all these terms share the same v, it can be shown that they also jointly converge with 52 3
and their bootstrap covariance to the covariances of the relevant limits, under Assumptions 1-10.

Therefore, for S; = S,

3
db 1
53 = ZSS,,- = My, 1(Ts—1, Ts) + Mo o(T5-1, T5) + M(z,;(fs—la T5) = M(75-1, T5)
i=1

b
in probability. Similarly, for S; = By ., Eﬁ’ 2J> M (7s_1, T5) in probability, completing the proof for the distribution of &2,
which we note was proven only under Assumptions 1-10. Note that Assumption 9'(iv) is not needed here for the WR
bootstrap (because r; = S;§; is not bootstrapped in Sb)
Now note that because 8” featured as part of £2, their joint convergence was already shown, and recall that it also
followed under Assumptlons 1-10. It remains to verify the condition:

CovP(vect(cL, £2)) — Cov(vect(My(ts_1, T), Mi3(7s_1, 7)) = O,

db
because then vect;— 13(€b) = vect;_1.3(M;(ts— 1,15)) = M(ts_1, Ts) in probability. This condition follows by similar
arguments as before, if we show that (C 1) Cov’(&? 235 83 4) converges to the joint covariance of their respective limits,
and that (C 2) Cov (5;2, 4 55’ 4) converges to the joint covariance of their respective limits. For (C 1), by arguments as
before, it suffices to show Cov’(B} ,(r), By, 1(r)) — Cov(B{"™(r), Bu(r)) & 0 (here, we set S; = S, for all terms and that
is why we consider the first n x 1 elements of By(r); the proofs forthe case S; = B, . are similar and are briefly discussed
below). Note:

[Tr] [Tr]
Cov(BY 1 5(r), Bhy 1(r)) = E” ((T1 D (uclir) © veet(vev ity 41, Vit T byl e vps ))

t=1 =1
a VvVt t ] Ve Vex Vel U
— T71 (12 [l[,[l t) o} Eb |: t f P1+1 pz] + T—l (lu tlu t*lt—ll, *)Eb |: tVexVe—1tpi+1 pZ]
, L, [ * !
Z ‘ lpthZ t,t*;#t* Ve tpa b,
[Tr] (1]
=T ) (2 Lol ) © Vect(0p, 111, J5) > T™' D E(2 il ) © VeCt(0p, 1), . J5) + 0p(1),
t=1

which shows why we need E(lﬁ,t"r—ﬂ'g,r) = 04, +1)xp,» imposed in Assumption 9'(iii). In the general case of S; = S, or
St = PB4 by analogy, the condition needed and imposed in Assumption 9'(iii) is that for [ > 1, E((n;n;) ® (nt_,l’“)) =

00p,+12x(py+10py"
For (C 2), notice that from (B.100),
db o0 Ts
£054 = Mas(ts 1, %) = ) _((SiS#) ® (S,FLA;'Sy) / (D4(7) ® Dy (t)) dByy 1 4(7) (B.102)
1=0 Ts—1

- Y SiS0® (FAS.) JRCIGET AT e

= [tnp ® (S,Fs)] (‘L'S,], T5), say, (in probability) (B.103)
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while from (B.92),

b dg = / lp—1 " =TI/
£, ((SiS4) @ (SFIAT'Sy)) | (Dy(t) @ Dy (v)) dBiy 4(1) = [1, ® SIP(Ts1, T5)
1=0 Ts—1

in probability. Therefore, they jointly converge. It follows that for I; = I,

db
—1/2 Zztgt ST = vecti_.3(£7) 2 M(z,_1, 1) in probability.

tel;

, L
Using exactly the same arguments as in the end of the proof of Lemma 6, T~1/2 Zteli 2bgb Sfr’ = WM in probability for
I; # I, completing the proof. O

Proof of Lemma 11. As for the proof of Lemma 9 consider the interval [; = fs. Let S? =S8, or Sfr’ = /Aix,#. We need the
asymptotic distribution of 22 =T~2 )" ; z.g)'S

7172 Sh
b 1/2 ) 12/ Z[Eisgt b’ b ]:f

_ , _
zb=T1"V Zz[g[ S) = T]/2 p SrE[g[;Sb = ]—'%l:
tels TV Zteis Sst—lgt, ST F3

Note that 72 = £b, and F? = &2, defined in (B.71) and analyzed in the proof of Lemma 10. Also note that, using (B.103) -
as in the proof of Lemma 10 - and replacing as in the proof of Lemma 10, estimated parameters with true values because
their difference is asymptotically negligible,

F=s{T1? Z[S;(gr Ov)l§_q ¢+ 03(1)

tels

e, =S F { T71 > [Si(g, © vy ¢ +0b(1),
telg
where 55‘2 is given in (B.97). Since they involve the same underlying random quantity, just scaled differently (S versus
S F), the desired distribution for J-‘é’ follows directly from the analysis of 55’2 in Lemma 10. Careful inspection of the

db
proof of Lemma 10 (focusing on the analysis of 8{’ and 55’ only) also shows that Z}’ = M(_1, 75) in probability, and
indicates that this result holds under Assumptions 1-10, without the need for 9'. By a similar argument as for the proof

~ db
of Lemma 6 in the Supplementary Appendix, Appendix C, when [; # I, Z? = W in probability, completing the proof. O

Proof of Theorem 1. We consider only the WR bootstrap; for the WF bootstrap, the results follow in a similar fashion.
Let for simplicity I; = I;,. From (8)-(10) and for the Eicker-White estimator M(;,

" A -1 A ) P N
Waldpy, =T B, R} (RkVAkR;() Ry By, where V,, = diag_..1(Q Mg Q) (B.104)
A A/ / A A — A/ ~ N
Q(,) = T_l Z thtzt Tt s and M(l) =EW [ tht(ut + v/tﬂx,(i)); I;il .
tel;
From (19)-(21),
b I ~b N\"1 b ~ b . Ab _qab Ab
Wald”k —TB, R, (RkVAkRk) Ry B, where V, = diag,_ (0" 'M;, (@) ") (B.105)
b by n
—7r Z T2tz b/ Y, and M(!) = EW[ T, zh@ + v?/ﬂxy(”); 11-] .

tel;

~b
From Lemma 2, Q(,) LS Q; and from Lemmas 9 and 11, Qi LN Q.

Now consider ﬂl = vect(ﬂ, W)= vect(ﬂ (iy) defined on page 4 of this paper. Let QJ* =T"1! Ztel* z:z;. By Lemma 2,
0

Qj* RS f:é Qq(t)dt = Qg j+. Therefore, from the proof of Theorem C1 in the Supplementary Appendix (Appendix C),
i—1

Tl/z(Bi,xk - ﬂo) = Q;l T?/ T2 ZZtUt +T1712 Zztvéﬂg

tel; tel;

Please cite this article as: O.Boldea, A.Cornea-Madeira and A.R.Hall, Bootstrapping structural change tests. Journal of Econometrics (2019),
https://doi.org/10.1016/j.jeconom.2019.05.019.




36 0. Boldea, A. Cornea-Madeira and A.R. Hall / Journal of Econometrics xxx (Xxxx) xxx
h+1

T 2z the,*(@“*T‘l/ZZztvtﬂx + 0,(1). (B.106)

tel; teI*

~b ~ b b
From Lemmas 9 and 10, ¥; = X} 4 05(1). Also, Q. =T~ Y, 20z¥ 2, Q. (in probability) by the proof of Lemma 9,
J
therefore:

~b _ ,
T8y, — B%) = Q' Y | T2 " 20(u) + o' B

tel;
h1
Tzl the,*@“ T2 "zl + ob(1). (B.107)
tel; tel*
From Lemmas 6 and 10, we have that T2 3" zPof'fy — T2 )" zv,By = ob(1) and that T~ )", | zpuf —

~b A ~b b
—1/2 D ter Zelle = 0 ( ). Therefore, from (B.106)-(B.107), ,BW - Biy, = og(l) (recall that we denoted ﬂ = ,BW on
page 6 of this paper). Next consider M(i) for the WR bootstrap under a stable regime I; = Iy = [ [ts_1T] + 1, [t T]],

M(l =77 7202 (i ~|—f)f/ﬁx(l =T ¥ (b + o7 B, + o(1)
tel; tel,
=T Vb (@b + 1Y X2 TG B+ 2T Y X b Tite! B+ of(1)
tel; tel; tel;

where the o ( ) term comes from the fact that the difference ﬂx i ﬂx iso ( ). Therefore, the terms involving these
differences are of lower order than the term after the second equaﬁlty above.
We have:

Sy =T Y bl WP 4 T Y bl (wl (B - B — 27 ) e ulwl (B - B)

tel; tel; tel;
3
_ b
i=1
Letting ?? = vect(v?, Oql) we have w? = ¥'zb + 4, so

Sb, =y ® (Bl — BT (2b2!) @ (whw! )il ® (B — B)]

tel;

=1, ® By — BN (g ® TV Y (22 @ (222 )ity ® T

tel;

+H @ TITY (@)@ @+ U@ TV (282)) @ (223))]

tel; tel;

171 (22l @ (5} ) ¢ 1l ® (fef,-) - B). (B.108)

tel;

~b ~
Notice that the terms inside the curly brackets in (B.108) are pre/post-multiplied by f; — 8 which is OZ(T”/ 2). Therefore
it becomes evident that it is sufficient to show that the terms in the curly brackets are og(T"‘ ), for any (small) @ > 0. We
first show that T*32 = T=1= 3" _ (202) ® (2P2!') = 0f(1). We have:

o 1 Si& £ ,8 1 Si&y £ 48
Ee)©Ez)= | S& SEES  SEELS | O SE o SEES SEELS | (B.109)
S&y SEE s sggS ] Lse, sg &S sEELS
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1T . .
where & = F[ freot ]E[Ts ot ( e g ) + Y Snf , (given in (B.44)). To show that T~*)? = o(1)

we can see from (B.109) that it is enough to show that T“"y1 =17 I Ztel Egt )® (15’[’5[[’/) = og(l) because the other
terms follow by similar reasoning. This follows if we can show:

TV, =T ) Z () ® (nl_,n O)Es @ s ) = of(1).

tel; LI*,k,k*=0

Since l:'S — F5 = 0,(1), we can write:

AtsT—1
Wr= > FL@F) [T Y (bl )@ (b0l =) | (FE @ FY +0b(1),
LIk c*=1 tel;

in probability. We now show that )731 = OZ(T"‘) in probability, for any (small) @ > 0. Because Fi is exponentially decaying,
it therefore suffices to show that

Ty et ) ® (1w ) = 0p(1),

tel;
~A—1
in probability, or, because y? = A, g?, that:

T (gb gl ) ® (g gl -) = 0l(1).

tel;

NOte (g?_[g?’_[*) ® (gl[)_,(g[[)’_,(*) = [(g/\-t—lglt—l*) ® (gt—KQZ—K* )] @ [(V[,[V;_l*) ® (vffl( V/t_,(* )]- and Eb[( vt,lv;_,*) ® (vffl( v;_K* )]
has elements that are uniformly bounded, where the largest moment involved is the fourth moment of Ve also uniformly
bounded by Assumption 10. Therefore, we analyze only the element of T~ Zte, (glt’ ,gf ) ® (gt ,(g’[’ +) bertaining to

that moment, namely T~'~* 3~ . {if vi" . Because the distinction between [ = 0 or [ > 0 is irrelevant for the end result,

we show that be =T 1« Ztel ﬁ“v;‘ = og(l) in probability, which then completes the proof, as the rest of the terms

can be analyzed in a similar fashion. Letting Y, r = T~17¢ ZIE, ut and Eb( 4) = ¢ < ¢ (by Assumption 10(ii)), we have,
by Markov'’s inequality, conditional on the data:

PPy > m) =P (T ) vt > ) < p 'Y @B () = 07T Y i =7 e

tel; tel; tel;

We now show that Y, r = 0,(1) (uniformly over I;), which from above implies that P”(ygT > 71) 2o or, equivalently,

that yfj,T = og(l) in probability, therefore completing the proof. Note that i, = u; + w; b, where b = ﬂ, ﬁ = 0y(T~ 1/2)
= 0,(1). Therefore,

5

Yur = ZZ”, where
=1
21T = 71—« Zuf, Z T = 4T 1-@ Zu?wéi), Z37 = 6T ¢ Z uf(w;i))z

tel; tel; tel;

24’1 = 4T_]_a Z u[(w;l;)3, ZS,T = T_]_a Z(w;i))“

tel; tel;

We now show that each of these terms is 0,(1). First, sup, E(u;‘) < M by Assumption 9. Therefore, by the Markov inequality,
for some n > 0,

P(Zir >n)<n 'E(Zr)=n""T""" ) Euf) <n'T™*supEu{) < n'T™*M — 0,
tel; t
S0 Zy,r = 0p(1).
Next, consider 2 r. First, [| 251 < 4(T‘1‘°‘ e ||ufwt||) bl = (T—M e ||uf’w[||) 0,(1). So to show Z 1 =
o0p(1), it suffices to show that 71—« Z[E,i ||ufwr|| = 0,(1). By Markov’s inequality,

P17 wdwel > n | <n'T supE||u we . (B.110)

tel;
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Hélder inequality states that E [lab|| < (E ||a|[?)/P(E ||b||9)"/9, where p,q > 1and 1/p+ 1/q = 1. Leta = u}, b = w,,

= 4/3 and q = 4. Then: E [[ulw,|| < (Eu¢|*)**(E |w,[*)"/. Let M be a universal constant. Then, by Assumption 9,
Elu|*< M. Similarly, w, = Y%z, + ¥, where 3, = vect(v,0,), and by the triangle inequality, E(|lw.|*)"* <
ENY 2z 1Y + (E 1w 1HY4 < (I TOYE [Ize M) + (Elve )4 < M, where the latter follows by Assumption 9 and
by the proof of Theorem C1 in the Supplementary Appendix (Appendix C), where we showed that sup, E ||z, ||* < M. It
follows that sup, E luw,|| < M, and substituting into (B.110), it follows that T~1~ > te ludw,|| = o0,(1), implying that
ZZ,T = Op(]).

Next, | Zsr] < 6<T“‘°‘ et ||utw[||2) bz = 6(T‘1‘°‘ et ||utw[||2> 0,(1). So it suffices to show T~1~*
> ter, lucwe |I> = 0,(1). By Holder's inequality with p = g = 2, we have E [lu;w¢ || = Elu|*||w||* < (Elu|*)"/?(E [|w,[|*)"/?
< oo, which by Markov’s inequality applied as in (B.110), shows that T~17¢ Ztel,» lucw > = 0p(1) and therefore that
Z3 1 = 0p(1).

Now consider Z4r. By similar arguments as above, we have |Z47| < 4(T*]*°‘ Zcez,-|“r| ||w,||3> IbI? = 4

(T*H" > e el ||w[||3) 0,(1). By Hélder's inequality with p = 4 and q = 4/3, we have: E|u| [|w,]|®> < (E[u|*)V*

(E [|we [|*)3/4. Since E ||w;||* < M as shown above, and E|u;|*< M, it follows by Markov’s inequality applied as in (B.110)
that T~1¢ Zt61i|ut|”wt”3 = 0p(1) and therefore that Z41 = 0p(1).

By similar arguments as above, || Z5 || < (T‘l“" Ztel ||wt||4) b4 = (T‘l“" Ztel |||w[||4) 0,(1). Since sup, E [lw,||* <
oo as shown above, by Markov’s inequality applied as in (B.110), it follows that T~1~* Zte, lw||* = = 0,(1) and therefore
that 25 T = Op(l)

Putting the results for zZ; r together,j =1, ..., 5, it follows that }, 1 = 0,(1), completing the proof. Therefore it follows
that Ty, (202)) ® (202') = of(T*) for any & > 0.

Similarly we can show that T~! Zteli(z’t’zf/) ® (') = og(T“) and T! Ztel zbz”/) ® () = 0p(T*). 1t follows
that S}, = oj(1), and similarly S?, = og(bl) implying S? = T e 2Pz 2+ ob(l) Along the same linle:s, it
can be shown that s = 171y, 22V (W B,)? + (1) and that S} = 12, zbzf ubv? ﬂx + 0}(1). Hence, M;, =

-1 Z T z z[ T (u[ +v ﬂx) +o0 (1) (uniformly in Ag). By similar arguments, it can also be shown for the WF bootstrap
that M(,) =73, 7’ ztz[ T (ul + b ﬂx) + 0p(1) (uniformly in Ay).

Because M; and M(,) estimate the same part of the variance of T/2(8; 2 — B and TV Z(ﬂ, \, — BY) respectively, from
Lemmas 2, 6, 9 and 10, it follows that M 0 M()

SUp g |PP (sup-Wald < ¢) — P(sup -Waldy < c)

p( ) for the WR and WF bootstraps. Putting these results together,

—p>OasT—>oo. ]

Proof of Theorem 2. Inspecting the alternative representation of the sup-Waldy(¢ + 1]£) in the proof of Theorem C2
in the Supplementary Appendix (Appendix C), and defining the same representation for sup —Wald?(z + 1]¢), the desired
result follows using the same steps as in the proof of Theorem 1. O

Appendix C. Supplementary Appendix
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2019.05.019.
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