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a b s t r a c t

This paper demonstrates the asymptotic validity of methods based on the wild recursive
and wild fixed bootstraps for testing hypotheses about discrete parameter change in
linear models estimated via Two Stage Least Squares. The framework allows for the
errors to exhibit conditional and/or unconditional heteroscedasticity, and for the reduced
form to be unstable. Simulation evidence indicates the bootstrap tests yield reliable
inferences in the sample sizes often encountered in macroeconomics. If the errors exhibit
unconditional heteroscedasticity and/or the reduced form is unstable then the bootstrap
methods are particularly attractive because the limiting distributions of the test statistics
are not pivotal.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Linear models with endogenous regressors are commonly employed in time series econometric analysis.1 In many
cases, the parameters of these models are assumed constant throughout the sample. However, given the span of many
economic time series data sets, this assumption may be questionable and a more appropriate specification may involve
parameters that change value during the sample period. Such parameter changes could reflect legislative, institutional
or technological changes, shifts in governmental and economic policy, political conflicts, or could be due to large
macroeconomic shocks such as the oil shocks experienced over the past decades and the productivity slowdown. It is
therefore important to test for parameter – or structural – change. Various tests for structural change have been proposed
with one difference between them being in the type of structural change against which the tests are designed to have
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E-mail addresses: o.boldea@uvt.nl (O. Boldea), adriana.cornea-madeira@york.ac.uk (A. Cornea-Madeira), Alastair.Hall@manchester.ac.uk
(A.R. Hall).
1 For example, Brady (2008) examines consumption smoothing by regressing consumption growth on consumer credit, the latter being endogenous

because it depends on liquidity constraints. Zhang et al. (2008), Kleibergen and Mavroeidis (2009), Hall et al. (2012) and Kim et al. (2014) investigate
the New Keynesian Phillips curve, where inflation is driven by expected inflation and marginal costs, both endogenous since they are correlated
with inflation surprises. Bunzel and Enders (2010) and Qian and Su (2014) estimate the forward-looking Taylor rule, a model where the Federal
fund rate is set based on expected inflation and output, both endogenous as they depend either on forecast errors or on current macroeconomic
shocks. All these studies test for structural change in their estimated equations as part of their analysis.
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power. In this paper, we focus on the scenario in which the potential structural change consists of discrete changes in the
parameter values at unknown points in the sample, known as break - (or change-) points. Within this framework, two
types of hypotheses tests are of natural interest: tests of no parameter change against an alternative of change at a fixed
number of break-points, and tests of whether the parameters change at ℓ break-points against an alternative that they
change at ℓ+1 points. These hypotheses tests are of interest in their own right, and also because they can form the basis
of a sequential testing strategy for estimating the number of parameter break-points, see Bai and Perron (1998).

Hall et al. (2012) propose various statistics for testing these hypotheses in linear models with endogenous regressors
based on Two Stage Least Squares (2SLS).2 Their tests are the natural extensions of the analogous tests for linear models
with exogenous regressors estimated via Ordinary Least Squares (OLS) that are introduced in the seminal paper by Bai and
Perron (1998). A critical issue in the implementation of these tests in a 2SLS setting is whether or not the reduced form (RF)
for the endogenous regressors is stable. If it is then, under certain conditions, Hall et al.’s (2012) test statistics converge
in distribution to the same distributions as their OLS counterparts and are pivotal, see Hall et al. (2012) and Perron
and Yamamoto (2014). However, if the reduced form itself is unstable and/or there is unconditional heteroskedasticity,
then these limiting distributions no longer apply (Hall et al., 2012), and are, in fact, no longer pivotal (Perron and
Yamamoto, 2014). This is a severe drawback as in most cases of interest the reduced form is likely to be unstable. This
problem has been circumvented in two ways. Hall et al. (2012) suggest a testing strategy based on dividing the sample
into sub-samples over which the RF is stable but this is inefficient compared to inferences based on the whole sample,
and can be infeasible if the sub-samples are small. Perron and Yamamoto (2015) propose using a variant of Hansen’s
(2000) fixed regressor bootstrap to calculate the critical values of the test. Their simulation evidence suggests the use of
this bootstrap improves the reliability of inferences but they do not establish the asymptotic validity of the method.3

In this paper, we explore the use of bootstrap versions of 2SLS-based tests for parameter change in far greater detail
than previous studies. We consider inferences based on two different types of bootstrap versions of the structural change
tests, provide formal proofs of their asymptotic validity and report simulation results that demonstrate that the bootstrap
tests provide reliable inferences in the finite sample sizes encountered in practice. More specifically, we consider the
case where the right-hand side variables of the equation of interest contain endogenous regressors, contemporaneously
exogenous variables, lagged values of both and lagged values of the dependent variable. This equation of interest is part
of a system of equations that is completed by the reduced form for the endogenous regressors and equations for the
contemporaneously exogenous variables. This system of equations is assumed to follow a Structural Vector Autoregressive
(SVAR) model in which the parameters of the mean are subject to discrete shifts at a finite number of break-points
in the sample. Both the number and location of the break-points are unknown to the researcher. These break-points
define regimes over which the parameters are constant, and it is assumed that the implied reduced form VAR is stable
within each such regime. The errors of the VAR are assumed to follow a vector martingale difference sequence (m.d.s.)
that potentially exhibits both conditional and unconditional heteroskedasticity. Given this error structure, we explore
methods for inference based on the wild bootstrap proposed by Liu (1988) because it has been found to replicate
the conditional and unconditional heteroskedasticity of the errors in other contexts. In particular, we consider two
versions of the wild bootstrap: the wild recursive bootstrap (which generates recursively the bootstrap observations)
and the wild fixed-regressor bootstrap (which adds the wild bootstrap residuals to the estimated conditional mean, thus
keeping all lagged regressors fixed). These bootstraps have been proposed by Gonçalves and Kilian (2004) to test the
significance of parameters in autoregressions with (stationary) conditional heteroskedastic errors. Our primary focus is
on bootstrap versions of sup-Wald-type statistics to test for structural changes in the parameters of the equation of interest
(with endogenous variables) estimated by 2SLS, but our validity arguments also extend straightforwardly to analogous
sup-F-type statistics.

While our primary focus is on models where the reduced form for the endogenous regressors is unstable, our results
also cover the case where this reduced form is stable. In the latter case, the test statistics have a pivotal limiting
distribution under conditions covered by our framework, specialized to errors that are unconditionally homoskedastic. For
these situations, the bootstrap methods we propose are expected to provide a superior approximation to finite sample
behavior compared to the limiting distribution because the bootstrap, by its nature, incorporates sample information.
Thus bootstrap versions of the tests are attractive in this setting as well.

In the case where there are no endogenous regressors in the equation of interest, our framework reduces to a linear
model estimated by OLS. For this set-up, Hansen (2000) proposes the wild fixed-design bootstrap to test for structural
changes using a sup-F statistic. Very recently Georgiev et al. (2018) consider Hansen’s (2000) bootstrap for versions
of sup-F-type tests for parameter variation in predictive regressions with exogenous regressors. Both Hansen (2000)
and Georgiev et al. (2018) establish the asymptotic validity of this bootstrap within the settings they consider.4 There
are some similarities and important differences between our framework (specialized to the no endogenous regressor
case) and those in Hansen (2000) and Georgiev et al. (2018). We adopt similar assumptions about the error process to

2 Perron and Yamamoto (2015) propose an alternative approach based on OLS.
3 An alternative approach is to estimate the number and location of the breaks via an information criteria, see Hall et al. (2015). However, this

approach has the drawback that inferences can be sensitive to the choice of penalty function.
4 In fact, Georgiev et al. (2018) demonstrate that Hansen’s (2000) proof of the asymptotic validity of the bootstrap needs an amendment when

the predictive regressors are (near-) unit root processes.
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Georgiev et al. (2018) and like both Hansen (2000) and Georgiev et al. consider fixed regressor bootstrap tests of a null of
constant parameters versus an alternative of parameter change. Important differences include: Georgiev et al. (2018) allow
for strongly persistent variables whereas our framework assumes the system is stable within (suitably defined) regimes;
our analysis covers tests for additional breaks in the model, the use of the recursive bootstrap and also inferences based
on sup-Wald tests. Thus our results for this case complement those of Hansen (2000) and Georgiev et al. (2018).5

Although the frameworks are different, Hansen (2000), Georgiev et al. (2018) and our own study all find their bootstrap
versions of the structural change tests work well in finite samples. Interestingly, Chang and Perron (2018) find that
bootstrap-based inferences about the location of breaks have similar advantages in finite samples.6 Collectively, our paper
and these other recent studies suggest the use of the bootstrap can yield reliable inferences in linear models with multiple
break-points in the sample sizes encountered in practice.

An outline of the paper is as follows. Section 2 lays out the model, test statistics and their bootstrap versions.
Section 3 details the assumptions and contains theoretical results establishing the asymptotic validity of the bootstrap
methods. Section 4 contains simulation results that provide evidence on the finite sample performance of the bootstrap
tests. Section 5 concludes. Appendix A contains all the tables for Section 4, with additional simulations relegated to
a Supplementary Appendix.7 Appendix B contains the proofs, with some background results relegated to the same
Supplementary Appendix.

Notation: Matrices and vectors are denoted with bold symbols, and scalars are not. Define for a scalar N , the generalized
vec operator vects=1:N (As) = vect(A1, . . . ,AN ), stacking in order the columns of the matrices As, s = 1, . . . ,N . Let
diags=1:N (As) = diag(A1, . . . ,AN ) be the matrix that puts the blocks A1, . . . ,AN on the diagonal. If it is clear over which
set vect and diag operations are taken, then the subscript s = 1 : N is dropped on these operators. T denotes the number
of time series observations. If N is the number of breaks in a quantity then T1, . . . , TN are the ordered change-points.
Also, τN = (τ0, vects=1:N (τs)

′, τN+1) is a partition of the interval [1, T ] where each element is divided by T , such that
[Tτs] = Ts,τN , for s = 1, . . . ,N , and τ0 = 0 and τN+1 = 1. Define the regimes where parameters are assumed constant as
Is,τN = [Ts−1 + 1, Ts] for s = 1, . . . ,N + 1. Below the breaks in the structural equation are denoted by τN = λm, and those
in the reduced form by τN = πh, where m an h are the number of breaks in each equation. A superscript zero on any
quantity refers to the true quantity, which is a fixed number, vector or matrix. For any random vector or matrix Z , denote
by ∥Z∥ the Euclidean norm for vectors, or the Frobenius norm for matrices. Finally, 0a and 0a×b denote, respectively, an
a × 1 vector and a a × b matrix of zeros, and 1A denotes an indicator function that takes the value one if event A occurs.
Let mIa be the a × a identity matrix.

2. The model and test statistics with their bootstrap versions

This section is divided into three sub-sections. Section 2.1 outlines the model. Section 2.2 outlines the hypotheses of
interest and the test statistics. Section 2.3 presents the bootstrap versions of the test statistics.

2.1. The model

Consider the case where the equation of interest takes the form

yt = w′
t  

1×(p1+q1)

β0
(i)  

(p1+q1)×1

+ ut , i = 1, . . . ,m + 1, t ∈ Ii,λ0
m
, (1)

where wt = vect(xt , z1,t ), z1,t includes the intercept, r t and lagged values of yt , xt , and r t , and β0
(i) are the parameters in

regime i. The key difference between xt and r t is that xt represents the set of explanatory variables which are correlated
with ut , and r t represents the set of explanatory variables that are uncorrelated with ut . We therefore refer to xt as the
endogenous regressors and r t as the contemporaneously exogenous regressors.8 Eq. (1) can be re-written as:

yt = x′
tβ

0
x,t + z ′

1,tβ
0
z,t + ut = w′

tβ
0
t + ut ,

where β0
t = β0

(i) if t ∈ Ii,λ0
m
, i = 1, . . . ,m+ 1 and similar notation holds for βx,t and βz,t . For simplicity, we refer to (1) as

the ‘‘structural equation’’ (SE).

5 The wild fixed-regressor bootstrap is also included in the recent simulation study exploring the finite sample properties of inference methods
about the location of the break-point in models estimated via OLS reported in Chang and Perron (2018).
6 Chang and Perron (2018) report results from a comprehensive simulation study that investigates the finite sample properties of various methods

for constructing confidence intervals for the break fractions in linear regression models with exogenous regressors. They consider variants of the
intervals based on i.i.d., wild and sieve bootstraps.
7 The Supplementary Appendix is available at https://sites.google.com/site/otiliaboldea/ and in the supplementary material archive of the Journal

of Econometrics.
8 This terminology is taken from Wooldridge (1994)[p.349] and reflects that fact r t may be correlated with un for t ̸= n.

https://sites.google.com/site/otiliaboldea/
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The SE is assumed to be part of a system that is completed by the following equations for xt and r t . The reduced form
(RF) equation for the endogenous regressors xt is a regression model with h breaks (h + 1 regimes), that is:

x′
t

1×p1

= z ′
t

1×q

∆
0
(i)  

q×p1

+ v′
t

1×p1

, i = 1, . . . , h + 1, t ∈ Ii,π0
h
. (2)

The vector z t includes the constant, r t and lagged values of yt , xt and r t . It is assumed that the variables in z1,t are a strict
subset of those in z t and therefore we write z t = vect(z1,t , z2,t ). Eq. (2) can also be rewritten as:

x′
t = z ′

t∆
0
t + v′

t ,

where ∆0
t = ∆

0
(i) if t ∈ Ii,π0

h
, i = 1, . . . , h+1. The contemporaneously exogenous variables r t are assumed to be generated

as follows,

r ′
t

1×p2

= z ′
3,tΦ

0
(i) + ζ′

t
1×p2

i = 1, . . . , d + 1, t ∈ Ii,ω0
d
, (3)

where z3,t includes the constant and lagged values of r t , yt and xt .
Eqs. (1), (2) and (3) imply z̃ t = vect(yt , xt , r t ) evolves over time via a SVAR process whose parameters are subject to

discrete shifts at unknown points in the sample. To present the reduced form VAR version of the model, define n = dim(z̃ t )
and let τN denote the partition of the sample such that all three equations have constant parameters within the associated
regimes.9 We can then write Eqs. (1), (2) and (3) as:

z̃ t = c z̃,s +

p∑

i=1

C i,sz̃ t−i + et , [τs−1T ] + 1 ≤ t ≤ [τsT ], s = 1, 2, . . . ,N + 1, (4)

where et = A−1
s ϵt ,

As =

⎡
⎣

1 −β0′
x,s −β0′

r,s

0p1 Ip1 ∆
0′

r,s

0p2 0p2×p1 Ip2

⎤
⎦ , (5)

β0′
r,s denotes the sub-vector of β0′

s that contain the coefficients on r t in (1) (β0′
r,s and β0′

s are the values of β0′
r,t and β0′

t for

[τs−1T ] + 1 ≤ t ≤ [τsT ]); ∆0′

r,s denotes the sub-matrix of ∆0′

s that contains the coefficients on r t in (2) (∆0′
r,s and ∆

0′
s

are the values of ∆0′
r,t and ∆

0′
t for [τs−1T ]+ 1 ≤ t ≤ [τsT ]), and ϵt = vect(ut , vt , ζt ). For ease of notation, we assume the

order of the VAR is the same in each regime, but our results easily extend to the case where the order varies by regime.

2.2. Testing parameter variation

As stated in the introduction, this paper focuses on the issue of testing for structural change in the SE. Within the
model described above, there are two types of test that are of particular interest. The first tests the null hypothesis of
no parameter change against the alternative of a fixed number of parameter changes in the sample that is, a test of
H0 : m = 0 versus H1 : m = k. The second tests the null of a fixed number of parameter changes against the alternative
that there is one more, that is, it tests H0 : m = ℓ versus H1 : m = ℓ + 1. We consider appropriate test statistics for each
of these scenarios in turn below.

As the tests are based on the Wald principle, calculation of the test statistics here requires 2SLS estimation of the SE
under H1. On the first stage, the RF is estimated via least squares methods. If the number and location of the breaks in
the RF are known then this estimation is straightforward. However, in general, neither the number nor the location of the
breaks are known and so they must be estimated. For our purposes here, it is important that both h and π0

h are consistently
estimated and that π̂h, the estimator of π0

h , converges sufficiently fast (see Lemma 7 in Appendix B). These properties can
be achieved by estimating the RF either as a system or equation by equation, and using a sequential testing strategy to
estimate h; see, respectively Qu and Perron (2007) and Bai and Perron (1998). Provided the significance levels of the tests
shrink to zero slowly enough, ĥ approaches h with probability one as the sample size T grows; e.g. see Bai and Perron
(1998) [Proposition 8]. The same consistency result holds if we estimate h via the information criteria; e.g. see Hall et al.
(2013). For this reason, in the rest of the theoretical analysis, we treat h as known. However, we explore the potential
sensitivity of the finite sample performance of the tests for structural change in the SE to the estimation of h in our
simulation study. Let ∆̂(j) be the estimator of∆0

(j), ∆̂t =
∑h+1

j=1 ∆̂(j)1t∈Î∗
j
, where Î∗j =

{
[π̂j−1T ] + 1, [π̂j−1T ] + 2, . . . , [π̂jT ]

}
,

and x̂t = ∆̂
′

tz t that is, x̂t is the predicted value for xt from the estimated RF.

Case (i): H0 : m = 0 versus H1 : m = k

9 For example, suppose m = 1, h = 2 and d = 1 with λ0
m = [0, 0.5, 1]′ , π0

h = [0, 0.3, 0.5, 1]′ and ω0
d = [0, 0.7, 1]′ , then N = 3 and

τN = [0, 0.3, 0.5, 0.7, 1]′ .
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Under H1, the second stage estimation involves estimation via OLS of the model,

yt = ŵ
′
tβ(i) + error, i = 1, . . . , k + 1, t ∈ Ii,λk

, (6)

for all possible k-partitions λk. Let β̂(i) denote the OLS estimator of β(i) in (6), β̂λk
≡ vecti=1:k+1(β̂(i)) = vecti=1:k+1(β̂i,λk

)

denote the OLS estimator of vecti=1:k+1(β(i)) ≡ vecti=1:k+1(βi,λk
) in (6) (that is, β̂λk

is the OLS estimator of vecti=1:k+1(β(i))

based on partition λk). To present the sup-Wald test, we define Rk = R̃k ⊗ Ip where R̃k is the k × (k + 1) matrix whose

(i, j)th element, R̃k(i, j), is given by: R̃k(i, i) = 1, R̃k(i, i + 1) = −1, R̃k(i, j) = 0 for i = 1, 2, . . . , k, and j ̸= i, j ̸= i + 1. Also
let Λϵ,k = {λk : |λi+1 − λi|≥ ϵ, λ1 ≥ ϵ, λk ≤ 1 − ϵ}. With this notation, the test statistic is:

sup -WaldT = sup
λk∈Λϵ,k

WaldTλk
, (7)

WaldTλk
= T β̂

′

λk
R ′

k

(
RkV̂ λk

R ′
k

)−1

Rk β̂λk
, (8)

where:

V̂ λk
= diagi=1:k+1(V̂ (i)), V̂ (i) = Q̂

−1

(i) M̂ (i) Q̂
−1

(i) , Q̂ (i) = T−1
∑

t∈Ii,λk

ŵtŵ
′
t , (9)

M̂ (i)
p

→ lim
T→∞

Var

⎛
⎝T−1/2

∑

t∈Ii,λk

Υ
0′

t z t
(
ut + v′

tβ
0
x

)
⎞
⎠ , (10)

β0
x is the true value of β0

x,(i) for i = 1, 2, . . . ,m + 1 under H0, and Υ
0
t = (∆0

t ,Π ) and Π
′ =

(
Iq1 , 0q1×(q−q1)

)
.

As mentioned in the introduction, our framework assumes the errors are a m.d.s. that potentially exhibits heteroskedas-
ticity, and so the natural choice of M̂ (i) is the Eicker–White estimator, see Eicker (1967) and White (1980). This can be
constructed using the estimator of βx,(i) in (6) under either H0 or H1, where βx,(i) are the elements of β(i) containing the
coefficients on x̂t . For the purposes of the theory presented below, it does not matter which is used because the null
hypothesis is assumed to be true. However, the power properties may be sensitive to this choice. In our simulation study

reported below, we use the Eicker–White estimator based on β̂x,(i), the estimator of βx,(i) under H1, that is,

M̂ (i) = ÊW

[
Υ̂

′

tz t (ût + v̂
′
t β̂x,(i)); Ii,λk

]
,

where ût = yt −w′
t β̂(i) for t ∈ Ii,λk

, v̂t = xt −∆̂
′

tz t , Υ̂ t = [∆̂t ,Π ], ∆̂t is defined before (6), β̂x,(i) are the first p1 elements

of β̂(i), and for any vector at and I ⊆ {1, 2, . . . , T }, ÊW [at; I ] = T−1
∑

t∈I ata
′
t .

Case (ii): H0 : m = ℓ versus H1 : m = ℓ + 1
Following the same approach used by Bai and Perron (1998) for OLS based inferences, suitable tests statistics can be

constructed as follows. The model with ℓ breaks is estimated via a global minimization of the sum of squared residuals
associated with the second stage of the 2SLS estimation of the SE. For each of the ℓ+1 regimes of this estimated model, the
sup-Wald statistic for testing no breaks versus one break is calculated. Inference about H0 : m = ℓ versus H1 : m = ℓ + 1
is based on the largest of these ℓ + 1 sup -Wald statistics.

More formally, let the estimated SE break fractions for the ℓ-break model be λ̂ℓ and the associated break points
be denoted {T̂i}

ℓ
i=1 where T̂i = [T λ̂i]. Let Îi = Ii,λ̂ℓ

, the set of observations in the ith regime of the ℓ-break model

and partition this set as Îi = Î
(1)
i (ϖi) ∪ Î

(2)
i (ϖi) where Î

(1)
i (ϖi) = {t : [λ̂i−1T ] + 1, [λ̂i−1T ] + 2, . . . , [ϖiT ]} and

Î
(2)
i (ϖi) = {t : [ϖiT ] + 1, [ϖiT ] + 2, . . . , [λ̂iT ]}. Consider the estimation of the model

yt = ŵ
′
tβ(j) + error, j = 1, 2, t ∈ Î

(j)
i (ϖi), (11)

for all possible choices of ϖi (where for notational brevity we suppress the dependence of β(j) on i). Let β̂(ϖi) =

vect

(
β̂(1)(ϖi), β̂(2)(ϖi)

)
be the OLS estimators of vect(β(1), β(2)) from (11). Also letNi(λ̂ℓ) = [λ̂i−1+ϵ, λ̂i−ϵ]. The sup -Wald

statistic for testing H0 : m = ℓ versus H1 : m = ℓ + 1 is given by

sup -WaldT (ℓ + 1 | ℓ) = max
i=1,2,...,ℓ+1

{
sup

ϖi∈Ni(λ̂ℓ)

T β̂(ϖi)
′R ′

1[R1V̂ (ϖi)R
′
1]

−1R1β̂(ϖi)

}
(12)

where10

V̂ (ϖi) = diag

(
V̂ 1(ϖi), V̂ 2(ϖi)

)
, V̂ j(ϖi) = {Q̂ j(ϖi)}

−1 M̂ j(ϖi) {Q̂ j(ϖi)}
−1,

10 The comment above (after (10)) about the calculation of M̂ (i) applies equally to M̂ j(ϖi).
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Q̂ j(ϖi) = T−1
∑

t∈Î
(j)
i

ŵtŵ
′
t , M̂ j(ϖi) = ÊW

[
Υ̂

′

tz t (ût + v̂
′
t β̂x,(j)(ϖi)); Î

(j)
i (ϖi)

]
,

where ût = yt −w′
t β̂(j)(ϖi) for t ∈ Î

(j)
i (ϖi), j = 1, 2, v̂t = xt − ∆̂

′

tz t , Υ̂ t = [∆̂t ,Π ], ∆̂t is defined before (6), and β̂x,(j)(ϖi)

are the first p1 elements of β̂(j)(ϖi).

2.3. Bootstrap versions of the test statistics

In this section, we introduce the bootstrap analogues of the test statistics presented in the previous section. As noted
above, our framework assumes the error vector ϵt to be a m.d.s that potentially exhibits conditional and unconditional
heteroskedasticity, and so we use the wild bootstrap proposed by Liu (1988) because it has been found to replicate the
conditional and unconditional heteroskedasticity of the errors in other contexts.11 We consider both the wild recursive
(WR) bootstrap and the wild fixed regressor (WF) bootstrap. These procedures differ in their treatment of the right-hand
side variables in the bootstrap samples as described below.

Generation of the bootstrap samples:

Let z̃
b
t = vect(ybt , x

b
t , r t ) where ybt and xbt denote the bootstrap values of yt and xt . Note that because r t is

contemporaneously exogenous its sample value is used in the bootstrap samples. In all cases below, the bootstrap residuals
are obtained as ub

t = ûtνt and vb
t = v̂tνt , where ût and v̂t are the (non-centered) residuals under the null hypothesis and

νt is a random variable that is discussed further in Section 3 (Assumption 10).
For the WR bootstrap, {yb′t } and {xb′t } are generated recursively as follows:

xb′t = zb′t ∆̂t + vb′
t , (13)

ybt = xb′t β̂x,t + zb′1,t β̂z,t + ub
t , (14)

where the vector zbt contains a constant, r t and lags of ybt , x
b
t and r t ; β̂x,t and β̂z,t are the sample estimates of β0

x,t and

β0
z,t under H0 of the test in question.
For the WF bootstrap, z t is kept fixed and, following Gonçalves and Kilian (2004), the bootstrap samples are generated

as follows:

xb′t = z ′
t∆̂t + vb′

t , (15)

ybt = xb′t β̂x,t + z ′
1,t β̂z,t + ub

t , (16)

where again β̂x,t and β̂z,t are the sample estimates of β0
x,t and β0

z,t under H0 of the test in question.

Case (i): H0 : m = 0 vs H1 : m = k

First consider the WR bootstrap. 2SLS estimation is implemented in the bootstrap samples as follows. On the first stage,
the following model is estimated via OLS

xb′t = zb′t ∆j + error, t ∈ Î∗j , j = 1, 2, . . . , h + 1,

to obtain ∆̂
b

j =
{∑

t∈Î∗
j
zbt z

b′
t

}−1∑
t∈Î∗

j
zbt x

b′
t . Define ∆̂

b

t =
∑ĥ+1

j=1 1
t∈Î∗

j
∆̂

b

j , x̂
b′
t = zb′t ∆̂

b

t , and ŵ
b
t = vect(x̂

b

t , z
b
1,t ). For a given

k-partition λk, the second stage of the 2SLS in the bootstrap samples involves OLS estimation of

ybt = ŵ
b′
t β(i) + error, i = 1, . . . , k + 1, t ∈ Ii,λk

, (17)

and let β̂
b

λk
≡ vecti=1:k+1(β̂

b

(i)) = vecti=1:k+1(β̂
b

i,λk
) be the resulting OLS estimator of vecti=1:k+1(β(i)) ≡ vecti=1:k+1(βi,λk

)
based on partition λk. The WR bootstrap version of the sup-WaldT statistic is:

sup -WaldbT = sup
λk∈Λϵ,k

WaldbTλk
, (18)

WaldbTλk
= T β̂

b′

λk
R ′

k

(
RkV̂

b

λk
R ′

k

)−1

Rk β̂
b

λk
, (19)

where:

V̂
b

λk
= diagi=1:k+1(V̂

b

(i)), V̂
b

(i) = (Q̂
b

(i))
−1 M̂

b

(i) (Q̂
b

(i))
−1 , Q̂

b

(i) = T−1
∑

t∈Ii,λk

ŵ
b
t ŵ

b′
t , (20)

M̂
b

(i) = ÊW

[
Υ̂

b′

t z
b
t

(
ûb
t + v̂

b′
t β̂

b

x,(i)

)
; Ii,λk

]
, (21)

11 The wild bootstrap has been developed in Liu (1988) following suggestions in Wu (1986) and Beran (1986) in the context of static linear
regression models with (unconditionally) heteroskedastic errors.
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where ûb
t = ybt − wb′

t β̂
b

(i) for t ∈ Ii,λk
, v̂

b
t = xbt − ∆̂

b′

t z
b
t , Υ̂

b

t = (∆̂
b

t ,Π ), ∆̂
b

t is defined before (17), wb
t = vect(xbt , z

b
1,t ), and

β̂
b

x,(i) are the first p1 elements of β̂
b

(i).

Now consider the WF bootstrap, for which ybt and xbt are generated via (15)–(16). The first stage of the 2SLS involves
LS estimation of

xbt = z ′
t∆j + error, t ∈ Î∗j , j = 1, 2, . . . , h + 1,

to obtain ∆̂
b

j =
{∑

t∈Î∗
j
z tz

′
t

}−1∑
t∈Î∗

j
z tx

b′
t . Now re-define ∆̂

b

t =
∑ĥ+1

j=1 1t∈Î∗
j
∆̂

b

j , x̂
b′
t = z ′

t∆̂
b

t , and ŵ
b
t = vect(x̂

b

t , z1,t ).

For a given k-partitions λk, the second stage of the 2SLS in the bootstrap samples involves OLS estimation of (17) and let

β̂
b

λk
= vecti=1:k+1(β̂

b

(i)) be the resulting OLS estimator of vecti=1:k+1(β(i)) based on partition λk. The WF bootstrap sup -Wald

statistic is defined as in (18) with WaldbTλk
defined as in (19) only with ŵ

b
t and ∆̂

b

t redefined in the way described in this

paragraph, and M̂
b

(i) in (21) replaced by M̂
b

(i) = ÊW

[
Υ̂

b′

t z t (û
b
t + v̂

b′
t β̂

b

x,(i)); Ii,λk

]
, where ûb

t = ybt − wb′
t β̂

b

(i) for t ∈ Ii,λk
,

v̂
b
t = xbt − ∆̂

b′

t z t , Υ̂
b

t = (∆̂
b

t ,Π ), wb
t = vect(xbt , z1,t ), and β̂

b

x,(i) are the first p1 elements of β̂
b

(i).

Case (ii): H0 : m = ℓ versus H1 : m = ℓ + 1
For each bootstrap the first stage of the 2SLS estimation and the construction of ŵt is the same as described under

Case (i) above. Let Î
(j)
i be defined as in the discussion of Case (ii) in Section 2.2, and consider

ybt = ŵ
b′
t β(j) + error, j = 1, 2 t ∈ Î

(j)
i , (22)

for all possible choices of ϖi (where, once again, we suppress the dependence of β(j) on i). Let β̂
b
(ϖi) = vect

(
β̂
b

(1)(ϖi),

β̂
b

(2)(ϖi)
)
be the OLS estimators of vect(β(1), β(2)) from (22). The bootstrap version of sup -WaldT (ℓ + 1 | ℓ) is given by

sup -WaldbT (ℓ + 1 | ℓ) = max
i=1,2,...,ℓ+1

{
sup

ϖi∈N (λ̂ℓ)

T β̂
b
(ϖi)

′R ′
1[R1V̂

b
(ϖi)R

′
1]

−1R1β̂
b
(ϖi)

}
(23)

where

V̂
b
(ϖi) = diag

(
V̂

b

1(ϖi), V̂
b

2(ϖi)
)

, V̂
b

j (ϖi) = {Q̂
b

j (ϖi)}
−1 M̂

b

j (ϖi) {Q̂
b

j (ϖi)}
−1,

Q̂
b

j (ϖi) = T−1
∑

t∈Î
(j)
i

ŵ
b
t ŵ

b′
t ,

and M̂
b

j (ϖi) = ÊW

[
Υ̂

b′

t z
b
t (û

b
t + v̂

b′
t β̂

b

x,(j)(ϖi)); Î
(j)
i (ϖi)

]
for the WR bootstrap, where ûb

t = ybt − wb′
t β̂

b

(j)(ϖi) for t ∈ Î
(j)
i (ϖi),

v̂
b
t = xbt − ∆̂

b′

t z
b
t , Υ̂

b

t = (∆̂
b

t ,Π ), ∆̂
b

t is defined before (17), wb
t = vect(xbt , z

b
1,t ), and β̂

b

x,(j)(ϖi) are the first p1 elements

of β̂
b

(j)(ϖi); and M̂
b

j (ϖi) = ÊW

[
Υ̂

b′

t z t (û
b
t + v̂

b′
t β̂

b

x,(j)(ϖi)); Î
(j)
i (ϖi)

]
for the WF bootstrap, where ûb

t = ybt − wb′
t β̂

b

(j)(ϖi)

for t ∈ Î
(j)
i (ϖi), v̂

b
t = xbt − ∆̂

b′

t z t , Υ̂
b

t = (∆̂
b

t ,Π ), ∆̂
b

t is defined in the last paragraph of Case (i) in this section,

wb
t = vect(xbt , z1,t ), and β̂

b

x,(j)(ϖi) are the first p1 elements of β̂
b

(j)(ϖi).

3. The asymptotic validity of the bootstrap tests

In this section, we establish the asymptotic validity of the bootstrap versions of the test statistics described above. To
this end we impose the following conditions.

Assumption 1. If m > 0, T 0
i = [Tλ0

i ], where 0 < λ0
1 < · · · < λ0

m < 1.

Assumption 2. If m > 0, β0
(i+1) − β0

(i) is a non-zero vector of constants for i = 1, . . . ,m.

Assumption 3. If h > 0, then T ∗
i = [Tπ0

i ], where 0 < π0
1 < · · · < π0

h < 1.

Assumption 4. If h > 0, ∆0
(j+1) − ∆

0
(j) is a non-zero matrix of constants for j = 1, . . . , h.

Assumption 5. If k > 0, then 0 < ω0
1 < · · · < ω0

k < 1 and Φ
0
(i+1) −Φ

0
(i) is a non-zero matrix of constants for i = 1, . . . , k.

Assumption 6. The first and second stage estimations in 2SLS are over respectively all partitions of π and λ such that
Ti − Ti−1 > max (q − 1, ϵT ) for some ϵ > 0 and ϵ < mini(λ

0
i+1 − λ0

i ) and ϵ < minj(π
0
j+1 − π0

j ).
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Assumption 7. (i) p < ∞; (ii)
⏐⏐In − C1,sa − C2,sa

2 − . . . − Cp,sa
p
⏐⏐ ̸= 0, for all s = 1, . . . ,N + 1, and all |a| ≤ 1.

Assumption 8. rk
(
Υ

0
t

)
= p1 + q1.

Assumption 9. The innovations can be written as ϵt = SDt lt , where:
(i) S is a n × n lower triangular non-stochastic matrix with real-valued diagonal elements sii = 1 and elements below

the diagonal equal to sij (which are also zero for i > p1+1, j < p1+1), such that SS ′ is positive definite; Dt = diagi=1:n(dit ),
a non-stochastic matrix where dit = di(t/T ) : [0, 1] → Dn[0, 1], the space of cadlag strictly positive real-valued functions
equipped with the Skorokhod topology;

(ii) lt = vect(lu,t , lv,t , lζ,t ) is a n × 1 vector m.d.s. w.r.t to Ft = {lt , lt−1, . . .} to which it is adapted, with conditional

covariance matrix Σ t|t−1 = E(lt l
′
t | Ft−1) = diag

(
Σ

(1)
t|t−1,Σ

(2)
t|t−1

)
and unconditional variance E(lt l

′
t ) = In.

(iii) supt E ∥lt∥
4+δ < ∞ for some δ > 0; E ∥ξ0∥

4 < ∞, where ξ0 = vect(z̃0, z̃−1, . . . , z̃−p+1).
(iv) E

(
(lt l

′
t ) ⊗ lt−i

)
= ρi for all i ≥ 0, with supi≥0 ∥ρi∥ < ∞.

(v) E
(
(lt l

′
t ) ⊗ (lt−il

′
t−j)
)

= ρi,j, for all i, j ≥ 0 with supi,j≥0 ∥ρi,j∥ < ∞.

Assumption 9′. Let nt = vect(lu,t , lv,t ). Then:
(i) Assumption 9(iv) holds with E[(ntn

′
t ) ⊗ nt−i] = 0(p1+1)2×(p1+1) for all i ≥ 1.

(ii) Assumption 9(v) holds with E[(ntn
′
t ) ⊗ (nt−in

′
t−j)] = 0(p1+1)2×(p1+1)2 for all i, j ≥ 1 and i ̸= j.

(iii) Assumption 9(v) holds with E[(ntn
′
t ) ⊗ (nt−il

′
ζ,t−j)] = 0(p1+1)2×(p1+1)p2

for all i ≥ 1 and j ≥ 0.

(iv) supt E ∥lt∥
8 < ∞.

Assumption 10. (i) νt

i.i.d.
∼ (0, 1) independent of the original data generated by (1), (2) and (3); (ii) Eb |νt |

4+δ∗
= c̄ < ∞,

for some δ∗ > 0, for all t , where Eb denotes the expectation under the bootstrap measure.

Before presenting our main theoretical results, we discuss certain aspects of the assumptions.

Remark 1. Assumptions 1–5 indicate that the breaks are ‘‘fixed’’ in the sense that the size of the associated shifts in the
parameters between regimes is constant and does not change with the sample size.

Remark 2. It follows from Assumption 7 that z̃ t follows a finite order VAR in (4) that is stable within each regime.

Remark 3. Assumption 8 is the identification condition for estimation of the structural equation parameters; see Hall
et al. (2012) for further discussion.

Remark 4. From Assumption 9 it follows that ϵt is a vector m.d.s. relative to Ft−1 with time varying conditional and
unconditional variance given by E(ϵtϵ

′
t |Ft−1) = SDtΣ t|t−1D

′
tS

′ and E(ϵtϵ
′
t ) = SDtD

′
tS

′ respectively. The m.d.s. property
implies that all the dynamic structure in the SE for yt and RF for xt is accounted for by the variables in z1,t and
z t respectively. As noted by Boswijk et al. (2016) and Georgiev et al. (2018), Assumption 9 allows for ϵt to exhibit
conditional and unconditional heteroskedasticity of unknown and general form that can include single or multiple variance
shifts, variances that follow a broken trend or follow a smooth transition model. When Dt = D, the unconditional
variance is constant but we may have conditional heteroskedasticity. When Σ t|t−1 = In, the unconditional variance
may still be time-varying. Note that Assumption 9(i)–(ii) imply that xt is endogenous and r t is contemporaneously
exogenous in the SE. Assumption 9(iii) is a moment condition about lt (similar to Assumption A(iv) in Gonçalves and
Kilian (2004) and Assumption 2(iv) in Boswijk et al. (2016)) and a moment condition on the initial values of the VAR in
(4). Assumption 9(iv) allows for leverage effects (the correlation between the conditional variance and lt−i is nonzero,
when i ≥ 1). Assumption 9(v) allows for (asymmetric) volatility clustering (the conditional variance is correlated with
cross-products lt−ilt−j, for i, j ≥ 1).12

Remark 5. Assumption 9′ is only imposed in the case of the WR bootstrap. Assumption 9′(i)–(iii) is needed because the
WR bootstrap sets to zero certain covariance terms in the distribution of the bootstrapped parameter estimates given the
data. This happens because these moments depend on products of bootstrap errors at different lags and these terms have
zero expectation under the bootstrap measure due to the fact that νt is mean zero and i.i.d. Assumption 9′(i) is a restriction
on the leverage effects and Assumption 9′(ii) is a restriction of the asymmetric effects allowed in volatility clustering. Note
that Assumption 9′(i) is only needed when we have an intercept in (4). Assumption 9′(iii) arises because the WR design
bootstraps the lags of yt and xt in (4), but it does not bootstrap r t and its lags. Therefore, certain fourth cross-moments
involving both types of quantities are set to zero by the WR bootstrap, leading to the restriction on clustering effects in
Assumption 9′(iii) (where i = j is imposed for replicating certain variances, and i ̸= j is imposed for replicating certain

12 The clustering is asymmetric if ρi,j ̸= 0 when i ̸= j.
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covariances in the asymptotic distribution of the parameter estimates). Assumption 9′(iv) is needed in order to verify one
of the conditions of the CLT for m.d.s., by ensuring the convergence of the WR bootstrap variance to the correct limiting
variance. Assumption 9′(iv) is similar to Assumption A′(vi′) in Gonçalves and Kilian (2004) and Assumption 2′ in Boswijk
et al. (2016). However, Assumption 9′(iv) can be replaced with Assumption 9(iii) if νt (in Assumption 10) used in the WR
bootstrap follows the Rademacher two point distribution suggested in Liu (1988).13

Remark 6. There are several choices for the distribution of νt , the random variable used in construction of the
bootstrap errors: Gonçalves and Kilian (2004) use the standard normal distribution, while Mammen (1993) suggested
an asymmetric two-point distribution and Liu (1988) suggested the Rademacher two-point distribution. In this paper,
we report simulation results for Liu’s (1988) two-point distribution, which we found performed the best compared to
the other distributions in simulations not reported here. This conclusion is similar to Davidson and Flachaire (2008)
and Davidson and MacKinnon (2010).

The following theorems establish the asymptotic validity of the bootstrap versions of the sup-Wald tests.

Theorem 1. If the WF bootstrap is used let Assumptions 1–10 hold and if the WR bootstrap is used let Assumptions 1–10 and

9′ hold. If yt , xt and r t are generated by (1), (2) and (3) and m = 0 then it follows that

sup
c∈R

⏐⏐Pb
(
sup -WaldbT ≤ c

)
− P(sup -WaldT ≤ c)

⏐⏐ p
→ 0

as T → ∞, where Pb denotes the probability measure induced by the bootstrap.

Theorem 2. If the WF bootstrap is used let Assumptions 1–10 hold and if the WR bootstrap is used let Assumptions 1–10 and

9′ hold. If yt , xt and r t are generated by (1), (2) and (3) and m = ℓ then it follows that:

sup
c∈R

⏐⏐Pb
(
sup -WaldbT (ℓ + 1 | ℓ) ≤ c

)
− P(sup -WaldT (ℓ + 1 | ℓ) ≤ c)

⏐⏐ p
→ 0

as T → ∞, where Pb denotes the probability measure induced by the bootstrap.

Remark 7. The proof rests on showing the sample and bootstrap statistics have the same limiting distribution. Although
this distribution is known to be non-pivotal if the RF is unstable (see Perron and Yamamoto, 2014), to our knowledge this
distribution has not previously been presented in the literature. A formal characterization of this distribution is provided
in the Supplementary Appendix.

Remark 8. Theorem 1–2 cover the case where the reduced form is stable and the errors are unconditionally
homoskedastic. In this case, the sup-Wald tests are asymptotically pivotal and so the bootstrap is expected to provide
a superior approximation to finite sample behavior compared to the limiting distribution because the bootstrap, by its
nature, incorporates sample information. However, a formal proof is left to future research.

Remark 9. Hall et al. (2012) also propose testing the hypotheses described above using sup-F tests. While F-tests are
designed for use in regression models with homoskedastic errors,14 wild bootstrap versions of the tests can be used as a
basis for inference when the errors exhibit heteroskedasticity. In the Supplementary Appendix, we present WR bootstrap
and WF bootstrap versions of appropriate sup-F statistics for testing both H0 : m = 0 versus H1 : m = k and H0 : m = ℓ

versus H1 : m = ℓ+1, and show that these bootstrap versions of the sup-F tests are asymptotically valid under the same
conditions as their sup-Wald counterparts. Simulation evidence indicated no systematic difference in the finite sample
behavior of the sup-Wald and sup-F tests for a given null and bootstrap method, and so further details about this approach
are relegated to the Supplementary Appendix.

Remark 10. In the special case where there are no endogenous regressors in the equation of interest then our framework
reduces to one in which a linear regression model is estimated via OLS. For this set-up, the asymptotic validity of wild fixed
bootstrap versions of sup-F test for parameter variation (our Case(i) above) has been established under different sets of
conditions by Hansen (2000) and Georgiev et al. (2018). Hansen (2000) considers the case where the marginal distribution
of the exogenous regressors changes during the sample. Georgiev et al. (2018) consider Hansen’s (2000) bootstrap in the
context of predictive regressions with strongly persistent exogenous regressors. Our results complement these earlier
studies because we provide results for the wild recursive bootstrap and a theoretical justification for tests of ℓ breaks
against ℓ + 1 based on bootstrap methods.

13 See the proof of Lemma 10.
14 If the reduced form is stable then the limiting distribution of the sup-F statistics are only pivotal if the errors are homoskedastic.
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4. Simulation results

In this section, we investigate the finite sample performance of the bootstrap versions of the sup-Wald and sup-F
statistics. We consider a number of designs that involve stability or instability in the SE and/or the RF. In all the designs
the variable xt is endogenous and the SE is estimated by 2SLS. Recalling from above that h and m denote the true number
of breaks in the RF and SE respectively, the four scenarios we consider are as follows.

• Scenario: (h,m)=(0,0)

The DGP is as follows:

xt = αx + r ′
tδ

0
r + δ0x1xt−1 + δ0y1yt−1 + vt , for t = 1, . . . , T , (24)

yt = αy + xtβ
0
x + β0

r1
r1,t + β0

y1
yt−1 + ut , for t = 1, . . . , T , (25)

where the parameters of the SE – see Eq. (25) – are αy = 0.5, β0
x = 0.5, β0

r1
= 0.5, β0

y1
= 0.8; the parameters of the

RF in Eq. (24) are αx = 0.5, δ0r = (1.5, 1.5, 1.5, 1.5)′ a 4 × 1 parameter vector, δ0x1 = 0.5, δ0y1 = 0.2; r t = (r1,t , r
′
2,t )

′.

• Scenario: (h,m)=(1,0)

The DGP is as follows:

xt = αx,(1) + r ′
tδ

0
r,(1) + δ0x1,(1)xt−1 + δ0y1,(1)yt−1 + vt , for t = 1, . . . , [T/4], (26)

= αx,(2) + r ′
tδ

0
r,(2) + δ0x1,(2)xt−1 + δ0y1,(2)yt−1 + vt , for t = [T/4] + 1, . . . , T , (27)

yt = αy + xtβ
0
x + β0

r1
r1,t + β0

y1
yt−1 + ut , for t = 1, . . . , T , (28)

where the parameters of the SE – Eq. (28) – are the same as in scenario (h,m) = (0, 0), and the RF parameters –
Eqs. (26)–(27) – are: αx,(1) = 0.1, αx,(2) = 0.5, δ0r,(1) = (0.1, 0.1, 0.1, 0.1)′, δ0r,(2) = (1.5, 1.5, 1.5, 1.5)′, δ0x1,(1) = 0.1,

δ0x1,(2) = 0.5, δ0y1,(1) = 0.1, and δ0y1,(2) = 0.2. In our simulation study, prior to testing the null hypothesis of zero breaks
in the SE parameters from (28), we test sequentially for breaks in the RF parameters (assuming for a maximum of
2 breaks) by applying our bootstrap sup-Wald test. More exactly we tested the null hypothesis H0 : h = ℓ against
H1 : h = ℓ + 1, ℓ = 0, 1 using the WR and WF bootstrap sup-Wald for OLS. If the bootstrap p-value (given by the
fraction of bootstrap statistics more extreme than the sup-Wald based on the original sample) was larger than 5%,
then we imposed the ℓ breaks (assumed under null H0 : h = ℓ) in the RF and estimated their locations which were
subsequently accounted for in the estimation of the SE; see the first two columns of Table A.3.

• Scenario: (h ,m) = (0,1)

The DGP is as follows:

xt = αx + r ′
tδ

0
r + δ0x1xt−1 + δ0y1yt−1 + vt , for t = 1, . . . , T , (29)

yt = αy,(1) + xtβ
0
x,(1) + β0

r1,(1)r1,t + β0
y1,(1)yt−1 + ut , for t = 1, . . . , [3T/4], (30)

= αy,(2) + xtβ
0
x,(2) + β0

r1,(2)r1,t + β0
y1,(2)yt−1 + ut , for t = [3T/4] + 1, . . . , T , (31)

where the parameter values for the RF – Eq. (29) – are as in scenario (h,m) = (0, 0), and the parameters on the
SE – equations (30)–(31) – are: αy,(1) = 0.5, αy,(2) = −0.5; β0

x,(1) = 0.5, β0
x,(2) = −0.5; β0

r1,(1) = 0.5, β0
r1,(2) = −0.5,

β0
y1,(1) = 0.8, and β0

y1,(2) = 0.1.

• Scenario: (h,m)=(1,1)

The DGP is as follows:

xt = αx,(1) + r ′
tδ

0
r,(1) + δ0x1,(1)xt−1 + δ0y1,(1)yt−1 + vt , for t = 1, . . . , [T/4], (32)

= αx,(2) + r ′
tδ

0
r,(2) + δ0x1,(2)xt−1 + δ0y1,(2)yt−1 + vt , for t = [T/4] + 1, . . . , T , (33)

yt = αy,(1) + xtβ
0
x,(1) + β0

r1,(1)r1,t + β0
y1,(1)yt−1 + ut , for t = 1, . . . , [3T/4], (34)

= αy,(2) + xtβ
0
x,(2) + β0

r1,(2)r1,t + β0
y1,(2)yt−1 + ut , for t = [3T/4] + 1, . . . , T , (35)

where the parameters of the RF – Eqs. (32)–(33) – are as in scenario (h,m) = (1, 0) and the parameters in the SE –
Eqs. (34)–(35) – are as in (h,m) = (0, 1). In our simulation study, prior to testing the null hypothesis of zero breaks
in the SE parameters from (28), we test sequentially for breaks in the RF parameters (assuming for a maximum of 2
breaks) by applying our bootstrap sup-Wald test as described in Scenario (h,m) = (1, 0); see the first two columns
of Table A.4. For Scenarios (h,m) = (0, 0) and (h,m) = (0, 1) the true number of breaks in RF (h = 0) is imposed
before testing for breaks in SE.

For the four scenarios above we consider the following choices for ut , vt and r t :

Case A: ut and vt

i.i.d.
∼ N(0, 1), Cov(ut , vt ) = 0.5, t = 1, . . . , T , r t

i.i.d.
∼ N(04×1, I4).
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Case B: ut and vt are GARCH(1,1) processes i.e. ut = ũt/
√
Var(ũt ) and vt = ṽt/

√
Var(ṽt ) with ũt = σũ,tϑũ,t and ṽt =

σṽ,tϑṽ,t , ϑũ,t and ϑṽ,t

i.i.d.
∼ N(0, 1), Cov(ϑũ,t , ϑṽ,t ) = 0.5, σ 2

ũ,t
= γ0 +γ1ũ

2
t−1 +γ2σ

2
ũ,t−1

, σ 2
ṽ,t

= γ0 +γ1ṽ
2
t−1 +γ2σ

2
ṽ,t−1,

where γ0 = 0.1 and γ1 = γ2 = 0.4, t = 1, . . . , T , r t is as in Case A.

Case C: ut and vt

i.i.d.
∼ N(0, 1), Cov(ut , vt ) = 0.5, t = 1, . . . , [T/3]; ut and vt

i.i.d.
∼ N(0, 2), Cov(ut , vt ) = 0.5, t =

[T/3] + 1, . . . , T , r t is as in Case A.

Case D: ut and vt are as in Case C and r t
i.i.d.
∼ N(04×1, I4) for t = 1, . . . , [3T/5], and r t

i.i.d.
∼ N(04×1, 1.5I4) for

t = [3T/5] + 1, . . . , T .

In Case A, the errors ut and vt are homoskedastic and the contemporaneous exogenous regressors r t are stable. In
Case B, the errors are conditionally heteroskedastic. In Case C the errors have a contemporaneous upward shift in the
unconditional variance, while in Case D there is also an upward shift in the variance of r t .

In our simulations we consider the behavior of the bootstrap tests both under their null and alternative hypotheses.
For scenarios (h,m) = (0, 0) and (h,m) = (1, 0) we consider the behavior of the sup-WaldT . For scenarios (h,m) = (0, 1)
and (h,m) = (1, 1) we consider the performance of the sup-WaldT (2|1). In order to assess the power of our bootstrap tests
we also consider the case when the null hypotheses are not true and there is an additional break in the SE parameters at
[T/2]. Specifically, we consider in all the four scenarios described above the following:

yt = (αy,(i) + g) + xt (β
0
x,(i) + g) + (β0

r1,(i) + g)r1,t + (β0
y1,(i) + g)yt−1 + ut , for t = [T/2] + 1, . . . , T̃ , (36)

with g a constant; i = 1 and T̃ = T for scenarios (h,m) = (0, 0) and (h,m) = (1, 0), and the equation for yt for
t < [T/2] + 1 is the same as that given in the two scenarios (h,m) = (0, 0) and (h,m) = (1, 0); i = 2 and T̃ = [3T/4] for
scenarios (h,m) = (1, 0) and (h,m) = (1, 1), and the equation for yt for t < [T/2] + 1 and t > [3T/4] is the same as that
given in the two scenarios (h,m) = (1, 0) and (h,m) = (1, 1). When g = 0, the null hypothesis is satisfied. We illustrate
the behavior of the tests under the alternative hypothesis for the following values of g: g = −0.007, −0.009 for scenario
(h,m) = (0, 0); g = −0.05, −0.07 for scenario (h,m) = (1, 0); g = 0.3, 0.4 for scenario (h,m) = (0, 1); g = −0.5, 0.5
for scenario (h,m) = (1, 1).

For scenarios (h,m) = (1, 0) and (h,m) = (1, 1) we have tested for the presence of max 2 breaks in the RF for xt (in
(26)–(27) and (32)–(33) respectively) prior to testing for breaks in the SE. More exactly we tested the null hypothesis
H0 : h = ℓ against H1 : h = ℓ + 1, ℓ = 0, 1 using the WR and WF bootstrap sup-Wald for OLS. If the bootstrap p-value
(given by the fraction of bootstrap statistics more extreme than the sup-Wald based on the original sample) was larger
than 5%, then we imposed the ℓ breaks (assumed under null H0 : h = ℓ) in the RF and estimated their locations which
were subsequently accounted for in the estimation of the SE.

We now describe other features of the calculations before discussing the results. For the WR and the WF bootstraps
the auxiliary distribution (from Assumption 10) is the Rademacher distribution proposed by Liu (1988) which assigns
0.5 probability to the value νt = −1 and 0.5 probability to νt = 1, t = 1, . . . , T . The same νt is used to obtain the
bootstrap residuals ub

t = ûtνt and vb
t = v̂tνt in order to preserve the contemporaneous correlation between the error

terms. We consider T = 120, 240, 480 for the sample size and B = 399 for the number bootstrap replications. All results
are calculated using N∗ = 1, 000 replications.

The reported rejection rates of the WR and WF bootstraps are calculated as: 1
N∗

∑N∗

j=1 1tj≥tb
1−α1,j

, where α1 =

0.10, 0.05, 0.01 are the nominal values of the tests; tj is the statistic (sup-Wald) computed from the original sample;
tb1−α1,j is 1 − α1 quantile of the bootstrap distribution calculated as (1 − α1)(B + 1) bootstrap order statistic from the
sample of bootstrap statistics in simulation j = 1, . . . ,N∗.

For the WR bootstrap, the bootstrap samples were generated recursively with start-up values for yb1 and xb1 being given
by the first observations from the sample (x1, y1); see Davidson and MacKinnon (1993).

In all settings, the bootstrap samples are generated by imposing the null hypothesis. The value of ϵ, the trimming
parameter in Assumption 6, is set to 0.15 which is a typical value used in the literature.

We now turn to our results. We present results for the sup-Wald test under both the null and alternative hypotheses
in Tables A.1–A.4 of the paper. In Tables H.1–H.4 of Appendix H in the Supplementary Appendix we also present similar
results for the sup-F test. The first two columns of these tables give the rejection rates of the tests under the null
hypothesis, while columns 3–6 give the rejection rates of the tests under the alternative hypothesis.15

From the first two columns of Tables A.1–A.4, it can be seen that the WR bootstrap works better in general than the WF
bootstrap. The latter has large size distortions for scenarios (h,m) = (0, 0), (h,m) = (0, 1) and (h,m) = (1, 0) whether the
errors are conditionally homoskedastic, are conditionally heteroskedastic or have a break in the unconditional variance.
For scenario (h,m) = (1, 1), the WF bootstrap is only slightly undersized or oversized. Regarding the behavior of the
sup-Wald test under the alternative hypothesis, the main conclusion that emerges from columns 3–6 of Tables A.1–A.4
is that the power is influenced in small samples (T = 120) by the number of breaks in RF and SE, the distribution of the

15 The rejection rates under the alternative are not level-adjusted, but since we have used the same sequence of random numbers for repetition
j, j = 1, . . . ,N∗ , in the experiments under both null and the alternative hypotheses, one can always subtract (or add) the positive (or negative)
size discrepancy (relative to the nominal size) from the rejection rate under the alternative in order to obtain the level-adjusted power of the test;
see Davidson and MacKinnon (1998).
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errors ut and vt , the distribution of rt , as well as the number of breaks in the variance of the errors and in the variance
of r t . When there is a break in SE, we need a larger g in (36) to be able to see an increase in the power of the test,
compared with scenarios with no break in SE (g = 0.3, 0.4 for scenario (h,m) = (0, 1), and g = −0.5, 0.5 for scenario
(h,m) = (1, 1), while g = −0.007, −0.009 for scenario (h,m) = (0, 0) and g = −0.05, −0.07 for scenario (h,m) = (1, 0)).
This can be explained by the fact that the second break in the SE is tested over smaller samples than the first break in
the SE. Moreover, the power is lower for the smallest sample (T = 120) when the error terms have an upward shift in
the variance (Case C in Tables A.1–A.4) and the contemporaneous exogenous regressors also have an upward shift in their
variance (Case D). However, for T = 240, 480 the power increases sharply in all cases.

In Tables A.3 and A.4 we have sequentially tested for the presence of max 2 breaks in the RF for xt (in (26)–(27) and
(32)–(33) respectively) using the WR/WR sup-Wald for OLS, and the resulting number of RF breaks was imposed in each
simulation prior to estimating the RF and SE and computing the test statistics for 2SLS. The fraction of times that 0, 1, 2
breaks were detected in RF (out of 1,000 replications of the scenarios), is given in Tables H.7–H.8 from Appendix H of
the Supplementary Appendix. To assess the impact of the pre-testing in RF (in the first two columns of Tables A.3 and
A.4), we have obtained the rejection frequencies of the bootstrap tests when the number of breaks in the RF is held at
the true number; see (the first two columns of) Tables H.5 and H.6 from Appendix H of the Supplementary Appendix. To
complement our results, we have also considered a break in RF of smaller size than the one mentioned after (26)–(27)
by taking δ0r,(1) = (1, 1, 1, 1)′ (and the rest of the parameter values are as mentioned after (26)–(27)); see Tables H.9 and
H.10 from Appendix H of the Supplementary Appendix.

Looking at the results for the sup-Wald our results suggest that in the smaller samples (T = 120, 240) the recursive
bootstrap is clearly to be preferred over the fixed regressor bootstrap. In the larger sample (T = 480), the case for the WR
over the WF is more marginal as the latter yields only slightly oversized tests. This relative ranking of the two methods
is intuitive from the perspective of Davidson’s (2016) first ‘‘golden rule" of bootstrap, which states: ‘‘The bootstrap DGP
[...] must belong to the model [...] that represents the null hypothesis’’. The fixed regressor bootstraps treat the lagged
dependent variables in the RF and SE as fixed across bootstrap samples, and as such do not seem to replicate the true model
that represents the null hypothesis. This would seem to point toward a recommendation to use the WR but it is important
to note an important caveat to our results: our designs involve models for which both recursive and fixed bootstraps are
valid. As discussed in Section 3, the fixed regressor bootstrap is asymptotically valid under weaker conditions than the
recursive bootstrap. Therefore, while the recursive bootstrap works best in the settings considered here, there may be
other settings of interest in which only the fixed bootstrap is valid and so would obviously be preferred.

5. Concluding remarks

In this paper, we analyze the use of bootstrap methods to test for parameter change in linear models estimated via
Two Stage Least Squares (2SLS). Two types of test are considered: one where the null hypothesis is of no change and the
alternative hypothesis involves discrete change at k unknown break-points in the sample; and a second test where the
null hypothesis is that there is discrete parameter change at ℓ break-points in the sample against an alternative in which
the parameters change at ℓ + 1 break-points. In both cases, we consider inferences based on a sup-Wald-type statistic
using either the wild recursive bootstrap or the wild fixed regressor bootstrap. We establish the asymptotic validity of
these bootstrap tests under a set of general conditions that allow the errors to exhibit conditional and/or unconditional
heteroskedasticity and the regressors to have breaks in their marginal distributions. While we focus on inferences based
on sup-Wald statistics, our arguments are easily extended to establish the asymptotic validity of inferences based on
bootstrap versions of the analogous tests based on sup-F statistics; see Appendix G from the Supplementary Appendix
available online.

Our simulation results show that the wild recursive bootstrap is more reliable compared to the wild fixed regressor
bootstrap, yielding sup-Wald-type tests with empirical size equal or close to the nominal size. The gains from using the
wild recursive bootstrap are quite clear in the smaller sample sizes, but are more marginal in the largest sample size
(T = 480) in our simulation study. This would seem to point toward a recommendation to use the wild recursive bootstrap
but it is important to note that the wild fixed bootstrap is asymptotically valid under less restrictive conditions than the
wild recursive bootstrap. Thus, while both bootstraps are valid in our simulation design, there may be other circumstances
when the recursive bootstrap is invalid and the fixed bootstrap would be preferred. The powers of the bootstrap tests are
affected in small samples by the characteristics of the error distribution, but in moderate sample sizes often encountered
in macroeconomics, there is a very sharp increase in power.

Our analysis covers the cases where the first-stage estimation of 2SLS involves a model whose parameters are either
constant or themselves subject to discrete parameter change. If the errors exhibit unconditional heteroscedasticity and/or
the reduced form is unstable then the bootstrap methods are particularly attractive because the limiting distributions are
non-pivotal. As a result, critical values have to be simulated on a case-by-case basis. In principle it may be possible to
simulate these critical values directly from the limiting distributions presented in Appendix C from our Supplementary
Appendix replacing unknown moments and parameters by their sample estimates but this would seem to require
knowledge (or an estimate of) the function driving the unconditional heteroskedasticity. In contrast, the bootstrap
approach is far more convenient because it involves simulations of the estimated data generation process using the
residuals and so does not require knowledge of the form of heteroskedasticity. Furthermore, our results indicate that
the bootstrap approach yields reliable inferences in the sample sizes often encountered in macroeconomics.
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Table A.1

Scenario:(h,m) = (0,0) – rejection probabilities from testing H0 : m = 0 vs. H1 : m = 1 with bootstrap sup-Wald test.

WR bootstrap WF bootstrap WR bootstrap WF bootstrap WR bootstrap WF bootstrap
Size Size Power Power Power Power
g = 0 g = 0 g = −0.007 g = −0.007 g = −0.009 g = −0.009

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Case A

120 11.8 6.1 1.6 15.1 8.7 2.4 59.2 48.3 25 61.1 55.3 31.5 79.4 70.3 49.1 84.5 75 56.3
240 9.3 4 0.8 12.9 6.4 0.9 99.7 99.7 99.6 99.8 99.7 99.7 100 100 99.9 100 100 100
480 10.08 5.09 1.15 9.76 5.52 1.04 100 100 100 100 100 100 100 100 100 100 100 100

Case B

120 12 5.9 0.7 14.4 8.5 1.7 65.5 54.2 32.6 71.3 61.1 38.6 83.2 75.9 54.7 87.1 80.3 62.6
240 9.5 4.7 1.1 11.9 6.2 1.4 99.8 99.8 99.5 99.9 99.9 99.7 100 100 100 100 100 100
480 10.1 4.9 0.5 11.5 6.1 1.3 100 100 100 100 100 100 100 100 100 100 100 100

Case C

120 9.9 5.6 1.5 15.7 8.3 1.9 46.8 33.6 12.5 58.9 45 22.1 70 56.8 29.4 78.4 68.1 43
240 9.9 5.1 0.7 15.2 8.4 1.2 99.6 99.5 99 99.6 99.5 99 99.8 99.8 99.5 99.9 99.9 99.7
480 8.8 5.1 1.3 12 6.5 2.1 100 100 100 100 100 100 100 100 100 100 100 100

Case D

120 10.7 5.3 1 13.8 7.3 1.9 50.1 37.7 14.1 57.6 44.2 22.7 70.7 58.7 34.4 76.1 65.8 43.2
240 9.8 4.5 0.9 14.1 7.2 1.7 100 99.8 98.6 100 100 99.4 100 100 99.9 100 100 100
480 10.1 4.3 0.9 12.2 6 1.2 100 100 100 100 100 100 100 100 100 100 100 100

Notes. The first two columns refer to the case when H0 : m = 0 is true (g = 0 in Eq. (36)). The next columns refer to the case when we test for
H0 : m = 0, but H1 : m = 1 is true (g = −0.007, −0.009 in Eq. (36)). Under the null and the alternative hypotheses we impose h = 0 in the RF.

Table A.2

Scenario:(h,m) = (0,1) – rejection probabilities from testing H0 : m = 1 vs. H1 : m = 2 with bootstrap sup-Wald test.

WR bootstrap WF bootstrap WR bootstrap WF bootstrap WR bootstrap WF bootstrap
Size Size Power Power Power Power
g = 0 g = 0 g = 0.3 g = 0.3 g = 0.4 g = 0.4

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Case A

120 10.7 5 1.2 15.5 9.9 5.6 54.9 36.9 10.8 61.5 45.6 19.8 78.1 60.3 24.8 82.2 67.8 38.5
240 10.2 4.9 0.5 12.5 7.1 3.4 99.5 98.9 89.9 99.6 98.6 92.2 100 100 98.8 100 100 99.1
480 8 4.5 1 8.6 4.4 0.8 100 100 100 100 100 100 100 100 100 100 100 100

Case B

120 9.7 4.6 1 16 10.2 6.5 62.3 44.8 16.1 67.2 53.9 26.2 82.2 67.6 31.1 84.1 73.6 44.7
240 10.6 5.2 1.2 13.8 8.1 3 99.3 97.5 86.2 99.1 93 91.5 99.9 99.6 96.6 100 99.9 98.3
480 8 4.2 0.9 8.4 4.8 0.8 100 99.8 99.5 99.8 99.7 99.5 100 100 100 100 100 99.9

Case C

120 10.5 5.2 0.9 16.3 11 5.8 26.3 14.8 3.3 36.1 21.4 6.6 40.1 24.5 7.5 51.1 34.6 13
240 11 4.8 0.9 13.2 8.3 2.4 83.1 68.7 31.4 87.2 77.6 47.2 98.5 93.4 68.7 99 97 80.1
480 10.4 5.6 0.5 11.2 6.1 1.2 100 99.9 98.4 100 99.9 99.2 100 100 100 100 100 100

Case D

120 11.6 5.8 1.5 15.3 9.5 5.3 39.8 24.1 6.5 51.2 33.2 13.3 64.8 43.33 14 72.5 54.8 24.2
240 11.5 6 1 14.9 9.1 2.9 98.9 94.6 73 98.9 97.1 82.7 100 99.8 95.6 100 99.9 97.9
480 9.6 4 1.3 9.5 5.3 1.5 100 100 100 100 100 100 100 100 100 100 100 100

Notes. The first two columns refer to the case when H0 : m = 1 is true (g = 0 in Eq. (36)). The next columns refer to the case when we test for
H0 : m = 1, but H1 : m = 2 is true (g = 0.3, 0.4 in Eq. (36)). Under the null and the alternative hypotheses we impose h = 0 in the RF.
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Table A.3

Scenario:(h,m) = (1,0) – rejection probabilities from testing H0 : m = 0 vs. H1 : m = 1 with bootstrap sup-Wald test; number of breaks in the RF
was estimated and imposed in each simulation using a sequential strategy based on the WR/WF sup-Wald for OLS.

WR bootstrap WF bootstrap WR bootstrap WF bootstrap WR bootstrap WF bootstrap
Size Size Power Power Power Power
g = 0 g = 0 g = −0.05 g = −0.05 g = −0.07 g = −0.07

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Case A

120 10.2 3.7 0.9 15.3 7.1 1.3 52.3 42.8 22.5 60.5 50.6 29.3 67.9 58.3 38.1 74.9 66.3 45.6
240 10.8 5.7 0.8 14 6.7 1.2 94.6 91.3 84.5 95.1 92.1 86 98.1 96.7 91.7 98.7 97.1 92.7
480 10.9 5.2 0.9 12.5 6 0.8 99.9 99.8 99.3 100 99.8 99.5 100 100 99.8 100 100 99.7

Case B

120 10.1 4.8 1 13.3 7.8 1.5 54.5 44.9 28.1 63.1 51.5 33.7 68.9 59.6 43.4 77 68 48.9
240 10 5.4 1.2 12.2 6.8 1.5 94.5 92.1 83.7 95.8 93.3 85.9 97.9 96.7 92 98.8 97.5 93.3
480 11 5.4 0.7 12.8 5.9 1.2 100 100 100 100 99.7 99.2 100 99.9 99.8 100 99.9 99.8

Case C

120 9.6 4.3 0.9 15.6 7.5 1.7 39.6 28.7 11.3 50.8 37.4 18.4 54.9 43.8 22.9 66.6 53.8 33.5
240 11.8 6 0.6 15.6 8.6 1.4 88.8 83.5 71.8 91.3 87.3 76.2 94.3 92 83.5 96 93.7 86.7
480 10.8 5.9 1.1 12.6 7.1 1.4 99.9 99.6 98.6 99.9 99.5 98.5 99.9 99.9 99.8 100 99.9 99.4

Case D

120 10.2 4.8 1.2 14.8 6.7 1.6 40.9 29.9 12.9 49 37.3 16.8 56 45.1 24.3 64.5 52.3 31.9
240 10.6 5.7 0.9 14.2 7.5 1.8 89.6 85.2 73.2 91.1 87.2 76.6 94.9 92.4 85.3 95.7 93.7 86.9
480 11.6 6.2 0.9 13.5 7.4 1 99.4 99.1 98 99.5 99.3 98 100 99.8 98.9 99.8 99.8 99.1

Notes. The first two columns refer to the case when H0 : m = 0 is true (g = 0 in Eq. (36)). The next columns refer to the case when we test for
H0 : m = 0, but H1 : m = 1 is true (g = −0.05, −0.07 in Eq. (36)). Prior to testing H0 : m = 0 vs H1 : m = 1 (for all columns above), we tested
sequentially for the presence of maximum two breaks in the RF (we used the WR/WF bootstrap sup-Wald for OLS to test H0 : h = ℓ vs. H1 : ℓ + 1,
ℓ = 0, 1). If breaks are detected in the RF, the number of breaks and the estimated locations are imposed when estimating the SE.

Table A.4

Scenario:(h,m) = (1,1) – rejection probabilities from testing H0 : m = 1 vs. H1 : m = 2 with bootstrap sup-Wald test; number of breaks in the RF
was estimated and imposed in each simulation using a sequential strategy based on the WR/WF sup-Wald for OLS.

WR bootstrap WF bootstrap WR bootstrap WF bootstrap WR bootstrap WF bootstrap
Size Size Power Power Power Power
g = 0 g = 0 g = 0.5 g = 0.5 g = −0.5 g = −0.5

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Case A

120 8.8 4.7 0.7 8.7 4.5 0.8 52 40.7 16 57.4 45.4 22.7 85 71.9 32.1 88.2 74.8 37.5
240 10.4 5.7 0.7 10.4 5.2 0.8 99.8 99.4 97.6 99.6 99.4 97.4 100 100 99.8 100 100 99.7
480 9.7 4.2 0.7 10.2 4.6 0.8 100 100 100 100 99.8 99.1 100 100 100 100 100 100

Case B

120 8.9 3.7 0.9 8.7 3.4 0.9 50.1 40.1 18.6 54.8 45.4 24.4 81.8 70.9 38.3 85.5 73 39.9
240 10.8 4.7 0.8 10.6 5.3 0.9 98.8 98.3 96 99.2 98.7 95.8 99.6 99.5 98.1 98 99.6 98.3
480 9.9 4.1 0.9 10.9 5.4 0.9 100 100 99.8 100 99.8 99.6 100 100 100 100 100 100

Case C

120 9.1 3.5 1 9.4 4 0.4 30.7 17.5 3.1 38.3 25.9 8 45.1 25.4 6.9 49.7 31.7 8.8
240 10.3 5.2 1 10.2 5 1 98.6 96.8 86.2 99 97.7 88.4 99.3 98.5 86.9 100 99.8 90.8
480 11.3 4.8 1 12.1 5.3 0.6 100 100 99.9 100 100 99.2 99.9 99.9 99.7 100 100 99.8

Case D

120 10.1 4.4 1.6 8.5 3.8 0.6 36.8 23.4 6.3 42.1 30.4 12.4 69.3 52.6 16.4 76.8 59.4 25.4
240 10.9 4.9 0.8 11.8 5.2 0.8 99.2 98.6 94 99.6 98.9 94.5 99.5 99.4 98 99.9 99.9 98.6
480 10.2 5.3 1.4 11 5.6 1.2 100 100 100 100 100 98.1 100 100 100 100 100 100

Notes. The first two columns refer to the case when H0 : m = 1 is true (g = 0 in Eq. (36)). The next columns refer to the case when we test for
H0 : m = 1, but H1 : m = 2 is true (g = −0.5, 0.5 in Eq. (36)). Prior to testing H0 : m = 1 vs H1 : m = 2 (for all columns above), we tested
sequentially for the presence of maximum two breaks in the RF (we used the WR/WF bootstrap sup-Wald for OLS to test H0 : h = ℓ vs. H1 : ℓ + 1,
ℓ = 0, 1). If breaks are detected in the RF, the number of breaks and the estimated locations are imposed when estimating the SE.
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Appendix B. Proof of Theorems 1 and 2

For the purposes of our analysis, it is convenient to write the system in (4) as a VAR(1) model.16 To this end, define:

ξt
np×1

≡

⎡
⎢⎢⎣

z̃ t
z̃ t−1

...

z̃ t−p+1

⎤
⎥⎥⎦ , F s

np×np

≡

⎡
⎢⎢⎢⎢⎣

C1,s C2,s C3,s . . . Cp−1,s Cp,s

In 0n×n 0n×n . . . 0n×n 0n×n

0n×n In 0n×n . . . 0n×n 0n×n

...
...

... . . .
...

...

0n×n 0n×n 0n×n . . . In 0n×n

⎤
⎥⎥⎥⎥⎦

,

ηt
np×1

≡

⎡
⎢⎢⎣

et
0n

...

0n

⎤
⎥⎥⎦ , and µs

np×1

≡

⎡
⎢⎢⎣

c z̃,s
0n

...

0n

⎤
⎥⎥⎦ .

Then Eq. (4) is the first n entries of:

ξt = µs + F sξt−1 + ηt , (B.37)

where we have suppressed the dependence of ξt and ηt on s for notational convenience, s = 1, . . . ,N +1 (there are N +1
stable regimes).

From Assumption 9 it follows that ηt is a vector m.d.s. relative to Ft−1 with conditional covariance matrix

E(ηtη
′
j | Ft−1) =

{
Ω t|t−1, for t = j,

0np×np otherwise,
(B.38)

Ω t|t−1  
np×np

≡

[
A−1
s Σ t|t−1A

−1′

s 0n×n(p−1)

0′
n×n(p−1) 0n(p−1)×n(p−1)

]
,

where Σ t|t−1 = SDtΣ t|t−1D
′
tS

′, and time-varying unconditional covariance matrix

Ω t  
np×np

≡ E(ηtη
′
t ) =

[
A−1
s Σ tA

−1′

s 0n×n(p−1)

0′
n×n(p−1) 0n(p−1)×n(p−1)

]

where Σ t = SDt E(lt l
′
t )D

′
tS

′.
From (B.37), it follows that within each stable regime we have, for t = [τs−1T ] + 1, [τs−1T ] + 2, . . . , [τsT ],

ξt = F
t−[τs−1T ]
s ξ[τs−1T ] + ξ̃t +

⎛
⎝

t−[τs−1T ]−1∑

l=0

F l
s

⎞
⎠µs, (B.39)

where ξ̃t =
∑t−[τs−1T ]−1

l=0 F l
sηt−l, {ηt} is a m.d.s. sequence, and, from Assumption 7, all the eigenvalues of F s have modulus

less than one.
The following lemmas (Lemmas 1–11) are used in proofs; Lemmas 2, 4–8 are proven in Appendix C from the

Supplementary Appendix, which also contains the asymptotic distributions of the sup-Wald test statistics. The rest of
the lemmas are proven below.

Lemma 1. If {ϑt ,Ft} is a mean-zero sequence of L1-mixingale random variables with constants {ct} that satisfy limT→∞T−1

∑T

t=1 ct < ∞, and supt E|ϑt |
b< ∞ for some b > 1, then sups∈(0,1]|T

−1
∑[Ts]

t=1 ϑt |
p

→ 0.

This follows from applying the LLN in Andrews (1988)[Theorem 1], modified to be a uniform LLN in the proof of Lemma
A2 of Andrews (1993).

Lemma 2. For s = 1, . . . ,N + 1, where N is the total number of breaks in the coefficients of the VAR(p) representation of
z̃ t , define the following functions: F (τ ) = F s,A(τ ) = As, µ(τ ) = µs,Υ (τ ) = Υ s for τs−1 < τ ≤ τs. Also, define the function

Σ (τ ) on τ ∈ [0, 1] as follows Σ (0) = 0, and Σ (τ ) = Σ t for τ ∈ [(t −1)/T , t/T ], t = 1, . . . , T . Let S and Sr be the selection
matrices such that z t = vect(1, Srξt , Sξt−1) = vect(1, r t , Sξt−1), and

Qz (τ ) =

[
1 {SrQ1(τ )}

′ {SQ1(τ )}
′

SrQ1(τ ) SrQ2(τ )S
′
r Sr (µ(τ )Q′

1(τ ) + F (τ )Q2(τ ))S
′

SQ1(τ ) (Sr (µ(τ )Q′
1(τ ) + F (τ )Q2(τ ))S

′)′ SQ2(τ )S
′

]
,

16 For example, see Hamilton (1994)[p.259].
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where Q1(τ ) =
{
Inp − F (τ )

}
µ(τ ) and

Q2(τ ) =

∞∑

l=0

F (τ )l
[

A(τ )−1
Σ (τ )A(τ )−1′

0n×n(p−1)

0′
n×n(p−1) 0n(p−1)×n(p−1)

]
(F (τ )l)′ + Q1(τ )Q

′
1(τ ).

Also, let Qi =
∫ λi

λi−1
Υ

′(τ )Qz (τ )Υ (τ )dτ .

Under Assumptions 1–8,

Q̂ (i) = T−1
∑

t∈Ii,λk

Υ̂
′

tz tz
′
tΥ̂ t

p
→ Qi.

Lemma 3. If (at ,Ft ) is a o × 1 vector of m.d.s. with supt E|at,j|
2+δ∗

< ∞ for some δ∗ > 0 and for all elements at,j of

the vector at , if T
−1
∑[Tr]

t=1[E(ata
′
t |Ft−1) − E(ata

′
t )]

p
→ 0 uniformly in r and if T−1

∑[Tr]
t=1 E(ata

′
t ) → rIo uniformly in r, then

T−1/2
∑[Tr]

t=1 at ⇒ B(r), a o × 1 vector of independent standard Brownian motions.

Lemma 3 provides sufficient conditions so that Theorem 3 in Brown (1971) is satisfied.

Lemma 4. Under Assumption 9,17

(i) T−1
∑[Tr]

t=1 E (lt l
′
t |Ft−1)

p
→ rIn uniformly in r.

(ii) T−1
∑[Tr]

t=1 E ((lt l
′
t ) ⊗ lt−i |Ft−1)

p
→ rρi uniformly in r, for all i ≥ 0.

(iii) T−1
∑[Tr]

t=1 E ((lt l
′
t ) ⊗ (lt−ilt−j)|Ft−1)

p
→ rρi,j uniformly in r, for all i, j ≥ 0.

For the following lemmas and the rest of the proofs, we need additional notation. Define S̃1 = [Ip1+1 0(p1+1)×p2 ] and
S̃2 = [0p2×(p1+1) Ip2 ]. Also, define the following vectors of Brownian motions: B0(r), a n×1 vector with variance rIn, Bl(r),
a n2 ×1 vector with variance rρl,l for each l ≥ 1, Bζ(r) = vect(Buζ(r),Bvζ(r)) with Buζ(r) of dimension p2 ×1 and Bvζ(r) of

dimension p1p2 × 1, where the variance of Bζ(r) is r(S̃1 ⊗ S̃2) ρ0,0(S̃1 ⊗ S̃2)
′ = rρξ,0,0 = r

[
ρu,ξ,0,0 ρu,v,ξ,0,0

ρ′
u,v,ξ,0,0 ρv,ξ,0,0

]
, where

ρu,ξ,0,0 is of dimension p2 × p2. The covariances of these processes are: Cov(Bl(r1),Bκ (r2)) = min(r1, r2) ρl,κ for all l, κ ≥

1, l ̸= κ , and Cov(Bζ(r1),Bl(r2)) = min(r1, r2)(S̃1 ⊗ S̃2) ρ0,l for all l ≥ 1 and Cov(Bζ(r1),B0(r2)) = min(r1, r2)(S̃1 ⊗ S̃2) ρ0 =
min(r1, r2)ρξ,0 = min(r1, r2)vect(ρu,0, ρv,0), where ρ0,l and ρ0 are given in Assumption 9(v) and (iv) respectively, and ρu,0

is of dimension p2×n. Moreover, Pb denotes the probability measure induced by the bootstrap conditional on the original
sample; Eb, Varb denote expectation and variance with respect to the bootstrap data, conditional on the original sample.

As in Gine and Zinn (1990), Hansen (1996), for any bootstrapped quantity abT (λ), we write abT (λ)
pb

→ 0 or abT (λ) = obp(1) in

probability uniformly in λ when limT→∞ P[Pb(|abT (λ)|> δ) > ϵ] = 0 for any δ > 0, ϵ > 0 that does not depend on λ. We

write abT (λ)
dbp
⇒ a(λ) in probability uniformly in λ for any distribution a(λ), when weak convergence under the bootstrap

probability measure Pb occurs in a set with probability converging to one, uniformly in λ.

Lemma 5. For fixed n∗, under Assumption 9,

T−1/2

[Tr]∑

t=1

vect(lt , lt ⊗ lt−1, . . . , lt ⊗ lt−n∗ , lu,t lζ,t , lv,t ⊗ lζ,t ) ⇒ vect(B0(r),B1(r), . . .Bn∗ (r),Bζ(r)),

where if t − l < 0 for any l > 0, the rest of the elements of this sum are artificially set to zero.

Now define for b = 1, 2 and any nb × 1 vectors a, a# = vect(a, 0nb(pb−1)), and for any nb × nb matrices A, let

A# = diag(A, 0nb(pb−1)×nb(pb−1)), except for βx,s,#, which is βx,s,# = vect(0, β0
x,(s), 0p2+n(p−1)) and the subscript s indicates

the value of β0
x,(i) in the stable regime Ĩs = [[τs−1T ]+1, [τsT ]]. If m = 0, then β0

x,(s) = β0
x , and βx,# = vect(0, β0

x, 0p2+n(p−1)).
Let Su = vect(1, 0n−1, 0n(p−1)) and S† = Su or S† = βx,s,#, where the value S† takes is clarified in each context where
the distinction between the two values is necessary. Let S , defined in Assumption 9, and D(τ ), the function such that
D(τ ) = Dt for τ ∈ [ t

T
, t+1

T
), be partitioned as follows:

S =

[
1 01×p1 01×p2

sp1 Sp1 0p1×p2

0p2×1 0p2×p1 Sp2

]
, D(τ ) =

[
du(τ ) 01×p1 01×p2

0p1×1 Dv(τ ) 0p1×p2

0p2×1 0p2×p1 Dζ(τ )

]
, (B.40)

where sp1 is of dimension p1 × 1, S1 and Dv(τ ) are of dimension p1 × p1, and Sp2 and Dζ(τ ) are of dimension p2 × p2. For
any interval [[τs−1T ] + 1, [τsT ]] where the coefficients of the VAR representation in (4) are stable, let:

M1(τs−1, τs) = S
′
†S#

∫ τs

τs−1

D#(τ )dB0,#(τ )

17 All elements with negative subscripts in (ii)-(iii) are set to zero.
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M2,1(τs−1, τs) =

∞∑

l=0

((S ′
†S#) ⊗ (SrF

l
s))

([∫ τs

τs−1

D#(τ )dB0,#(τ )

]
⊗ µs

)

M2,2(τs−1, τs) =

∞∑

l=0

((S ′
†S#) ⊗ (SrF

l+1
s A−1

s,#S#))

∫ τs

τs−1

(D#(τ ) ⊗ D# (τ )) dBl+1,#(τ )

M
(1)
2,3(τs−1, τs) = Sp2

∫ τs

τs−1

du(τ )Dζ(τ )dBuζ(τ )

M
(2)
2,3(τs−1, τs) = β0′

x,(s)sp1Sp2

∫ τs

τs−1

du(τ )Dζ(τ )dBuζ(τ ) + ((β0′

x,(s)Sp1 ) ⊗ Sp2 )

∫ τs

τs−1

(Dv(τ ) ⊗ Dζ(τ ))dBvζ(τ )

M2(τs−1, τs) = M2,1(τs−1, τs) + M2,2(τs−1, τs) + M
(j)
2,3(τs−1, τs), where j = 1 if S† = Su and j = 2 otherwise

M3(τs−1, τs) = M3,1(τs−1, τs) + M3,2(τs−1, τs)

M3,1(τs−1, τs) =

∞∑

l=0

(
(S ′

†S#) ⊗ (SF l
s)
)
([∫ τs

τs−1

D#(τ )dB0,#(τ )

]
⊗ µs

)

M3,2(τs−1, τs) =

∞∑

l=0

((S ′
†S#) ⊗ (SF l

sA
−1
s,#S#))

∫ τs

τs−1

(D#(τ ) ⊗ D# (τ )) dBl+1,#(τ )

M(τs−1, τs) = vect(M1(τs−1, τs),M2(τs−1, τs),M3(τs−1, τs)),

where Sr was defined in Lemma 2.

Lemma 6. Let the interval Ii contain Ni breaks from the total set of N breaks. Then, under Assumptions 1–9,

T−1/2
∑

t∈Ii

z tut ⇒ M̃i =

⎧
⎪⎨
⎪⎩

M(λi−1, τs) +
∑Ni

j=1 M(τs+j−1, τs+j) + M(τs+Ni
, λi) if Ni ≥ 2

M(λi−1, τs) + M(τs, λi) if Ni = 1

M(λi−1, λi) if Ni = 0.,

with S† = Su. Similarly, T−1/2
∑

t∈Ii
z tv

′
tβ

0
x,(i) ⇒ M̃i but with S† = βx,i,# = vect(0, β0

x,(i), 0p2+n(p−1)). If m = 0, then S† = βx,#.

Lemma 7. Under Assumptions 1–9,
(i) if h > 0, then T (π̂i − π0

i ) = Op(1), i = 1, . . . , h + 1;

(ii) T 1/2(∆̂(i) − ∆
0
(i)) = Op(1) for i = 1, . . . , h + 1;

(iii) if m > 0, T (λ̂i − λ0
i ) = Op(1), i = 1, . . . ,m + 1.

Lemma 8. Under Assumption 9, uniformly in r,

(i) T−1
∑[Tr]

t=1

{
ϵtϵ

′
t − E(ϵtϵ

′
t )
} p

→ 0,

(ii) T−1
∑[Tr]

t=1

{
(ϵtϵ

′
t ) ⊗ ϵt−i − E[(ϵtϵ

′
t ) ⊗ ϵt−i]

} p
→ 0 for all i ≥ 0,

(iii) T−1
∑[Tr]

t=1

{
(ϵtϵ

′
t ) ⊗ (ϵt−iϵ

′
t−j) − E[(ϵtϵ

′
t ) ⊗ (ϵt−iϵ

′
t−j)]

} p
→ 0 for all i, j ≥ 0

(iv) Parts (i)–(iii) hold with lt , lt−i, lt−j replacing ϵt , ϵt−i, ϵt−j, uniformly in r.18

Lemma 9. Let Q̂
b

(i) = T−1
∑

t∈Ii
Υ̂

′

tz
b
t z

b′

t Υ̂ t . Then, under Assumptions 1–9, Q̂
b

(i) = Qi + obp(1), where

Qi =

∫ λi

λi−1

Υ (τ )′Qz (τ )Υ (τ )dτ . (B.41)

Proof of Lemma 9. For the WF bootstraps, zbt = z t , and therefore Lemma 9 holds by Lemma 2. Consider the WR bootstrap,

first for Ii = Ĩs. Define z̃
b
t = (ybt , x

b′
t , r t )

′, and:

Q̂
b

(i) = T−1
∑

t∈Ii

Υ̂
′

tz
b
t z

b′
t Υ̂ t = Υ̂

′

s

⎡
⎣

∆τs Ab′
1 S

′
r Ab′

2 S
′

SrA
b
1 SrB

b
1S

′
r SrB

b
2S

′

SAb
2 SBb′

2 S
′
r SBb

3S
′

⎤
⎦ Υ̂ s,

where

A
b
1 = T−1

∑

t∈Ii

ξbt , A
b
2 = T−1

∑

t∈Ii

ξbt−1

18 All elements with negative subscripts in (ii)-(iv) are set to zero.
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and

B
b
1 = T−1

∑

t∈Ii

ξbt ξ
b′
t , B

b
2 = T−1

∑

t∈Ii

ξbt ξ
b′
t−1, B3 = T−1

∑

t∈Ii

ξbt−1ξ
b′
t−1.

Note that, because r t is kept fixed, SrA
b
1 = T−1

∑
t∈Ii

Srξt = SrA1, and SrB
b
1Sr = SrB1S

′
r , where A1,A2 are the sample

counterparts of Ab
1,B

b
1 defined at the beginning of the proof of Lemma 2 in Appendix C from the Supplementary Appendix.

By Lemma 2, the result in Lemma 9 holds automatically for these terms. We now analyze the rest of the terms. To that
end, we first derive some preliminary results.

• Preliminary results and bootstrap notation. Note that in any stable subinterval Ĩs,

z̃
b
t = ĉ z̃,s +

p∑

i=1

Ĉ i,sz̃
b
t−i + ebt , [τs−1T ] + 1 ≤ t ≤ [τsT ], s = 1, 2, . . . ,N + 1, (B.42)

where ebt = Â
−1

s ϵbt , ϵ
b
t = vect(ub

t , v
b
t , ζt ), of size n × 1, and the elements of Âs, ĉ z̃,s and Ĉ i,s corresponding to the equation

for r t are the true parameters, not the estimated ones. Then,

ξbt = µ̂
b
s + F̂ sξ

b
t−1 + ηb

t (B.43)

= F̂
t−[τs−1T ]

s ξb[τs−1T ] +

⎛
⎝

t−[τs−1T ]−1∑

l=0

F̂
l

s

⎞
⎠ µ̂s +

t−[τs−1T ]−1∑

l=0

F̂
l

sη
b
t−l, (B.44)

where ξ̃
b

t = vect(z̃
b
t , z̃

b
t−1, . . . , z̃

b
t−p+1), ηb

t = Â
−1

s,#ϵ
b
t,#, and F̂ s, µ̂s are defined as F s, µs, but replacing the true coefficients

that are estimated by 2SLS with those estimated counterparts. Also, let η̂t ≡ êt,# = Â
−1

s,#ϵ̂t,#, where ϵ̂t = vect(ût , v̂t , ζt ).

We now show two results that we repeatedly need in the proofs: T−αξbt = obp(1) and T−αξbt ξ
b′

t = obp(1) for any α > 0.

For this purpose, we first show that Eb(T−αηb
t ) = obp(1) and that Varb(T−αηb

t ) = obp(1). Then, by Markov’s inequality, for

any C > 0, Pb(T−α∥ηb
t − Eb(ηb

t )∥ ≥ C) ≤ C−2T−2αVarb∥ηb
t ∥

p
→ 0, completing the proof.

Let I = vect(0p1+1, ιp2 , 0p2+n(p+1)) and J = [diag(J p1+1, J p2 )]#, where ιa is a a × 1 vector of ones, and J a = ιaι
′
a. Let

ν̃t ≡ vect(νt ιp1+1, ιp2 ) and νt ≡ ν̃t,#. Then Eb(νt ) = I and Eb(νtν
′
t ) = J .

Also, let gb
t ≡ ϵbt,# = ϵ̂t,# ⊙ νt , where ⊙ is the element-wise multiplication. Then gb

t = Âs,# ηb
t , and letting ĝ t ≡ ϵ̂t,#,

it follows that gb
t = ĝ t ⊙ νt . Further, let ĝ t,1 ≡ vect(ût , v̂t , 0p2+n(p−1)) and g t,2 ≡ vect(0(p1+1), ζt , 0n(p−1)). Also, note that

ηb
t = Â

−1

s,#(ĝ t ⊙ νt ). Then:

Eb(ηb
t ) = Eb(Â

−1

s,#(ĝ t ⊙ νt )) = Â
−1

s,#(ĝ t ⊙ I) = Â
−1

s,#vect(0(p1+1), ζt , 0n(p−1)) = Â
−1

s,#g t,2 (B.45)

Eb(ηb
t η

b′

t ) = Eb(Â
−1

s,#(ĝ t ⊙ νt )(ĝ t ⊙ νt )
′Â

′−1

s,# ) = Â
−1

s,# [(ĝ t ĝ
′
t ) ⊙ J ]Â

−1

s,#

= Â
−1

s,#

⎡
⎣

û2
t ût v̂

′
t 01×p2

v̂t ût v̂t v̂
′
t 0p1×p2

0p2 0p2×p1 ζtζ
′
t

⎤
⎦

#

Â
−1

s,# (B.46)

Varb(ηb
t ) = Eb(ηb

t η
b′

t ) − Eb(ηb
t ) E

b(ηb′

t ) = Â
−1

s,#

⎡
⎣

û2
t ût v̂

′
t 01×p2

v̂t ût v̂t v̂
′
t 0p1×p2

0p2 0p2×p1 0p2×p2

⎤
⎦

#

Â
−1

s,# = Â
−1

s,#ĝ t,1ĝ
′
t,1Â

−1

s,#. (B.47)

By Lemmas 7, 8 and standard 2SLS theory, ĝ t,1 = vect(ût , v̂t , 0p2+n(p−1)) = Op(1), and Âs,# = As,# + op(1), therefore

Â
−1

s,# ĝ t,1 = Op(1), so Eb[T−αηb
t ] = obp(1).

Next, we show that T−αξbt = obp(1) by induction, for α > 0. First, recall that ξb0 = ξ0, and therefore, T−αξb1 = T−αµ̂1 +

F̂ 1T
−αξ0+T−αηb

1 = obp(1) because µ̂s−µs = op(1), F̂ s−F̂ s = op(1), and T−αηb
t = obp(1) and ξ0 = Op(1) by Assumption 9(iii).

Now let T−αξbt−1 = obp(1); then for t, t − 1 ∈ Ĩs, T
−αξbt = T−αµ̂s + F̂ sT

−αξbt−1 + T−αηb
t = op(1) + F̂ so

b
p(1) + obp(1) = obp(1).

Therefore, it follows that:

T−αξbt = obp(1). (B.48)

Next, we show that T−αξbt ξ
b′

t = obp(1), also by mathematical induction. Note that, from the results above,

T−αξbt ξ
b′

t = T−α(µ̂s + F̂ sξ
b
t−1 + ηb

t )(µ̂s + F̂ sξ
b
t−1 + ηb

t )
′

= T−αµ̂sµ̂
′
s + F̂ s(T

−αξbt−1ξ
b′

t−1)F̂
′

s + T−αηb
t η

b′

t + T−αµ̂sξ
b′

t−1F̂
′

s + (T−αµ̂sξ
b′

t−1F̂
′

s)
′
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+ T−αµ̂sη
b′

t + (T−αµ̂sη
b′

t )
′ + F̂

s
T−α/2ξbt−1T

−α/2ηb′

t + (F̂
s
T−α/2ξbt−1T

−α/2ηb′

t )
′

= F̂ s(T
−αξbt−1ξ

b′

t−1)F̂
′

s + T−αηb
t η

b′

t + obp(1). (B.49)

Now consider T−αηb
t η

b′
t . We have

Eb(T−αηb
t η

b′

t ) = Â
−1

s,# [(T−α ĝ t ĝ
′
t ) ⊙ J ]Â

−1

s,# = Op(1)((T
−αg tg

′
t + op(1)) ⊙ J )Op(1) = op(1),

where T−αg tg
′
t = op(1) since by arguments before (C.7) in the proof of Lemma 2 in Appendix C from the Supplementary

Appendix, supt E ∥g tg
′
t∥ ≤ supt (E ∥g t∥

2)1/2 supt (E ∥g t∥
2)1/2 < c∗ for some c∗ > 0 by Assumption 9, and by Markov’s

inequality, for any C , P(T−α∥g tg
′
t∥ ≥ C) ≤ T−αC−1 E ∥g tg

′
t∥ ≤ T−αC−1c∗ → 0. Hence, from Assumption 10 and by

Markov’s inequality, for any C , Pb(T−α∥ηb
t η

b′
t ∥ ≥ C) ≤ T−αC−1 Eb ∥ηb

t η
b′
t ∥

p
→ 0. It follows that T−αηb

t η
b′

t = obp(1). Using this

result in (B.49), by a similar mathematical induction argument as for T−αξbt = obp(1), it follows that

T−αξbt ξ
b′

t = obp(1). (B.50)

Besides (B.48) and (B.50), in the proof below we will assume
⏐⏐⏐In − Ĉ1,sa − Ĉ2,sa

2 − . . . − Ĉp,sa
p

⏐⏐⏐ ̸= 0, for all

s = 1, . . . ,N + 1, and all |a| ≤ 1; otherwise the estimated system is not stationary. Then we show in Appendix D of

the Supplementary Appendix, that
∑∞

l=0 ∥F l
s∥ < ∞, and similarly, it can be shown that

∑∞
l=0 ∥F̂

l

s∥ < ∞ almost surely.

Moreover, the results in Appendix E of the Supplementary Appendix show that Rs,l = F̂
l

s − F l
s is such that

∞∑

l=0

∥Rs,l∥ = ∥F̂ s − F s∥ Op(1) = op(1), (B.51)

an argument which will be used repeatedly in the proofs.
• Now consider the case where Ii = Ĩs first, and analyze Ab

2. From (B.48),

A
b
2 = T−1

∑

t∈Ĩs

ξbt−1 = T−1ξb[τs−1T ]−1 − T−1ξb[τsT ] + T−1
∑

t∈Ĩs

ξbt = T−1
∑

t∈Ĩs

ξbt + obp(1)

= A
b
1 + obp(1). (B.52)

Therefore, we now derive the limit of Ab
1. Note that

ξbt = µ̂s + F̂ sξ
b
t−1 + ηb

t = F̂
t−[τs−1T ]

s ξb[τs−1T ] + ξ̃
b

t +

⎛
⎝

t−[τs−1T ]−1∑

l=0

F̂
l

s

⎞
⎠ µ̂s,

where ξ̃
b

t =
∑t−[τs−1T ]−1

l=0 F̂
l

sη
b
t−l. Therefore, A

b
1 =

∑4
i=1 A

b
1,i, where ∆τsT = [τsT ] − [τs−1T ], and

A
b
1,1 = T−1

[τsT ]∑

t=[τs−1T ]+1

ξ̃
b

t , A
b
1,2 = T−1∆τsT

∆τsT−1∑

l=0

F̂
l

s µ̂s,

A
b
1,3 = T−1

∆τsT∑

l=1

F̂
l

s ξ
b
[τs−1T ], A

b
1,4 = −T−1

(
∆τsT−1∑

l=1

lF̂
l

s

)
µ̂s.

We show that Ab
1,1 = obp(1). First, we show Eb(Ab

1,1) = op(1). Second, we show Varb(Ab
1,1) = op(1) which by Markov’s

inequality implies that Ab
1,1 = obp(1). Let t̃ = t − [τs−1T ] and consider Eb(Ab

1,1) with Eb(ξ̃
b

t ) =
∑t̃−1

l=0 F̂
l

s E
b(ηb

t−l) =
∑t̃−1

l=0 F̂
l

sÂ
−1

s,#

(
ĝ t−l ⊙ I

)
.

We have ξt = µs + F sξt−1 + ηt = µ̂s + F̂ sξt−1 + η̂t . Then,

η̂t = ηt + (µs − µ̂s) + (F s − F̂ s)ξt−1, (B.53)

ĝ t = Âs,# η̂t = Âs,#ηt + Âs,#(µs − µ̂s) + Âs,#(F s − F̂ s)ξt−1. (B.54)

Also, we have ηb
t = (ηt + (µs − µ̂s) + (F s − F̂ s)ξt−1) ⊙ νt .

Note that µ̂s − µs = (ĉ z̃,s − c z̃,s)# = vect(d̂s, d̂s, 0p2 )#, where d̂s, d̂s are of dimension 1 and p1 × 1, respectively, and

this holds because the rows p2 + 1 : n are not estimated since the equation for r t is not estimated. Let â1,., Âp1,., Âp2,.
be rows 1, 2 : p1 + 1 and p1 + 2 : n of the matrix Â

−1

s respectively. Note that like A−1
s , Â

−1

s is upper triangular with

Âp2,. = [0p2×(p1+1), Ip2 ] because the equation for r t is not estimated, and r t is assumed contemporaneously exogenous.
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Therefore,

Â
−1

s,# (µs − µ̂s) =

[
Â

−1

s (ĉ z̃,s − c z̃,s)
0n(p−1)

]
=

⎡
⎢⎢⎣

â1,. (ĉ z̃,s − c z̃,s)

Âp1,. (ĉ z̃,s − c z̃,s)

Âp2,. (ĉ z̃,s − c z̃,s)
0n(p−1)

⎤
⎥⎥⎦ =

⎡
⎢⎣

â1,. (ĉ z̃,s − c z̃,s)

Âp1,. (ĉ z̃,s − c z̃,s)
0p2

0n(p−1)

⎤
⎥⎦ , (B.55)

so

(Âs,#(µ̂s − µs)) ⊙ I = 0np. (B.56)

By similar arguments, because the p1 + 2 : n rows of F̂ s are equal to the corresponding rows of F s, Âs,#(F̂ s − F s), the

rows p1 + 2 : n of Âs,#(F̂ s − F s) are equal to zero, therefore

(Âs,#(F̂ s − F s)ξt−1) ⊙ I = 0np. (B.57)

Using (B.56)–(B.57), and recalling that t̃ = t − [τs−1T ], we have:

Eb(Ab
1,1) =

3∑

i=1

Hi, where:

H1 = T−1
∑

t∈Ĩs

t̃−1∑

l=0

F̂
l

sÂ
−1

s,#

(
(Âs,#ηt−l) ⊙ I

)
= T−1

∑

t∈Ĩs

t̃−1∑

l=0

F̂
l

sÂ
−1

s,#

(
(Âs,#A

−1
s,# g t−l) ⊙ I

)
,

H2 = T−1
∑

t∈Ĩs

t̃−1∑

l=0

F̂
l

sÂ
−1

s,#

(
(Âs,#(µs − µ̂s)) ⊙ I

)
= 0np,

H3 = T−1
∑

t∈Ĩs

t̃−1∑

l=0

F̂
l

sÂ
−1

s,#

(
(Âs,#(F s − F̂ s)ξt−1) ⊙ I

)
= 0np.

Since Âs,#A
−1
s,# = In,# + op(1), it follows that:

H1 = T−1
∑

t∈Ĩs

t̃−1∑

l=0

F l
sA

−1
s,#

(
g t−l ⊙ I

)
+ T−1

∑

t∈Ĩs

t̃−1∑

l=0

Rs,lA
−1
s,#

(
g t−l ⊙ I

)
+ op(1)

= H
(1)
1 + H

(2)
1 + op(1).

From Assumptions 7 and 9, and using
∑∞

l=0 ∥F l
s∥ < ∞ and

∑∞
l=0 ∥Rs,l∥ < ∞, both proven in the Supplementary

Appendix (Appendices D–E), it can be shown that
∑t̃−1

l=0 F l
sA

−1
s,#

(
g t−l ⊙ I

)
and that T−1

∑
t∈Ĩs

∑t̃−1
l=0 Rs,lA

−1
s,#

(
g t−l ⊙ I

)
are

L1-mixingales satisfying the conditions of Lemma 1, therefore H
(1)
1 = op(1) and H

(2)
1 = op(1). Hence H1 = op(1), so

Eb(Ab
1,1) = op(1).

Second, we show that Varb(Ab
1,1) = op(1). To that end, note that

Eb(ηb
t−lη

b′
t−κ ) = Â

−1

s,# Eb((ĝ t−l ⊙ νt−l)(ĝ t−κ ⊙ νt−κ )
′)(Â

−1

s,#)
′ = Â

−1

s,#((ĝ t−lĝ
′
t−κ ) ⊙ Eb(νt−lν

′
t−κ ))(Â

−1

s,#)
′,

For l ̸= κ , Eb(νt−lν
′
t−κ ) = II ′ = [diag(0(p1+1)×(p1+1), J p2 )]# = J2. Therefore, exploiting the upper triangular structure of

Â
−1

s with p2 × p2 lower right block equal to Ip2 , for l ̸= κ ,

Eb(ηb
t−lη

b′
t−κ ) = Â

−1

s,#((ĝ t−lĝ
′
t−κ ) ⊙ J2)(Â

−1

s,#)
′ = ((Â

−1

s,#ĝ t−l) ⊙ I)((Â
−1

s,#ĝ t−κ ) ⊙ I)′ = ηt−l,2η
′
t−κ,2,

where ηt,2 = g t,2 = [vect(0p1+1, ζt )]#. For l = κ , Eb(ηb
t−lη

b′
t−l) = Â

−1

s,#((ĝ t−lĝ
′
t−l) ⊙ Eb(νt−lν

′
t−l))(Â

−1

s,#)
′, where Eb(νt−lν

′
t−κ ) =

J , so T−1
∑

t∈Ĩs
(ĝ t−lĝ

′
t−l)⊙J = T−1

∑
t∈Ĩs

g t−lg
′
t−l + op(1) by Assumption 9, Lemma 8 followed by standard 2SLS theory.

So,

T−1
∑

t∈Ĩs

Eb(ηb
t−lη

b′
t−l) = Â

−1

s,#

⎛
⎝T−1

∑

t∈Ĩs

g t−lg
′
t−l

⎞
⎠ (Â

−1

s,#)
′ + op(1) = T−1

∑

t∈Ĩs

ηt−lη
′
t−l + op(1).

Hence,

Varb(Ab
1,1) = T−2

∑

t∈Ĩs

Eb(ξ̃
b

t ξ̃
b′

t ) = V1 + V2 + op(1) (B.58)
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V1 = T−2
∑

t∈Ĩs

t̃−1∑

l=0

F̂
l

sηt−lη
′
t−l(F̂

l

s)
′ (B.59)

V2 = T−2
∑

t∈Ĩs

t̃−1∑

l,κ=0,l̸=κ

F̂
l

sηt−l,2η
′
t−κ,2(F̂

κ

s )
′ (B.60)

Consider V1. We analyze first V∗
1 , where

V
∗
1 = T−1

∑

t∈Ĩs

t̃−1∑

l=0

F l
s

(
A−1
s,#g t−lg

′
t−l(A

−1
s,#)

′
)
(F l

s)
′ = T−1

∑

t∈Ĩs

t̃−1∑

l=0

F l
sηt−lη

′
t−lF

l′

s

= B
(1)
1,1 + B

(2)
1,1 + op(1) = B1(τs−1, τs) + op(1),

where the last three quantities above were already defined and analyzed in the proof of Lemma 2 in the Supplementary

Appendix, Appendix C, where it was shown that

B
(1)
1,1

p
→ B1(τs−1, τs) =

∞∑

l=0

F l
s

(
A−1
s

∫ τs

τs−1

Σ (τ )dτA−1′

s

)

#

F l′
s

and that B
(2)
1,1 = op(1). By similar arguments that were employed to analyze those terms,

V
∗∗
1 = T−1

∑

t∈Ĩs

t̃−1∑

l=0

F l
sηt−lη

′
t−l(F

l
s)

′ = B
(1)
1,1 + op(1) = B1(τs−1, τs) + op(1).

Now consider V1, where

V1 = T−1(V
(1)
1 + V

(2)
1 + (V

(2)
1 )′ + V

(3)
1 ) + op(1),

V
(1)
1 = T−1

∑

t∈Ii

t̃−1∑

l=0

F l
sηt−lη

′
t−l(F

l
s)

′ = V
∗∗
1 = Op(1),

V
(2)
1 = T−1

∑

t∈Ii

t̃−1∑

l=0

F l
sηt−lη

′
t−l(Rs,l)

′,

V
(3)
1 = T−1

∑

t∈Ii

t̃−1∑

l=0

Rs,lηt−lη
′
t−l(Rs,l)

′.

Similarly to V∗∗
1 , because F̂

l

s − F l
s = Rs,l = op(1), we can show that V

(2)
1 = op(1). From (B.51), Rs,l is such that∑∞

l=0 Rs,l = ∥F̂ s−F s∥Op(1) = op(1). Therefore, by the same arguments as for V
(2)
1 = op(1), one can show that V

(3)
1 = op(1),

therefore TV1 = B1(τs−1, τs) + op(1), and V1 = op(1).

By similar arguments to the analysis of the term B1,1 in the Supplementary Appendix, Appendix C, proof of Lemma 2,
TV2 = op(1). Substituting V2 = op(1) and V1 = op(1) into (B.58), it follows that Varb(Ab

1,1) = V1 + V2 = op(1), and, by

Markov’s inequality, that Ab
1,1 = obp(1). It also follows that:

TVarb(Ab
1,1) = B1(τs−1, τs) + op(1), (B.61)

a stronger result that we need later in this proof.
Consider now Ab

1,2,A
b
1,3,A

b
1,4. We have Ab

1,2 = T−1∆τsT
∑∆τsT−1

l=0 F l
s µs + op(1) and by Assumption 7, it follows that

Ab
1,2

p
→ ∆τs(Inp − F s)

−1µs =
∫ τs

τs−1
Q1(τ )dτ . Now consider Ab

1,3. Because ∥T−1ξb[τs−1T ]∥ = obp(1) and ∥
∑∞

l=1 F̂
l

s∥ = Op(1),

∥Ab
1,3∥ = ∥T−1

∆τsT∑

l=1

F̂
l

s ξ
b
[τs−1T ]∥ ≤ ∥

∞∑

l=1

F̂
l

s∥ ∥T−1ξb[τs−1T ]∥ = Op(1)o
b
p(1) = obp(1).

Since
∑∆τsT−1

l=1 lF̂
l

s = Op(1) and µ̂s − µs = op(1), A
b
1,4 = op(1). Combining these results, we obtain:

A
b
1 = ∆τs(Inp − F s)

−1µs + obp(1) =

∫ τs

τs−1

Q1(τ )dτ + obp(1) = A1 + obp(1);
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where A1 =
∫ τs

τs−1
Q1(τ )dτ + op(1) from (C.1) in Supplementary Appendix, Appendix C, and Ai, i = 1, 2, are the sample

equivalents of Ab
i . From (B.52), it follows that Ab

2 = A1 + obp(1) = A2 + obp(1)
pb

→
∫ τs

τs−1
Q1(τ )dτ .

• Next, analyze Bb
3. First, note that because T−1ξbt ξ

b′

t = obp(1) as shown in the preliminaries of this proof,

B
b
1 = T−1

∑

t∈Ĩs

ξbt ξ
b′

t = T−1
∑

t∈Ĩs

ξbt−1ξ
b′

t−1 + obp(1) = B
b
3 + obp(1), (B.62)

so we analyze instead Bb
1. Note that Bb

1 =
∑3

i=1 B
b
1,i +

∑3
j=1

{
Bb
1,3+j + Bb′

1,3+j

}
, where

B
b
1,1 = T−1

∑

t∈Ĩs

ξ̃
b

t ξ̃
b′

t = T−1
∑

t∈Ĩs

⎛
⎝

t̃−1∑

l=0

F̂
l

sη
b
t−l

⎞
⎠
⎛
⎝

t̃−1∑

l=0

F̂
l

sη
b
t−l

⎞
⎠

′

B
b
1,2 = T−1

∑

t∈Ĩs

⎛
⎝

t̃−1∑

l=0

F̂
l

sµ̂s

⎞
⎠
⎛
⎝

t̃−1∑

l=0

F̂
l

sµ̂s

⎞
⎠

′

B
b
1,3 = T−1

∑

t∈Ĩs

F̂
t̃

sξ
b
[τs−1T ]ξ

b′
[τs−1T ](F̂

t̃

s)
′

B
b
1,4 = T−1

∑

t∈Ĩs

ξ̃
b

t

⎛
⎝

t̃−1∑

l=0

F̂
l

sµ̂s

⎞
⎠

′

B
b
1,5 = T−1

∑

t∈Ĩs

ξ̃
b

t ξ
b′
[τs−1T ](F̂

t̃

s)
′

B
b
1,6 = T−1

∑

t∈Ĩs

⎛
⎝

t̃−1∑

l=0

F̂
l

sµ̂s

⎞
⎠ ξb′[τs−1T ](F̂

t̃

s)
′.

Recall that

B1(τs−1, τs) =

∞∑

l=0

F l
s

(
A−1
s

∫ τs

τs−1

Σ (τ )dτA−1′

s

)

#

F l′
s .

We show Bb
1,1 − B1(τs−1, τs) = obp(1) by showing that Eb(Bb

1,1 − B1(τs−1, τs)) = op(1) and Varb(vectBb
1,1) = op(1).

B
b
1,1 = T−1

∑

t∈Ĩs

t̃−1∑

l,κ=0

F̂
l

sη
b
t−lη

b′
t−κ (F̂

κ

s )
′ = T−1

∑

t∈Ĩs

t̃−1∑

l,κ=0

F̂
l

sÂ
−1

s,#g
b
t−lg

b′
t−κ (Â

−1

s,#)
′(F̂

κ

s )
′

Eb(Bb
1,1) = T−1

∑

t∈Ĩs

t̃−1∑

l,κ=0

F̂
l

s E
b(ηb

t−lη
b′
t−κ )(F̂

κ

s )
′ = TVarb(Ab

1,1) = B1(τs−1, τs) + op(1),

where the last equality above follows from (B.61). We have:

vectBb
1,1 = T−1

∑

t∈Ĩs

t̃−1∑

l,κ=0

(
(F̂

κ

s Â
−1

s,#) ⊗ (F̂
l

sÂ
−1

s,#)
) (

gb
t−κ ⊗ gb

t−l

)

= T−1
∑

t∈Ĩs

t̃−1∑

l,κ=0

(
(F̂

κ

s Â
−1

s,#) ⊗ (F̂
l

sÂ
−1

s,#)
) (

(ĝ t−κ ⊙ νt−κ ) ⊗ (ĝ t−l ⊙ νt−l)
)

= T−1
∑

t∈Ĩs

t̃−1∑

l,κ=0

(
(F̂

κ

s Â
−1

s,#) ⊗ (F̂
l

sÂ
−1

s,#)
) (

(ĝ t−κ ⊗ ĝ t−l) ⊙ (νt−κ ⊗ νt−l)
)
.

Varb(vectBb
1,1) = Eb(vectBb

1,1(vectB
b
1,1)

′) − Eb(vectBb
1,1) E

b(vectBb
1,1)

′

= Eb(vectBb
1,1(vectB

b
1,1)

′) − vectB1(τs−1, τs) (vectB1(τs−1, τs))
′ + op(1).
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We need to show that Eb(vectBb
1,1(vectB

b
1,1)

′)
p

→ vectB1(τs−1, τs) (vectB1(τs−1, τs))
′. Letting t̃∗ = t∗ − [τs−1T ],

Eb(vectBb
1,1(vectB

b
1,1)

′) =

⎡
⎣T−1

∑

t∈Ĩs

t̃−1∑

l,κ=0

(
(F̂

κ

s Â
−1

s,#) ⊗ (F̂
l

sÂ
−1

s,#)
) (

gb
t−κ ⊗ gb

t−l

)
⎤
⎦

×

⎡
⎣T−1

∑

t∗∈Ĩs

t̃∗−1∑

l∗,κ∗=0

(
(F̂

κ∗

s Â
−1

s,#) ⊗ (F̂
l∗

s Â
−1

s,#)
) (

gb
t∗−κ∗ ⊗ gb

t∗−l∗

)
⎤
⎦

= T−2
∑

t,t∗∈Ĩs

t̃−1∑

l,κ=0

t̃∗−1∑

l∗,κ∗=0

((F̂
κ

s Â
−1

s,#) ⊗ (F̂
l

sÂ
−1

s,#))G((F̂
κ∗

s Â
−1

s,#)
′ ⊗ (F̂

l∗

s Â
−1

s,#)
′)

=

9∑

i=1

Oi,

G = Eb
((

gb
t−κ ⊗ gb

t−l

) (
gb
t∗−κ∗ ⊗ gb

t∗−l∗

)′)
,

where Oi are the terms corresponding to nine cases when G ̸= O(n2p2)×(n2p2). Case (1) is when t − κ = t − l, t∗ − κ∗ =
t∗ − l∗, t − κ ̸= t∗ − κ∗; we show below that O1 = vectB1(τs−1, τs)(vectB1(τs−1, τs))

′ + op(1). For brevity, the rest of the
cases are defined and analyzed in Supplementary Appendix, Appendix F, where we show that

Oi = op(1) for i = 2, . . . , 9. (B.63)

By Assumption 10, Eb[(νtν
′
t )⊗(νt−lν

′
t−l)] = [Eb(νtν

′
t )]⊗[Eb(νt−lνt−l)

′], because we know Eb(ν2
t ν

2
t−l) = Eb(ν2

t ) E
b(ν2

t−l) = 1,

Eb(νtνt−l) = 0 and Eb(ν2
t νt−l) = 0 (these are elements of Eb((νtν

′
t ) ⊗ (νt−lν

′
t−l)). Hence, conditional on the data, we have,

by Assumption 10,

G = Eb(
(
gb
t−κ ⊗ gb

t−κ

) (
gb
t∗−κ∗ ⊗ gb

t∗−κ∗

)′
)

= Eb[[(ĝ t−κ ⊗ ĝ t−κ ) ⊙ (νt−κ ⊗ νt−κ )][(ĝ t∗−κ∗ ⊗ ĝ t∗−κ∗ ) ⊙ (νt∗−κ∗ ⊗ νt∗−κ∗ )]]

= [(ĝ t−κ ⊗ ĝ t−κ ) ⊙ Eb(νt−κ ⊗ νt−κ )][(ĝ t∗−κ∗ ⊗ ĝ t∗−κ∗ ) ⊙ Eb(νt∗−κ∗ ⊗ νt∗−κ∗ )]

= (ĝ t−κ ⊗ ĝ t−κ )(ĝ t∗−κ∗ ⊗ ĝ t∗−κ∗ ),

hence

O1 =

⎡
⎣T−1

∑

t∈Ĩs

t̃−1∑

κ=0

(
(F̂

κ

s Â
−1

s,#) ⊗ (F̂
κ

s Â
−1

s,#)
) (

gb
t−κ ⊗ gb

t−κ

)
⎤
⎦

×

⎡
⎣T−1

∑

t∗∈Ĩs

t̃−1∑

κ∗=0

(
(F̂

κ∗

s Â
−1

s,#) ⊗ (F̂
κ∗

s Â
−1

s,#)
) (

gb
t∗−κ∗ ⊗ gb

t∗−κ∗

)
⎤
⎦

′

=

∆τsT−1∑

κ,κ∗=0

(
(F̂

κ

s Â
−1

s,#) ⊗ (F̂
κ

s Â
−1

s,#)
)
⎛
⎝T−1

∑

t∈Ĩs

(ĝ t−κ ⊗ ĝ t−κ )

⎞
⎠

×

⎛
⎝T−1

∑

t∈Ĩs

(ĝ t∗−κ∗ ⊗ ĝ t∗−κ∗ )

⎞
⎠
(
(F̂

κ∗

s Â
−1

s,#) ⊗ (F̂
κ∗

s Â
−1

s,#)
)′

+ op(1)

= (vectB1(τs−1, τs) + op(1))(vectB1(τs−1, τs) + op(1))
′ = vectB1(τs−1, τs)(vectB1(τs−1, τs))

′ + op(1),

where the last two lines follow because g t−κ ⊗ g t−κ = vect(g t−κg
′
t−κ ), and

T−1
∑

t∈Ĩs

(ĝ t−κ ⊗ ĝ t−κ ) = T−1
∑

t∈Ĩs

vect (ĝ t−κ ĝ
′
t−κ ) = plim

T→∞

vect T−1
∑

t∈Ĩs

g t−κg
′
t−κ + op(1),

which follows by standard 2SLS theory and Lemma 8. So, O1 = vectB1(τs−1, τs)(vectB1(τs−1, τs))
′ + op(1).

Therefore, Varb(vectBb
1,1) = op(1), so by Markov’s inequality,

B
b
1,1 = B1(τs−1, τs) + obp(1).

Next, because µ̂s = µs + op(1), and F̂ s = F s + op(1), and
∑∞

l=0 ∥F̂
l

s − F l
s∥ = op(1) as shown in Supplementary Appendix,

Appendix E, Bb
1,2 = B1,2 + op(1) = B2(τs−1, τs) + op(1), where B2(τs−1, τs) =

∫ τs

τs−1
Q1(τ )Q

′
1(τ )dτ , and B1,2 is the sample
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equivalent of Bb
1,2 (and in general, B1,i, i = 1, . . . , 6 are the sample equivalents of Bb

1,i, defined in the proof of Lemma 2 in

Supplementary Appendix, Appendix C). Also, we have Bb
1,3 = B1,3 +obp(1) = obp(1), because, as shown in the preliminaries,

T−αξbt ξ
b′

t = obp(1), and F̂
l

s is exponentially decaying with l.

Consider Bb
1,4, which is equal to

T−1
∑

t∈Ĩs

⎛
⎝

t̃−1∑

l=0

F̂
l

sη
b
t−l

⎞
⎠
⎛
⎝

t̃−1∑

l=0

F̂
l

sµ̂s

⎞
⎠

′

= T−1
∑

t∈Ĩs

⎛
⎝

t̃−1∑

l=0

F̂
l

s((Â
−1

s,#ĝ t−l) ⊙ νt−l)

⎞
⎠
⎛
⎝

t̃−1∑

l=0

F̂
l

sµ̂s

⎞
⎠

′

.

We show Bb
1,4 = obp(1). To that end, note that

Eb(Bb
1,4) = T−1

∑

t∈Ĩs

⎛
⎝

t̃−1∑

l=0

F l
sηt−l,2

⎞
⎠
⎛
⎝

t̃−1∑

l=0

F l
sµs

⎞
⎠

′

+ op(1) = op(1),

by similar arguments as for its sample equivalent B1,4 defined in the proof of Lemma 2. So, Eb(Bb
1,4) = op(1). Moreover, by

similar arguments as before, it can be shown that ∥Varb(vectBb
1,4)∥ = op(1). Hence, by Markov’s inequality, Bb

1,4 = obp(1).

Similarly, because T−αξb[τs−1T ] = obp(1) for any α > 0, it can be shown that Bb
1,5 = obp(1), and Bb

1,6 = obp(1). Putting all the

results for Bb
1,i together, i = 1, . . . , 6 we conclude Bb

1 = B1(τs−1, τs)+B2(τs−1, τs)+obp(1) = B(τs−1, τs)+obp(1) = B1+obp(1),

where B(τs−1, τs) = B1(τs−1, τs) + B2(τs−1, τs), and B1 is the sample equivalents of Bb
1 defined in the proof of Lemma 2.

Because Bb
3 = Bb

1 + obp(1), it follows that Bb
3 = B(τs−1, τs) + obp(1), where the same result was shown to hold for B3

defined in the proof of Lemma 2. Now consider Bb
2. Using ξbt = µ̂s + F̂ sξ

b
t−1 + ηb

t , it follows that:

B
b
2 = µ̂sA

b′

2 + F̂ sB
b
3 + T−1

∑

t∈Ĩs

ξbt−1η
b′

t + obp(1).

By similar arguments as for some elements of B1, it can be shown that T−1
∑

t∈Ĩs
ξbt−1η

b′

t = obp(1). Therefore, B
b
2 =∫ τs

τs−1
µ(τ )Q1(τ )dτ +

∫ τs

τs−1
F (τ )Q2(τ )dτ + obp(1). So, for Ii = Ĩs,

Q̂
b

(i) =

∫ τs

τs−1

Υ
′(τ )Qz (τ )Υ (τ )dτ + obp(1) = Q(i) + obp(1).

For other regimes, by similar arguments as in the end of the proof of Lemma 2,

Q̂
b

(i) =

∫ λi

λi−1

Υ
′(τ )Qz (τ )Υ (τ )dτ + obp(1) = Q(i) + obp(1),

concluding the proof. □

Lemma 10. If Assumptions 1–10 and 9′ hold for the WR bootstrap, T−1/2
∑

t∈Ii
zbt g

b′

t S
b
†

dbp
⇒ M̃i in probability uniformly in λk,

where M̃i is defined as in Lemma 6, and Sb
† = Su or Sb

† = (β̂x,(i))#. If m = 0, then Sb
† = Su or Sb

† = β̂x,#.

Lemma 11. Let Assumptions 1–10 hold for the WF bootstrap. Then, T−1/2
∑

t∈Ii
z tg

b′

t S
b
†

dbp
⇒ M̃i in probability uniformly in λk,

where Sb
† is as defined in Lemma 10.

For the proofs of Lemmas 10–11, it suffices to consider Sb
† = Su or Sb

† = β̂x,#, therefore considering m = 0. If

Sb
† = (β̂x,(i))#, by Lemma 7 followed by standard 2SLS theory, β̂x,(i) = β0

x,(i) + Op(T
−1/2) so Sb

† = S† + Op(T
−1/2), and

the results follow in a similar fashion.
Additionally to the notation already defined at the beginning of the proof of Lemma 9, we use the following results

and notation, some relevant for both Lemmas 10 and 11. Consider the partition Ĩs, then for the WR bootstrap we have

z̃
b
t = ĉ z̃,s +

∑p

i=1 Ĉ i,sz̃
b
t−i + ebt , and for both WR and WF bootstraps, we have ebt = Â

−1

s ϵbt . We have for the WR bootstrap:

ξbt = µ̂s + F̂ sξ
b
t−1 + ηb

t = F̂
t−[τs−1T ]

s ξb[τs−1T ] +

t−[τs−1T ]−1∑

l=0

F̂
l

sη
b
t−l +

⎛
⎝

t−[τs−1T ]−1∑

l=0

F̂
l

s

⎞
⎠ µ̂s (B.64)

except that in (B.64) when s = 1 and we are in the first regime Ĩ1 = [1, . . . , [τ1T ]], we have that ξb0 = ξ0, where

ξbt = vectj=0:(p−1)(z̃
b
t−j). Let F

b
t = {νt , νt−1, . . . , ν1}. Recall that, by Assumption 10,

Eb(νt ) = Eb(νt |F
b
t−1) = vect(0p1+1, ιp2 , 0n(p−1)×1) = I (B.65)
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Eb(νtν
′
t ) = Eb(νtν

′
t |F

b
t−1) =

(
diag(J p1+1, J p2 )

)
#

= J (B.66)

Eb(νtν
′
t−j) = Eb(νtν

′
t−j|F

b
t−1) = (diag(0p1+1, J p2 ))# = J2. (B.67)

Furthermore, recall that ξt = µs + F sξt−1 + ηt = µ̂s + F̂ sξt−1 + η̂t , and therefore η̂t = ηt + (µs − µ̂s) + (F s − F̂ s)ξt−1. By

backward substitution of ξt = µs + F sξt−1 + ηt , we have that: ξt−1 = F t̃−1
s ξ[τs−1T ] +

∑t̃−2
l=0 F l

sηt−l−1 +
(∑t̃−2

l=0 F l
s

)
µs, where

t̃ = t−[τs−1T ]. We also have ηb
t = Â

−1

s,# gb
t = Â

−1

s,# (ĝ t ⊙νt ), where recall that ⊙ is the element-wise multiplication. Hence:

ĝ t = Âs,# η̂t = Âs,#ηt + Âs,#(µs − µ̂s) + Âs,#(F s − F̂ s)ξt−1

= Âs,#ηt + Âs,#(µs − µ̂s) + Âs,#(F s − F̂ s)F
t̃−1
s ξ[τs−1T ]

+ Âs,#(F s − F̂ s)

⎛
⎝

t̃−2∑

l=0

F l
sηt−l−1

⎞
⎠+ Âs,#(F s − F̂ s)

⎛
⎝
⎛
⎝

t̃−2∑

l=0

F l
s

⎞
⎠µs

⎞
⎠ (B.68)

gb
t = ((Âs,#ηt ) ⊙ νt ) + ((Âs,#(µs − µ̂s)) ⊙ νt ) + ((Âs,#(F s − F̂ s)ξt−1) ⊙ νt )

= gb
t,A + gb

t,B + gb
t,C , (B.69)

ηb
t = Â

−1

s,# ((Âs,#ηt ) ⊙ νt ) + Â
−1

s,# ((Âs,#(µs − µ̂s)) ⊙ νt ) + Â
−1

s,# ((Âs,#(F s − F̂ s)ξt−1) ⊙ νt )

= ηb
t,A + ηb

t,B + ηb
t,C . (B.70)

Finally, for a vector o, we denote o(j1:j2) its sub-vector with elements j1 to j2 selected in order, and for a matrix O, we
denote by O(j1:j2,j∗

1
:j∗
2
) its sub-matrix consisting of rows j1 to j2 and columns j∗1 to j∗2.

Proof of Lemma 10.

As for the proof of Lemma 9, consider the interval Ii = Ĩs. Let Sb
† = Su or Sb

† = β̂x,#. We derive the asymptotic

distribution of T−1/2
∑

t∈Ĩs
zbt g

b′
t S

b
† ,

T−1/2
∑

t∈Ĩs

zbt g
b′
t S

b
† =

⎡
⎣

T−1/2
∑

t∈Ĩs
gb′
t Sb

†

T−1/2
∑

t∈Ĩs
Srξtg

b′
t Sb

†

T−1/2
∑

t∈Ĩs
Sξbt−1g

b′
t Sb

†

⎤
⎦ ≡

⎡
⎣
Eb
1

Eb
2

Eb
3

⎤
⎦ . (B.71)

• Consider first Eb
1 . By (B.69),

E
b
1 = T−1/2

∑

t∈Ĩs

gb′
t S

b
† = T−1/2

∑

t∈Ii

gb′
t,A S

b
† + T−1/2

∑

t∈Ĩs

gb′
t,B S

b
† + T−1/2

∑

t∈Ĩs

gb′
t,C S

b
†

= T−1/2
∑

t∈Ĩs

S
b′

† ((Âs,#ηt ) ⊙ νt ) + T−1/2
∑

t∈Ĩs

S
b′

† ((Âs,#(µs − µ̂s)) ⊙ νt )

+ T−1/2
∑

t∈Ĩs

S
b′

† ((Âs,#(F s − F̂ s)ξt−1) ⊙ νt )

= E
b
1,1 + E

b
1,2 + E

b
1,3.

For S† = Su we have Sb
† = Su. For S† = β̂x,# we have ∥Sb

† − S†∥ = op(1), ∥µ̂s − µs∥ = op(1), ∥Âs − As∥ = op(1),

∥Â
−1

s −A−1
s ∥ = op(1) and

∑∞
l=0 ∥F̂

l

s − F̂
l

s∥ = op(1), whenever a Ob
p(1) term is written with the estimated quantities instead

of the true one, the difference is obp(1), so asymptotically negligible. Therefore, we proceed in the rest of the proof by

replacing the estimated parameters mentioned above with their true values, and denote the remainder by obp(1).

Using these replacements, one can show that Eb
1,2 = obp(1) and Eb

1,3 = obp(1). So, we have Eb
1 = Eb

1,1 =

S ′
† T

−1/2
∑

t∈Ĩs
((As,#ηt ) ⊙ νt ) + obp(1). Since As,#ηt = g t = ϵt,#, it follows that

E
b
1 = S

′
† T

−1/2
∑

t∈Ĩs

(g t ⊙ νt ) + obp(1). (B.72)

First, let S† = Su. Then Eb
1 = T−1/2

∑
t∈Ĩs

utνt + obp(1) = T−1/2
∑

t∈Ĩs
du,t lu,tνt + obp(1) = Eb

1,1 + obp(1), where recall that
du,t = d1,t and lu,t is the first element of lt .

We now derive the limiting distribution of Eb
1,1, in two parts: in part (i), we show that Lemma 3 holds for Ẽb

1,1 =

T−1/2
∑[Tr]

t=1 lu,tνt , i.e. Ẽ
b
1,1

dbp
⇒ B

(1)
0 (r) in probability, where B

(1)
0 (r) is the first element of B0(r) defined just before Lemma 6;

in part (ii), we show that the condition of Theorem 2.1 of Hansen (1992) holds, that is, the bootstrap unconditional
variance of Eb

1,1 converges in probability to the unconditional variance of T−1/2
∑

t∈Ĩs
du,t lu,t = E1. Note that here
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E1 = S ′
†

(
T−1/2

∑
t∈Ĩs

g t

)
is the sample equivalent of Eb

1 , defined in the proof of Lemma 6 in the Supplementary Appendix,

Appendix C.

Part (i). First, νt is i.i.d, so conditional on the data, Eb(lu,tνt |F
b
t−1) = lu,t E

b(νt |F
b
t−1) = 0, so lu,tνt is a m.d.s. Second,

for some C > 0, supt E(E
b|lu,tνt |

2+δ∗
) ≤ supt E|lu,t |

2+δ∗
supt E

b|νt |
2+δ∗

< C by Assumption 9(iii) and Assumption 10(ii), so
supt E

b|lu,tνt |
2+δ∗

< op(1) + C . Third, by Lemma 8(iv) and Assumption 10(ii),

Eb(Eb
1,1)

2 = T−1

[Tr]∑

t=1

Eb(l2u,tν
2
t ) = T−1

[Tr]∑

t=1

l2u,t
p

→ r (uniformly in r).

Fourth, because Eb(ν2
t |F

b
t−1) = Eb(ν2

t ) = 1, the conditional and unconditional bootstrap second moments are the same, so

Eb[(Eb
1,1)

2|Fb
t−1] − Eb(Eb

1,1)
2 = 0. This shows that Ẽb

1,1 = T−1/2
∑[Tr]

t=1 lu,tνt

dbp
⇒ B

(1)
0 (r) in probability (uniformly in r).

Part (ii). By Assumption 9(ii), E(d2u,t l
2
u,t ) = d2u,t . Therefore, by Lemma 8(iv), uniformly in r ,

Eb(Eb
1,1)

2 − E(E2
1 ) = T−1

[Tr]∑

t=1

[d2u,t l
2
u,t − E(d2u,t l

2
u,t )]

p
→ 0.

Therefore, by Theorem 2.1 in Hansen (1992), T−1/2
∑[Tr]

t=1 du,t lu,tνt

dbp
⇒
∫ r

0
du(τ )dB

(1)
0 (τ ) = M1(τs−1, τs) in probability, where

M1(τs−1, τs) is defined just before Lemma 6. So for S† = Su, E
b
1

dbp
⇒ M1(τs−1, τs) in probability.

Now let S† = βx,# and note that Eb
1 = β0′

x T
−1/2

∑
t∈Ĩs

vtνt . Recall that by the decomposition of S and a decomposition

of Dt exactly as D(τ ) in (B.40), we have:

g t ⊙ νt = ϵt,# ⊙ νt = (SDt lt )# ⊙ νt =
[
vect(du,t lu,tνt , sp1du,t lu,tνt + Sp1Dv,t lv,tνt , Sp2 lζ,t )

]
#
, (B.73)

so Eb
1 = β0′

x T
−1/2

∑
t∈Ĩs

vtνt = (β0′

x sp1 )
(
T−1/2

∑
t∈Ĩs

du,t lu,tνt

)
+ (β0′

x Sp1 )
(
T−1/2

∑
t∈Ĩs

Dv,t lv,tνt

)
.

Because E(lv,t l
′
v,t ) = Ip1 , by similar arguments as for T−1/2

∑[Tr]
t=1 du,t lu,tνt

dbp
⇒

∫ r

0
du(τ )dB

(1)
0 (τ ) in probability, it can

be shown that (β0′

x Sp1 )
(
T−1/2

∑[Tr]
t=1 Dv,t lv,tνt

)
dbp
⇒ (β0′

x Sp1 )
∫ r

0
Dv(τ )dB

(2:p1+1)
0 (τ ) in probability, where B

(2:p1+1)
0 (·) refers to

selecting elements 2 : (p1 + 1) in order from B0(·). Moreover, because utνt , vtνt share the same νt which is i.i.d and

for which Eb(ν2
t ) = 1, (β0′

x sp1 )
(
T−1/2

∑[Tr]
t=1 du,t lu,tνt

)
and (β0′

x Sp1 )
(
T−1/2

∑[Tr]
t=1 Dv,t lv,tνt

)
also jointly converge, and their

unconditional bootstrap covariance converges to the unconditional covariance of their respective limits. Therefore, also

for S† = βx,#,

E
b
1

dbp
⇒ (β0′

x sp1 )

∫ τs

τs−1

d2u(τ )dB
(1)
0 (τ ) + (β0′

x Sp1 )

∫ τs

τs−1

Dv(τ )dB
(2:p1+1)
0 (τ )

= (S ′
†S#)

∫ τs

τs−1

D(τ )dB0,#(τ ) = M1(τs−1, τs) (B.74)

in probability with variance matrix VM1(τs−1,τs) given in the Supplementary Appendix, Appendix C, proof of Lemma 6.

• Next, consider Eb
3 . From (B.64) we have that: ξbt−1 = F̂

t̃−1

s ξb[τs−1T ] +
∑t̃−2

l=0 F̂
l

sη
b
t−l−1 +

(∑t̃−2
l=0 F̂

l

s

)
µ̂s. Define Ĩ−s =

[[τs−1T ] + 2, [τsT ]]. Then, replacing estimated parameters with the true ones and denoting the remainder by obp(1) for

reasons discussed earlier,

E
b
3 = T−1/2

∑

t∈Ĩs

Sξbt−1g
b′
t S†

= T−1/2(S ′
†g

b
[τs−1T ]+1)(Sξb[τs−1T ]) + T−1/2

∑

t∈Ĩ−s

(S ′
†g

b
t )
[
SF t̃−1

s ξb[τs−1T ]

]

+ T−1/2
∑

t∈Ĩ−s

(S ′
†g

b
t )

⎡
⎣S

⎛
⎝

t̃−2∑

l=0

F l
s

⎞
⎠µs

⎤
⎦

+ T−1/2
∑

t∈Ĩ−s

(S ′
†g

b
t )

⎡
⎣S

t̃−2∑

l=0

F l
sη

b
t−l−1

⎤
⎦+ obp(1) = E

b
3,1 + E

b
3,2 + E

b
3,3 + E

b
3,4 + obp(1). (B.75)
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First, note that by (B.48), ∥ξb[τs−1T ]∥ = Ob
p(T

−α), and also that ∥gb
[τs−1T ]+1∥ = Ob

p(T
−α), for any α > 0. Therefore, Eb

3,1 = obp(1).

For the same reason and by the fact that ∥F l
s∥ is exponentially decaying with l,

∥Eb
3,2∥ ≤ ∥T−1/2

∑

t∈Ĩ−s

S
′
†g

b
t ∥

(
∥S∥ sup

l

∥F l
s∥ ∥ξb[τs−1T ]∥

)
= ∥Eb

1∥

(
∥S∥ sup

l

∥F l
s∥

)
obp(1) = obp(1).

Next, note that by similar derivations as for (C.13) in Supplementary Appendix, Appendix C, and artificially setting
g t−l = 0, νt−l = 0 for all t < l (as in Boswijk et al. (2016)) we have, for ñ = [τs−1T ] + 2,

E
b
3,4 =

∆τsT−2∑

l=1

SF l
s

⎛
⎝T−1/2

∑

t∈Ĩ−s

(S ′
†g

b
t )η

b
t−l−1

⎞
⎠

− T−1/2

∆τsT−2∑

l=1

SF l
s

l−1∑

j=0

(S ′
†g

b
ñ+j)η

b
ñ+j−(l+1) ≡ Ẽ

b
3,4(∆τsT − 2) − L. (B.76)

We now show that L = obp(1). Let S
′
†g t = ut . Then,

(S ′
†g tνt )(g t−l ⊙ νt−l)(g t−l ⊙ νt−l)

′(S ′
†g tνt ) = ν2

t u
2
t

⎡
⎣

u2
t−lν

2
t−l ut−lv

′
t−lν

2
t−l ut−lζ

′
t−lνt−l

(ut−lv
′
t−lν

2
t−l)

′ vt−lv
′
t−lν

2
t−l vt−lζ

′
t−lνt−l

(ut−lζ
′
t−lνt−l)

′ (vt−lζ
′
t−lνt−l)

′ ζt−lζ
′
t−l

⎤
⎦

#

=

⎡
⎣

u2
t u

2
t−l u2

t ut−lv
′
t−l u2

t ut−lζ
′
t−l

u2
t (ut−lv

′
t−l)

′ u2
t vt−lv

′
t−l u2

t vt−lζ
′
t−l

u2
t (ut−lζ

′
t−l)

′ (u2
t vt−lζ

′
t−l)

′ u2
t ζt−lζ

′
t−l

⎤
⎦

#

⊙

⎡
⎣

ν2
t ν

2
t−l (ν2

t ν
2
t−l)ι

′
p1

(ν2
t νt−l)ι

′
p2

(ν2
t ν

2
t−l)ιp1 (ν2

t ν
2
t−l)J p1 (ν2

t νt−l)ιp1 ι
′
p2

(ν2
t νt−l)ιp2 (ν2

t νt−l)ιp2 ι
′
p1

ν2
t J p2

⎤
⎦

#

.

Therefore, for l ≥ 1,

E(Eb[(S ′
†g tνt )(g t−l ⊙ νt−l)(g t−l ⊙ νt−l)

′(S ′
†g tνt )]) = E(u2

t ((g t−lg
′
t−l) ⊙ J )). (B.77)

By Assumption 9, the non-zero elements of E(u2
t ⊗(g t−lg

′
t−l))⊙J , do not depend on t , and are elements of linear functions

ρ0,l, so they are uniformly bounded in l. Therefore, for element L(a,b) of the matrix L, and constants c > 0, c1 > 0,

sup
ñ+j

E(Eb|L(a,b)|)

≤ T−1/2

∆τsT−2∑

l=1

|(SF l
sA

−1
s )(a,b) |

l−1∑

j=0

sup
ñ+j

E Eb|{(Sb′
† g ñ+j)νñ+j [g ñ+j−(l+1) ⊙ νñ+j−(l+1)]}

(a,b)|

≤ T−1/2

∆τsT−2∑

l=1

∥A−1
s ∥ ∥S∥ ∥F l

s∥

l−1∑

j=0

c ≤ c1T
−1/2

∞∑

l=0

l∥F l
s∥ → 0.

Therefore, L = obp(1) for S† = Su, and by similar arguments, L = obp(1) for S† = βx,#.

Next, we analyze Ẽb
3,4(∆τsT − 2). To that end, let for now S† = Su, and note that a crucial term in Ẽb

3,4(∆τsT − 2)

is Lb
1(l) = T−1/2

∑[Tr]
t=1 utνt (g t−l ⊙ νt−l) for l ≥ 1. We can write S and D(τ ) in (B.40) as S = diag(Sp1+1, Sp2 ), D(τ ) =

diag(Dp1+1(τ ),Dζ(τ )), where Sp1+1 =

[
1 01×p1

sp1 Sp1

]
, Dp1+1(τ ) = diag(du(τ ),Dv(τ )). Then, we have:

g t−l ⊙ νt−l =

[
du,t−llu,t−lνt−l

sp1du,t lu,t−lνt−l + Sp1Dv,t lv,t−lνt−l

Sp2Dζ,t−llζ,t−l

]

#

=

[
Sp1+1Dp1+1,t−lnt−lνt−l

Sp2Dζ,t−llζ,t−l

]

#

,

where nt is defined in Assumption 9′. Letting E
(1)
t,l = lu,tnt−l, E

(2)
t,l = lu,t lζ,t−l and E

(1),b
t,l = lu,tnt−lνtνt−l, E

(2),b
t,l = lu,t lζ,t−lνt ,

we have:

L
b
1(l) = T−1/2

[Tr]∑

t=1

utνt (g t−l ⊙ νt−l) =

[
du,tSp1+1Dp1+1,t−lE

(1),b
t,l

du,tSp2Dζ,t−lE
(2),b
t,l

]

#

. (B.78)

We now proceed as for Eb
1 , in two parts: in part (i), we derive the limiting distribution of B

(i),b
l,T ,A(r) = T−1/2

∑[Tr]
t=1 E

(i),b
t,l

(i = 1, 2) and its equivalent for S† = βx,# for each l, by verifying Lemma 3 (we verify this for both definitions of S† and

therefore replace E
(i),b
t,l with the appropriate quantities when S† = βx,#); in part (ii), we derive the limiting distribution

of Ẽb
3,4(n

∗) using Theorem 2.1 in Hansen (1992) for fixed n∗. Then we take the limit as n∗ → ∞.



Please cite this article as: O. Boldea, A. Cornea-Madeira and A.R. Hall, Bootstrapping structural change tests. Journal of Econometrics (2019),
https://doi.org/10.1016/j.jeconom.2019.05.019.

28 O. Boldea, A. Cornea-Madeira and A.R. Hall / Journal of Econometrics xxx (xxxx) xxx

Part (i). Let S† = Su. First, we apply Lemma 3 to B
(i),b
l,T ,A(r) = T−1/2

∑[Tr]
t=1 E

(i),b
t,l , for l ≥ 1, i = 1, 2 where

note that even though V
B
(i,),b
l,T ,A

(r)
= plimT→∞ Varb(B

(i),b
l,T ,A(r)) does not converge to rI j, j = 1 + p1, p2 for i = 1, 2

respectively, as one condition in Lemma 3 requires, it is symmetric and positive semi-definite, so by a decomposition

of V
B
(i),b
l,T ,A

= E
1/2
i E

1/2′

i , E
−1/2
i B

(i),b
l,T ,A(r) converges to a process whose limiting variance is r times the identity matrix,

where E−1
i is the generalized inverse. Therefore, in the rest of the analysis, we no longer need to verify this condition,

except for deriving the limit of the unconditional bootstrap variance, and proceed to verify the rest of the conditions.
First, Eb(E

(1),b
t,l ) = E

(1)
t,l E

b(νtνt−l|F
b
t−1) = 0p1+1, E

b(E
(2),b
t,l ) = E

(2)
t,l E

b(νt |F
b
t−1) = 0p2 , so E

(i),b
t,l is a m.d.s. Second, for φ

(i),b
t

denoting a typical element of E
(i),b
t,l , and φ

(i)
t denoting the corresponding element of E

(i)
t,l , we have, for some δ∗ > 0,

that supt E(E
b|φ

(1),b
t |2+δ∗

) = supt E(|φ
(1)
t |2+δ∗

supt E
b|νtνt−l|

2+δ∗
) < ∞ by Markov’s inequality, Assumption 9(iii) and

Assumption 10(ii) for E
(1),b
t,l , or we have that supt E(E

b|φ
(2),b
t |2+δ∗

) = supt E|φ
(2)
t |2+δ∗

supt E
b|νt |

2+δ∗
< ∞ by the same

assumptions, for E
(2),b
t,l .

Third, to facilitate showing that Varb(B
(i),b
l,T ,A(r)|F

b
t−1)−Varb(B

(i),b
l,T ,A(r))

p
→ 0, note that, from (B.77) we have, Varb(E

(1),b
t,l ) =

(E
(1)
t,l E

(1)′

t,l ), Varb(E
(1),b
t,l |Fb

t−1) = E
(1)
t,l ν

2
t−l, Var

b(E
(2),b
t,l ) = Varb(E

(2),b
t,l |Fb

t−1) = (E
(2)
t,l E

(2)′

t,l ). Therefore, we have by Lemma 8,

Varb(B
(1),b
l,T ,A(r)) = T−1

[Tr]∑

t=1

(l2u,tnt−ln
′
t−l)

p
→ Var(Bl(r)

1:p1+1) = ρ
(1:p1+1,1:p1+1)
l,l ,

Varb(B
(2),b
l,T ,A(r)) = T−1

[Tr]∑

t=1

(l2u,t lζ,t−ll
′
ζ,t−l)

p
→ Var(Bl(r)

p1+2:n) = ρ
(p1+2:n,p1+2:n)
l,l , (B.79)

where Bl(r) was defined just before Lemma 5, Bl(r)
(1:p1+1), Bl(r)

(p1+2:n) are the vectors stacking elements 1 : p1 + 1, and

p1 + 2 : n respectively of Bl(r) in order, and ρ
(1:p1+1,1:p1+1)
l,l , ρ

(p1+2:n,p1+2:n)
l,l are the left upper p1 + 1 × p1 + 1, p2 × p2

respectively, blocks of ρl,l.
Regarding the last condition in Lemma 3, notice that this is satisfied when i = 2 (the conditional and unconditional

bootstrap moments are the same). To verify the last condition in Lemma 3 for i = 1, because ν2
t−l is i.i.d. and

supt E
b|νt |

4+δ∗
< ∞, by Lemma 1 and Lemma 8(iv), we have:

Varb(B
(1)b
l,T ,A(r)|F

b
t−1) − Varb(B

(1),b
l,T ,A(r)) = T−1

[Tr]∑

t=1

(l2u,tnt−ln
′
t−l)(ν

2
t−l − 1) = obp(1)

by Chebyshev inequality since for any C > 0, we have Pb(∥T−1
∑[Tr]

t=1(l
2
u,tnt−ln

′
t−l)(ν

2
t−l − 1)∥ ≥ C) ≤ C−2 T−1∥T−1

∑[Tr]
t,t∗=1 l

2
u,t l

2
u,t∗nt−ln

′
t−lnt∗−ln

′
t∗−l∥ Eb|(ν2

t−l − 1)(ν2
t∗−l − 1)|

p
→ 0, where Eb|(ν2

t−l − 1)(ν2
t∗−l − 1)|< ∞ by Assumption 10(ii)

and ∥T−1
∑[Tr]

t,t∗=1 l
2
u,t l

2
u,t∗nt−ln

′
t−lnt∗−ln

′
t∗−l∥ = Op(1) by Assumption 9′(iv) which requires the existence of the moments

of 8th order for lt . Notice that Assumption 9′(iv) is only needed for the WR bootstrap, but not for the WF bootstrap for
which Assumption 9(iii) (which requires moments of 4th order only) is enough (as in Boswijk et al. (2016)) since z t is held
fixed when ybt and xbt are generated (see Section 2.3). Moreover, notice that for the WR bootstrap, if νt is i.i.d. from the

Rademacher distribution then Varb(B
(1)b
l,T ,A(r)|F

b
t−1)−Varb(B

(1),b
l,T ,A(r)) = 0 (because νt = ±1) and therefore Assumption 9′(iv)

is not needed.
Therefore,

B
(1),b
l,T ,A(r) = T−1/2

[Tr]∑

t=1

E
(1),b
t,l

dbp
⇒ B

(1:p1+1)
l (r), (B.80)

B
(2),b
l,T ,A(r) = T−1/2

[Tr]∑

t=1

E
(2),b
t,l

dbp
⇒ B

(p1+2:n)
l (r) (B.81)

in probability. Moreover, because B
(1),b
l,T ,A(r) and B

(2),b
l,T ,A(r) share the same νt (which is i.i.d.), they also jointly converge weakly

in probability: Bb
l,T ,A(r) = vect(B

(1),b
l,T ,A(r),B

(2),b
l,T ,A(r)) = T−1/2

∑[Tr]
t=1 lu,tνt (lt−l ⊙ ν̃t−l)

dbp
⇒ B

(1:n)
l (r) in probability. Notice that

so far, all the proofs went through using Assumptions 1–10. The joint convergence above requires Assumption 9′(iii)
which imposes the block diagonal structure for ρ

(1:n,1:n)
l,l (equivalently, it imposes E[l2u,tnt−ll

′
ζ,t−l] = 0p2×p2 for l ≥ 1 and

nt = vect(lu,t , lv,t ).
Now let S† = βx,#

. Then from (B.40):

L
b
2(l) ≡ T−1/2

[Tr]∑

t=1

β′
xvtνt (g t−l ⊙ νt−l) = T−1/2

[Tr]∑

t=1

β′
xvtνt

[
Sp1+1Dp1+1,t−lnt−lνt−l

Sp2Dζ,t−llζ,t−l

]

#
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= (β′
xsp1 )T

−1/2

[Tr]∑

t=1

du,t lu,tνt

[
Sp1+1Dp1+1,t−lnt−lνt−l

Sp2Dζ,t−llζ,t−l

]

#

+ T−1/2

[Tr]∑

t=1

β′
xSp1Dv,t lv,tνt

[
Sp1+1Dp1+1,t−lnt−lνt−l

Sp2Dζ,t−llζ,t−l

]

#

(B.82)

= (β′
xsp1 )L

b
1(l) + T−1/2

[Tr]∑

t=1

[
β′
xSp1Dv,t lv,tSp1+1Dp1+1,t−lnt−lνt−lνt

β′
xSp1Dv,t lv,tSp2Dζ,t−llζ,t−lνt

]

#

= (β′
xsp1 )L

b
1(l) +

[
(β′

x ⊗ Ip1+1)(Sp1 ⊗ Sp1+1)T
−1/2

∑[Tr]
t=1(Dv,t ⊗ Dp1+1,t−l)(lv,t ⊗ nt−l)νtνt−l

(β′
x ⊗ Ip2 )(Sp1 ⊗ Sp2 )T

−1/2
∑[Tr]

t=1(Dv,t ⊗ Dζ,t−l)(lv,t ⊗ lζ,t−l)νt

]

#

= (β′
xsp1 )L

b
1(l) +

[
Lb

2,A

Lb
2,B

]
= L

b
2,1 + L

b
2,2. (B.83)

The distribution of Lb
2,1 = (β′

xsp1 )L
b
1(l) follows from the joint convergence from (B.80)–(B.81) and part (ii) below. Following

similar steps as for Lb
1(l) above (where S† = Su), it can be shown that under Assumptions 1–10:

B
(1),b
l,T ,B(r) ≡ T−1/2

[Tr]∑

t=1

(lv,t ⊗ nt−l)νtνt−l

dbp
⇒ vect(B

(n+1:n+p1+1)
l (r), . . . ,B

(np1+1:np1+p1+1)
l (r)), (B.84)

B
(2),b
l,T ,B(r) ≡ T−1/2

[Tr]∑

t=1

(lv,t ⊗ lζ,t−l)νt

dbp
⇒ vect(B

(n+p1+2:2n)
l (r), . . . ,B

(np1+p1+2:n(p1+1))
l (r)), (B.85)

in probability. And by Assumption 10(i) and Assumption 9′ (iii) which imposes E[btnt−ll
′
ζ,t−l] = 0p1×p2 for bt being any

element of lv,t l
′
v,t , we have:

Bb
l,T ,B(r) = vect(B

(1),b
l,T ,B(r),B

(2),b
l,T ,B(r))

dbp
⇒ B

(n+1:n(p1+1))
l (r) in probability. (B.86)

Next we have to verify the second condition of Lemma 3 for B∗
l,T ≡ vect(Bb

l,T ,A(r),B
b
l,T ,B(r)). To that end, define for a

matrix O whose rows and columns are multiples of n, the operation

blockκ,κ∗ (O) = O(n(κ−1)+1:nκ,n(κ∗−1)+1:nκ∗), (B.87)

that is, the operation that selects the (κ, κ∗) n × n sub-matrix of the matrix O. Also, for a n̄ × n̄ square matrix O1, define

the operation that makes O1 block diagonal at row j as follows:

blockdiagj(O1) = diag(O
(1:j,1:j)
1 ,O

(j+1:n̄,j+1:n̄)
1 ). (B.88)

Then, by similar arguments to S† = Su,

vect(Bb
l,T ,A(r),B

b
l,T ,B(r))

dbp
⇒ B

(1:n(p1+1))
l (r), (B.89)

in probability, where the relevant bootstrap condition we have to show, by analogy to S† = Su, is that E
b(Bb

l,T ,A(r1)B
b
l,T ,B(r2)

′)

− min(r1, r2) E(B
(1:n)
l (r1)(B

(n+1:n(p1+1))
l (r2))

′) = op(1), a condition proven below for r1 = r2 = r , because when r1 ̸= r2, the

proof follows in a similar fashion. Recalling that B∗
l,T ≡ vect(Bb

l,T ,A(r),B
b
l,T ,B(r)), note that

Eb(Bb
l,T ,A(r)B

b′

l,T ,B(r)) = [block1,2(Var
b(B∗

l,T )), block1,3(Var
b(B∗

l,T )), . . . , block1,p1+1(Var
b(B∗

l,T ))],

so we proceed with each block 2, . . . , p1 + 1, and let bt = lu,t lvκ ,t , where lvκ is the element κ of lv,t , for κ = 1, . . . , p1.

Then for l ≥ 1, we have:

block1,κ+1Var
b(B∗

l,T ) = T−1

[Tr]∑

t=1

Eb

[
btnt−ln

′
t−lν

2
t ν

2
t−l btnt−ll

′
ζ,t−lν

2
t νt−l

bt lζ,t−ln
′
t−lν

2
t νt−l bt lζ,t−ll

′
ζ,t−lν

2
t

]

= T−1

[Tr]∑

t=1

blockdiagp1+1(bt lt−ll
′
t−l)

pb

→ blockdiagp1+1(block1,κ+1(ρl,l)) = block1,κ+1(ρl,l),

where the last equality follows by Lemma 8(iv) and by Assumption 9′(iii) which imposes a diagonal structure on
ρ
(1:n,n(κ−1)+1:nκ)
l,l . Finally, we have:
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block1,κ+1Var
b(B∗

l,T |F
b
t−1) − block1,κ+1Var

b(B∗
l,T ) = T−1

[Tr]∑

t=1

[
btnt−ln

′
t−l(ν

2
t−l − 1) btnt−ll

′
ζ,t−lνt−l

bt lζ,t−ln
′
t−lνt−l 0p2×p2

]

= obp(1),

by Chebyshev’s inequality and Assumption 9′(iv) and Assumption 10(ii). The same comments mentioned before (B.80)
apply here as well.

Part (ii). First, let S† = Su, and recall that, from (B.78), we need the distribution of Lb
1(l). By Hansen (1992), Theorem

2.1, because ∥du,tS#Dt−l,#∥ is bounded by Assumption 9(ii), and D(τ − l
T
) = Dt−l when τ ∈ [ t

T
, t+1

T
), we have:

L
b
1(l) =

∫ r

0

du(τ )S#D#(τ −
l

T
)dBb

l,T ,A,#(τ )
dbp
⇒

∫ r

0

du(τ )S#D#(τ )dB
(1:n)
l,# (τ )

= ((S ′
†S#) ⊗ S#)

∫ r

0

(D#(τ ) ⊗ D# (τ )) dBl,#(τ ), (B.90)

in probability, where the convergence follows because Varb(Lb
1(l)) − Var(L1(l))

pb

→ 0, which can be shown by similar
arguments to (B.79), and using Lemma 8(iii) instead of Lemma 8(iv), where L1(l) is the sample counterpart of Lb

1(l).
Similarly, for S† = βx,#, we have from (B.83):

L
b
2(l)

dbp
⇒ (β′

xsp1 )

∫ r

0

du(τ )S#Dτ ,#dB
(1:n)
l,# (τ ) + (β′

xSp1 ⊗ S#)

∫ r

0

[Dv(τ ) ⊗ D#(τ )]dB
(n+1:n(p1+1))
l,# (τ )

= [(S ′
†S#) ⊗ S#]

∫ r

0

(D#(τ ) ⊗ D# (τ )) dBl,#(τ ) in probability. (B.91)

Next, we derive the distribution of E3,4(n
∗). This follows by similar arguments as above if we can verify that the off-

diagonal elements of the bootstrap covariance Covb(B∗
l,T (r),B

∗
l∗,T (r)) converge in probability to the counterpart elements

of the covariance Cov(B
(1:n(p1+1))
l (r),B

(1:n(p1+1))

l∗ (r)) for l ̸= l∗. We only do so for block1,1(Cov
b(B∗

l,T (r),B
∗
l∗,T (r)); the rest

follows by similar reasoning.

block1,1(Cov
b(B∗

l,T (r),B
∗
l∗,T (r))) = T−1

[Tr]∑

t=1

l2u,t

[
nt−ln

′
t−l∗ E

b(ν2
t νt−lνt−l∗ ) nt−llζ,t−l∗ E

b(ν2
t νt−l)

lζ,t−ln
′
t−l∗ E

b(ν2
t νt−l∗ ) lζ,t−llζ,t−l∗ E

b(ν2
t )

]

+ T−1

[Tr]∑

t,t∗=1,t ̸=t∗

lu,t lu,t∗

[
nt−ln

′
t∗−l∗ E

b(νtνt∗νt−lνt∗−l∗ ) nt−llζ,t∗−l∗ E
b(νtνt∗νt−l)

lζ,t−ln
′
t∗−l∗ E

b(νtνt∗νt∗−l∗ ) lζ,t−llζ,t∗−l∗ E
b(νtνt∗ )

]

= T−1

[Tr]∑

t=1

l2u,t (lt−ll
′
t−l∗ ) ⊙ diag(0p1+1,p1+1, J2)

p
→ block1,1(ρl,l∗ ) = block1,1(Cov(Bl(r),Bl∗ (r))),

because of Assumption 9′(ii) which imposes that E[l2u,tnt−lnt−l∗ ] = 0(p1+1)×(p1+1) for l, l
∗ ≥ 1, l ̸= l∗, and Assumption 9′(iii)

which imposes that E[l2u,tnt−ll
′
ζ,t−l∗ ] = 0(p1+1)×p2 for l, l∗ ≥ 1, l ̸= l∗. In the general setting, for S† = Su or S† = βx,#, by

analogy we need E[(ntn
′
t )⊗(nt−ln

′
t−l∗ )] = 0(p1+1)2×(p1+1)2 for l, l∗ ≥ 1, l ̸= l∗, and E[(ntn

′
t )⊗(nt−ll

′
ζ,t−l∗ )] = 0(p1+1)2×((p1+1)p2)

for l, l∗ ≥ 1, l ̸= l∗, which are also satisfied by Assumption 9′(ii)–(iii).

Using (B.90)–(B.91) in the expression Eb
3,4(n

∗) =
∑n∗

l=0 SF
l
sA

−1
s

(
T−1/2

∑
t∈Ĩ−s

(S ′
†g t )νt (g t−l−1 ⊙ νt−l−1)

)
, it follows that,

for a fixed n∗,

Ẽ
b
3,4(n

∗)
dbp
⇒

n∗∑

l=0

SF l
sA

−1
s ((S ′

†S#) ⊗ S#)

∫ τs

τs−1

(D#(τ ) ⊗ D# (τ )) dBl+1,#(τ ) in probability.

Now as in the proof of Lemma 6, setting n∗ = Tα for some α ∈ (0, 1), and noting that the remainder Ẽb
3,4(∆τsT − 2) −

Ẽb
3,4(n

∗) = obp(1), it can be shown that:

Ẽ
b
3,4(∆τsT − 2)

dbp
⇒

∞∑

l=0

((S ′
†S#) ⊗ (SF l

sA
−1
s S#))

∫ τs

τs−1

(D#(τ ) ⊗ D# (τ )) dBl+1,#(τ ) = M3,2(τs−1, τs),

in probability, where M3,2(τs−1, τs) as defined above is also the asymptotic distribution of the sample counterpart of
Ẽb
3,4(∆τsT − 2), that is Ẽ3,4, featuring in Supplementary Appendix, Appendix C on page 7. The variance of M3,2(τs−1, τs)

exists and is derived in the Supplementary Appendix right after (C.16). Therefore,

E
b
3,4

dbp
⇒ M3,2(τs−1, τs) in probability. (B.92)
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Now consider Eb
3,3 = T−1/2

∑
t∈Ĩ−s

(Sb′
† gb

t )
[
S

(∑t̃−2
l=0 F l

s

)
µs

]
in (B.75). By similar analysis as for Eb

3,4, it can be shown that:

E
b
3,3

dbp
⇒

∞∑

l=0

(
(S ′

†S#) ⊗ (SF l
s)
)
([∫ τs

τs−1

D#(τ )dB0,#(τ )

]
⊗ µs

)
= M3,1(τs−1, τs) in probability. (B.93)

Also, Eb
3,3 + Eb

3,4 can be shown to jointly converge to M3(τs−1, τs) = M3,1(τs−1, τs) + M3,2(τs−1, τs), provided that

Covb(Bb
0,T (r),B

∗
l,T (r)) − Cov(B0(r),B

(1:n(p1+1))
l (r))

p
→ 0 uniformly in r for all l ≥ 1, where Bb

0,T = T−1/2
∑[Tr]

t=1 lt ⊙ ν̃t , and

recall that B∗
l,T (r) = vect(Bb

l,T ,A(r),B
b
l,T ,B(r)). Now consider Covb(B

b,(1)
0,T (r),Bb

l,T ,A(r)) = Covb(B0,T (r),B
∗
l,T (r)); the proof for the

rest of the elements is similar.

Covb(B
b,(1)
0,T (r),Bb

l,T ,A(r)) = T−1/2

[Tr]∑

t=1

(lu,tνt )(T
−1/2

[Tr]∑

t=1

lu,tνt (lt−l ⊙ ν̃t−l))

= T−1

[Tr]∑

t=1

l2u,tν
2
t (lt−l ⊙ ν̃t−l) + T−1

[Tr]∑

t,t∗=1,t ̸=t∗

lu,t lu,t∗νtνt∗ (lt∗−l ⊙ ν̃t∗−l)

= L
b
3,1 + L

b
3,2.

Now note that by Lemma 8(iv),

Eb(Lb
3,1) = T−1

[Tr]∑

t=1

l2u,tν
2
t (lt−l ⊙ ν̃t−l) = T−1

[Tr]∑

t=1

⎡
⎣
l2u,t lu,t−l

l2u,t lv,t−l

l2u,t lζ,t−l

⎤
⎦⊙ Eb

⎡
⎣

ν2
t νt−l

ν2
t νt−lιp1
ν2
t ιp2

⎤
⎦

= T−1

[Tr]∑

t=1

l2u,tvect(01+p1 , lζ,t−l)
p

→ r[ρ
(1:n,1:1)
l ⊙ I],

Eb(Lb
3,2) = T−1

[Tr]∑

t,t∗=1,t ̸=t∗

[
lu,t lu,t∗ lu,t∗−l

lu,t lu,t∗ lv,t∗−l

lu,t lu,t∗ lζ,t∗−l

]
⊙ Eb

[
νtνt∗νt∗−l

νtνt∗νt∗−lιp1
νtνt∗ ιp2

]
= 0n.

Therefore, Covb(B
b,(1)
0,T (r),Bb

l,T ,A(r)) − Cov(B
(1)
0 (r),B

(1:n)
l (r)) = op(1), by the restriction in Assumption 9′(i), which ensures

that ρ
(1:n,1:1)
l = ρ

(1:n,1:1)
l ⊙ I; also note that for the rest of the terms of the covariance above, by analogy, we need

Eb[(ntn
′
t ) ⊗ nt−l] = 0(p1+1)2×(p1+1) for l ≥ 1, imposed in Assumption 9′(i). So,

E
b
3,3 + E

b
3,4

dbp
⇒ M3(τs−1, τs) = M3,1(τs−1, τs) + M3,2(τs−1, τs)

in probability. Because we showed that Eb
3,1 = obp(1) and Eb

3,2 = op(1), it follows that: Eb
3

dbp
⇒ M3(τs−1, τs), in probability

and that vect(Eb
1 , E

b
3 )

dbp
⇒ vect(M1(τs−1, τs),M3(τs−1, τs)) in probability.

• Now consider Eb
2 . Note that r t = Srξt is not bootstrapped, and recall that ξt = µs + ηt + F sξt−1. Therefore, replacing

again estimated parameters by the true values, because the rest of the terms are obp(1) (therefore also replacing, as before,

gb
t with g t ⊙ νt ),

E
b
2 =

⎧
⎨
⎩T−1/2

∑

t∈Ĩs

[S ′
†(g t ⊙ νt )]

⎫
⎬
⎭ Srµs + T−1/2

∑

t∈Ĩs

[S ′
†(g t ⊙ νt )]SrF sξt−1 + T−1/2

∑

t∈Ĩs

[S ′
†(g t ⊙ νt )]Srηt

= E
b
2,1 + E

b
2,2 + E

b
2,3 + obp(1).

Now consider Eb
2,1. From (B.72) and (B.74), without any restrictions on ρi, ρij except those in Assumption 9,

E
b
2,1 = [Eb

1 + obp(1)]Srµs

dbp
⇒

{
(S ′

†S#)

∫ τs

τs−1

D(τ )dB0,#(τ )

}
Srµs

= ((S ′
†S#) ⊗ (SrF

0
s ))

([∫ τs

τs−1

D#(τ )dB0,#(τ )

]
⊗ µs

)
, (B.94)

in probability, where the latter is the first term in M2,1(τs−1, τs) defined before Lemma 6 (the rest of the terms appear
from the distribution of Eb

2,2 as seen below).

Now consider Eb
2,3 = T−1/2

∑
t∈Ĩs

[S ′
†(g t ⊙ νt )]Srηt . Recall from the arguments above (B.55) that A−1

s is also upper
triangular with rows p1 + 2 : n equal to [0p2 0p2×p1 Ip2 ]. Therefore, as shown on page 10 of the Supplementary
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Appendix, Srηt = SrA
−1
s,# g t = ζt , so, for S† = Su,

E
b
2,3 = T−1/2

∑

t∈Ĩs

[S ′
†(g t ⊙ νt )]Srηt = T−1/2

∑

t∈Ĩs

utνtζt

= T−1/2
∑

t∈Ĩs

(Sp2Dζ,tdu,t )lu,tνt lζ,t ,

and consider first Bb
uζ,T (r) = T−1/2

∑[Tr]
t=1 lu,t lζ,tνt .

Part (i). Since νt is i.i.d, Eb(lu,t lζκ ,tνt |F
b
t−1) = 0, for any element lζκ ,t of lζ,t , κ = 1, . . . , p2. Also, for some c > 0,

supt E Eb|lu,t lζκ ,tνt |
2+δ∗

≤ supt E|lu,t lζκ ,t |
2+δ∗

supt E
b|νt |

2+δ∗
< C . Because Eb(ν2

t |F
b
t−1) = Eb(ν2

t ) = 1 by Assumption 10, we

have Eb(l2u,t l
2
ζκ ,tν

2
t |F

b
t−1) = Eb(l2u,t l

2
ζκ ,tν

2
t ), therefore, the conditional and unconditional bootstrap second moments are the

same, and it remains to verify that Varb(Bb
uζ,T (r)) − Var(Buζ(r)) = op(1), where Buζ(r) was defined just before Lemma 6.

Varb(Bb
uζ,T (r)) = T−1

[Tr]∑

t=1

l2u,t lζ,t l
′
ζ,t E

b(ν2
t ) = T−1

[Tr]∑

t=1

l2u,t lζ,t l
′
ζ,t

p
→ rρu,ζ,0,0 = Var(Buζ(r)),

where ρu,ζ,0,0 was defined before Lemma 5, and the convergence follows by Lemma 8(iv).

Part (ii). Because Varb(Bb
uζ,T (r))

p
→ Var(Buζ(r)), using Lemma 8(iii), it follows by Hansen (1992), Theorem 2.1, that:

E
b
2,3 = T−1/2

∑

t∈Ĩs

(Sp2Dζ,tdu,t )lu,tνt lζ,t
dbp
⇒ Sp2

∫ τs

τs−1

du(τ )Dζ(τ )dBuζ(τ ) = M
(1)
2,3(τs−1, τs), (B.95)

in probability, where M
(1)
2,3(τs−1, τs) was defined right before Lemma 6. Similarly, it can be shown that for S† = βx,#,

without restrictions on ρ0,0 besides those imposed in Assumption 9,

E
b
2,3

dbp
⇒ M

(2)
2,3(τs−1, τs) in probability. (B.96)

Next, consider Eb
2,2. By backward substituting ξt−1,

E
b
2,2 = SrF sT

−1/2
∑

t∈Ĩs

[S ′
†(g t ⊙ νt )]ξt−1

= SrF sT
−1/2[S ′

†(g t ⊙ νt )]ξ[τs−1T ] + SrF sT
−1/2

∑

t∈Ĩ−s

F t̃−1
s [S ′

†(g t ⊙ νt )]
[
ξ[τs−1T ]

]

+ Sr T
−1/2

∑

t∈Ĩ−s

[S ′
†(g t ⊙ νt )]

⎡
⎣
⎛
⎝

t̃−2∑

l=0

F l
s

⎞
⎠µs

⎤
⎦+ Sr T

−1/2
∑

t∈Ĩ−s

[S ′
†(g t ⊙ νt )]

⎡
⎣

t̃−2∑

l=0

F l
sηt−l−1

⎤
⎦

=

4∑

i=1

E
b
2,2,i. (B.97)

First, note that Eb
2,2,1 = obp(1) because T−1/2g t ⊙νt = obp(1) (as shown before in the proof of Eb

1 ) and ξ[τs−1T ] = Op(1) (see

the proof of Lemma 2 in the Supplementary Appendix, Appendix C). Next, because
∑∞

l=0 ∥F l
s∥ is bounded, Varb(g t ⊙νt ) =

Op(1) and ξ[τs−1T ] = Op(1), we have Eb
2,2,2 = obp(1).

Next, by similar arguments as for Eb
3,3, and noting that no restrictions are needed on ρi, ρij besides those in

Assumption 9 (because Eb
2,3 has at the basis the same random process as Eb

1 ),

E
b
2,2,3 = SrF sT

−1/2
∑

t∈Ĩ−s

[S ′
†(g t ⊙ νt )]

⎡
⎣
⎛
⎝

t̃−2∑

l=0

F l
s

⎞
⎠µs

⎤
⎦

dbp
⇒

∞∑

l=1

((S ′
†S#) ⊗ (SrF

l
s))

([∫ τs

τs−1

D#(τ )dB0,#(τ )

]
⊗ µs

)

= M2,1(τs−1, τs) − ((S ′
†S#) ⊗ (SrF

0
s ))

([∫ τs

τs−1

D#(τ )dB0,#(τ )

]
⊗ µs

)
(B.98)
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in probability. Now consider Eb
2,2,4,

E
b
2,2,4 = Sr T

−1/2
∑

t∈Ĩ−s

[S ′
†(g t ⊙ νt )]

⎡
⎣

t̃−2∑

l=0

F l
sηt−l−1

⎤
⎦ .

By similar arguments as for Eb
3,4 in (B.76) and just below it,

E
b
2,2,4 = Sr

∆τsT−2∑

l=0

F l
s

⎛
⎝T−1/2

∑

t∈Ĩ−s

S
′
†(g t ⊙ νt )ηt−l−1

⎞
⎠+ obp(1) = E

b
5 (∆τsT − 2) + obp(1).

Next, we analyze Eb
5 (n

∗), first for a fixed n∗. Let S† = Su. Note that a crucial term in Eb
5 (n

∗) is Lb
5(l) = T−1/2

∑[Tr]
t=1 utνtg t−l

for l ≥ 1, because ηt−l = A−1
s g t−l. By the structure of S and Dt in (B.40),

g t−l =

[
du,t−llu,t−l

sp1du,t−llu,t−l + Sp1Dv,t−llv,t
Sp2Dζ,t−llζ,t−l

]

#

= S#Dt−l,#lt−l,#.

Then, letting Et,l,5 = lu,t lt−l and Eb
t,l,5 = lu,t lt−lνt ,

L
b
5(l) = T−1/2

[Tr]∑

t=1

du,tS#Dt−l,#lu,t lt−l,#νt = T−1/2

[Tr]∑

t=1

(dutS#Dt−l,#)(lu,t lt−lνt )#. (B.99)

Part (i). First, consider Bb
l,T ,C (r) = T−1/2

∑[Tr]
t=1 lu,t lt−lνt , for l ≥ 1. Because νt is i.i.d, it is m.d.s under the bootstrap

measure conditional on the data, so by arguments similar to before, Bb
l,T ,C (r)

dbp
⇒ B

(1:n)
l (r) in probability, provided that

Varb(Bb
l,T ,C (r))

p
→ Var(B

(1:n)
l (r)), which we verify below:

Varb(Bb
l,T ,C (r)) = T−1

[Tr]∑

t=1

l2u,t lt−ll
′
t−l E

b(ν2
t ) = T−1

[Tr]∑

t=1

l2u,t lt−ll
′
t−l

p
→ Var(B

(1:n)
l (r)) = block1,1(ρl,l).

The previous to last statement above follows by Lemma 8(iv) without restrictions on the form of ρl,l besides the ones in

Assumption 9. Therefore, Bb
l,T ,C (r)

dbp
⇒ B

(1:n)
l (r)) in probability.

Part (ii). By Hansen (1992), Theorem 2.1, and Lemma 8(iii), Lb
5(l) defined in (B.99) is such that:

L
b
5(l)

dbp
⇒

∫ r

0

du(τ )S#D#(τ )dB
(1:n)
l,# (τ ) = ((S ′

†S#) ⊗ S#)

∫ r

0

(D#(τ ) ⊗ D# (τ )) dBl,#(τ )

in probability. For S† = βx,#
, the same result can be shown by similar arguments, and with no restrictions on ρl,l besides

being finite.

Now let S† = Su again. To derive the limiting distribution of Eb
5 (n

∗), we need not only that Bb
l,T ,C (r)

dbp
⇒ B

(1:n)
l (r))

in probability, but also that vect(Bb
l,T ,C (r),B

b
l∗,T ,C (r))

dbp
⇒ vect(B

(1:n)
l (r),B

(1:n)
l∗ (r)) in probability, which can be shown using

Lemmas 3 and 8(iv), because

Covb(Bb
l,T ,C (r),B

b
l∗,T ,C (r))

p
→ Cov(B

(1:n)
l (r),B

(1:n)
l∗ (r)) = block1,1(ρl,l∗ ). The latter condition holds because:

Eb(Bb
l,T ,C (r)(B

b
l∗,T ,C (r))

′) = T−1

[Tr]∑

t=1

l2u,t lt−ll
′
t−l∗ E

b(ν2
t ) + T−1

[Tr]∑

t,t∗=1,t ̸=t∗

lu,t lu,t∗ lt−ll
′
t∗−l∗ E

b(νtνt∗ )

= T−1

[Tr]∑

t=1

l2u,t lt−ll
′
t−l∗

p
→ block1,1(ρl,l∗ ),

where the last statement follows by Lemma 8(iv), and under Assumptions 1–10. By analogy, no other restrictions besides
Assumptions 1–10 are needed also when S† = βx,#.

Therefore, by Hansen (1992) and Lemma 8(iii), for a fixed n∗,

E
b
5 (n

∗) = Sr

n∗∑

l=0

F l
sA

−1
s

⎛
⎝T−1/2

∑

t∈Ĩ−s

(S ′
†g

b
t )g t−l−1

⎞
⎠

dbp
⇒

n∗∑

l=0

((S ′
†S#) ⊗ (SrF

l+1
s A−1

s S#))

∫ τs

τs−1

(D#(τ ) ⊗ D# (τ )) dBl+1,#(τ )
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in probability. Letting as before n∗ = Tα , it can be shown that Eb
5 (∆τsT − 2) = Eb

5 (n
∗) + obp(1), and therefore

E
b
2,2,4 = E

b
5 (∆τsT − 2) + obp(1)

dbp
⇒

∞∑

l=0

((S ′
†S#) ⊗ (SrF

l+1
s A−1

s S#))

∫ τs

τs−1

(D#(τ ) ⊗ D# (τ )) dBl+1,#(τ )

= M2,2(τs−1, τs), in probability, (B.100)

where M2,2(τs−1, τs) is defined just before Lemma 6. Substituting Eb
2,2,1 = obp(1), E

b
2,2,2 = obp(1), and (B.98) and (B.100) into

(B.97), and then using (B.94), it follows that:

E
b
2,2

dbp
⇒ M2,1(τs−1, τs) − ((S ′

†S#)

([∫ τs

τs−1

D#(τ )dB0,#(τ )

]
⊗ µs

)
⊗ (SrF

0
s )) + M2,2(τs−1, τs)

E
b
2,1 + E

b
2,2

dbp
⇒ M2,1(τs−1, τs) + M2,2(τs−1, τs) (B.101)

in probability, because the joint convergence of Eb
2,2,3, E

b
2,2,4, and of Eb

2,1, E
b
2,2 can be shown as above under

Assumptions 1–10. Because all these terms share the same νt , it can be shown that they also jointly converge with Eb
2,3

and their bootstrap covariance to the covariances of the relevant limits, under Assumptions 1–10.
Therefore, for S† = Su,

E
b
2 =

3∑

i=1

E
b
2,i

dbp
⇒ M2,1(τs−1, τs) + M2,2(τs−1, τs) + M

(1)
2,3(τs−1, τs) = M2(τs−1, τs)

in probability. Similarly, for S† = βx,#, E
b
2

dbp
⇒ M2(τs−1, τs) in probability, completing the proof for the distribution of Eb

2 ,
which we note was proven only under Assumptions 1–10. Note that Assumption 9′(iv) is not needed here for the WR
bootstrap (because r t = Srξt is not bootstrapped in Eb

2 ).
Now note that because Eb

1 featured as part of Eb
2 , their joint convergence was already shown, and recall that it also

followed under Assumptions 1–10. It remains to verify the condition:

Covb(vect(Eb
2 , E

b
3 )) − Cov(vect(M2(τs−1, τs),M3(τs−1, τs)))

p
→ 0,

because then vecti=1:3(E
b
i )

dbp
⇒ vecti=1:3(Mi(τs−1, τs)) = M(τs−1, τs) in probability. This condition follows by similar

arguments as before, if we show that (C 1) Covb(Eb
2,3, E

b
3,4) converges to the joint covariance of their respective limits,

and that (C 2) Covb(Eb
2,2,4, E

b
3,4) converges to the joint covariance of their respective limits. For (C 1), by arguments as

before, it suffices to show Covb(Bb
l,T ,A(r),B

b
uζ,T (r)) − Cov(B

(1:n)
l (r),Buζ(r))

p
→ 0 (here, we set S† = Su for all terms and that

is why we consider the first n× 1 elements of Bl(r); the proofs forthe case S† = βx,# are similar and are briefly discussed
below). Note:

Covb(Bb
l,T ,A(r),B

b
uζ,T (r)) = Eb

(
(T−1

[Tr]∑

t=1

(lu,t lt−l) ⊙ vect(νtνt−lιp1+1, νt ιp2 ))(T
−1

[Tr]∑

t∗=1

lu,t∗ l
′
ζ,t∗νt∗ )

)

= T−1

[Tr]∑

t=1

(l2u,t lt−ll
′
ζ,t ) ⊙ Eb

[
ν2
t νt−lιp1+1ι

′
p2

ν2
t ιp2 ι

′
p2

]
+ T−1

[Tr]∑

t,t∗=1,t ̸=t∗

(lu,t lu,t∗ lt−ll
′
ζ,t∗ ) E

b

[
νtνt∗νt−lιp1+1ι

′
p2

νtνt∗ ιp2 ι
′
p2

]

= T−1

[Tr]∑

t=1

(l2u,t lt−ll
′
ζ,t ) ⊙ vect(0(p1+1)×p2 , J2)

p
→ T−1

[Tr]∑

t=1

E(l2u,t lt−ll
′
ζ,t ) ⊙ vect(0(p1+1)×p2 , J2) + op(1),

which shows why we need E(l2u,tnt−ll
′
ζ,t ) = 0(p1+1)×p2 , imposed in Assumption 9′(iii). In the general case of S† = Su or

S† = βx,#, by analogy, the condition needed and imposed in Assumption 9′(iii) is that for l ≥ 1, E((ntn
′
t ) ⊗ (nt−ll

′
ζ,t )) =

0(p1+1)2×(p1+1)p2
.

For (C 2), notice that from (B.100),

E
b
2,2,4

dbp
⇒ M3,2(τs−1, τs) =

∞∑

l=0

((S ′
†S#) ⊗ (SrF

l+1
s A−1

s S#))

∫ τs

τs−1

(D#(τ ) ⊗ D# (τ )) dBl+1,#(τ ) (B.102)

= [ι′np ⊗ (SrF s)]

∞∑

l=0

((S ′
†S#) ⊗ (F l

sA
−1
s S#))

∫ τs

τs−1

(D#(τ ) ⊗ D# (τ )) dBl+1,#(τ )

= [ι′np ⊗ (SrF s)]P(τs−1, τs), say, (in probability) (B.103)
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while from (B.92),

E
b
3,4

dbp
⇒

∞∑

l=0

((S ′
†S#) ⊗ (SF l

sA
−1
s S#))

∫ τs

τs−1

(D#(τ ) ⊗ D# (τ )) dBl+1,#(τ ) = [ι′np ⊗ S]P(τs−1, τs)

in probability. Therefore, they jointly converge. It follows that for Ii = Ĩs,

T−1/2
∑

t∈Ii

zbt g
b′

t S
b
† = vecti=1:3(E

b
i )

dbp
⇒ M(τs−1, τs) in probability.

Using exactly the same arguments as in the end of the proof of Lemma 6, T−1/2
∑

t∈Ii
zbt g

b′

t S
b
†

dbp
⇒ M̃i in probability for

Ii ̸= Ĩs, completing the proof. □

Proof of Lemma 11. As for the proof of Lemma 9, consider the interval Ii = Ĩs. Let Sb
† = Su or Sb

† = β̂x,#. We need the

asymptotic distribution of Zb
T = T−1/2

∑
t∈Ĩs

z tg
b′
t S

b
† .

Z
b
T = T−1/2

∑

t∈Ĩs

z tg
b′
t S

b
† =

⎡
⎣

T−1/2
∑

t∈Ĩs
gb′
t Sb

†

T−1/2
∑

t∈Ĩs
Srξtg

b′
t Sb

†

T−1/2
∑

t∈Ĩs
Sξt−1g

b′
t Sb

†

⎤
⎦ ≡

⎡
⎣
Fb

1

Fb
2

Fb
3

⎤
⎦ .

Note that Fb
1 = Eb

1 , and Fb
2 = Eb

2 , defined in (B.71) and analyzed in the proof of Lemma 10. Also note that, using (B.103) –
as in the proof of Lemma 10 – and replacing as in the proof of Lemma 10, estimated parameters with true values because
their difference is asymptotically negligible,

F
b
3 = S

⎧
⎨
⎩T−1/2

∑

t∈Ĩs

[S ′
†(g t ⊙ νt )]ξt−1

⎫
⎬
⎭+ obp(1)

E
b
2,2 = SrF s

⎧
⎨
⎩T−1/2

∑

t∈Ĩs

[S ′
†(g t ⊙ νt )]ξt−1

⎫
⎬
⎭+ obp(1),

where Eb
2,2 is given in (B.97). Since they involve the same underlying random quantity, just scaled differently (S versus

SrF s), the desired distribution for Fb
3 follows directly from the analysis of Eb

2,2 in Lemma 10. Careful inspection of the

proof of Lemma 10 (focusing on the analysis of Eb
1 and Eb

2 only) also shows that Zb
T

dbp
⇒ M(τs−1, τs) in probability, and

indicates that this result holds under Assumptions 1–10, without the need for 9′. By a similar argument as for the proof

of Lemma 6 in the Supplementary Appendix, Appendix C, when Ii ̸= Ĩs, Z
b
T

dbp
⇒ M̃i in probability, completing the proof. □

Proof of Theorem 1. We consider only the WR bootstrap; for the WF bootstrap, the results follow in a similar fashion.
Let for simplicity Ii = Ii,λk

. From (8)–(10) and for the Eicker–White estimator M̂ (i),

WaldTλk
= T β̂

′

λk
R ′

k

(
RkV̂ λk

R ′
k

)−1

Rk β̂λk
, where V̂ λk

= diagi=1:k+1(Q̂
−1

(i) M̂ (i) Q̂
−1

(i) ) (B.104)

Q̂ (i) = T−1
∑

t∈Ii

Υ̂
′

tz tz
′
tΥ̂ t , and M̂ (i) = ÊW

[
Υ̂

′

tz t (ût + v̂
′
t β̂x,(i)); Ii

]
.

From (19)–(21),

WaldbTλk
= T β̂

b′

λk
R ′

k

(
RkV̂

b

λk
R ′

k

)−1

Rk β̂
b

λk
where V̂

b

λk
= diagi=1:k+1((Q̂

b

(i))
−1M̂

b

(i) (Q̂
b

(i))
−1) (B.105)

Q̂
b

(i) = T−1
∑

t∈Ii

Υ̂
b′

t z
b
t z

b′
t Υ̂

b

t , and M̂
b

(i) = ÊW

[
Υ̂

b′

t z
b
t (û

b
t + v̂

b′
t β̂

b

x,(i)); Ii

]
.

From Lemma 2, Q̂ (i)

p
→ Qi and from Lemmas 9 and 11, Q̂

b

(i)

pb

→ Qi.

Now consider β̂λk
≡ vect(β̂i,λk

) = vect(β̂(i)) defined on page 4 of this paper. Let Q̂ j∗ = T−1
∑

t∈I∗
j
z tz

′
t . By Lemma 2,

Q̂ j∗
p

→
∫ π0

j

π0
j−1

Qz (τ )dτ = Qz,j∗ . Therefore, from the proof of Theorem C1 in the Supplementary Appendix (Appendix C),

T 1/2(β̂i,λk
− β0) = Q

−1
i Υ

0′

t

⎛
⎝T−1/2

∑

t∈Ii

z tut + T−1/2
∑

t∈Ii

z tv
′
tβ

0
x
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− T−1
∑

t∈Ii

z tz
′
t

⎧
⎪⎨
⎪⎩

h+1∑

j=1

1t∈I∗
j
Q

−1
z,j∗T

−1/2
∑

t∈I∗
j

z tv
′
tβ

0
x

⎫
⎪⎬
⎪⎭

⎞
⎟⎠ + op(1). (B.106)

From Lemmas 9 and 10, Υ̂
b

t = Υ
0
t + obp(1). Also, Q̂

b

j∗ = T−1
∑

t∈I∗
j
zbt z

b′
t

pb

→ Qz,j∗ (in probability) by the proof of Lemma 9,

therefore:

T 1/2(β̂
b

i,λk
− β0) = Q

−1
i Υ

0′

t

⎛
⎝T−1/2

∑

t∈Ii

zbt (u
b
t + vb′

t β0
x)

− T−1
∑

t∈Ii

zbt z
b′
t

⎧
⎪⎨
⎪⎩

h+1∑

j=1

1t∈I∗
j
Q

−1
z,j∗T

−1/2
∑

t∈I∗
j

zbt v
b′
t β0

x

⎫
⎪⎬
⎪⎭

⎞
⎟⎠ + obp(1). (B.107)

From Lemmas 6 and 10, we have that T−1/2
∑

t∈Ii
zbt v

b′
t β0

x − T−1/2
∑

t∈Ii
z tv

′
tβ

0
x = obp(1) and that T−1/2

∑
t∈Ii

zbt u
b
t −

T−1/2
∑

t∈Ii
z tut = obp(1). Therefore, from (B.106)–(B.107), β̂

b

i,λk
− β̂i,λk

= obp(1) (recall that we denoted β̂
b

(i) ≡ β̂
b

i,λk
on

page 6 of this paper). Next consider M̂
b

(i) for the WR bootstrap under a stable regime Ii = Ĩs = [ [τs−1T ] + 1, [τsT ]],

M̂
b

(i) = T−1
∑

t∈Ii

Υ̂
b′
zbt z

b′

t Υ̂
b
(ûb

t + v̂
b′
t β̂

b

x,(i))
2 = T−1

∑

t∈Ii

Υ̂
′
zbt z

b′

t Υ̂ (ûb
t + v̂

b′
t β̂x)

2 + obp(1)

= T−1
∑

t∈Ii

Υ̂
′
zbt z

b′

t Υ̂ (ûb
t )

2 + T−1
∑

t∈Ii

Υ̂
′
zbt z

b′

t Υ̂ (v̂
b′

t β̂x)
2 + 2T−1

∑

t∈Ii

Υ̂
′
zbt z

b′

t Υ̂ ûb
t v̂

b′

t β̂x + obp(1)

=

3∑

i=1

Υ̂
′
Sb
i Υ̂ + obp(1),

where the obp(1) term comes from the fact that the difference β̂
b

x,(i) − β̂x is obp(1). Therefore, the terms involving these
differences are of lower order than the term after the second equality above.

We have:

Sb
1 = T−1

∑

t∈Ii

zbt z
b′

t (u
b
t )

2 + T−1
∑

t∈Ii

zbt z
b′

t (w
b′

t (β̂
b

(i) − β̂))2 − 2T−1
∑

t∈Ii

zbt z
b′

t u
b
t (w

b′

t (β̂
b

(i) − β̂))

=

3∑

i=1

Sb
1,i.

Letting v̄b
t = vect(vb

t , 0q1 ), we have wb
t = Υ̂

′
zbt + v̄b

t , so

Sb
1,2 = [Iq ⊗ (β̂

b

(i) − β̂)]′[T−1
∑

t∈Ii

(zbt z
b′

t ) ⊗ (wb
t w

b′

t )][Iq ⊗ (β̂
b

(i) − β̂)]

= [Iq ⊗ (β̂
b

(i) − β̂)]′

⎧
⎨
⎩[Iq ⊗ Υ̂ ]′[T−1

∑

t∈Ii

(zbt z
b′

t ) ⊗ (zbt z
b′

t )][Iq ⊗ Υ̂ ]

+ [Iq ⊗ Υ̂ ]′[T−1
∑

t∈Ii

(zbt z
b′

t ) ⊗ (zbt v̄
b′

t )] +

⎡
⎣[Iq ⊗ Υ̂ ]′[T−1

∑

t∈Ii

(zbt z
b′

t ) ⊗ (zbt v̄
b′

t )]

⎤
⎦

′

+T−1
∑

t∈Ii

(zbt z
b′

t ) ⊗ (v̄b
t v̄

b′

t )

⎫
⎬
⎭ [Iq ⊗ (β̂

b

(i) − β̂)]. (B.108)

Notice that the terms inside the curly brackets in (B.108) are pre/post-multiplied by β̂
b

(i) − β̂ which is Ob
p(T

−1/2). Therefore

it becomes evident that it is sufficient to show that the terms in the curly brackets are obp(T
α), for any (small) α > 0. We

first show that T−αYb
T ≡ T−1−α

∑
t∈Ii

(zbt z
b′

t ) ⊗ (zbt z
b′

t ) = obp(1). We have:

(zbt z
b′

t ) ⊗ (zbt z
b′

t ) =

⎡
⎣

1 Srξ
b
t ξb

′

t−1S
′

Srξ
b
t Srξ

b
t ξ

b′

t S
′
r Srξ

b
t ξ

b′

t−1S
′

Sξbt−1 Sξbt−1ξ
b′

t S
′
r Sξbt−1ξ

b′

t−1S
′

⎤
⎦⊗

⎡
⎣

1 Srξ
b
t ξb

′

t−1S
′

Srξ
b
t Srξ

b
t ξ

b′

t S
′
r Srξ

b
t ξ

b′

t−1S
′

Sξbt−1 Sξbt−1ξ
b′

t S
′
r Sξbt−1ξ

b′

t−1S
′

⎤
⎦ , (B.109)
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where ξbt = F̂
t−[τs−1T ]

s ξb[τs−1T ] +
(∑t−[τs−1T ]−1

l=0 F̂
l

s

)
µ̂s +

∑t−[τs−1T ]−1

l=0 F̂
l

sη
b
t−l (given in (B.44)). To show that T−αYb

T = obp(1)

we can see from (B.109) that it is enough to show that T−αYb
1,T ≡ T−1−α

∑
t∈Ii

(ξbt ξ
b′

t ) ⊗ (ξbt ξ
b′

t ) = obp(1) because the other
terms follow by similar reasoning. This follows if we can show:

T−α
Y

b
2,T ≡ T−1−α

∑

t∈Ii

t̃−1∑

l,l∗,κ,κ∗=0

(F̂
l

s ⊗ F̂
l∗

s )((η
b
t−lη

b′

t−l∗ ) ⊗ (ηb
t−κη

b′

t−κ∗ ))(F̂
κ

s ⊗ F̂
κ∗

s )′ = obp(1).

Since F̂ s − F s = op(1), we can write:

Ỹ
b
2,T =

∆τsT−1∑

l,l∗,κ,κ∗=1

(F l
s ⊗ F l∗

s )

⎛
⎝T−1

∑

t∈Ii

(ηb
t−lη

b′

t−l∗ ) ⊗ (ηb
t−κη

b′

t−κ∗ )

⎞
⎠ (F κ

s ⊗ F κ∗

s )′ + obp(1),

in probability. We now show that Ỹb
2,T = obp(T

α) in probability, for any (small) α > 0. Because F l
s is exponentially decaying,

it therefore suffices to show that

T−1−α
∑

t∈Ii

(ηb
t−lη

b′

t−l∗ ) ⊗ (ηb
t−κη

b′

t−κ∗ ) = obp(1),

in probability, or, because ηb
t = Â

−1

s gb
t , that:

T−1−α
∑

t∈Ii

(gb
t−lg

b′

t−l∗ ) ⊗ (gb
t−κg

b′

t−κ∗ ) = obp(1).

Note (gb
t−lg

b′

t−l∗ ) ⊗ (gb
t−κg

b′

t−κ∗ ) = [(ĝ t−lĝ
′
t−l∗ ) ⊗ (ĝ t−κ ĝ

′
t−κ∗ )] ⊙ [(νt−lν

′
t−l∗ ) ⊗ (νt−κν

′
t−κ∗ )], and Eb[(νt−lν

′
t−l∗ ) ⊗ (νt−κν

′
t−κ∗ )]

has elements that are uniformly bounded, where the largest moment involved is the fourth moment of νt , also uniformly
bounded by Assumption 10. Therefore, we analyze only the element of T−1−α

∑
t∈Ii

(gb
t−lg

b′

t−l∗ )⊗ (gb
t−κg

b′

t−κ∗ ) pertaining to

that moment, namely T−1−α
∑

t∈Ii
û4
t−lν

4
t−l. Because the distinction between l = 0 or l > 0 is irrelevant for the end result,

we show that Yb
u,T ≡ T−1−α

∑
t∈Ii

û4
t ν

4
t = obp(1) in probability, which then completes the proof, as the rest of the terms

can be analyzed in a similar fashion. Letting Yu,T = T−1−α
∑

t∈Ii
û4
t and Eb(ν4

t ) = c ≤ c̄ (by Assumption 10(ii)), we have,
by Markov’s inequality, conditional on the data:

Pb(Yb
u,T > η) = Pb(T−1−α

∑

t∈Ii

û4
t ν

4
t > η) ≤ η−1T−1−α

∑

t∈Ii

û4
t E

b(ν4
t ) = η−1cT−1−α

∑

t∈Ii

û4
t = η−1cYu,T .

We now show that Yu,T = op(1) (uniformly over Ii), which from above implies that Pb(Yb
u,T > η)

p
→ 0 or, equivalently,

that Yb
u,T = obp(1) in probability, therefore completing the proof. Note that ût = ut +w′

t b̂, where b̂ = β̂(i) −β0 = Op(T
−1/2)

= op(1). Therefore,

Yu,T =

5∑

j=1

Zj,T , where

Z1,T = T−1−α
∑

t∈Ii

u4
t , Z2,T = 4T−1−α

∑

t∈Ii

u3
t w

′
t b̂, Z3,T = 6T−1−α

∑

t∈Ii

u2
t (w

′
t b̂)

2

Z4,T = 4T−1−α
∑

t∈Ii

ut (w
′
t b̂)

3, Z5,T = T−1−α
∑

t∈Ii

(w′
t b̂)

4.

We now show that each of these terms is op(1). First, supt E(u
4
t ) < M by Assumption 9. Therefore, by the Markov inequality,

for some η > 0,

P(Z1,T > η) < η−1 E(Z1,T ) = η−1T−1−α
∑

t∈Ii

E(u4
t ) ≤ η−1T−α sup

t

E(u4
t ) < η−1T−αM → 0,

so Z1,T = op(1).

Next, consider Z2,T . First, ∥Z2,T∥ ≤ 4
(
T−1−α

∑
t∈Ii

∥u3
t wt∥

)
∥b̂∥ =

(
T−1−α

∑
t∈Ii

∥u3
t wt∥

)
op(1). So to show Z2,T =

op(1), it suffices to show that T−1−α
∑

t∈Ii
∥u3

t wt∥ = op(1). By Markov’s inequality,

P

⎛
⎝T−1−α

∑

t∈Ii

∥u3
t wt∥ > η

⎞
⎠ < η−1T−α sup

t

E ∥u3
t wt∥. (B.110)
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Hölder inequality states that E ∥ab∥ ≤ (E ∥a∥p)1/p(E ∥b∥q)1/q, where p, q ≥ 1 and 1/p + 1/q = 1. Let a = u3
t , b = wt ,

p = 4/3 and q = 4. Then: E ∥u3
t wt∥ ≤ (E|ut |

4)3/4(E ∥wt∥
4)1/4. Let M be a universal constant. Then, by Assumption 9,

E|ut |
4< M . Similarly, wt = Υ

0′
z t + v̄t , where v̄t = vect(vt , 0q1 ), and by the triangle inequality, E(∥wt∥

4)1/4 ≤

(E ∥Υ 0′
z t∥

4)1/4 + (E ∥v̄t∥
4)1/4 ≤ (∥Υ 0∥4 E ∥z t∥

4)1/4 + (E ∥vt∥
4)1/4 < M , where the latter follows by Assumption 9 and

by the proof of Theorem C1 in the Supplementary Appendix (Appendix C), where we showed that supt E ∥z t∥
4 < M . It

follows that supt E ∥u3
t wt∥ < M , and substituting into (B.110), it follows that T−1−α

∑
t∈Ii

∥u3
t wt∥ = op(1), implying that

Z2,T = op(1).

Next, ∥Z3,T∥ ≤ 6
(
T−1−α

∑
t∈Ii

∥utwt∥
2
)

∥b̂∥2 = 6
(
T−1−α

∑
t∈Ii

∥utwt∥
2
)
op(1). So it suffices to show T−1−α

∑
t∈Ii

∥utwt∥
2 = op(1). By Hölder’s inequality with p = q = 2, we have E ∥utwt∥

2 = E|ut |
2∥wt∥

2 ≤ (E|ut |
4)1/2(E ∥wt∥

4)1/2

< ∞, which by Markov’s inequality applied as in (B.110), shows that T−1−α
∑

t∈Ii
∥utwt∥

2 = op(1) and therefore that
Z3,T = op(1).

Now consider Z4,T . By similar arguments as above, we have ∥Z4,T∥ ≤ 4
(
T−1−α

∑
t∈Ii

|ut | ∥wt∥
3
)

∥b̂∥3 = 4(
T−1−α

∑
t∈Ii

|ut | ∥wt∥
3
)
op(1). By Hölder’s inequality with p = 4 and q = 4/3, we have: E|ut | ∥wt∥

3 ≤ (E|ut |
4)1/4

(E ∥wt∥
4)3/4. Since E ∥wt∥

4 < M as shown above, and E|ut |
4< M , it follows by Markov’s inequality applied as in (B.110)

that T−1−α
∑

t∈Ii
|ut |∥wt∥

3 = op(1) and therefore that Z4,T = op(1).

By similar arguments as above, ∥Z5,T∥ ≤
(
T−1−α

∑
t∈Ii

∥wt∥
4
)

∥b̂∥4 =
(
T−1−α

∑
t∈Ii

|∥wt∥
4
)
op(1). Since supt E ∥wt∥

4 <

∞ as shown above, by Markov’s inequality applied as in (B.110), it follows that T−1−α
∑

t∈Ii
∥wt∥

4 = op(1) and therefore
that Z5,T = op(1).

Putting the results for Zj,T together, j = 1, . . . , 5, it follows that Yu,T = op(1), completing the proof. Therefore it follows

that T−1
∑

t∈Ii
(zbt z

b′

t ) ⊗ (zbt z
b′

t ) = obp(T
α) for any α > 0.

Similarly we can show that T−1
∑

t∈Ii
(zbt z

b′

t ) ⊗ (zbt v̄
b′

t ) = obp(T
α) and T−1

∑
t∈Ii

(zbt z
b′

t ) ⊗ (vb
t v̄

b′

t ) = obp(T
α). It follows

that Sb1,2 = obp(1), and similarly Sb1,3 = obp(1) implying Sb1 = T−1
∑

t∈Ii
zbt z

b′

t (u
b
t )

2 + obp(1). Along the same lines, it

can be shown that Sb
2 = T−1

∑
Ii
zbt z

b′

t (v
b′

t β̂
b

x)
2 + obp(1) and that Sb

3 = T−1
∑

Ii
zbt z

b′

t u
b
t v

b′

t β̂
b

x + obp(1). Hence, M̂
b

(i) =

T−1
∑

Ii
Υ̂

b′

zbt z
b′

t Υ̂
b
(ub

t +vb′

t β̂
b

x)
2+obp(1) (uniformly in λk). By similar arguments, it can also be shown for the WF bootstrap

that M̂
b

(i) = T−1
∑

Ii
Υ̂

b′

z tz
′
tΥ̂

b
(ub

t + vb′

t β̂
b

x)
2 + obp(1) (uniformly in λk).

Because M̂ (i) and M̂
b

(i) estimate the same part of the variance of T 1/2(β̂i,λk
−β0

x), and T 1/2(β̂
b

i,λk
−β0

x) respectively, from

Lemmas 2, 6, 9 and 10, it follows that M̂
b

(i) − M̂ (i) = obp(1) for the WR and WF bootstraps. Putting these results together,

supc∈R

⏐⏐Pb
(
sup -WaldbT ≤ c

)
− P(sup -WaldT ≤ c)

⏐⏐ p
→ 0 as T → ∞. □

Proof of Theorem 2. Inspecting the alternative representation of the sup -WaldT (ℓ + 1|ℓ) in the proof of Theorem C2
in the Supplementary Appendix (Appendix C), and defining the same representation for sup -WaldbT (ℓ + 1|ℓ), the desired
result follows using the same steps as in the proof of Theorem 1. □

Appendix C. Supplementary Appendix

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2019.05.019.
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