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Highlights

• We concentrate on the problem of describing the directed

flow of information between nodes based on transfer en-

tropy.

• We have developed a weighted directed supergraph based

on the von Neumann entropy of a directed graph.

• Our model can improve the classification performance on

fMRI brain connectivity data when the training data are

limited.
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ABSTRACT

In this paper we develop a novel framework for inferring a generative model of network structure

representing the causal relations between data for a set of objects characterized in terms of time series.

To do this we make use of transfer entropy as a means of inferring directed information transfer between

the time-series data. Transfer entropy allows us to infer directed edges representing the causal relations

between pairs of time series, and has thus been used to infer directed graph representations of causal

networks for time-series data. We use the expectation maximization algorithm to learn a generative

model which captures variations in the causal network over time. We conduct experiments on fMRI

brain connectivity data for subjects in different stages of the development of Alzheimer’s disease (AD).

Here we use the technique to learn class exemplars for different stages in the development of the disease,

together with a normal control class, and demonstrate its utility in both graph multi-class and binary

classifications. These experiments are showing the effectiveness of our proposed framework when the

amounts of training data are relatively small.

Keywords: transfer entropy, supergraph, time series, network inference, expectation maximization

algorithm

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

A key goal of multivariate time-series data analysis is to infer

a network which underpins the observed interactions between

individual variables. This line of inquiry has permeated mis-

cellaneous communities, including computational neuroscience,

financial market modelling and social media analysis. Recently,

transfer entropy (TE) has been recognised as a natural tool for

inferring causal or directed relationships between pairs of vari-

ables. It has been widely used for example in the analysis of

magnetoencephalography (MEG) (Vicente et al., 2011; Sokolova

and Lapalme, 2009), electroencephalography (EEG) (Staniek

and Lehnertz, 2008) and functional magnetic resonance imag-

ing (fMRI) data (Hinrichs et al., 2006; Wibral et al., 2011).

By contrast, mutual information (MI) (Kraskov et al., 2004) is

∗∗Corresponding author

e-mail: wangbz@xmu.edu.cn (Beizhan Wang)
2Co-first author

the amount of shared information between individual variables

while Pearson’s correlation coefficient (PCC) (Lawrence and

Lin, 1989) is a measure of the degree to which two random

variables diverge from independence. Such measures reflect

the symmetric connectivity of a functional network and lack

the ability to capture asymmetric connectivity and describe the

directional transfer of information flow between nodes. When

compared with the closely related Granger causality (Granger,

1969), transfer entropy is characterized as model-free and capa-

ble of capturing non-linear relationships.

Not surprisingly the directed relationships between variables

gauged by transfer entropy can be considered as directional edge

connections in a causal network or directed graph. A consid-

erable amount of literature has been published on the issue of

representing data using graph structure. However little atten-

tion has been paid to the problem of how to capture structural

variations based on edge connectivity in such representations.

Existing methods for learning edge connectivity can be roughly

categorized into two different classes: 1) spectral graph-based
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methods which are simple powerful yet lack of stability under

slight perturbations in network structure (Luo et al., 2006); 2)

probabilistic-based methods which posses the property of being

underpinned by a well-knit probability theory. Considerable

effort has been expended at describing the variability of edge

connectivity pattern using such methods. For instance, Torsello

and Hancock (Torsello and Hancock, 2006) have reconstructed

trees using a Bernoulli distribution for node occurrences in sam-

ples of trees with unknown node correspondences. They adopt

a minimum description length framework. This encodes the

complexity for both a) of a set of tree-unions used to impose

correspondences and infer connectivity for different classes of

tree data and b) the number of mixture components needed to

capture the class or cluster structure of the tree data. Wilson et

al. (Wilson et al., 2015) have extended these ideas from trees to

graphs. They have proposed a method for constructing a gen-

erative model represented by a supergraph from which a set of

smaller sample graphs can be obtained by edit operations. Their

method estimates a probability distribution for the occurrence of

nodes and edges over the supergraph. This work is restricted to

unweighted undirected networks.

Functional MRI is generally characterized as time series, and

recently much of literature pays particular attention to capture

underlying relationships between this kind of series, aimed at

classifying subjects at different stages of AD. Existing meth-

ods may be roughly divided into two main categories, namely

undirected and directed graph-based methods. The method of

calculating Pearson’s correlation coefficients, represented the

connectivity between different brain regions, based on a sliding

window approach has been proposed in (Chen et al., 2017, 2016).

This kind of approach falls into the first categories. Khazaee et al.

(Khazaee et al., 2017) proposed a directed graph model for iden-

tifying the changes in brain networks using multivariate Granger

causality analysis. In our previous work (Wu et al., 2018), we

employed histogram statistics and transfer entropy to measure

causality relationships between time-series variables. Together

these studies provide significant insights into the modeling of

relationships between time-series variables in brain functional

connectivity networks.

In this paper, we concentrate on the problem of describing the

directed transfer or flow of information between nodes based on

transfer entropy. Using transfer entropy, we extend the work of

Wilson et al. from unweighted undirected graphs to a weighted

directed supergraph model, and then propose a novel frame-

work that combines the supergraph with transfer entropy. This

framework is capable of not only effectively inferring fMRI brain

connectivity structure, but also achieve significant improvements

in classification accuracy for the publicly available Alzheimers

Disease Neuroimaging Initiative (ADNI) fMRI dataset 3 .

2. Material

In this section we present the terminology and notation which

underpin our study.

3 http://adni.loni.usc.edu/

2.1. Transfer entropy

Entropy as a well-known information theoretic concept which

measures of the average uncertainty or equivocation in a system.

Specifically, if we take the expectation of the information ac-

cording to the probability distribution p(x), we end up with the

Shannon entropy (Shannon, 1948):

H(X) = −
∑

x

p(x) log p(x). (1)

The mutual information (Shannon, 1948) of two discrete ran-

dom variables X and Y with the joint probability distribution

p(x, y) is a measure of their statistical dependence. In terms of

probabilities, we take the form:

I(X; Y) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
. (2)

Note that the mutual information is symmetric, i.e., I(X; Y) =

I(Y; X). In contrast, transfer entropy is a causally asymmet-

ric measure of information transfer between two random pro-

cesses. To frame this mathematically, we introduce the nota-

tion X
(k)
n = {Xn−k+1, ..., Xn−1, Xn} and Y

(l)
n = {Yn−l+1, ...,Yn−1,Yn}

to denote the k- and l-length history of the variables X and

Y , up to and including time step n, which have realizations

x
(k)
n = {xn−k+1, ..., xn−1, xn} and y

(l)
n = {yn−l+1, ..., yn−1, yn}, respec-

tively. In (Schreiber, 2000), Schreiber et al. define the transfer

entropy as the reduction of uncertainty in a destination process

that results from knowing the source process in the context of

the causal past of the destination. This yields the following

definition of transfer entropy:

TY→X =

∑

p(xn+1, x
(k)
n , y(l)

n ) log
p(xn+1|x(k)

n , y
(l)
n )

p(xn+1|x(k)
n )

. (3)

This is the central concept in measuring a directed edge connec-

tivity. While the mathematical formulation above of the transfer

entropy is relatively straightforward, in practice accurately esti-

mating its value from time-series data is very challenging. The

main reason is that it is highly sensitive to the type and qual-

ity of the available data. We thus discuss the various types of

estimators available.

Gaussian estimator. The simplest estimator uses a multivari-

ate Gaussian model for the random variables X of d dimensions,

and the corresponding average entropy can be defined as (Cover

and Thomas, 2012):

H(X) =
1

2
ln ((2πe)d |Ω|), Ω = XXT , (4)

where the overbar denotes an average over the statistical en-

semble. Since Eq. 4 sidesteps the computation of probability

density functions (PDFs), the local entropy can be obtained by

reconstructing the probability of a given observation sequence x

in a multivariate process using the covariance matrix Ω (Lizier,

2014):

p(x) =
1

(
√

2π)d
√
|Ω|

exp

(

−1

2
(x − µ)Ω−1(x − µ)T

)

. (5)
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As above, where the observations used for the corresponding

PDFs are from the whole time series of the processes then the

transfer entropy, TY→X , is the expectation of the local transfer

values:

TY→X = E













log
p(xn+1|x(k)

n , y
(l)
n )

p(xn+1|x(k)
n )













. (6)

Note that the Gaussian estimator is fast (O(Nd2)) and parameter-

free, but suffers from the limitation of assuming linear interac-

tions between variables.

Kernel estimator. Schreiber et al. (Schreiber, 2000) pro-

posed a approximate solution of the Eq. 3, and the joint PDF

p̂r(xn+1, x
(k)
n , y

(l)
n ) is estimated by a kernel function Θ,

p̂r(xn+1, xn, yn) =
1

N

N
∑

n′=1

Θ
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Θ(x) =











1, x > 0

0, x ≤ 0
,

(7)

where the norm | · | is the maximum distance. Unlike Gaussian

estimators, kernel estimation is model-free and capable of cap-

turing non-linear relationships, although it requires a greater

computational complexity O(N2).

Kraskov-Stögbauer-Grassberger (KSG) estimator. Ini-

tially, Kraskov (Kraskov, 2004) suggested that the transfer en-

tropy (Eq. 3) is equal to the difference of two mutual information

quantities:

TY→X = I(Xn+1, X
(k)
n ; Y (l)

n ) − I(X(k)
n ; Y (l)

n ). (8)

Here the above expression leads to an over estimation for trans-

fer entropy. However, this limitation has been addressed by

extending the KSG estimation (algorithm 1) to conditional mu-

tual information in (Kraskov et al., 2004; Frenzel and Pompe,

2007). Hence, the transfer entropy estimator can be rewritten as:

TY→X = ψ(k) − E
{

ψ(η
x

(k)
n
+ 1) − ψ(η

xn+1 x
(k)
n
+ 1) − ψ(η

y
(l)
n x

(k)
n

)
}

.

(9)

Here ψ denotes the digamma function, ε is the max norm to

the k-th nearest neighbor in the full {xn+1, y
(l)
n , x

(k)
n } space and

{η
x

(k)
n
, η

xn+1 x
(k)
n
, η

y
(l)
n x

(k)
n
} are the neighbour counts strictly within

max norms of ε in the {x(k)
n }, {xn+1, x

(k)
n } and {y(l)

n , x
(k)
n } spaces,

respectively.

KSG estimation inherits the non-linear and model-free char-

acteristics of kernel estimation. Being effectively parameter-free

it benefits from the stability to the choice of k. Despite its

relatively expensive computation which requires time O(kN2),

KSG estimation represents the seminal solution to estimating

transfer entropy and measuring directed connectivity between

time-series variables.

2.2. Generative model

We consider a problem of learning a generative model from

a set of sample graphs by matching them to a so-called su-

pergraph that characterizes the high-level structural informa-

tion contained within the graphs. To frame this formally, we

now commence to defining some notation. We use the notation

G = {G1, ...,Gi, ...,GN} to denote the set of sample graphs from

which we aim to learn the supergraph, where Gi = (Vi, Ei) is

the i-th graph with the set of nodes, Vi, and the set of edges,

Ei. Similarly, the supergraph is represented by F = (VF , EF ).

Further, we represent the structural information of the i-th

graph, Gi, using a |Vi| × |Vi| weighted adjacency matrix Di

and that of supergraph, F , using a |VF | × |VF | weighted ad-

jacency matrix M. Clearly, we have Di
ab
∈ (0, 1], (a, b) ∈ Ei and

Mαβ ∈ (0, 1], (α, β) ∈ EF . We also define a set of assignment

matrix S = {S 1, ..., S i, ..., S N}, where S i is of size |Vi| × |VF |
and its elements indicate the corresponding structure matching

between the graph Gi and supergraph F as follows:

S i
aα =

{

1 if f (a) = α,

0 otherwise,
(10)

where the mapping function f (a) = α implies that the node

a ∈ Vi is assigned to the node α ∈ VF .

Having established the necessary notation, we now proceed

to develop the generative model. The idea underpinning the

probabilistic framework of the generative model is that one

maximizes a posteriori probability of the observed graph Gi

given the supergraph F and assigned matrix S i. According to

(Luo and Hancock, 2001; Wilson et al., 2015), the posterior

probability can be represented by

P(Gi|F , S i) =
∏

a∈Vi

∑

α∈VF

Ki
a exp

















µ
∑

b∈Vi

∑

β∈VF

Di
abMαβS

i
bβ

















,

µ = ln
1 − Pe

Pe

, Ki
a = P

|Vi |·|VF |
e Bi

a.

(11)

Here Pe is the error of relation matching between the nodes

of an observed graph and those of the sueprgraph, and Bi
a is a

probability of observing a node a in graph Gi, its value depends

only on the identity of the node a. The conditional likelihood

above is appropriate for both undirected and directed graphs,

and also gauges the difference between the two graphs.

Under the assumption that the graphs in G are independent

from each other, the conditional likelihood over the set of ob-

served graphs has realizations:

P(G|F , S ) =
∏

Gi∈G
P(Gi|F , S i)

=

∏

Gi∈G

∏

a∈Vi

∑

α∈VF

Ki
a exp

















µ
∑

b∈Vi

∑

β∈VF

Di
abMαβS

i
bβ

















.

(12)

3. Weighted directed supergraph learning

Bearing in mind that in this work we focus only on directed

graphs, the main objective of this section is therefore to demon-

strate how to construct a weighted directed supergraph learning

framework.

3.1. Minimum Description Length Coding

The minimum description length (MDL) principle is of

paramount importance for learning the model that best codes the
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observed data (Grünwald et al., 2005; Jorma, 1998). Motivated

by (Wilson et al., 2015), we adopt a two-part MDL criterion to

seek the optimal supergraph structure, resulting in a total coding

length

L(G,F ) = L(G|F ) +L(F ), (13)

where L(G|F ) is the code-length over the observed graphs given

the supergraph and L(F ) is the code-length of measuring the

complexity of the supergraph. The optimal supergraph can hence

be obtained by weighing the goodness-of-fit of the observed

graphs against the complexity of the supergraph.

For the use of the two-part MDL principle, an original idea

of computing the code-length of the observed graphs given the

supergraph is to adopt an average of the negative logarithm of

the likelihood function given in Eq. 12. As a result, we have

L(G|F ) = − 1

|G| ln P(G|F , S )

= − 1

|G| ln



















∑

α∈VF

Ki
a exp

















µ
∑

b∈Vi

∑

β∈VF

Di
abMαβS

i
bβ



































.

(14)

Having explained how the first term in the MDL criterion is

computed, we now proceed to measure the complexity of the

supergraph. Empirically, counting the number of parameters in

the model can be considered as a simple solution to measure

the complexity of a model. However, some estimators such as

the numbers of nodes or edges in a graph, do not work well

for as measure of true graph complexity. To overcome this

bottleneck, Han et al. (Wilson et al., 2015) have proposed an

interesting measure of graph-model complexity, namely the von

Neumann entropy, and developed an approximation to compute

the complexity of the unweighted undirected supergraph which

depends on the node degree combinations of constituent edges.

Unfortunately, for weighted directed graphs this is not a viable

proposition since it neither distinguishes between the in-degree

and out-degree of nodes, not assigns weights to the nodes or

edges.

Motivated by the well documented capabilities of the von Neu-

mann entropy in characterizing structural properties of networks

(Han et al., 2012; Anand et al., 2011), Ye et al. (Ye et al., 2014)

have extended its computation to weighted directed graphs by

distinguishing between the in- and out-degree of nodes, leading

to the following expression for the directed graph entropy

H = 1 − 1

|VF |
− 1

2|VF |2



















∑

(α,β)∈EF

din
α

din
β

dout2

α

+

∑

(α,β)∈EF 1

1

dout
β

dout
α



















,

din
α =

∑

γ∈VF

Mγα, dout
α =

∑

γ∈VF

Mαγ,

din
β =

∑

γ∈VF

Mγβ, dout
β =

∑

γ∈VF

Mβγ,

(15)

where E is the set of all the edges and E1 is the set of bidirec-

tional edges. Hence, by adding together the two contributions

to the code-length, the overall code-length (Eq. 13) can be

rewritten as

L(G,F ) = L(G|F ) +L(F )

= − 1

|G| ln



















∑

α∈VF

Ki
a exp

















µ
∑

b∈Vi

∑

β∈VF

Di
abMαβS

i
bβ



































+ 1

− 1

|VF |
− 1

2|VF |2



















∑

(α,β)∈EF

din
α

din
β

dout2

α

+

∑

(α,β)∈EF 1

1

dout
β

dout
α



















.

(16)

Unfortunately, work aimed at directly estimating the code-length

is intractable due to the mixture structure, and this motivates us

to resort to the iterative expectation maximization (EM) algo-

rithm.

3.2. Optimization with EM algorithm

Having posed the problem of learning a weighted directed

supergraph as that of code length optimization, we now proceed

to use the EM algorithm to locate the structural characteristics

of the supergraph. Noting the equivalence of the minimization

of the overall code-length (Eq. 16) and the maximization of

its negative, we follow the MDL setting of the EM algorithm

in (Figueiredo and Jain, 2002) and the weighted log-likelihood

function in (Wilson et al., 2015; Luo and Hancock, 2001), lead-

ing to the following expression

A(n+1)(G|F ,S(n+1))

=
1

|G|
∑

Gi∈G

∑

a∈Vi

∑

α∈VF

Qi,(n)
aα



















ln Ki
a + µ

∑

b∈Vi

∑

β∈VF

Di
abM

(n)

αβ
S

i,(n+1)

bβ



















− 1 +
1

|VF |
+

1

2|VF |2



















∑

(α,β)∈EF

din
α

din
β

dout2

α

+

∑

(α,β)∈EF 1

1

dout
β

dout
α



















.

(17)

For the expression above, we observe that
∑

Gi∈G
∑

a∈Vi

∑

α∈VF Q
i,(n)
aα ln Ki

a =
∑

Gi∈G
∑

a∈Vi
ln Ki

a, which

contributes a constant amount. As a result the weighted

log-likelihood function can be rewritten as

Â(n+1)(G|F ,S(n+1))

=
1

|G|
∑

Gi∈G

∑

a∈Vi

∑

α∈VF

∑

b∈Vi

∑

β∈VF

Qi,(n)
aα Di

abM
(n)

αβ
S

i,(n+1)

bβ

− 1 +
1

|VF |
+

1

2|VF |2



















∑

(α,β)∈EF

din
α

din
β

dout2

α

+

∑

(α,β)∈EF 1

1

dout
β

dout
α



















.

(18)

3.2.1. Maximization

The maximization step of the EM algorithm can be realized

by computing the derivatives of Â. This step involves a reformu-

lation of both the structure of the supergraph and the assignment

variables.

Updating assignment variables. We now commence by

computing the partial derivative of the Eq. 18 with respect
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to the element of the assignment matrix S i, which has the form:

∂Â(n+1)

∂S
i,(n+1)

bβ

=
1

|G|
∑

a∈Vi

∑

α∈VF

Qi,(n)
aα Di

abM
(n)

αβ
. (19)

As a result, the variables appearing in the assignment matrix S i

can be derived using softmax update rule (Bridle, 1990)

S i,(n+1)
aα ←

exp

(

∂Â(n+1)

∂S
i,(n+1)
aα

)

∑

α′∈VF exp

(

∂Â(n+1)

∂S
i,(n+1)

aα′

) . (20)

Updating supergraph structure. Unlike the case with undi-

rected graphs (Wilson et al., 2015), we consider the complexity

of a weighted directed supergraph by using the expression for

the von Neumann entropy of a weighted directed graphs. The

partial derivative of the Eq. 18 with respect to the entry of ad-

jacency matrix of the weighted directed supergraph G has the

form:

∂Â(n+1)

∂M
(n)

αβ

=
1

|G|
∑

Gi∈G

∑

a∈Vi

∑

b∈Vi

Qi,(n)
aα Di

abS
i,(n+1)

bβ

− 1

2|VF |2



















∑

(α,β)∈EF

















din
α

(din
β

dout
α )2

+
2din

α

T in
β

dout3

α

















+

∑

(α,β)∈EF 1

1

dout
β

dout2

α



















.

(21)

Similarly, the softmax update equation takes the form:

M
(n+1)

αβ
←

exp

(

∂Â(n+1)

∂M
(n)

αβ

)

∑

(α′,β′)∈EF exp

(

∂Â(n+1)

∂M
(n)

α′β′

) . (22)

3.2.2. Expectation

We next compute the a posteriori probabilities of the missing

correspondence from nodes of an observed sample graph to

those of the directed supergraph. This is done by applying the

Bayes theorem, and we have

Qi,(n+1)
aα =

exp
(

∑

b∈Vi

∑

β∈VF Di
ab

M
(n)

αβ
S

i,(n)

bβ

)

π
i,(n)
α

∑

α′∈VF exp
(

∑

b∈Vi

∑

β∈VF Di
ab

M
(n)

α′βS
i,(n)

bβ

)

π
i,(n)
α′

,

π
i,(n)
α′ = 〈Q

i,(n)
aα 〉a′ .

(23)

At this point, the updates of both assignment matrices and

supergraph structure, and the re-estimation of the a posteriori

probabilities can be interleaved and alternately performed until

a convergence is reached.

4. The proposed framework for fMRI data

Here the main application of our transfer entropy framework is

to analyze fMRI time-series data for various regions of the brain

for subjects at different stages in the progression of Alzheimer’s

disease. The fMRI dataset derives from the publicly available

ADNI database. We use data for 114 subjects included in fMRI

dataset. These subjects can be divided into four categories in

terms of the degree of development of the disease. These are

a) a Healthy Control (NC) group of 43 subjects, b) a Healthy

Control 2 (NC2) group of 17 subjects, c) an Early Mild Cognitive

Impairment (EMCI) group of 17 subjects, and d) a Late Mild

Cognitive Impairment (LMCI) group of 38 subjects. The fMRI

data for each subject consists of time series of 116 brain regions

(aka ROIs, regions of interest). The neural activity of brain

regions is measured using time series of the blood oxygenation

level-dependent (BOLD) signal, which is characterized by real-

valued variables. Considerable effort has been expended aimed

at developing effective methods for exploring the functional

connectivity between ROIs based on the BOLD signals. These

include the use of Pearson’s correlation (Chen et al., 2017; Zhang

et al., 2016), and partial correlation (Jie et al., 2014). However,

these methods are confined to the measurement of undirected

causality and result in symmetric relationships.

We, on the other hand, consider a problem of characteriz-

ing the functional connectivity of brain regions using transfer

entropy. The BOLD signals from each voxel can be divided

into multiple overlapping time-series segments using a sliding

window approach to capture the non-stationary interactions be-

tween ROIs. Specifically, we denote L as the total length of the

BOLD signals, W as the length of the sliding window, and t as

the sliding step size. The number of segments is P = L−W
t

. For

the p-th segment, we proceed to calculate the transfer entropy

between i-th ROI and j-th ROI using the Eq. 3, which denotes

as Z
p

i j
. Then we make use of the root mean square (RMS) to

measure the degree of the information transfer between different

ROIs, which is given by

Z̃i j =

√

∑

p(Z
p

i j
)2

P
. (24)

We can, therefore, generate the transfer entropy matrix Z̃ for each

subject. The elements of Z̃ imply the degree of the asymmetric

connectivity and are real-valued. The transfer entropy matrix

can thus be regarded as a representation of a weighted directed

graph. The node pairs with weak observed evidence of func-

tional connectivity due to noises of signal detection problems,

may though have potential connectivity. Rather than assigning a

binary connectivity index (Martin et al., 2016), we do not elimi-

nate weak connections by thresholding. Instead, we iteratively

update elements of the matrix via expectation-maximization.

In this way we avoid the unnecessary loss of functional con-

nectivity information in the inferred network. With the set of

adjacency matrices to hand, we can learn a corresponding super-

graph for each class of subjects by the method as demonstrated

in Section 3. Such supergraphs enable us to effectively infer

the structure of fMRI functional connectivity networks (more

details are presented in Section 5).

5. Experiments

In this section we detail both the results and their analysis

on a dataset extracted from fMRI scans of human brains for
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Table 1: Multi-class classification results of both different methods and TE

estimators in fMRI dataset

Method micro-F1 macro-F1

TECA[Gaussian] 0.6263±0.0133 0.6384±0.016

TECA[Kernel] 0.6789±0.01 0.6058±0.0236

TECA[KSG] 0.6982±0.0295 0.6754±0.0302

Ours[Gaussian] 0.6491±0.0224 0.5933±0.0581

Ours[Kernel] 0.7123±0.03 0.6665±0.0316

Ours[KSG] 0.7456±0.0196 0.7209±0.022

subjects at various stages in the development of Alzheimer’s

disease. We commence by studying the convergence properties

of the proposed framework, and then report performance on

classification tasks compared with our previous work (Wu et al.,

2018).

5.1. Convergence

The first aim in this study is to investigate the convergence

properties of the proposed framework. We initialize the struc-

tural information of the supergraph with the median graph for

each class, and the individual correspondence assignment matri-

ces using graduated assignment (Gold and Rangarajan, 1996).

Fig. 1 shows the convergence of the weighted directed super-

graph for each class with iteration number, when measured in

terms of a) the supergraph von Neumann entropy, b) the average

data log-likelihood and c) the overall code-length. Fig. 1 indi-

cates that the von Neumann entropy of the weighted directed

supergraph increases steadily with iteration number. Moreover,

the MCI group (EMCI and LMCI) have a greater von Neumann

entropy than the NC group (NC and NC2). This implies that

there is a more active functional connectivity between different

ROIs in the MCI group. Similarly, the curves of the average of

the log-likelihood show a steady increase with iteration num-

ber. The overall code-length obtained by Eq. 16 is reduced

effectively using developed EM algorithm as illustrated in Fig.

1(c). Together, these preliminary results suggest that the pro-

posed framework is capable of achieving a rapid convergence

for weighted directed supergraph learning.

5.2. Classification in fMRI dataset

Our second aim is to evaluate the effectiveness of our weighted

directed supergraph model for classifying out-of-sample sub-

jects. The class-label assigned to the out-of-sample subjects is

governed by the class supergraph which gives the maximum a

posteriori probability computed by Eq. 11. For the fMRI dataset,

we aim to 1) classify subjects according to one of the four de-

velopmental groups, 2) distinguish between samples belonging

to the MCI group from those belonging to the NC group, and 3)

distinguish between subjects of different developmental degree

of the MCI group. In addition, we aim to determine which of

the transfer entropy estimators, i.e., Gaussian, kernel, and KSG

estimation, give the best results in the multi-class classification

task. To provide some quantitative results for multi-class classi-

fication, we measure the fractions of true positive, true negative,

false positive, and false negative, i.e. TP, TN, FP, and FN re-

spectively. We have also employed the following two measures

of precision and recall (Sokolova and Lapalme, 2009), namely

micro-F1 and macro-F1:

micro − F1 =
2 ∗ recisionµ ∗ recallµ

precisionµ + recallµ
,

macro − F1 =
2 ∗ recisionM ∗ recallM

precisionM + recallM

,

where

precisionµ =

∑l
i=1 T Pi

∑l
i=1(T Pi + FPi)

, recallµ =

∑l
i=1 T Pi

∑l
i=1(T Pi + FNi)

,

precisionM =

∑l
i=1

T Pi

T Pi+FPi

l
, recallM =

∑l
i=1

T Pi

T Pi+FNi

l
.

Here l is the total number of categories or classes and i is the

measured index corresponding to the category, e.g., T Pi repre-

sents the true positive count of the i-th class. The higher these

index value, the better the performance of distinguishing the

different degree of disease severity. For the different methods

studied, the average micro-F1, macro-F1, and their standard

error computed over 5 trials of 5-fold cross validation, resulting

from classifying subjects in fMRI dataset, are shown in Tab. 1.

The highest metric value is shown in bold. Tab. 1 shows that

the newly developed method outperforms the previous approach

based on transfer entropy component analysis (TECA) for all

estimators of transfer entropy. It should be pointed out that

the models based on KSG estimation outperform those based

on Gaussian or kernel estimations. There are several possible

explanations for this result. Firstly, Gaussian estimation is lim-

ited by the assumption of linear interactions between variables.

Unfortunately, this assumption fails to capture fMRI time-series

data. Secondly, although kernel estimation has can capture non-

linear relationships, it is still sensitive to the parameter choice

for r in Eq. 7. KSG estimation, on the other hand, eradicates

these limitations and thus achieves significant improvements in

classification performance.

For binary classification we employed the following five

indices (Sokolova and Lapalme, 2009): accuracy, sensitivity,

specificity, area under the receiver operating characteristic curve

(AUC), and F1-score, which are defined as follows:

Accuracy =
T P + T N

T P + FN + FP + T N
,

S ensitivity =
T P

T P + FN
,

S peci f icity =
T N

FP + T N
,

AUC =
1

2

(

T P

T P + FN
+

T N

T N + FP

)

,

F1 − score =
2 ∗ T P

2 ∗ T P + FN + FP
.

Here accuracy measures the classification rate which gives the

fraction of correct samples over all classes and subjects, and the

sensitivity and specificity indicate the proportions of positive

samples and negative samples correctly classified, respectively.

The F1-score denotes the relations between positive labels of
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Fig. 1: Convergence of the proposed framework

Table 2: Performance of binary classification for different methods based on KSG estimator

Method Accuracy Sensitivity Specificity AUC F1-score

LMCI vs. EMCI

TECA[KSG] 0.7333±0.0211 0.9158±0.0343 0.3±0.0523 0.6079±0.0229 0.8284±0.0159

Ours[KSG] 0.7815±0.0606 0.8±0.0546 0.7375±0.0815 0.7688±0.0659 0.837±0.047

NC vs. MCI

TECA[KSG] 0.8526±0.019 0.8433±0.0091 0.863±0.0361 0.8531±0.0198 0.8578±0.0164

Ours[KSG] 0.8596±0.0277 0.763±0.0442 0.9467±0.0217 0.8548±0.0284 0.8767±0.0231

NC vs. EMCI

TECA[KSG] 0.8265±0.216 0.7913±0.0415 0.8423±0.0325 0.8611±0.0148 0.8238±0.0324

Ours[KSG] 0.8444±0.0176 0.8203±0.0221 0.8856±0.0147 0.8641±0.0324 0.8561±0.0411

subjects and those given by a classifier. Tab. 2 gives the values

of the measures together with their standard error. These were

obtained with 5 trials of 5-fold cross validation, in two different

binary classification tasks, i.e., LMCI vs. EMCI group, NC vs.

MCI group, and NC vs. EMCI group. Results are shown for

our novel transfer entropy method and TECA, both based on

KSG estimation. For the LMCI vs. EMCI classification task,

our proposed model performs better than the alternative method

on all the metrics except for the sensitivity. This result may be

explained by the fact that the TECA method tends to classify the

out-of-sample subjects into the LMCI category. In other words,

the TECA method is unable to sidestep the difficulty of the

imbalance between samples of the two groups. The NC vs. MCI

classification is consistent with the previous work published in

(Wu et al., 2018). Regarding the NC vs. EMCI experiment, our

proposed method is capable of achieving better performance

despite of highly imbalanced samples.

These experimental results confirm the effectiveness of the

proposed method and reveal that our method outperforms al-

ternative methods in both multi-class classification and binary

classification tasks for fMRI dataset.

6. Conclusion

In this paper, we have developed a weighted directed super-

graph based on the von Neumann entropy of a directed graph.

We have combined it with transfer entropy to infer a weighted

directed network from fMRI time-series data. One of the more

significant findings to emerge from this study is that the pro-

posed model can effectively improve the classification accuracy

for both multi-class classification and binary classification. The

second major finding is that our work offers some important

insights into understanding the use of transfer entropy with

different estimators to measure asymmetric information flow

between time-series variables. Further research should be done

to investigate the effect of the proposed framework in larger and

more complex datasets.
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