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Abstract 20 

Adopting a holistic three-step literature review workflow, a total of 1,639 journal articles 21 

were used in this study as the literature sample related to recycled aggregate (RA). This study 22 

summarized the existing research topics focusing on RA, gaps of current research, suggestions 23 

for promoting RA usage, and research directions for future work. A research framework was 24 

also proposed linking the existing research themes into trends in RA research. This review 25 
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work serves as a foundation work to bridge the gap between scientific research and industry 26 

practice, as well as to guide the directions in RA-related academic work using an 27 

interdisciplinary approach.  28 

Keywords: Circular economy; recycled aggregate; construction waste; sustainable concrete; 29 

literature review 30 

1. Introduction 31 

Over the last decade the concept and development model of Circular Economy has been 32 

gaining a growing attention [1]. It aims to provide an alternative to the traditional and dominant 33 

model [2] featured at consuming resources and then disposing it. Circular Economy emerges 34 

through three main actions, namely reduction, reuse, and recycle [3]. According to Ghisellini 35 

et al. [1], waste management, as a recovery of resources and environmental impact prevention, 36 

has become an important sub-sector of Circular Economy. Around 30% to 40% of the urban 37 

solid wastes come from construction and demolition (C&D) activities [4].The overwhelming 38 

amount of C&D wastes generated in the forms of concrete, bricks, and tiles are causing 39 

pressures on the limited urban landfill space [5]. On the other hand, limited natural resources, 40 

such as virgin aggregates, call for the utilization of recycled alternatives to meet the 41 

construction industry needs [6].  42 

The increasing needs for sustainability in the construction industry and the movement of 43 

Circular Economy is driving the research of recycling and reusing waste streams, such as 44 

recycled aggregates (RAs) obtained by crushing C&D wastes. RA was identified [7] as one of 45 

the main research topics in the domain of C&D waste management. It is a typical product after 46 

the initial treatment of C&D wastes (e.g., old concrete). So far, limited research has been 47 

performed to provide a holistic overview of the RA-related scholarly work. However, a review 48 

of RA-based research is important for multiple stakeholders including engineers, policy makers, 49 

and academics based on the facts that: (1) it is a concrete example of waste management 50 



strategy in the micro level of Circular Economy as proposed by Ghisellini et al. [1]; (2) it is the 51 

main form that C&D wastes are processed for reuse to reduce the demands on natural resources 52 

and to release the landfill pressure; and (3) the utilization of RAs in the construction sector has 53 

multiple effects to the cleaner production in terms of social, economic, technical, and 54 

environmental aspects. The technical and environmental effects of adopting RAs have been 55 

widely studied according to existing literature, such as how the cement composite products’ 56 

quality would be affected by reusing RAs [8], and the carbon emissions of adopting RAs [9]. 57 

The cost factors (e.g., labor and equipment inputs) of adopting RAs have also been considered 58 

in reusing RAs as the alternative approach to consuming natural aggregates [10].  The social 59 

aspect in the cleaner production includes education and training aiming to produce sustainable 60 

outcomes, to raise public awareness, and to change the public attitudes as indicated by 61 

Kjaerheim [11]. Social aspects involved in adopting RAs include the public awareness, 62 

governmental policies, social value and cultural acceptance towards using RAs [12, 13].  63 

Adopting a holistic literature review approach by incorporating text-mining method in the 64 

RA literature sample followed by an in-depth discussion, this study aims to provide answers to 65 

the following research questions: (1) what are the mainstream research topics or themes in the 66 

RA domain? (2) what are the current research gaps and challenges of adopting RAs for a 67 

cleaner production? (3) what recommendations could be made to promote the usage of RAs in 68 

the construction industry? and (4) what could be the promising research directions for future 69 

scholarly work?   70 

Existing review-based studies [14, 15] have targeted on the applications of RA in concrete 71 

production, especially the investigation of properties of recycled aggregate concrete (RAC) 72 

containing RAs. Some of the existing review-based studies [16-18] have been focusing on RAs 73 

using C&D wastes, such as old concrete. Silva et al. [19] provided the review of  the fresh-state 74 

performance of RAC; Guo et al. [20] targeted on the durability issue of RAC; Tam et al. [21] 75 



extended the scope of RA into the general applications in concrete. Based on these prior studies, 76 

researchers believe that some further work could be performed. For example, a more 77 

comprehensive review for RAs in terms of its sources and applications could be provided. It is 78 

worth noting that the source of RAs may not be limited to C&D wastes, but may also include 79 

other industrial waste streams, for instance, agricultural and aquaculture by-products [22], 80 

urban or industrial wastes such as oyster shell [23], bottom ash [24],  and rubber [25]. 81 

Furthermore, the application of RAs may not be limited to concrete mix design and production 82 

[26], but can also include other uses such as pavement base [27], roadway construction [6], and 83 

other cement composites [28].  84 

Besides the need for the review of RA in a wider scope in terms of its sources and 85 

applications during the life cycle process,  the text-mining-based scientometric approach could 86 

also be adopted in assisting the literature review of RA-related studies. As stated by Song et al. 87 

[29] and Hosseini et al. [30], several existing review-based studies were prone to subjectivity, 88 

either due to limited literature sample or because of researchers’ pre-selection of journal 89 

sources in a given research domain. To address this issue of subjectivity or biasness in literature 90 

search, more recent review-based studies [31, 32] introduced the scientometric analysis 91 

approach by incorporating the text-mining method in analyzing the contents within a larger 92 

sample of literature. By adopting the scientometric analysis, articles and keywords that are 93 

influential in the given research domain could be summarized in a quantitative way. Aiming to 94 

address the research gaps in RAs in terms of its scope and review method, this study aims to 95 

achieve these following objectives: (1) establishing a comprehensive literature sample covering 96 

a wider scope of RA-related studies; (2) identifying the mainstream keywords and influential 97 

articles that are active in RA research; (3) adopting a further in-depth discussion for linking the 98 

existing research themes in RA to future research directions; and (4) providing suggestions for 99 

enhancing the RA usage. The novelty of this study lies in that: (1) it provides a more 100 



comprehensive coverage of RA-related research topics from a potentially larger literature 101 

sample; and (2) it moves forward from several existing studies applying scientometric review 102 

[29, 33] by utiliz ing the text-mining outputs for further in-depth discussion, which would then 103 

initiate a research framework guiding future scholarly work in RA-related studies as well as 104 

propose recommendations for promoting RA usage in the construction sector. 105 

The following sections of this study are structured as: Section 2 describes the review 106 

methodology consisting of three steps; Section 3 presents the results of the scientometric 107 

analysis conducted to the literature sample of RA; Section 4 extends the scientometric review 108 

from the prior section into a further in-depth discussion; Section 5 concludes this review-based 109 

study. 110 

2. Methodology 111 

This study was based on a three-step workflow to evaluate the research outputs in RAs. 112 

Fig.1 describes the review steps adapted from Xu et al. [31], consisting of bibliometric search 113 

of literature using Scopus as the database, scientometric analysis adopting VOSViewer as the 114 

text-mining tool [34], and the follow-up qualitative discussion. The scientometric review 115 

approach, as described by Hosseini et al. [30] and Song et al. [29], could address the biasedness 116 

or subjectivity problems in previor studies in the construction sector (e.g., Tang et al. [35]). 117 

However, some existing scientometric analysis-based review (e.g., Zhao et al. [36]) are also 118 

limited to the self-explanatory discussions such as who are the most produtive sholars in the 119 

research domain. Aiming to address both limitations in these two literature review approaches, 120 

this study provides a more comprehensive approach as shown in Fig.1 by combining the text-121 

mining method and the in-depth discussion. 122 
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Fig.1. Description of three-step literature review of RA-related studies 124 

 125 

2.1.Bibliometric search 126 

The bibliometric search of RA-related research was conducted in Scopus, which was 127 

defined by Aghaei Chadegani et al. [37] with a wider coverage of articles and more recent 128 

publications compared to Web of Science. The keyword input and filtering of publications in 129 

Scopus is shown below: 130 

TITLE-ABS-KEY ( "recycled aggregate"  OR  "recycled aggregates" )  AND  ( LIMIT -131 

TO ( DOCTYPE ,  "ar" )  OR  LIMIT -TO ( DOCTYPE ,  "re" ) )  AND  ( LIMIT -132 

TO ( LANGUAGE ,  "English" ) )  AND  ( LIMIT -TO ( SRCTYPE ,  "j" ) )   133 

Only journal articles including review papers published in English were recruited for 134 

literature review in this study. As seen in Fig.1, extra sub-steps (i.e., further screening) were 135 

performed to screen out initially selected articles that did not target on RA research. These 136 

articles, which barely mention RA in their texts but not really focus on RA-based research, 137 



would be removed from the initially identified literature sample. During the further screening 138 

process, all the eight researchers in this study reviewed the title, abstract, and keywords of the 139 

initial literature sample. Discussions were held among researchers to agree on the decision of 140 

removing each of these articles.  141 

2.2.Scientometric analysis 142 

Based on the literature sample finalized from the prior step, all the articles were uploaded 143 

to VOSViewer for scientometric analysis. VOSViewer was described by van Eck and Waltman 144 

[38] as a tool that provided a distance-based visualizations of bibliometric networks, especially 145 

for visualizing larger networks with text-mining functions. Some existing studies in other 146 

research domains adopting VOSViewer can also be found, such as Song et al. [29] in project 147 

management, and Xu et al.[31] in cement composites reinforced by graphene oxide. Similar to 148 

the study of Jin et al. [7], VOSViewer was utilized in this study to: (1) load the RA-based 149 

literature sample from Scopus; (2) compute, and evaluate the influence of mainstream 150 

documents and RA-related research keywords; (3) summarize the main existing research 151 

keywords in this domain. 152 

2.3.Qualitative discussion 153 

Following the scientometric review, a further in-depth qualitative discussion was 154 

conducted to address the three main research questions related to: (1) the mainstream research 155 

topics or themes within RA; (2) the limitations of existing research; (3) suggestions for 156 

promoting RA usage in the construction sector; and (4) recommendations for future research 157 

in RA. The discussion also aimed to propose a research framework that could link existing 158 

research topics into future directions in RA-related scholarly work.  159 

3. Results of scientometric analysis 160 

The keyword inputs in Scopus initially generated a total of 1,652 journal articles published 161 

between 1984 and 2018. These journal articles were initially screened by the research team of 162 



this study to remove those which did not focus on RAs. Excluding those not targeting on RA 163 

research, the remaining 1,639 articles were agreed by the research team as the finalized sample 164 

for further literature review.  165 

3.1.Articles influential in recycled aggregates 166 

The total 1,639 articles selected for literature review are ranked according to the total 167 

citation . Table 1 provides the ranking of most influential articles evaluated by the total citation.  168 

Table 1. Most influential articles measured by Total Citations in the RA domain 169 

Reference 

Article Title 

Total 
Citation 

Etxeberria et al. 
[39] 

Influence of amount of recycled coarse 
aggregates and production process on 
properties of recycled aggregate concrete 490 

Xiao et al. [40] 
Mechanical properties of recycled aggregate 
concrete under uniaxial loading 360 

Evangelista and de 
Brito [41] 

Mechanical behaviour of concrete made with 
fine recycled concrete aggregates 339 

Sagoe-Crentsil et 
al. [42] 

Performance of concrete made with 
commercially produced coarse recycled 
concrete aggregate 328 

Poon et al. [43] 

Effect of microstructure of ITZ on compressive 
strength of concrete prepared with recycled 
aggregates 326 

Katz [44] 
Properties of concrete made with recycled 
aggregate from partially hydrated old concrete 314 

Poon et al. [45] 

Influence of moisture states of natural and 
recycled aggregates on the slump and 
compressive strength of concrete 299 

de Juan and 
Gutiérrez [46] 

Study on the influence of attached mortar 
content on the properties of recycled concrete 
aggregate 297 

Tam et al. [47] 

Microstructural analysis of recycled aggregate 
concrete produced from two-stage mixing 
approach 295 

Ajdukiewicz and 
Kliszczewicz [48] 

Influence of recycled aggregates on 
mechanical properties of HS/HPC 285 

 170 

 171 

Table 1  provides ten top ranked articles in terms of total citation. It could be inferred these 172 

articles in Table 1 tended to unanimously focus on mechanical properties of cement composites 173 

adopting RAs. Nevertheless, it can be found that some more recent studies have extended the 174 



mechanical properties to durability of RAC [49-51] as well as computing and modeling 175 

methods [52, 53].  More studies [54-56] applying data science methods (e.g., data mining in 176 

sustainable concrete) can be found in recent years. Researchers have also started reviewing 177 

literature of how RA affect properties of RAC [14, 16, 57].  178 

3.2.Keyword analysis 179 

Keyword analysis is an important work to depict the existing topics that have been focused 180 

within a given topic [58], such as RA in this study. According to van Eck and Waltman [34], 181 

the keyword network shows the knowledge, research themes, as well as their relationships and 182 

intellectual organizations. Adopting VOSViewer as the text-mining tool, the research team 183 

identified the most frequently studied “Author Keywords”. These keywords had a minimum 184 

occurrence of 10. Initially 74 out of totally 3,052 keywords were identified. General keywords 185 

such as “Recycled Aggregate” were removed from the keyword list. Other keywords with the 186 

consistent semantic meanings were combined, for example, RAC and “recycled aggregate 187 

concrete”, RCA and “recycled concrete aggregate”, etc. Several keywords were combined into 188 

a single keyword representing the same category. For instance, the original keywords including 189 

“Split Tensile Strength”, “Compressive Strength”, and “Mechanical Strength” were combined 190 

into “Mechanical”. Ultimately a total of 38 keywords were selected for analysis. 191 

Mechanical properties of RAC were the most frequently studied topic in RA-related 192 

research. RAC is the second most frequently studied keyword. It should be noticed that the 193 

third highest ranked keyword “Concrete” is different from RAC. RAC refers to the application 194 

of RA in the concrete mix design. “Concrete”, on the other hand, could be either the source of 195 

RA or the application of RA. In other words, concrete exists across the life cycle stages of RA. 196 

It is found that LCA is another frequently studied topic in the RA domain. The highly occurring 197 

keywords (e.g., “Mechanical” and RAC) may not be the ones with highest average citations. It 198 

is inferred that HPC and LCA are the keywords with the highest influence to the research 199 



community of RA with their high average citations, followed by “Microstructure”, “Durability”, 200 

and “Shrinkage”.  201 

The keywords were divided into eight clusters in VOSViewer. Keywords in the same 202 

cluster are more likely to have mutual impacts of being cited by each other, for example, 203 

“Mechanical”, “ITZ”, and “Microstructure”. Based on the visualization and quantitative 204 

measurements of mainstream keywords in RA, these following themes of research keywords 205 

can be summarized as below. 206 

• Coarse RAs applied in concrete mix design and how they would affect the mechanical 207 

properties and microstructure of new concrete: examples of existing studies in this theme 208 

include but are not limited to Abreu et al. [59], Luo et al. [60], and Cantero et al. [61], etc; 209 

• Fine RAs recycled and reused in cement composites (e.g., mortar): these studies also 210 

emphasized how the recycled fine RAs affected the performance of cement composites. 211 

Examples of studies adopting fine RAs in cement composite products can be found in Sosa 212 

et al. [62], Martínez-Aires et al. [63], Kim et al. [64], and Ho et al. [65]; 213 

• LCA approach in studying the sustainability of adopting RAs from C&D wastes: these 214 

studies may extend the engineering properties of recycled products (e.g., RAC) with a more 215 

comprehensive analysis of the environmental, social, and economical aspects of recycling 216 

wastes. Examples of these studies can be found in Marinković et al. [66], Rosado et al. [67], 217 

Hossain et al. [68], and Gan et al.[12]; 218 

• The effects of RAs on the fresh concrete properties, such as rheological properties in SCC 219 

[69, 70]: the workability [71, 72] of concrete containing RAs is a concern; 220 

• The inter-relationship between creep/shrinkage [73] of RAC and the seismic performance 221 

of reinforced concrete structures [74]: seismic resistance of reinforced concrete structural 222 

members containing RAs has been gaining a momentum in the academic research in both 223 

numerical simulation and experimental studies, such as Liu et al. [75], and Ma et al. [76]; 224 



• The inferior properties of RAs due to its higher water absorption compared to NAs: studies 225 

[77, 78] have been focusing on improving the qualities of cement composites containing 226 

RAs. The nature and quality of RAs, as identified by Abdulla [79], could have significant 227 

impacts on RCA properties. Besides water absorption, the nature and quality of RAs also 228 

include their density[80], composition [49], as well as the waste treatment method [81]; 229 

• Adoptions of RA in pervious concrete [82, 83], and the effects of RAs on the permeability 230 

of RAC: to minimize the negative effects of the RA porosities, different sizes, sources, 231 

admixtures, and supplementary cementitious materials (SCMs) [84, 85] were considered in 232 

the mix design of pervious concrete; 233 

• Durability of concrete containing RAs, including adopting RAs in HPC [86, 87]: the 234 

durability properties of HPC that have been studied in literature included permeability, 235 

resistance to carbonation, and resistance to chloride penetration [88, 89]. 236 

Besides these aforementioned RAC types, including pervious concrete, HPC, steel 237 

reinforced concrete structure, SCC, it should also be noticed that fiber-reinforced polymer 238 

(FRP) composite materials adopting RAs [90, 91] have also gained some increased attention 239 

in the academic community adopting RAs.  240 

4. In-depth discussions   241 

4.1.Mainstream research topics in recycled aggregates 242 

Most studies from the literature sample focused on RAs from recycled C&D wastes, 243 

especially old concrete. Existing studies using RAs for a cleaner production were also mostly 244 

targeted on cement composites especially new concrete mixing and tests. Fig.2 demonstrates 245 

the typical micro-structure of RAs from crushed concrete observed under scanning electron 246 

microscope (SEM).   247 
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              Fig.2. Microstructure of RAs from crushed concrete 248 

It is seen in Fig.2 that RAs from recycled concrete generally have rough surface, cracking, 249 

and attached mortar. These micro-structural features could cause significant impacts on the 250 

engineering properties of cement composites containing RAs, for example, the mechanical 251 

behavior and durability of RAC. Several important studies demonstrating the influences of RAs 252 

on cement composites are showcased in Table 2.  253 

Table 2. Studies investigating the influences of RAs on cement composites’ properties 254 

Study Type of RA Mix design  
adopting 
RA 

Cement 
composite 
properties 
tested 

Applications 
of the 
cement 
composite 
containing 
RAs 

Major findings 



Alexandridou 
et al. [49] 

RA from 
different 
Greek 
recycling 
plants 

 0% , 25%, 
and 75% of 
coarse 
natural 
aggregates 
(NA) 
replaced by 
RA 
respectively 

Compressive 
strength, 
concrete 
absorption, 
sorptivity, and 
carbonation 
resistance of 
RAC 

Concrete 
specimens 
for the 
laboratory 
tests 

The compressive strength of 
RAC ranged from 
significantly lower (37% 
reduction) than that of 
ordinary concrete. Clay 
minerals had a more adverse 
effect to concrete's strength. 
Higher water absorption of 
coarse RA was their most 
negative physical 
characteristic. Coarse RA 
reduced the durability of 
hardened concrete.  

Dimitriou et 
al. 
[50] 

Coarse RAs 
from 
different 
sources of 
crushed 
concrete   

 NA 
replaced by 
50% and 
100% of RA 

Compressive 
strength, 
flexural 
strength, 
splitting 
tensile 
strength, 
modulus of 
elasticity, 
porosity, 
sorptivity, and 
permeability 
of RAC 

Concrete 
specimens 
for the 
laboratory 
tests 

Increasing the replacement 
ratio of RA to NA resulted in 
lower quality of RAC 
compared to normal 
concrete. Both mechanical 
and durability properties are 
negatively affected by the 
increase of the replacement 
ratio. But a simple treatment 
method to reduce the 
adhered mortar at RA 
surface could diminish the 
negative effects of RAs and 
create a better quality of 
RAC which could be 
competitive to normal 
concrete. 

Ozbakkaloglu 
et al. [51] 

Coarse RAs 
in two 
different 
sizes (i.e.,  7 
mm and 12 
mm) 

RAs used to 
replace NA 
at different 
replacement 
rates, 
including 0, 
25%, 50%, 
and 100% 

Compressive 
strength, 
elastic 
modulus, 
flexural 
strength, 
splitting 
tensile 
strength, 
workability, 
drying 
shrinkage, and 
water 
absorption of 
RAC 

Specimens 
for testing, 
including 
cylinder 
specimens 
and prism 
specimens 

An increase in the coarse 
aggregate size led to an 
increase in the 28-day elastic 
modulus and a decrease in 
the 28-day flexural and 
splitting tensile strengths. 
Coarser RA caused higher 
drying shrinkage and water 
absorption in concrete mix. 
RACs with up to 25% RA 
content exhibited slightly 
inferior mechanical and 
durability-related properties 
compared to the 
conventional concrete with 
the same compressive 
strength. But replacement of 
100% NA would cause 
significant reductions in 
concrete properties. 

Thomas et al. 
[92] 

Fine and 
Coarse RAs 
from 
crushed test 
concrete 
specimens 

20% of 
replacement 
of RA to the 
the coarse 
NA, and 
100% 
replacement 
to both fine 
and coarse 
NAs 

Compressive 
and tensile 
strength, 
permeability, 
water 
penetration, 
chloride 
penetration 

Mortar and 
concrete 
specimens 
for the 
laboratory 
tests 

The sulphur within RA did 
not significantly affect the 
mechanical or physical 
performance of mortar or 
RAC. But using RA from 
crushed concrete, with or 
without sulphur, was viable 
for the manufacture of 
recycled structural concretes 
for applications without 



exposure to high 
temperatures.  The use of the 
fine fraction in RAs caused a 
significant loss of 
properties. 

Etxeberria et 
al. [39] 

Coarse RA 
from 
crushed 
concrete 

Four 
different 
RAC  
produced, 
made with 
0%, 25%, 
50% and 
100% of RA 
respectively 

Compressive 
and tensile 
strength, 
modulus of 
elasticity of 
RAC 

Concrete 
specimens 
for 
laboratory 
tests 

Concrete crushed by an 
impact crusher achieves a 
high percentage of RAs 
without adhered mortar. 

Adhered mortar in RA 
caused the weak point in the 
RAC microstructure. RAC 
made with 100% of coarse 
RA had significantly lower 
compression strength than 
conventional concrete, or 
required more cement in mix 
design to achieve higher 
strength. 

Evangelista 
and de Brito 
[41] 

Fine RA 
from 
crushed 
concrete 

Five 
different 
replacement 
ratios of fine 
RA to fine 
NA were 
adopted, 
namely 10%, 
20%, 30%, 
50%, and 
100% 

Compressive 
strength, split 
tensile 
strength, 
modulus of 
elasticity and 
abrasion 
resistance of 
RAC 

Structural 
concrete 
specimens 
for 
laboratory 
tests 

It was viable to produce 
concrete made with fine RA 
for structural concrete. Up to 
30% replacement of fine RA 
to fine NA did not seem 
affecting the compressive 
strength of RAC. Both 
tensile splitting and modulus 
of elasticity were reduced 
with the increase of the 
replacement ratio. The 
abrasion resistance seemed 
to increase with the 
replacement of fine NA with 
fine RA. 

Tam et al. 
[47] 

RAs 
collected 
from local 
recycling 
plants, with 
sizes at 
10mm and 
20mm 
respectively  

0%, 10%, 
15%, 20%, 
25% and 
30% of RA 
was used to 
replace NA 

Compressive 
strength of 
RAC 
specimens at 
different 
curing ages by 
using the 
normal mixing 
approach and 
the two-stage 
mixing 
approach 

RAC 
specimens 
for 
laboratory 
tests  

The two-stage mixing 
approach gives way for the 
cement slurry to gel up the 
RA, providing a stronger 
interfacial transition zone by 
filling up the cracks and 
pores within RA. This two-
stage mixing approach can 
provide an effective method 
for enhancing the 
compressive strength and 
other mechanical 
performance of RAC. 

Xiao et al. 
[40] 

Coarse RA 
from waste 
concrete 
brought 
from 
runway 

Replacement 
percentages 
of RA to NA 
at 0%, 30%, 
50%, 70% 
and 100% 
respectively 

Compressive 
strength, the 
elastic 
modulus, the 
peak and the 
ultimate 
strains of RAC 

RAC 
specimens 
for 
laboratory 
tests 

 RAC specimens failed in a 
shear mode. The stress–
strain curves of RAC 
indicated an increase in the 
peak strain and a significant 
decrease in the ductility. The 
compressive strength, 
elastic modulus of RAC 
generally decreased as the 
replacement ratio of RA 
increased. The peak strain of 
RAC also increased with the 
increase of RA contents.  



Poon et al. 
[43] 

Coarse RAs 
from two 
different 
type of 
crushed 
concrete, 
namely 
normal-
strength 
concrete 
(NC), and 
high-
performance 
Concrete 
(HPC) 

Full 
replacement 
of NA by 
RA from 
NC, and RA 
from HPC 
respectively   

Microstructure 
and 
compressive 
strength of 
RAC 

RAC 
specimens 
for 
laboratory 
tests 

RAC prepared with the RA 
from HPC developed 
higher compressive strength 
than RAC prepared with RA 
from NC at all tested ages. In 
particular, the strength of 
RAC prepared with the RA 
from HPC was comparable 
to that of conventional 
concrete. The difference in 
strength development 
between the RAC with HPC 
and with NC aggregates was 
due to the differences in 
both the strength of the 
coarse aggregates and the 
microstructural properties of 
the interfacial transition 
zones. 

Poon et al. 
[45] 

Coarse RA 
from 
crushed and 
graded 
unwashed 
concrete 
from a 
single 
source, 
sized at 
10mm and 
20mm 

Various 
replacement 
ratios of RA 
to NA, were 
adaopted, 
namely 0%, 
20%, 50%, 
and 100%; 
The 
moisture 
states of RAs 
were 
controlled at 
air-dried 
(AD), oven-
dried (OD) 
and 
saturated 
surface-
dried (SSD) 
states prior 
to use. 

Slump and 
compressive 
strength of 
RAC 

RAC 
specimens 
for 
laboratory 
tests 

The moisture states of the 
RAs affected the change of 
slump of the fresh RAC. RA 
with OD  led to a higher 
initial slump and quicker 
slump loss, while RAs with 
SSD and AD had normal 
initial slumps and slump 
losses. RAC from RA with 
AD exhibited the highest 
compressive strength. 

Aggregates in the AD state 
containing not more than 
50% RA should be optimum 
for normal strength RAC 
production. 

   255 

  These influential studies showcased in Tables 1 and 2 could lead to further discussions 256 

below. 257 

4.1.1. Engineering properties of cement composite materials adopting RAs 258 

It is generally believed by the public that RAs would decrease concrete strength or lower 259 

other RAC properties. This could be due to their high porosity, internal cracking, high level of 260 

sulphate and chloride contents, high level of impurity and high cement mortar adhered to RAs 261 

[93]. This has been proved by many existing studies [47, 51, 94]. However, multiple studies 262 



showed that a moderate percentage of replacement of RA to NA could achieve comparable or 263 

even higher mechanical strength of concrete. This replacement percentage of RA to NA, as 264 

recommended in previous studies, generally ranges from 25% to 50% [95, 96]. A further mix 265 

design methodology was proposed by Pepe et al. [97] to predict the performance of RAC (e.g., 266 

compressive strength). Utilizing the positive effects of RAs for enhancing RAC properties was 267 

discussed extensively by Xu et al. [98], who proposed an optimized replacement percentage of 268 

RA to NA in concrete mix design, when the “internal curing” feature of RAs due to its 269 

porosities could compensate the inferior qualities of RAs. In order to improve the engineering 270 

properties and also to reduce carbon emissions, it is commonplace to adopt both RAs and SCMs 271 

(i.e., supplementary cementitious materials) in concrete mix design. For example, fly ash could 272 

enhance concrete workability when RA absorbs more moisture during concrete mixing [99]. 273 

These commonly adopted SCMs (e.g., fly ash) identified by Jin et al. [100] in commercial 274 

concrete production have been widely adopted together with RAs in sustainable concrete mix. 275 

Besides the addition of SCM and adding chemical admixture (e.g., superplasticizer) as 276 

suggested in existing studies [101, 102] to reduce the negative effects due to the water 277 

absorption of RAs, some pretreatment of RAs, such as removing impurities [103] and pre-278 

wetting of RAs [104], could also be applied to to reduce the effects from the inferior properties 279 

of RAs.     280 

4.1.2. The effect of RA sources on properties of recycled products  281 

The effects of RA on concrete properties could be affected by multiple factors, such as its 282 

water absorption rate and chemical composition [49]. Chakradhara Rao [105] studied the 283 

effects of RAs coming from different parent concrete samples on RAC properties. It was found 284 

that RAs from the parent concrete would reduce the new concrete’s compressive strength, but 285 

RAs from parent concrete with higher strength could result in comparable strength in the new 286 

concrete [105]. Kou and Poon [106] found that RAs from high-strength parent concrete (i.e., 287 



80-100 MPa) samples could be used to produce high performance concrete with higher strength, 288 

lower drying shrinkage, and higher resistance to chloride ion penetration. The study from Kou 289 

and Poon [106] provided the guide of selecting proper parent concrete source to produce RA. 290 

However, how the higher strength of parent concrete would also produce higher quality of RA 291 

leading to better performance of RAC was not explained in-depth in most relevant existing 292 

studies [105, 106]. Despite that, it could be indicated from Lotfi et al. [107] that the quality of 293 

the parent concrete would affect the RAs’ microstructure, which further impact RAs’ 294 

engineering properties (e.g., water absorption, roughness, and abrasion resistance, etc).  Jin et 295 

al. [104] compared two different types of RAs (i.e., RAs from demolished concrete and from 296 

recycled red bricks) in terms of their effects on concrete properties. It was found that the water 297 

absorption and hardness of RAs could cause differences in mechanical properties of RACs [47]. 298 

It was indicated by Poon et al. [43] that the RA from different parent concrete samples could 299 

affect the newly produced RAC’s interfacial transition zones, which further affect the 300 

engineering properties of RAC. It was further suggested by Pepe et al. [103] that “cleaning” 301 

RAs to enhance their physical properties could reduce the performance gap between RAC and 302 

ordinary concrete.  The “autogenous cleaning” of RAs, as described by Pepe et al. [103], 303 

referred to removal of surface impurities and reduction of particle heterogeneities.  304 

4.1.3. Different types of RACs containing RAs 305 

Ongoing research has been studying the feasibilities of adopting RAs in multiple types of 306 

RACs, including pervious concrete [82], reinforced concrete[108], SCC [69], FRP composites 307 

[109], and HPC [110]. Aslani et al. [111] optimized the mix design of high-performance SCC 308 

adopting RAs by testing the fresh and hardened properties. It was found that the proposed mix 309 

design could save cement amount up to 40% [111]. Yan et al. [112] adopted flax FRP tube 310 

encased RAC to improve both the sustainability and the mechanical behavior of concrete 311 

specimens. Mechanical properties were also checked by adopting RAs in structural concrete. 312 



For example, Gonzalez-Corominas et al. [113] found that a high performance recycled 313 

aggregate concrete could meet the structural requirements for prestressed concrete sleepers. 314 

4.1.4. Sustainability effects of adopting RAs 315 

Although most existing studies in RAs, as indicated in Table 3, have been focusing on the 316 

engineering properties of cement composites (especially concrete) containing RAs, other 317 

aspects of RA adoption such as economic factor [50] has also been concerned. Life cycle 318 

assessment (LCA) methods [114] have been developed to assess the impacts of adopting RAs, 319 

especially in comparing the environmental impacts between RAs and NAs based on available 320 

database and established inventory[115]. The sustainability effects of adopting RAs could be 321 

defined in a certain scope such as carbon dioxide (CO2) emissions and energy consumption 322 

[116]. It was evaluated by Ding et al. [116] that the longer transportation distance for delivering 323 

NAs would make RAs an alternative option to lower environmental impact. Similarly, 324 

Colangelo et al. [117] adopted the LCA approach assisted by a computer simulation to 325 

demonstrate that RAs outperformed NAs in terms of environmental sustainability. It was 326 

further indicated that different types of RAs had variable sustainability impacts [117]. The LCA 327 

approach not only covers the cost and environmental effects by adopting RAs, but also affects 328 

policy making [118].  329 

4.2.Research gaps in existing recycled aggregate studies  330 

4.2.1. Sources of RAs 331 

A review of the RA literature sample in this study reveals that the majority of RAs adopted 332 

for scholarly work come from C&D waste, especially demolished concrete [119]. Although 333 

C&D wastes from other building materials such as bricks [120], tiles [121], and ceramics [122] 334 

have also been studied as RA sources, significantly less research work has been performed to 335 

obtain RAs from other locally available sources. For example, oyster shells from food wastes 336 



in coastal cities could potentially be reused as RAs for new applications (e.g., building wall 337 

claddings).    338 

Even within existing studies which adopted RAs from demolished concrete, the 339 

uncertainty on the source of the parent concrete could cause variability of RAs’ engineering 340 

properties (e.g., water absorption), which would further lead to uncertainties in the RAC 341 

properties (e.g., mechanical strength and durability). Therefore, a comprehensive list of 342 

parameters that influence the RAC properties need to be established. As indicated in some 343 

existing studies [86, 123], these parameters could include the mix design of the parent concrete 344 

which further affects its strength, crushing method of the old concrete, and pretreatment of RAs. 345 

Most studies [105, 106] have been limited to the description of experimental findings of how 346 

the property of parent concrete would affect the RAC qualities. So far, there is still insufficient 347 

investigation from the material science perspective to explain how these parameters would 348 

affect RAC properties. 349 

4.2.2. More engineering properties to be tested of cement composites containing RAs 350 

More studies adopting RAs so far have been more focusing on RAC’s performance in 351 

terms of traditionally defined properties such as mechanical properties [124] and durability 352 

[125]. There have been limited applications of RAs in being studied for their effects on other 353 

properties of RAC, such as environmental protection functions. For example, Xu et al. [98] 354 

stated that although there have been some ongoing studies of developing photocatalytic 355 

conventional concrete, not sufficient research had been performed to utilize the feature of RAs 356 

in the mix design of photocatalytic RAC. The internal pores and rough surface of RAs could 357 

become an advantage of RAC to capture photocatalysts (e.g., titanium dioxide or TiO2) for air 358 

purification purpose [122]. The applications of RAs in building or infrastructure sectors are 359 

limited to non-structural members [126]. Developing RAs for a variety of engineering 360 



applications could be explored. RAs could also be tried with different cementitious materials 361 

in concrete mix design, e.g., grapheme oxide composites, as suggested by Xu et al. [31].    362 

The literature sample from this study also indicates that there has been limited research 363 

investigating the performance of concrete structures containing RAs under fatigue or adverse 364 

outdoor environment. Assisted by Design Expert and Center Composite Design (CCD) 365 

software, Li et al. [127] found that fatigue and freeze-thaw cycles would influence the 366 

compressive strength and substantially impact the performance of pavement recycled aggregate 367 

concrete. Liu et al. [128] concluded that the RAs could enhance the fatigue life of rubber-368 

modified recycled aggregate concrete (RRAC). Somewhat in contrast, the research of Peng et 369 

al. [129] showed that the fatigue life, residual strength, and residual stiffness of RAC all 370 

decreased with an increase in RA replacement percentage. Thomas et al. [130] also suggested 371 

that the use of RA reduced the ability of RAC to resist fatigue cycles. These existing studies of 372 

RAC did not reach completely consistent findings. Before extending RAs’ application in 373 

practical engineering, the experimental and theoretical investigations need to continue in order 374 

to reveal more insightful findings regarding RAC or other composite structures’ fatigue 375 

performance or their performance under adverse environment.  376 

4.2.3. Recycled products adopting RAs 377 

So far the majority of existing studies from this literature sample focused on RAC. Less 378 

attention has been paid to other cement composites (e.g., ready-mixed mortar), or other 379 

applications of RAs. The gap between scientific research and engineering practice can be found 380 

by reviewing the literature sample. For example, most of the studies have been focusing on the 381 

engineering properties of concrete containing RAs. However, the commonplace applications 382 

of RAs (e.g., from old concrete), could be largely limited to roadway construction, pavement 383 

sub-base, and backfilling according to several existing investigations [100, 131, 132]. The 384 



uncertainty of RA sources would cause problems of deciding the reapplication of RAs, as 385 

indicated by Oikonomou [133] and Meyer [134]. 386 

4.2.4. Enhancing the reuse rates of RAs  387 

Crushed concrete for recycling and reuse could cause secondary wastes due to the fact that 388 

not all the sizes of RAs could be reused. Koshiro and Ichise [135] attempted to address this 389 

issue by adopting the entire waste reuse model through utilizing different sizes of RAs in 390 

cement composites (e.g., clay tiles). However, there have been so far limited studies addressing 391 

how RAs from different sources, sizes, and compositions could be efficiently utilized to 392 

enhance their reuse rate. It is common to see only part of the RAs from demolished buildings 393 

being reused in RAC production. There is a need to have standards, guidelines, or even 394 

legislations to specify the applications of RAs according to their qualities or properties. 395 

Technological applications to obtain this information of quality or property of RAs would 396 

become necessary.  397 

4.2.5. A comprehensive indicator system of RA adoption 398 

There has been insufficient research on a holistic evaluation of the impacts of adopting 399 

RAs. Existing studies may even come up with contradictory findings on the impacts. For 400 

example, Tam [136] and Gull [10] held different views on the cost-effectiveness on reusing 401 

RAs from C&D wastes. Factors contributing to the adoption between RAs and NAs include 402 

but are not limited to labor costs, available equipment, energy inputs, local availability, and 403 

reuse purpose (e.g., pavement). There is a need to develop a decision-making framework (e.g., 404 

an updated LCA approach) for stakeholders to evaluate the advantages and disadvantages of 405 

choosing RA and NA.  Even though RAC containing RA could be improved by initial treatment 406 

of RAs, the practical feasibility of procedures to remove impurities (e.g., Tam et al [47]) in RA 407 

surfaces needs to be investigated, especially considering other factors such as labor and cost.     408 

4.3.Suggestions for enhancing RA adoption as sustainable construction materials 409 



The mainstream research topics in RAs and research limitations based on the scientometric 410 

review of this literature sample indicate the interdisciplinary nature of adopting RAs for the 411 

cleaner production in the construction industry. The industry is causing a significant impact on 412 

the living environment based on the facts that: (1) it consumes a tremendous amount of natural 413 

resources (e.g., NAs); (2) it contributes a significant portion of the carbon emission crossing 414 

industries; and (3) it generates an overwhelming amount of C&D wastes causing shortages of 415 

urban landfill space. The concept of cleaner production has been practiced for a few decades 416 

and participating companies had shown some positive results in terms of material utilization, 417 

lowered energy consumptions and reduced carbon emissions [11]. Implementation of the 418 

cleaner production involves technological evolvement, business models, and public awareness 419 

as indicated from existing studies [69, 137]. This has been somehow reflected in adopting RA 420 

in the construction sector. For example, Jin et al. [126] provided the workflow in the production 421 

line of using RAs from crushed C&D wastes to manufacture masonry bricks. Consistent with 422 

the discussion provided by Kjaerheim [11], it was further inferred that the adoption of cleaner 423 

production needs multiple driving factors, such as governmental policy, social acceptance, and 424 

the market condition [126, 131].    425 

 A review of existing literature [11, 138, 139] indicates that LCA has been a commonly 426 

adopted modeling approach in evaluating the outcomes of implementing sustainability. In the 427 

context of utilizing wastes in the construction sector, LCA has been implemented to quantify 428 

the environmental and technical effects of RA adoption [140, 141]. Based on the existing 429 

studies of promoting cleaner production practice, as well as research on reusing RAs, 430 

suggestions to enhance RA utilization to improve the sustainability are proposed herein: 431 

• Information tracking system can be developed for sources of RAs in order to determine its 432 

application. Sources of RAs could cause different engineering properties to new cement 433 

composites as indicated from previous research [142, 143]. The information system of RAs 434 



could include but be not limited to its parent concrete mechanical strength, building type, 435 

and laboratory test results, etc. 436 

• More site investigation and trail projects can be conducted for investigating the engineering 437 

properties and new applications of construction products containing RAs. For example, 438 

precast concrete members, as one type of off-site construction components, can be tested 439 

of its resistance to natural disasters when RAs are adopted in its mix design. The 440 

applications of RA in building construction could be more than just non-structural members. 441 

For example, Japanese Industrial Standards [144, 145] provide some guides on the classes 442 

of RAs to be applied in different types of concrete structures. A variety of applications for 443 

RA-based construction products can also bridge the gap between scientific research 444 

community and industry practice.  445 

• Local availability and regional contexts should be considered for adopting RAs. 446 

Stakeholders including policy makers, industry practitioners, and academic researchers 447 

could promote the local “green” production by looking at regionally available waste 448 

sources beyond the construction industry. For example, sea animal shells from food wastes 449 

could be potentially recyclable resources to produce RAs in coastal areas. Agricultural 450 

regions might also consider reusing local by-products for RA as indicated by Eziefula [22].  451 

• Reusing these local wastes for productions of RAs should not be limited to C&D wastes, 452 

but across industries. A comprehensive evaluation of the social, economic, technical, and 453 

environmental indicators for adopting a certain type of RAs would be necessary. This 454 

evaluation system, based on the life cycle assessment of RAs, should support the decision 455 

making for not only whether or not to adopt a certain type of RA (e.g., RA from oyster 456 

shells), but also for how to optimize its reuse and application. For example, oyster shells 457 

may not only be used for coarse RAs in concrete production, but also as fine RAs for wall 458 

finish or decoration.  459 



• Determining the multiple uses of the same type of RA, or RA from mixed sources of wastes 460 

(e.g., C&D waste) in order to enhance the reuse rate. It is important to minimize the 461 

“secondary waste” generated by producing RAs from wastes. For example, fine particles 462 

would become “secondary waste” if only coarse RAs are utilized from crushing C&D 463 

wastes.  Fine RAs could also be potentially applied in construction (e.g., mortar). 464 

• Finally, public awareness towards building products containing RAs can be raised to 465 

embrace the sustainability culture. The public might have a biased opinion towards recycled 466 

products, but the mindset could be changed when they gain more knowledge of properties 467 

of products containing RAs [126]. Pilot construction projects or a prototype of  building 468 

product such as Waste House [146] works a bridge between multiple stakeholders, 469 

including researchers, industry practitioners, and the general public.       470 

4.4.Research directions for recycled aggregate 471 

Following the summaries of mainstream research topics, gaps from existing RA studies, 472 

and suggestions to enhance RA adoption, the research framework in the RA domain is proposed 473 

in Fig.3. The existing research topics in Fig.3 are generated based on the prior scientometric 474 

analysis of keywords, for example, mechanical properties of new concrete containing RAs.   475 



Existing Research Topics Research DirectionsResearch Themes

Data mining and statistical in 
estimating the properties of 
cement composites containing 
RAs

Engineering properties of 
cement composites 

containing RAs

Data Science applied in 
RA research

1. Mechanical properties
2. Fresh properties
3. Durability
4. Microstructure

Data analytics and Bid Data in RA 
for producing new cement 
composites 

More properties of cement 
composites incorporating RAs for 
emerging applications (e.g., 
photocatalytic performance)

1.  Water absorption
2.  Porosity
3. Composition
4. Waste sources

1. Digital approach to track the RA 
information during its life cycle
2. Decision-making of RAs reuse 
according to their sizes and 
properties
3. Entire waste use model

Properties of RAs

Cost and energy input by 
adopting RAs as compared to 
NAs

Life cycle assessment of 
using RAs

A more comprehensive indicator 
system evaluating the impacts of 
using RA against NA

1. Self-compacting concrete;
2. High performance concrete
3. Pervious concrete
4. Fiber-reinforced polymer 
composites

Different types of cement 
composites adopting RAs

1. A variety of waste sources for 
RAs (e.g., oyster shell wastes)
2. A variety of cement composites 
adopting RAs (e.g., ready-mixed 
mortar)

476 

Fig.3. Research framework linking the existing research topics in RA to future research 477 

directions 478 

Five main themes are suggested in Fig.3 in the RA domain, linking the existing research 479 

topics into future directions: 480 

• Depending on the application of RAs, more engineering properties of RAs and a variety of 481 

RACs could be developed. For example, applying RAs in photocatalytic pervious concrete 482 

pavements for absorbing air pollutant particles. As suggested by Xu et al. [98], RAs have 483 

their advantage of being more capable to absorb more photocatalysts for developing 484 

environmentally friendly concrete.  485 

• Besides the properties of RAs themselves listed in Fig.3 such as water absorption, the waste 486 

treatment method is a key factor that affects the properties of RAs, and further influences 487 

the properties of recycled products, as indicated from existing studies [81, 147]. A digital 488 



platform, such as Building Information Modeling (BIM) and Geographic Information 489 

Systems (GIS), could be adopted to identify or track the information (e.g., source) of RAs 490 

before being applied. This information of RAs would be important for deciding how to 491 

reuse the RAs (e.g., in non-structural building elements). Information tracked from the 492 

source of RAs would also be useful to analyze the heterogeneous compositions of wastes 493 

in order to enhance the reuse rate of RAs. 494 

• The source of RAs and the application of RAs could be extended to other industries beyond 495 

the construction field. Depending on local availability, more sources of RAs could be 496 

identified besides the C&D sites, for example, various types of industrial wastes as 497 

introduced by de Brito and Saikia [148]. GIS, as the information tool which has been 498 

applied in the C&D waste treatment [149], could also be further developed in locating 499 

potential sources of RAs and their applications, which may not be limited to cement 500 

composites but also geotechnical and road pavement materials [150].    501 

• Digital approach to track the property information of RA throughout its life cycle including 502 

its early stages [151] could be further developed. For example, during the design stage of a 503 

concrete structure building, the amount of RAs in different sizes for reuse could be 504 

estimated and stored as information in the BIM platform. The properties of RAs would be 505 

critical for applications in structural concrete especially from the life cycle perspective [152] 506 

• A more comprehensive sustainability indicator system for adopting RAs against NAs could 507 

be developed by considering and weighting social, economical, environmental, and 508 

engineering aspects.    509 

• The existing data mining and Big Data approach [153] could be applied in estimating 510 

properties of new cement composites containing RAs, for example, the Analytical 511 

Systemization Method newly developed by Obe et al [150] in building the data-matrix for 512 

applying RAs. The properties of cement composites should not be limited to mechanical 513 



properties [154]. More properties of cement composites adopting RAs such as durability 514 

could be evaluated using data analytics methods as suggested by Koo et al. [55].  515 

5. Conclusion 516 

This study extends the concept of Circular Economy by focusing on recycled aggregate 517 

(RA) as the vehicle to bridge construction and demolition (C&D) wastes and their applications 518 

during its life cycle. A comprehensive review of existing literature based on the sample of 519 

1,639 journal articles was conducted to provide the big picture of the existing research status 520 

in RAs, to discuss limitations in adopting RAs, as well as providing visions for future research 521 

in RAs. The current study contributes to the body of knowledge in adopting RA as sustainable 522 

construction materials based on the fact that the source of RA should not be limited to C&D 523 

wastes, and the application of RA could be more than cement composites. 524 

A holistic review approach consisting of three steps, namely bibliometric literature search, 525 

text-mining-based scientometric analysis, and in-depth qualitative discussion, was adopted as 526 

the research methodology. This holistic review methodology could be further adapted to assist 527 

the review of other research domains.  Major findings generated following this review 528 

methodology can be summarized below.  529 

5.1.Findings from scientometric analysis 530 

Major findings from scientometric analysis are summarized below: 531 

• Most existing research focused on adopting RAs in the studies of new concrete production, 532 

with mechanical properties of recycled aggregate concrete as the most frequently studied 533 

topic in RA. 534 

• Articles with most citations were published in earlier years and focused on mechanical 535 

properties of cement composites containing RAs. Articles with highest normalized citations 536 



were published in more recent years and focused on review work, durability of recycled 537 

aggregate concrete, and applying computing and modeling methods. 538 

5.2.The interrelationship between the scientometric analysis results and RA as sustainable 539 

construction materials 540 

Following the scientometric analysis, this study summarized the mainstream research 541 

topics in existing literature of RA, identified the gaps of existing studies, and provided 542 

suggestions for enhancing RA usage. Existing research topics have been largely focusing on 543 

adopting RAs from C&D wastes, applying RAs in concrete mix, and testing the engineering 544 

properties of concrete containing RAs. A variety of concrete types had been studied, including 545 

high-performance concrete, self-compacting concrete, fiber-reinforced polymer composites, 546 

and pervious concrete. Life-cycle assessment approach had been applied in comparing the 547 

environmental effects between RAs and natural aggregates. Limitations of these existing 548 

studies were identified and discussed, including: 549 

•  the need to explore more engineering properties of cement composites containing RAs 550 

beyond mechanical behaviour and durability, such as photocatalytic concrete for air 551 

purification purpose; 552 

• the need to have a variety of RA sources beyond C&D wastes; 553 

• the need to enhance the reuse rate of RAs from C&D wastes; 554 

• the necessity of having a variety of RA applications, such as ready-mixed mortar; 555 

• academic studies of RA applications to bridge the gap between experimental research and 556 

industry practice, such as the composite structure’s fatigue performance;  557 

• a comprehensive indicator system to evaluate the sustainability of RA adoption. 558 

Barriers in adopting RA to embrace the cleaner production in the real world were discussed 559 

among the research team, specifically: (1) uncertainty of waste sources for decision making of 560 



proper application of RA in the construction industry; (2) lack of a comprehensive evaluation 561 

of the properties of building products containing wastes; (3) limited applications of recycled 562 

products; (4) the gap between academic research and industry practice of reusing RAs; (5) 563 

insufficiently developed indicator system for decision making in adopting RAs. Corresponding 564 

suggestions were provided addressing these existing barriers to promote the RA usage in the 565 

construction sector, including: (1) an information tracking system to be developed to reduce 566 

the risks of using RAs associated with its source uncertainty; (2) more site tests and 567 

investigations to explore engineering properties of construction products adopting RAs; (3) 568 

multi-stakeholder involvement in evaluating the proper type of RAs in the local context; (4) a 569 

cross-industry vision to identify appropriate sources of RAs; (5) minimizing the “secondary 570 

wastes” in the process of producing RAs; and (6) nurturing a sustainability culture by 571 

demonstrating more pilot projects or prototypes to the public.  572 

5.3. Research framework guiding future research directions in RA 573 

Finally, a research framework was proposed to link existing research topics to 574 

recommended future research directions: 575 

• more engineering properties of cement composites to be explored depending on the RA 576 

applications;  577 

• information tools to be developed to track the source and quality of RAs; 578 

• digital methods to obtain the RA information throughout its life cycle;  579 

• a more comprehensive sustainability indicator system for adopting RAs against natural 580 

aggregates; 581 

• data analytics methods applied in estimating more properties of cement composites 582 

containing RAs.  583 



To move the academic research work forward, researchers in this study suggest that the 584 

scholarly work of adopting RAs should not be limited to engineering properties of cement 585 

composites containing RAs, but also a variety of RA sources, varied RA applications, as well 586 

as interdisciplinary research incorporating data science, digital technologies, policy making, 587 

and a comprehensive sustainability assessment in promoting RA research and practice.  588 

5.4.Research limitations 589 

This review-based study is limited to the English journal articles indexed in Scopus. It 590 

excludes articles published in other languages and also other types of published resources such 591 

as trade magazine. The literature sample in this study was limited to academic journal articles. 592 

Another review focusing on latest industry practice from other reference sources (e.g., trade 593 

magazines) focusing on RAs in would be useful to further identify the gap between academic 594 

research and industry practice.  595 
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