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Abstract Multi-temporal polarimetric Synthetic Aperture 

Radar (SAR) data can be used to estimate the dominant scattering 

mechanism of targets in a stack of SAR data and improve the 

performance of SAR interferometric methods for deformation 

studies. In this paper we developed a polarimetric form of 

amplitude difference dispersion (ADD) criterion for time-series 

analysis of pixels in which interferometric noise shows negligible 

decorrelation in time and space in small baseline algorithm. The 

polarimetric form of ADD is then optimized in order to find the 

optimum scattering mechanism of the pixels, which in turn is used 

to produce new interferograms with better quality than single-pol 

SAR interferograms. The selected candidates are then combined 

with temporal coherency criterion for final phase stability analysis 

in full-resolution interferograms. Our experimental results 

derived from a dataset of 17 dual polarization X-band SAR images 

(HH/VV) acquired by TerraSAR-X shows that using optimum 

scattering mechanism in the small baseline method improves the 

number of pixel candidates for deformation analysis by about 2.5 

times in comparison to the results obtained from single-channel 

SAR data. The number of final pixels increases by about 1.5 times 

in comparison to HH and VV in small baseline analysis. 

Comparison between Persistent Scatterer (PS) and small baseline 

methods shows that with regards to the number of pixels with 

optimum scattering mechanism, the small baseline algorithm 

detects 10 percent more pixels than PS in agricultural regions. In 

urban regions, however, the PS method identifies nearly 8 percent 

more coherent pixels than small baseline approach.  

 
Index Terms—Polarimetric optimization, Slowly-Decorrelating 

Filtered Phase, Amplitude Difference Dispersion, Tehran plain 

I.! INTRODUCTION 

NTERFEROMETRIC analysis of Synthetic Aperture Radar 

(SAR) data is a powerful geodetic technique to measure 

surface deformations [1]–[4]. The accuracy achieved with 

interferometric measurements depends on a variety of factors 

including temporal and geometrical decorrelation, variations in 

atmospheric water vapor between SAR data acquisitions and 

the accuracy of orbital and Digital Elevation Model (DEM) 

used in the processing [5]. In order to address these limitations, 

multi-temporal InSAR time-series processing techniques such 

as small baseline algorithms and Persistent Scatterer InSAR 

(PSI) have been developed. The main goal of these techniques 

is to identify pixels for which the effect of the interferometric 

noise is small, so that they remain stable over the whole period 

of SAR data acquisition [6]–[8]. 

The PSI technique, firstly proposed by [6], [7], presents a 
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solution to deal with spatiotemporal decorrelations of 

interferometric phase using time-series analysis of single-

master interferograms. The technique uses Amplitude 

Dispersion Index (ADI) as a proxy of phase stability to identify 

pixels whose scattering properties are coherent between SAR 

image acquisition with long time interval and different look 

angles, the so-called Permanent Scatterer (PS). As 

interferograms are generated with a common master, PSs are 

limited to those pixels that show high coherence even in 

interferograms with larger baselines than the critical baseline 

[6], [7]. In [8] a new PS technique was proposed in which both 

amplitude and phase criteria are assessed to determine the 

stability of PSs. An initial set of candidate pixel based on 

amplitude analysis is selected first and then in an iterative 

process the PS probability is refined using phase analysis. The 

method is more suitable for detecting low-amplitude PS pixels 

in natural terrains, where the relationship between ADI index 

and phase stability breaks down.  

 Small baseline techniques use interferograms with small 

temporal and spatial baselines to reduce decorrelation. The 

original small baseline technique [9] uses a network of multi-

looked small baseline interferograms and the target scatterers 

are identified by  coherence (i.e. complex correlation) criterion 

[10], [11]. The multi-looking is a limiting factor for detecting 

local deformations. This issue was resolved in [12] with an 

extended version of small baseline algorithm applied on full-

resolution SAR dataset. Hooper (2008) proposed another new 

small baseline method in which full-resolution differential 

interferograms are used to identify stable scatterers 

incorporating both amplitude and phase criterion. The filtered 

phase of those pixels that decorrelate little over short time 

intervals of interferograms, the so-called Slowly-Decorrelating 

Filtered Phase (SDFP) pixels are then used for deformation 

analysis [13].  

Polarimetric optimization of polarimetric SAR data has been 

applied to improve classical InSAR results [14], [15] in terms 

of both deformation estimation and target classification [16], 

[17]. Optimization can be applied to full polarimetric space-

borne SAR data [18], [19], ground-based fully PolSAR 

acquisitions [20] or compact polarimetric SAR data [21]–[23] 

The approach improves results by finding the scattering 

mechanism that minimizes decorrelation for each pixel over 

time, using coherence stability criteria or ADI, thereby 

maximizing the quality and number of selected PS pixels [17], 
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[22], [24]–[26].  

In this study, for the first time, we have developed a 

polarimetric optimization approach based on the small baseline 

method of the Stanford Method for Persistent Scatterers and 

Multi-Temporal InSAR (StaMPS/MTI) analysis presented in 

[13]. In our algorithm, instead of applying ADI criterion, we 

utilize Simulated Annealing (SA) optimization to minimize the 

Amplitude Difference Dispersion (ADD) value of each pixel.  

This can be employed as a rough proxy for phase variance for 

Gaussian scatterer pixels and it is an indicator for potential of a 

pixel to be a SDFP candidate, in dual polarimetry X-band SAR 

images, followed by projection of the polarimetric 

interferograms onto the optimized polarimetric channel to 

reproduce the interferograms with the optimum scattering 

mechanism. As proposed in [17], SDFP candidates are selected 

based on lower values of ADD in reproduced interferograms. 

In an additional step, the phase stability of each candidate is 

tested using a measure similar to coherence magnitude called 

temporal coherence [8], [13] and SDFP pixels are extracted. 

Time-series analysis and 3-D phase unwrapping are then 

carried out to retrieve the deformation parameters. We evaluate 

the method with a dataset consisting of 17 dual polarization X-

band SAR data (HH/VV) acquired by TerraSAR-X satellite 

between July 2013 and January 2014 over Tehran plain, Iran 

(Fig. 1). 

 
Fig. 1. RGB composite of study area produced by amplitude of dual-pol 

TerraSAR-SX images over Tehran plain (R=HH channel, G= VV channel and 

B=HH-VV channel) overlaid on Google-Earth image. 

II.! PIXEL SELECTION IN MULTI-TEMPORAL INSAR 

In the StaMPS small baseline method, a set of candidate 

pixels for time-series analysis are first selected based on the 

amplitudes of SAR interferograms, to reduce the computational 

cost time. An index called ADD has been presented (�∆# ) to 

identify SDFP candidates [13].  

 (1) 

 

 

 

Where  �∆% is the standard deviation of the difference in 

amplitude between master and slave images, ∆� is the 

difference in amplitude between master and slave images, �( is 

the mean amplitude and N is the number of interferograms. In 

this method a higher value of ADD in comparison with ADI, 
e.g. 0.6, is selected for the threshold and pixels with ADD value 

less than the threshold are considered as SFDP candidates. The 

residual phase noise for SDFP candidates is estimated by 

subtracting two major components of signal: spatially 

correlated and spatially uncorrelated components. Finally 

SDFP pixels are identified among the candidates using 

temporal coherence [8], [13], defined as: 

 (2) 

Where  is the wrapped phase of pixel x in the ith 

interferograms, 
 
is the estimate for the spatially-correlated 

terms, is the estimate of the spatially-uncorrelated look 

angle error term and N is the number of interferograms. 

For dual-pol SAR data we need to extend the ADD in (1), 

which is applicable only for single-pol data, to include also 

dual-pol data and optimize it to increase the density of SDFP 

pixels for the time-series analysis. We then apply temporal 

coherence in (2) to identify the SDFP pixels.  

Fig. 2 shows a flow chart of the overall processing strategy that 

is implemented in this study. The method consists of 3 main 

steps: (1) InSAR processing, (2) polarimetric optimization and 

(3) multi-temporal analysis of the optimized interferograms. 

Single-pol multi-temporal InSAR analysis includes only InSAR 

processing (step 1) and time-series analysis of the 

interferograms (step 3). Polarimetric optimization is used here 

to improve the performance of this analysis using dual-pol data. 

In the next section we describe in detail the methodology we 

used in our study. 

 
Fig. 2. Flowchart of the overall process in our study. 

III.! ADD OPTIMIZATION 

In order to obtain the polarimetric form of ADD it is 

sufficient to replace the amplitude of single-pol data in 

Error! Reference source not found. by the polarimetric 

scattering coefficient, µ defined as: 

                    (3) 

                 (4) 

         (5)  

Where K stands for the polarimetric vector, ω is the 
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polarimetric projection vector, Svv and Shh are the complex 

values of the HH and VV channels, respectively, T is the 

transpose operator and * denotes the conjugate operator. α and 

ψ are Pauli parameters which represent the scattering 

mechanism [17], [22], [27]. The polarimetric form of ADD in 

(1) can then be written in the following form:  

 (6)

 

Where  and are polarimetric vectors of master and 

slave images, respectively.  

The main objective of polarimetric optimization is to find the 

optimum scattering mechanism of the pixels and generate 

interferograms with better quality than using single-pol SAR 

images. To simplify the search of the optimum scattering 

mechanism, we parameterized the projection vector, in terms of 

Pauli basis parameters. In order to build consistent time series 

of phases related to deformation we assume that the scattering 

mechanisms of the pixels remain the same during acquisition 

time, as in the case of Multi-Baseline Equal Scattering 

Mechanism (MB-ESM). Therefore, ω would be the same for 

the pixel in whole stack of interferograms [28].  

The optimization problem is to find the projection vector that 

minimizes the value of ADD. Fig. 3 illustrates the possible 

ADD values, in terms of α and ψ, for three arbitrarily selected 

pixels in our study area. In [17] we showed that SA is an 

effective method to minimize such smooth functions as 

illustrated in Fig. 3 and to find the optimum α and ψ in their 

corresponding finite range. We define a coarse grid with a step 

size of 10˚ for both α and ψ and search for the values that give 

the minimum ADD. These values for α and ψ are then used as 

initial values in the SA optimization method. 

 
Fig. 3. Values of ADD for all possible values for α and ψ, for three arbitrarily 

selected pixels. The red star presents the minimum value of ADD. 

IV.! EXPERIMENTAL RESULTS AND DISCUSSION 

To evaluate the method we processed 17 co-polar SAR 

images acquired by TerraSAR-X satellite in an ascending mode 

between July 2013 and January 2014 over the Tehran plain, 

which is highly affected by subsidence [29]. We formed a small 

baseline network consisting of 44 single-look interferograms as 

shown in fig. 4. We then generated interferograms for HH, VV 

and optimum channels and calculated the ADD value of each 

pixel in the single-look interferograms. To evaluate the 

improvement in ADD, we compared the histograms of ADD 

values for HH, VV and optimum channel (Fig. 5). 

 
Fig. 4. Small baselines network used in this study. The stars denotes the SAR 

images and lines present the formed interferograms for Small Baseline 

processing. 

 
Fig. 5. Histograms of ADD for HH, VV and optimum channel. 

As shown in Fig. 5, by applying the proposed method, the 

histogram of ADD values in optimum channel is inclined to 

lower values of ADD in comparison to HH and VV channels. 

Therefore, by thresholding ADD value of less than 0.6, more 

SDFP candidates are extracted in optimum channel as 

compared to single-pole interferograms. 

 Fig. 6 depicts the number of selected SDFP candidates 

obtained from HH, VV and optimum channels using ADD 

criterion and also the improvement in number of SDFP pixels 

after utilizing temporal coherency.  

 
Fig. 6. Number of SDFP Candidates and SDFP pixels obtained by HH, VV and 

optimum channel.  

The total number of SDFP candidates for the optimum 

channel is about 2.5 times higher than for the HH and VV 

channels. Considering the final selection of SDFP pixels for the 

optimum channel, the number has increased by about 1.4 times 

and 1.6 times in comparison to the HH and VV channels, 

respectively. 

In order to evaluate the efficiency of using multi-temporal 

polarimetric SAR data for different models of scattering we 

made a comparison between urban and non-urban regions. 46 

percent of our study area comprises urban region, while the 

non-urban portion is about 54 percent. In urban areas,  the 

number of identified candidates using the optimum channel is 

increased by ~1.7 and ~2.1 times compared to HH and VV 

channels, respectively.  For agricultural regions, the increase 

was ~2.1 and ~2.2 times (fig. 7b). The number of final SDFP 

pixels are ~1.4 and ~1.5 times in urban regions and ~1.48 and 

~1.65 times in agricultural regions, in comparison to HH and 

VV channels, respectively (fig. 7a). Therefore the proposed 

algorithm is slightly more successful in non-urban regions than 

in urban regions. 
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Fig. 7. Number of a) identified SDFP pixels and b) SDFP candidates detected 

in urban and agricultural regions using HH, VV and optimum  

  

As PS pixels and SDFP pixels relate to different scattering 

characteristics of the ground, we also compared the density of 

measurements for both of the methods in urban and nonurban 

regions. Table I describes the percentage of additional pixels 

identified by SDFP pixels in comparison to PS pixels for which 

the results were previously published in [17]. For the HH and 

VV channels we detect about 8% more SDFP pixels than PS in 

agricultural regions, however, over the urban area the number 

of identified SDFPs is almost 9 percent less than PS pixels.  
TABLE I 

QUANTITATIVE COMPARISON OF IDENTIFIED SDFP PIXELS WITH RESPECT TO 

PS PIXELS (EXPRESSED IN PERCENT OF PS PIXELS) 

Dataset Agricultural Urban 

HH 8.5 % -9.0 % 

VV 8.2 % -8.9 % 

Optimum 10.3 % -7.9 % 

Similar to the HH and VV channels, in the case of the 

optimum channel, the small baseline method detects 10 percent 

more coherent pixels in agricultural regions, while in urban area 

the PS pixels are more numerous than SDFP pixels by about 8 

percent. SDFP pixels show little loss of correlation in short time 

intervals whereas PS pixels remain stable over the whole period 

of data acquisition. Therefore, in non-urban area more SDFP 

pixels are expected to be identified than PS pixels. By contrast, 

in urban areas PS pixels are more abundant. This might be 

related to the effect of filtering in the small baseline method, 

which increases the decorrelation in pixels dominated by a 

single scatterer as a result of coarsening the resolution of spectra 

[13].  

In order to check that using the optimum channel leads to 

lower phase noise, we selected SDFP pixels approximately 

every 0.001 degrees in both directions, and calculated the 

variance of the phase differences between the selected pixels 

and their immediate SDFP neighbors for the optimum, HH and 

VV channels. The results are plotted in Fig. 8. 

The standard deviation of differences are very similar for HH 

and VV, but are generally lower for the optimum channel, 

indicating that our method leads to reduced phase noise. There 

appear to be two populations of pixels, however; those for 

which the improvement is marginal, and those for which the 

improvement is more significant (indicated in Fig 8a). This 

division is not apparently related to scattering mechanism, but 

does appear to correlate with spatial position (Fig. 9), with 

pixels in urban areas, plotted in red, more likely to fall in the 

population with greatest improvement. 

 
Fig. 8. Cross comparison of Standard deviation of phase differences of nearby 

SDFP pixels for the selected SDFP pixels for a) HH versus Optimum channel, 

the two populations marked by green and red eclipse are spatially located in fig. 

9, b) VV versus optimum channel and c) HH versus VV channel  . Blue and red 

dots indicate odd-bounce and even-bounce scattering mechanisms, 

respectively. Green and black colors indicate vertical and horizontal dipole 

scattering mechanism, respectively. 

 
Fig. 9. Spatial position of the pixels in the two populations indicated in Fig 8a. 

Red circles depict the pixels located in the population where the reduction in 

standard deviation is most significant and the other population members are 

drawn in green. 

Fig. 10 shows the time series for three sample SDFP pixels 

with odd-bounce (point 1), even-bounce (point 2) and dipole 

(point 3) scattering mechanisms, respectively, that were 

selected using the optimal channel, but not when using HH and 

VV channels. The smoothness of each of the time series 

indicates that the phase values have a low contribution from 

noise and that our algorithm is not increasing the number of 

selected pixels simply by selecting more noisy pixels. 

  
Fig. 10. a) location of the three points which detected by our method but not by 

using HH and VV. b) Closer look of he points in (a), point 1 is located in a 

farming zone and shows odd bounce mechanism, point 2 is located in an urban 

area with the dominant scattering mechanism for the pixel being double bounce 

and point 3 is a dipole. c) Time series plot of the selected points. 
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V.! CONCLUSION 

StaMPS is a powerful method for multi-temporal analysis of 

single channel SAR images [13]. In this paper, we have 

presented a small baseline method, implemented in StaMPS, to 

deal with dual polarization SAR images. The ADD index 

criterion is first minimized for dual polarimetric data to find the 

optimum scattering mechanism that lead to increase the number 

of SDFP candidates. Then the results are combined with 

temporal coherence criteria to select final coherent pixels for 

time-series analysis. Our experiment in both urban and 

agricultural regions, shows that applying our method for dual-

pol data increased the number of SDFP pixels by 50% in 

comparison to single-pol data InSAR time-series analysis. In 

addition, the assessment between the result of our proposed 

method for small baseline algorithm with those from PS-InSAR 

polarimetric optimization [17], showed that the density of 

SDFP pixels, in small baseline approach, is more than PS pixels 

in non-urban regions, while, in urban area the number of PS 

pixels is slightly higher than the SDFP pixels. Future research 

could focus on implementing this type of polarimetric 

optimization on full/quad polarimetry SAR images. Also, joint 

optimization using the PSI approach [17], [22] and our new 

algorithm could improve the ability to find stable points for a 

large range of ground scattering characteristics. 
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