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Abstract

Several methods have been proposed to allow functional genomic information to inform prior dis-

tributions in Bayesian fine-mapping case-control association studies. None of these methods allow

the inclusion of partially-observed functional genomic information. We use functional significance

scores that combine information across multiple bioinformatics sources to inform our effect size

prior distributions. These scores are not available for all SNPs but by partitioning SNPs into nat-

urally occurring functional significance score groups, we show how missing functional significance

scores can easily be accommodated via finite mixtures of elicited priors. Most current approaches

adopt a formal Bayesian variable selection approach and either limit the number of causal SNPs

allowed or use approximations to avoid the need to explore the vast parameter space. We focus

instead on achieving differential shrinkage of the effect sizes through prior scale mixtures of nor-

mals and use marginal posterior probability intervals to select candidate causal SNPs. We show

via a simulation study how this approach can improve localisation of the causal SNPs compared to

existing mutli-SNP fine-mapping methods. We also apply our approach to fine-mapping a region

around the CASP8 gene using the iCOGS consortium breast cancer SNP data.

Data Sharing Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.
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Introduction

Genome-Wide Association Studies have been successful in identifying thousands of regions har-

bouring SNPs associated with complex disease traits. Fine-mapping of these regions is required

to identify the actual causal SNP(s) within these regions. Early Bayesian methods focussed on

univariate approaches (Wakefield [2009]; Spencer et al. [2015]; Spencer et al. [2014]) but there are

now many methods that model the joint effects of SNPs within a region. Most methods use a

classical Bayesian model selection approach by introducing an indicator vector representing which

SNPs have non-zero effect sizes. Effect sizes are then estimated conditional on them being non-

zero. Paintor [Kichaev et al., 2014a] employs an EM algorithm approach and requires enumeration

over all indicator vectors, restricting the number of causal SNPS at each locus considered to be

no more than three. CaviarBF [Chen et al., 2015] similarly enumerates over all indicator vectors

to calculate Bayes factors to compare models and to estimate posterior probabilities of inclusion.

Because it performs an exhaustive search it also limits the number of causal SNPs in the model

to be no more than five. To overcome the limitation on the number of causal SNPs allowed in

the model, FINEMAP [Benner et al., 2016] uses an efficient shotgun stochastic search algorithm to

search over the space of indicator vectors which have non-negligible probability. HyperLasso [Hog-

gart et al., 2008] uses penalized regression with a Normal-Exponential-Gamma prior and searches

for the posterior mode, which either leads to inclusion or exclusion of SNPs from the final model,

and does not quantify the uncertainty in the SNPs selected. Classical Bayesian variable selection

with a large number of predictors and even a modest number of causal SNPs has to overcome the

problem of a vast model space, either by limiting the number of causal SNPs in the model or by

only considering configurations with high probability.

There are also fine-mapping methods that do not utilize the indicator vector approach and hence

avoid having to deal with the vast model space. These shrinkage-based methods do not perform

formal variable selection but instead rely on shrinking non-causal SNP effect sizes to values very

close to zero. The posterior credible interval or some statistic derived from it is then used to rank

the SNPs or weigh up the posterior evidence for the effect size being non-zero. Boggis et al. [2016]

successfully used this kind of approach in eQTL mapping with a continuous response and Pereira

et al. [2017] used it in fine-mapping with a binary response. We adopt the framework of these
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shrinkage based approaches in this paper.

There have also been many methods suggested to include functional genomic information in

fine-mapping studies. Some are designed for scenarios with at most a single SNP (Spencer et al.

[2016]; Pickrell [2014]) whilst most now allow the presence of multiple causal SNPs by modelling

the joint effects of SNPs (Pereira et al. [2017]; Kichaev et al. [2014a]; Quintana and Conti [2013]).

There are often restrictions on the type of functional genomic information that can be incorporated

in the model and analysis; Kichaev et al. [2014a] and Pereira et al. [2017] for example assume that

the annotations are binary. We chose to use functional significance (FS) scores [Lee and Shatkay,

2009] to inform our effect size prior. These are normalised scores (FS ∈ [0, 1]) which combine

information from 16 publicly available databases. The FS score relating to a SNP is a measure of

the deleterious effect of that particular SNP, as measured by these 16 different sources.

To the best of our knowledge the only approach to include functional genomic information that

has dealt with the issue of partially observed functional information is Spencer et al. [2016] who

simply replaced any unobserved value with 0 which was the greatest lower bound of the observed

values for each annotation. This lack of consideration of partially observed functional data is

surprising given the potentially sparse functional information that is available for many SNPs. It

may be that authors are carefully choosing the type of functional information to include to avoid this

problem. If the annotations used to inform priors are those chosen for completeness of data rather

than disease-specific informativeness then there could be a possible loss of valuable information.

In this paper we propose a differential shrinkage approach to fine mapping that uses the normal

gamma prior [Griffin et al., 2010] to induce shrinkage. We utilise 148 effect size estimates from breast

cancer GWAS to calibrate the prior shrinkage and outline a coherent approach to incorporating

partially observed functional information in the multi-causal SNP setting. We employ a fully

Bayesian approach to address the uncertainly in the posterior parameter estimates. We assume that

genotype data is available but our method could readily be extended to include GWAS summary

statistics, as is done in Benner et al. [2016], Kichaev et al. [2014a] and Chen et al. [2015]. This

approach could be applied to any univariate partially observed grouped prior information, such as a

single categorical variable from the ENCODE database [ENCODE, 2011]. We apply our differential

shrinkage method to fine mapping data in the CASP8 region between base positions 201,500,074

and 202,569,992. The data we used is from the iCOGS array developed by the Collaborative
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Oncological Gene-Environment Study (COGS) Consortium [Michailidou et al., 2013]. The data

consists of 1733 variants (501 genotyped, 1232 imputed using Impute2 [Marchini and Howie, 2010])

on 46,450 breast cancer cases and 42,600 controls.

Materials and Methods

Asymptotic Gaussian likelihood

Since we have case-control data the natural risk model is based on a generalised linear model (GLM)

with a logit link function. Let β represent a p-vector of the regression coefficients in our logistic

model and α represent the intercept. With φ = (α,β)T we use the asymptotic approximation

that φ̂ | φ ∼ N(φ,V ) , where φ̂ is the maximum likelihood estimate of φ and V is the variance-

covariance matrix estimated from a GLM that includes all the SNPs. This means that that we

can replace our logistic likelihood for the binary response with a Gaussian one for the maximum

likelihood estimates (MLEs), which makes the MCMC faster and easier to implement. In order to

avoid problems with exact multi-collinearity we remove SNPs (columns of X) that have identical

genotypes to another SNP so that X is a full-rank matrix.

Normal-gamma prior

Consider our asymptotic approximation for the MLEs

φ̂ | φ ∼ N (φ,V ) , (1)

with φ = (α,β)T . The scale mixture of normals (see for example Andrews and Mallows [1974],

West [1987]) is a convenient representation of the prior distribution for the regression coefficients

(β) needed in a Bayesian framework. The prior distribution for βi (the i
th element of β) can be

expressed as

π (βi) =

∫
N (βi | 0, ψi) dF (ψi) for i = 1, ..., p, (2)

where F (.) represents a mixing distribution and ψi is its idiosyncratic prior variance. The ran-

dom variables representing the prior effect sizes of different SNPs are assumed to be mutually
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independent. Griffin et al. [2010] proposed

βi|ψi ∼ N (0, ψi) and ψi ∼ Ga(.), (3)

so that each βi has a potentially different variance ψi a priori. This structure gives us the so-called

normal-gamma (NG) prior. Specifically, the prior for ψi is

π
(
ψi|λ, γ

2
)
∼ Ga

(
λ,

1

2γ2

)
, (4)

where λ and γ2 are hyperparameters. This allows sufficient flexibility in the effect size variances.

This prior seems appropriate for fine-mapping where most coefficients are zero or close to zero but

we want to allow for the possibility of large effect sizes. The law of total variance using Equations

(3) and (4) gives var
(
βi|λ, γ

2
)
= 2λγ2. Putting a suitable inverse gamma distribution on the prior

variance (2λγ2 ∼ IG (2,M)) gives E
(
var
(
βi|λ, γ

2
))

= E
(
2λγ2

)
=M . M should be suitably chosen

to reflect the effect sizes expected in fine-mapping studies.

Prior structure

Griffin et al. [2010] suggested a hierarchical form of prior that shrinks larger effect sizes less than

smaller effect sizes (differential shrinkage). We modify this prior as follows

α ∼ N (0, 0.1) , (5)

βi | ψi ∼ N (0, ψi) , (6)

ψi | λ, γ
−2 ∼ Ga

(
λ,

1

2γ2

)
, (7)

γ−2 | λ ∼ Ga

(
2,
M

2λ

)
, (8)

λ ∼ Ex(κ), (9)

where the prior of γ−2|λ comes from 2λγ2 ∼ IG (2,M).
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Estimating the hyper parameter κ

Our hierarchical prior model has λ ∼ Exp (κ). Since our particular interest is in breast cancer, we

estimate κ using the log-odds ratios from GWAS top hits in breast cancer (Fachal and Dunning

[2015]). Because the top hits effect sizes are only GWAS estimates we decided to partition them

into five groups to reduce sensitivity to individual values and find the value of κ that ‘best fits’, in

a particular sense, the empirical cumulative distribution function (ecdf). Because of the approx-

imate symmetry in the ecdf of the log-odds ratio we chose to use only odds ratios greater than

one; specifically we used {β1, β2, β3, β4} = {log(1.05), log(1.08), log(1.10), log(1.20)}. We find the

optimal value of κ (κ∗) as

κ∗ = argmin
κ

{
4∑

i=1

(
Fi(βi)− F̂i(βi)

)2
}

(10)

where Fi(βi) is the cumulative distribution function (cdf) of a random variable with a NG

distribution and F̂i(βi) is the ecdf, both evaluated at βi. In addition to the 148 breast cancer

top hits, Michailidou et al. [2013] estimated there were approximately an additional 1000 yet-to-

be-discovered causal SNPs in breast cancer (although the true number is not known with much

certainty). In calculating F̂i(βi) we took account of the number of yet-to-be-discovered causal

SNPs. We assumed all yet-to-be-discovered causal SNPs had |log(OR)| < log(1.05) since there is

little power to detect odds ratios in this range for GWAS sample sizes currently used. Because

there is no closed form for the cdf of a random variable with a NG distribution we used Sequential

Monte Carlo for each value of κ considered (from 0.5 to 200 in increments of 0.5). Because of the

uncertainty in the number of yet-to-be-discovered SNPs we considered four possible values (1000,

500, 200 or 100) which gave κ in the range 13 < κ∗ < 143. The number of yet-to-be-discovered

SNPs that gives the best fit to the ecdf (as measured by our criterion) is 1000 which is consistent

with the results of [Michailidou et al., 2013]. We assume this value in the rest of the paper and set

κ = 143 which is the estimate corresponding to 1000 yet-to-be-discovered SNPs.

Incorporating Partially Observed Prior Functional Information in the Prior

Griffin et al. [2010] proposed a prior for the hyper-parameters λ and γ−2|λ to provide variability
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around the Lasso prior (λ = 1). They used a single parameter for λ and γ−2 for all predictors. We

modify the structure of the NG prior by allowing λ and γ−2 to take four different values based on

four different classes of the FS scores [Lee and Shatkay, 2009]. FS scores naturally divide into four

groups: FS > 0.5, FS = 0.5, FS < 0.5, and missing FS (FS = NA). SNPs with FS > 0.5 are most

likely to be deleterious, SNPs with FS < 0.5 are unlikely to be deleterious, the evidence for SNPs

with FS = 0.5 is unclear, and the deleterious effects of SNPs with missing FS scores (FS=NA) are

unknown.

We modify the distribution of Var
(
βi|λ, γ

2
) (

= 2λγ2
)
for each group as follows

Group 1 (G1); FS > 0.5 : 2λ1γ
2
1 ∼ IG (2,M1) , (11)

Group 2 (G2); FS = 0.5 : 2λ2γ
2
2 | w ∼ w × IG (2,M1) + (1− w)× IG (2,M2) , (12)

Group 3 (G3); FS < 0.5 : 2λ3γ
2
3 ∼ IG (2,M2) , (13)

Group 4 (G4); FS = NA : 2λ4γ
2
4 | h ∼ h× IG (2,M1) + (1− h)× IG (2,M2) , (14)

whereM2 < M1 are constants to be determined and w and h are the mixture parameters for Groups

2 and 4 and are assigned Beta(2, 2) and Beta(1, 4) distributions respectively. Beta distributions

are used for computational convenience. This modification ensures that

E
i∈G1

(
Var

(
βi|λ1, γ

2
1

))
> E

i∈G2

(
Var

(
βi|λ2, γ

2
2

))
> E

i∈G4

(
Var

(
βi|λ4, γ

2
4

))
> E

i∈G3

(
Var

(
βi|λ3, γ

2
3

))

sinceM1 > wM1+(1−w)M2 > hM1+(1−h)M2 > M2 for w, h ∈ [0, 1] andM2 < M1. The idea

of incorporating the FS score into the prior is to decrease the effect size shrinkage in Group 1 and

2 SNPs (high FS scores) relative to the effect size shrinkage of Group 3 SNPs (low FS scores) with

the shrinkage of Group 4 SNP effect sizes somewhere in between. The aim is to select values of M1

and M2 that lead to appropriate differential shrinkage. Too much differential shrinkage means that

the prior almost completely dictates the relative posterior effect sizes. With too much differential

shrinkage, a causal SNP allocated to Group 3 or 4 would have little chance of having a posterior

credible interval that didn’t include zero.

We need to determine suitable choices of M1 and M2. Since the expectation of a random

variable with an IG(2,M) distribution is M we set M1 to be the variance of the breast cancer top
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hits, which was 0.01 approximately. This is the expectation of the prior variance for SNPs whose

effect size we want to shrink by a relatively small amount. We considered various values of M2

and assessed, in a univariate analysis, the relative shrinkage (under the two values of M) of the

posterior expectation of the breast cancer top hits effect sizes. We calculate the relative univariate

shrinkage factor (SF) as follows

SF = 1−
E2

(
β | β̂

)

E1

(
β | β̂

) , (15)

where Ei

(
β | β̂

)
represents the posterior expectation of a parameter with a NG prior that has

an expected prior variance of Mi. A value of SF close to 0 implies similar posterior expectations

under both values of M1 and M2. Values close to 1 imply high levels of differential shrinkage. The

posterior mean for SNP i can be approximated using

E

(
βi | β̂i

)
≈

∑
k βkfR

(
R = β̂i

)

∑
k fR

(
R = β̂i

) . (16)

where βk is sampled from the NG prior using sequential Monte Carlo sampling, R ∼ N
(
βk,

1
nfi(1−fi)

)

[Slager S. L., 2001], n is the number of cases (or controls), and fi is the minor allele frequency (MAF)

of breast cancer top hit i.

Figure 1 shows the relative univariate shrinkage factor calculated using M1 = 0.01 and M2 =

0.001 with 16000 cases and 16000 controls . In Figure 1 more than two thirds of the effect sizes

have SFs more than 0.1 and the SF does not exceed 0.5. We consider these SFs to be large enough

to allow differential shrinkage but not so large that effect sizes in the high shrinkage groups will

be shrunk too close to zero. Figure 2 shows the prior of the log-odds ratio (β) for M1 = 0.01 and

M2 = 0.001 with λ fixed at its expected value of 1/148 and γ2 fixed such that the expected prior

variance 2λγ2 is equal to M1 or M2.

Implementing the MCMC

We use MCMC to sample from the posterior distribution. Derivations of the full conditional

distributions are given in the Appendix. We investigated possible posterior summaries (mean,
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median, credible interval) to rank the SNPs and found that high probability marginal posterior

credible intervals gave the best AUC in most scenarios considered. Therefore we only report results

based on the marginal posterior credible interval. In order to derive ROC curves in simulated data

when the causal SNP is known we need a quantitative, and preferably continuous, measure for each

SNP to apply thresholds to. We use the maximum detection credible interval size defined as

1− 2×min
{
Pr
(
βi | β̂i

)
> 0, P r

(
βi | β̂i

)
< 0
}

where β̂i is the maximum likelihood estimate of βi. For the simulated data we ran the MCMC for

20,000 iterations with a burn-in of 2,000. Because of the highly correlated SNPs our chains showed

high levels of autocorrelation so we thinned all our chains by 50 to remove the autocorrelation to

an acceptable level. Standard convergence checks suggested the chains had converged.

Simulation Study

We simulated genotype data between base pairs 201666128 and 201866128 around the CASP8

region on chromosome 2 using Hapgen2 [Su et al., 2011]. Genotypes for 16000 cases and 16000

controls were simulated. SNPs with MAF less than 0.01 were removed. This left around 280

SNPs in the fine mapping region. The simulation study was designed to have very high levels of

correlation between the SNPs, odds ratio likely to be encountered in fine-mapping studies and large

sample sizes as these are increasingly common as consortia pool data to increase statistical power.

In all four simulation scenarios we simulate 2 causal SNPs. The odds ratio of the common and

rarer causal SNPs is always 1.08 and 1.13 respectively. The scenarios simulate different patterns

of linkage disequilibrium (LD) between the causal SNPs, MAFs of the causal SNPs. We aimed to

choose causal SNPs that gave a nonimal marginal power of 80% for each causal SNP at the lower

sample size. However sometimes it was not possible to identify two causal SNPs with the exact

desired MAF and LD and so there is some variation in power around the target 80%. VanLiere and

Rosenberg [2008] showed that if the MAFs of two SNPs satisfy MAF1 > MAF2 then the maximum

r2 value between two SNPs is given by

r2max =
(1−MAF1)×MAF2

(1−MAF2)×MAF1
, (17)
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We report r2max along with the other simulation parameters in Table 1. We simulated 10 replicate

data sets for each scenario considered.

We considered what effect the placement of the two causal SNPs into different prior groups

would have. With two causal SNPs they are either both placed in the same FS score prior group

or in different groups. When determining the percentages of SNPs in each of the four FS score

functional groups we used the same percentages as those observed for the SNPs in the iCOGS data.

These percentages are approximately 2, 5, 31 and 62% for the FS > 0.5, FS= 0.5, FS< 0.5 and

FS=NA groups respectively.

We initially considered all four possible cases when placing the two causal SNPs in the same

FS score prior group, that is both SNPs in each of the four FS score groups separately. However

the results when both were in Group 1 were quite similar to those when they were in Group 2 and

similarly for Groups 3 and 4. As a consequence, when considering both causal SNPs in the same

group we only present results for the cases where both were in Group 1 (FS > 0.5) or both were in

Group 3 (FS < 0.5). These two groups represent the extreme shrinkage groups.

When placing the two causal SNPs in different groups the number of possibilities is much higher

than when they go into the same prior group so we present results only relating to Scenario 4 in

Table 1. This is the moderate LD case. The four cases we considered for LD Scenario 4 are

presented in Table 2. In the iCOGS data 62% of FS scores are missing so in all four scenarios of

Table 2 we assign one of the two causal SNPs to the NA FS score group. In Scenarios 1, 2 and 4

the rare causal SNP resides in the NA FS score group whilst the common causal SNP resides in one

of the remaining three groups. We also wanted to see what effect interchanging the groups of the

rare and common causal SNPs would have, so Scenario 3 swaps the FS score groups of the causal

SNPs specified in Scenario 1.

We want to compare our results to those obtained using other competitive approaches. Previous

results [Benner et al., 2016] indicate that FINEMAP performs very well compared to other recently

proposed multivariate approaches so we choose to compare the performance of our NG method

only with that of FINEMAP, assuming that other methods are unlikely to perform substantially

better. We used the default values of FINEMAP except that we allowed the maximum number of

causal SNPS to be both two and five. Five is the default whilst two is the true number of SNPs in

our simulations. We wanted to see whether FINEMAP would perform better when the maximum
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number of SNPs allowed in FINEMAP was equal to the true number of SNPs in the simulations.

In the next section we present results for the scenarios in Tables 1 and 2. We also present results

from an analysis of the iCOGS consortium [Michailidou et al., 2013] breast cancer case-control SNP

data for a region of the CASPASE 8 gene using our methods and describe how the inclusion of

functional information affects the SNPs selected.

The iCOGS data

The iCOGs array [Michailidou et al., 2013] was designed by the Collaborative Oncological Gene-

environment Study (COGS) for fine-mapping studies. The array includes SNPs that are highly

associated with breast, ovarian and prostate cancer. We focus on the region of Chromosome 2

between base positions 201500074 and 202569992 that includes the CASP8 gene. We apply the

methods on a total of 1733 SNPs with 46450 cases and 42600 controls. Those 1733 SNPs come

from two sources: 501 SNPs are selected out of the 585 SNPs from the Breast Cancer Association

Consortium that passed quality control checks, 1232 SNPs were imputed using IMPUTE2 [Marchini

and Howie, 2010]. The SNPs were considered to be imputed successfully if their imputation accuracy

exceeded 90% [Lin et al., 2015].

Results

Causal SNPs in the same FS score group

Figure 3 shows the results of using the standard NG, the NG with both causal SNPs in the FS> 0.5

group, the NG with both causal SNPs in the FS< 0.5 group and FINEMAP with both two and

five as the maximum number of allowed causal SNPs. The results for all four scenarios in Table 1

are presented. The first observation is that the performance of FINEMAP is more variable than

that of the NG. In Scenario 3, the high LD case, FINEMAP performs very poorly, especially when

there are allowed to be up to five causal SNPs. In Scenario 4, the moderate LD case, FINEMAP

has a lower area under the curve than the standard NG but reaches a TPR of 1 quicker than the

NG. In Scenarios 1 and 2, the low LD case, the performance of FINEMAP improves substantially

with at least one of the FINEMAP models giving the best performance. In Scenario 1 the choice

of a maximum of two causal SNPs in FINEMAP is superior to all other methods. In Scenario 2
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the choice of a maximum of five causal SNPs is competitive with the NG approaches (and reaches

a TPR of one much quicker than the other approaches) but allowing now more than two causal

SNPs leads to a very poor performance.

The results for the NG approaches all follow the same pattern. The standard NG (without

using functional information) is outperformed by the case when both causal SNPs are placed in

the FS< 0.5 group, but the best performance comes from placing both causal SNPs in the FS> 0.5

group. The observation that the standard NG performs less well than when both causal SNPs are

placed in the FS< 0.5 group (Group 3) is surprising. Group 3 is subject to more prior shrinkage

a priori than the standard NG. Presumably the information in the likelihood here dominates the

prior shrinkage. An obvious question at this stage is whether is a consequence of both causal SNPs

residing in the same prior group.

Causal SNPs in different FS score group

Figure 4 shows the results of placing the two causal SNPs in different prior groups (see Table 2) for

LD Scenario 4 (see Table 1). One of the lines in each sub-figure in Figure 4 represents the results

from one of the scenarios in Table 2. In each figure we also show the results for the standard NG,

for the modified NG when placing both causal SNPs in the FS> 0.5 group (representing the best

case scenario), and for FINEMAP with a maximum of two causal SNPs (since Figure 3(d) shows

little difference in the FINEMAP ROC curve with a maximum of two or five causal SNPs allowed).

We see that in all cases placing the two causal SNPs in different prior groups gives a performance

between the performance of the standard NG and the NG with both causal SNPs in Group 1. This

seems particularly surprising in Scenario B since in this scenario the causal SNPs are in groups in

which the prior variance is a mixture distribution (Groups 2 and 4) and there is only one causal SNP

in each of these groups to inform the posterior of the mixture parameters w and h (see Equations

(12) and (14)). It appears that allowing prior groups to have prior effect size variances that are

mixture distributions may afford enough flexibility that even a single signal in a group can increase

the posterior variance sufficiently (relative to groups with no causal SNPs) to boost its rank.
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Detection of SNPs within an LD block

Amajor challenge in fine-mapping is identifying causal variants that are in very high LD with several

non-causal SNPs. To investigate how using functional information might aid this identification we

identified SNPs in high LD (with r2 ≥ 0.8) with a simulated causal SNP and allocated these high

LD SNPs to specific functional groups. We used the simulation parameters in Scenario 4 in Table

1. The causal variant is SNP 46. We consider three different rather extreme scenarios of allocation

to groups and compare it to the not using any functional information. The scenarios are shown in

Table 3. In each scenario all SNPs in the LD block are allocated to either group 1 (FS > 0.5) or

4 (FS = NA). We show the mean rank of each SNP (rank 1 is high) averaged over 10 simulated

datasets. In scenario LD1 no functional groups are used. In scenario LD2 (best case scenario) we

place the causal SNP in group 1 and the other high LD SNPs in group 4. In scenario LD3 (worst

case scenario) we place the non-causal SNP in highest LD with the causal SNP into group 1 and

the other high LD SNPs (including the causal one) into group 4. In scenario LD4 we place the

causal SNP and the SNP most correlated with it into group 1, and the rest of the high LD SNPs in

group 4. In all scenarios the SNPs outside the LD block are randomly placed into FS score groups

according to the distribution of the FS score groups observed in the iCOGS data.

Table 3 shows that the standard normal gamma gives a mean rank for the causal SNP of 12

(there are approximately 280 SNPs being ranked). In the best case scenario (LD2) this jumps to

a mean rank of 4 and in the worst case scenario (LD3) barely drops compared to the standard

normal gamma, yielding a mean rank of 14. In scenario LD4 where the causal SNP and the one

most correlated with it are placed in the same functional group, the causal SNP rank is 6 compared

to 41 for the SNP most correlated with it. All these scenarios indicate that grouping SNPs may

lead to higher ranks for the causal SNP(s) even when they are placed in groups with high shrinkage.

Detection of SNPs in the iCOGS data

We compare the SNPs selected by the standard normal gamma (NG), the NG prior using FS score

groups (NGFS), and FINEMAP. We compare the top 20 SNPs by rank for each method. We use

the same value of M1 = 0.01 and M2 = 0.001 as used in our simulation experiment. In NGFS,

each SNP is placed into its true FS score group. The results of the analysis are shown in Figure 5.
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There is strong agreement between the NG and NGFS but only one SNP (rs2540050) is selected in

the top 20 by all methods (ranked 8th, 5th and 15th in NG, NGFS and FINEMAP resperctively).

This SNP has a MAF of 0.08 and the estimated effect size (odds ratio) is 1.017, derived from the

FINEMAP output. It is interesting to note that rs2540050 was not in the list of likely candidate

causal SNP in either of the two univariate analyses undertaken in this region previously (Spencer

et al. [2015]; Spencer et al. [2016]) even though alternative functional information was used in the

[Spencer et al., 2016] analysis.

R libraries

The R code developed to to implement the methods in this paper is available for download from

http://www.kevinwalters.staff.shef.ac.uk/

Discussion

In this paper we have shown how prior categorical SNP functional genomic information can be

used to inform an absolutely continuous prior in Bayesian fine mapping studies where some SNPs

cannot be assigned to a prior category. This approach could be applied to any Bayesian variable

selection problem where a single variable, which is either categorical or can be made categorical by

binning, is to be used to assign explanatory variables to prior groups. It could also be applied to

studies in which multiple variables are to be used to assign explanatory variables to prior groups

provided each explanatory variable can be assigned to a single category according to some decision

process.

Our approach is to specify an absolutely continuous prior on the effect size and exploit differ-

ential shrinkage to shrink the effect sizes of non-causal SNPs more than those of causal SNPs. It

contrasts with the spike and slab approach which explicitly allows for a non-zero effect size in the

prior spike. The spike and slab approach, whilst seemingly providing a more natural framework

for model selection, comes with its own challenging computational issues: how to search over the

potentially vast model space. The two approaches to this are either to enumerate over all models

containing a small number of causal SNPS (Kichaev et al. [2014a]; Chen et al. [2015]) or to employ

a stochastic search algorithm [Benner et al., 2016]. We have shown that using shrinkage alone,
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without formal model selection via an indicator vector, does compete with these approaches in

terms of causal SNP ranks and allows functional genomic information to be incorporated easily

into the effect size prior.

This shrinkage-only based approach does however raise some issues that do not arise in the

standard Bayesian variable selection approach. The first is the choice of the prior variances for

the different shrinkage groups. This equates to the choice of M1 and M2 in our Inverse-Gamma

distributions for the prior variances. More work needs to be done in using either expert elicitation

or objective approaches to estimating these key quantities. For example, using genome wide in-

formation on the effect sizes of disease-specific validated SNPs stratified by FS score group would

provide objective estimates of the prior variances and hence the values of M1 and M2. However,

there are currently not enough disease-specific validated SNPs with available FS scores to be able

to do this. An additional drawback of the shrinkage-only approach is that the MCMC can be slow

on several thousand SNPs because of the matrix inversion needed in each iteration. However, using

the Cholesky decomposition speeds up this process considerably. This inversion also necessitates

the removal of perfectly correlated SNPs.

One of the obvious attractions of using functional genomic information is that in can be used to

disentangle the true signal from correlated signals in a block of SNPs in high LD. We have shown

that this is indeed the case when using the Normal Gamma prior with different functional groups.

We demonstrate that even when a causal SNP is in a functional group with a priori low probability

of being causal the signal does not diminish significantly compared to its correlated neighbours, and

that the ranks of causal SNPs in functional groups with high a priori probability of being causal

are clearly boosted when functional genomic information is used.
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Appendix: MCMC Full Conditional Distributions

In this section, we will calculate the full conditional distributions of each parameter. Let βij and

ψij represent the effect size and prior variance of the ith SNP in FS score group j respectively.

Further let β represent the vector of all effect sizes across all groups, α represent the intercept and

pj represent the number of SNPs in Group j.

Full conditional distributions for α and β

The full conditional distribution for φ = (α,β)T is an application of the standard result for the

conditional distribution of a random variable with a product of independent normals prior and

multivariate normal likelihood (see for example Griffin et al. [2010]).

f(φ | Λ, φ̂) ∼ N
((

V −1 +Λ
)−1

V −1φ̂,V −1 +Λ
)
, (18)

where Λ−1 = diag (0.1, ψ11, . . . , ψp11, ψ12, . . . , ψp22, ψ13, . . . , ψp33, ψ14, . . . , ψp44).

Full conditional distributions for ψij

The full conditional distribution for ψij is conditional on the FS score group-specific values of λj

and γ−2
j The full conditional comes from the product of prior distributions in Equations (6) and

(7) as follows

f
(
ψij | βij , λj , γ

−2
j

)
∝

1√
ψij

exp

(
−
β2ij
2ψij

)
(ψij)

λj−1 exp

(
−
ψij
2γ2j

)
(19)

∝ (ψij)
(λj−

1

2
)−1 exp

{
−
1

2

(
γ−2
j ψij +

β2ij
2ψij

)}
. (20)

The expression is the kernel of a generalised inverse Gaussian (GIG) distribution with λj −
1
2 , γ

−2
j

and β2ij .

Full conditional distributions for λj

We show in detail how to derive the full conditional distribution for λ1. The remaining full condi-

tional distributions for λ2, λ3 and λ4 are similar. Because of the multi-modal posterior we follow
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the approach of Griffin et al. [2010] and ensure the same prior variance is used in the Metropolis-

Hastings ratio. As a result we need to consider all terms in the joint distribution containing either

λ1 or γ−2
1 . We use Equations (7) - (9) to obtain

f
(
λ1 | ψ11, . . . , ψp11, γ

−2
1

)
∝

(

1

2γ2
1

)p1λ1

Γ(λ1)
p1 (

∏p1
i=1ψi1)

λ1−1
exp

(
−
∑p1

i=1
ψi1

2γ2
1

)(
1

2λ1γ21

)(
1
λ1

)
exp

(
−M1

2λ1
γ−2
1

)
π (λ1) .

With 2λ′1γ
′
1
2 = 2λ1γ

2
1 we derive the acceptance probability for λ′1 as

min

{
1,
λ1π (λ

′
1)

λ′1π (λ1)

(
Γ (λ1)

Γ (λ′1)

)p1
exp

((
1

2γ21
−

1

2γ′21

) p1∑

i=1

ψi1

) (
2γ21
)p1λ1

(
2γ′21

)p1λ′1
(∏p1

i=1
ψi1

)λ′
1
−λ1

}
. (21)

An identical approach for j = 3 gives the same as Equation (21) with λ1, γ
−2
1 , ψi1 and p1 replaced

with λ3, γ
−2
3 , ψi3 and p3. For j = 2 we use Equation (12) to derive

γ−2
2 | λ2, w ∼ wGa

(
2,
M1

2λ2

)
+ (1− w)Ga

(
2,
M2

2λ2

)

Applying the same approach to that used in deriving Equation (21) we find, after some algebra,

that with 2λ′1γ
′
1
2 = 2λ1γ

2
1 the acceptance probability is the same as Equation (21) with λ1, γ

−2
1 ,

ψi1 and p1 replaced with λ2, γ
−2
2 , ψi2 and p2. For j = 4 we simply replace λ1, γ

−2
1 , ψi1 and p1 with

λ4, γ
−2
4 , ψi4 and p4 in Equation (21).

Full conditional distributions for γ−2
j

Let Sj = pjλj + 2 and Ajk =
1
2

(
Mk

λj
+
∑pj

i=1 ψij

)
. The full conditional distribution of γ−2

1 is

f
(
γ−2
1 | ψ11, . . . , ψp11, λ1

)
∝

(
γ−2
1

)p1λ1
exp

(
−

∑p1
i=1ψi1
2

γ−2
1

)
× γ−2

1 exp

(
−
M1

2λ1
γ−2
1

)

∝
(
γ−2
1

)S1−1
exp

(
−A11γ

−2
1

)
. (22)

which is the kernel of a gamma distribution with shape S1 and rate A11. A similar argument for

j = 3 gives the full conditional distribution of γ−2
3 as a gamma distribution with shape S3 and scale



21

A32. For (j = 2) the full conditional distribution can be calculated as follows

f
(
γ−2
2 | . . .

)
∝

(
γ−2
2

)p2λ2
exp

(
−

∑p2
i=1ψi2
2

γ−2
2

){
wM2

1γ
−2
2 exp

(
−
M1

2λ2
γ−2
2

)}

+
(
γ−2
2

)p2λ2
exp

(
−

∑p2
i=1ψi2
2

γ−2
2

){
(1− w)M2

2γ
−2
2 exp

(
−
M2

2λ2
γ−2
2

)}

∝ wM2
1

(
γ−2
2

)S2−1
exp

(
A21γ

−2
2

)
+ (1− w)M2

2

(
γ−2
2

)S2−1
exp

(
A22γ

−2
2

)

∝
wM2

1

AS2

21

[
AS2

21

Γ (S2)

(
γ−2
2

)S2−1
exp

(
A21γ

−2
2

)
]

+
(1− w)M2

2

AS2

22

[
AS2

22

Γ (S2)

(
γ−2
2

)S2−1
exp

(
A22γ

−2
2

)
]

So it follows that

γ−2
2 | ψi2, λ2, w ∼ AS2

22wM
2
1 Ga (S2, A21) +AS2

21 (1− w)M2
2 Ga (S2, A22)

∼ ∆1 Ga (S2, A21) + (1−∆1) Ga (S2, A22) ,

where ∆1 =

(
A

S2

22
wM2

1
+A

S2

21
(1−w)M2

2

A
S2

22
wM2

1

)−1

=

(
1 +

(
1−w
w

) (
M2

M1

)2 (
A21

A22

)S2

)−1

.

An identical approach gives γ−2
4 | ψi4, λ4, h ∼ ∆2 Ga (S4, A41) + (1−∆2) Ga (S4, A42), where

∆2 =

(
1 +

(
1−h
h

) (
M2

M1

)2 (
A41

A42

)S4

)−1

.

Full conditional distributions for w and h

Let Ek represent the probability density fXk|λ2

(
Xk = γ−2

2

)
, where Xk|λ2 ∼ Ga

(
2, Mk

2λ2

)
and Gk

represent the probability density fYk|λ4
(
Yk = γ−2

4

)
, where Yk|λ4 ∼ Ga

(
2, Mk

2λ4

)
. Then

f
(
w | λ2, γ

−2
2

)
=

[
wE1 + (1− w)E2

]
π (w)

∝ w3−1 (1− w)2−1E1 + w2−1 (1− w)3−1E2

Let ∆ = E1/ (E1 + E2), then the full conditional distribution for w is given by

w | λ2, γ
−2
2 ∼ ∆ Beta (3, 2) + (1−∆)Beta (2, 3) .
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With Ω = G1/ (G1 + 4G2), a similar argument gives

h | λ4, γ
−2
4 ∼ Ω Beta (2, 4) + (1− Ω)Beta (1, 5) ,

Figure Legends

Figure 1: Histogram of the relative univariate shrinkage factors of the breast cancer top hits cal-

culated using M1 = 0.01 and M2 = 0.001 with 16,000 cases and 16,000 controls.

Figure 2: The log prior π (β) for M1 = 0.01 and M2 = 0.001 with λ = 1/148 and γ2 fixed such that

the expected prior variance 2λγ2 is equal to M1 or M2.

Figure 3 main: ROC curves for FINEMAP (with both two and five as the maximum number of

allowed causal SNPs) and approaches using the maximum posterior credible interval size with a

NG prior hierarchy. Both the standard NG (with M = 0.01) and the NG prior with different prior

shrinkage groups (M1 = 0.01 andM2 = 0.001) are shown. The methods are applied to 10 simulated

datasets from Hapgen2 with the two causal SNPs having odds ratios of 1.08 and 1.13. The MAFs

and LD between the causal SNPs are given in Table 1. In the modified NG prior approach both

causal SNPs are always in the same functional group; either both in Group1 (FS > 0.5) or Group3

(FS < 0.5). Each dataset has 16000 cases and 16000 controls. The numbers of SNPs in groups 1

to 4 are 8, 15, 89, 170 respectively.

Figure 4 main: ROC curves for FINEMAP (with both two and five as the maximum number of

allowed causal SNPs) and approaches using the maximum posterior credible interval size with a

NG prior hierarchy. Both the standard NG (with M = 0.01) and the NG prior with different prior

shrinkage groups (M1 = 0.01 andM2 = 0.001) are shown. The methods are applied to 10 simulated

datasets from Hapgen2 with the two causal SNPs having odds ratios of 1.08 and 1.13. Each dataset

has 16000 cases and 16000 controls. The r2 value is 34% of its maximum possible based on the

allele frequencies. The two causal SNPs are either placed in the same FS scores group or in different

FS scores groups. The numbers of SNPs in FS score groups 1 to 4 are 6, 15, 89 and 177 respectively.
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Figure 5: A venn diagram showing the overlap of the top 20 SNPs selected in an analysis of the

iCOGs data using the standard NG prior (NG), the NG prior using FS score groups (NGFS), and

FINEMAP. In NGFS, each SNP is placed into its true FS score group. The iCOGs data has 1733

genotpyed and imputed SNPs and 46450 cases and 42600 controls.

Scenario

1 2 3 4

r2/r2max between causal SNPs 0.03 8× 10−5 0.66 0.34

Causal SNP 1 MAF 0.28 0.3 0.28 0.31

Causal SNP 2 MAF 0.09 0.06 0.07 0.1

Causal SNP 1 power 0.77 0.8 0.77 0.82

Causal SNP 2 power 0.79 0.4 0.55 0.87

Table 1. Simulation parameters for the two causal SNPs. Genotypes were simulated for 16000
cases and 16000 controls. The odds ratios of the common (SNP 1) and rarer (SNP 2) causal SNPs
are 1.08 and 1.13 respectively.
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Scenario Common Causal SNP Group Rare Causal SNP Group

A Group 1 (FS > 0.5) Group 4 (FS = NA)

B Group 2 (FS = 0.5) Group 4 (FS = NA)

C Group 4 (FS = NA) Group 1 (FS > 0.5)

D Group 3 (FS < 0.5) Group 4 (FS = NA)

Table 2. Four Scenarios for placing the common and rare causal SNPs into different FS score
groups.

Scenario SNP 25 30 34 46 47 48 58 65 71

r2 with SNP 46 0.83 0.81 0.83 1 0.9 0.84 0.8 0.82 0.82

LD1 Mean Rank 172 112 132 12 76 98 215 158 164

LD2 Functional Group 4 4 4 1 4 4 4 4 4

Mean Rank 132 96 110 4 65 91 198 207 218

LD3 Functional Group 4 4 4 4 1 4 4 4 4

Mean Rank 134 90 113 14 44 101 204 195 196

LD4 Functional Group 4 4 4 1 1 4 4 4 1

Mean Rank 154 110 129 6 41 113 206 140 193

Table 3. The mean SNP rank over 10 simulated datasets for Scenario 4 in Table 1 for SNPs in
high LD (r2 ≥ 0.8) with the causal SNP (SNP 46). SNPs in the LD block are placed in different
functional groups in each scenario. In scenario LD1 no functional groups are used.
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(a) Scenario 1 (Low LD).
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(b) Scenario 2 (Low LD).
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(c) Scenario 3 (High LD).
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(d) Scenario 4 (Moderate LD).

Figure 3
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(b) Scenario B
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(c) Scenario C
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(d) Scenario D

Figure 4



28

Figure 5


