
 

1 
 

Antimicrobial peptide novicidin synergises with rifampicin, ceftriaxone and ceftazidime against 1 

antibiotic-resistant Enterobacteriaceae in vitro 2 

 3 

Odel Sorena*, Karoline Sidelmann Brinchb, Dipesh Patela, Yingjun Liua, Alexander Liuc, Anthony 4 

Coatesa and Yanmin Hua# 5 

 6 

Institute for Infection and Immunity, St George’s, University of London, London, United Kingdoma. 7 

Novozymes A/S, Bagsvaerd, Denmarkb. John Radcliffe Hospital, University of Oxford, Oxford, 8 

United Kingdomc.  9 

 10 

#Address correspondence to Yanmin Hu, ymhu@sgul.ac.uk 11 

*Present address: Centre for Biological Sciences, University of Southampton, United Kingdom. 12 

 13 

Running title: Novicidin Enhancement 14 

Key words: Enterobacteriaceae, novicidin, antibiotic combination, rifampicin, ceftriaxone, 15 

ceftazidime 16 

ABSTRACT  17 

The spread of antibiotic resistance amongst Gram-negative bacteria is a serious clinical threat and 18 

infections with these organisms are a leading cause of mortality worldwide.  Traditional novel drug 19 

development inevitably leads to the emergence of new resistant strains, rendering the new drugs 20 

ineffective. Therefore, reviving the therapeutic potentials of existing antibiotics represents an 21 

attractive novel strategy. Novicidin, a novel cationic antimicrobial peptide, is effective against Gram-22 

negative bacteria. Here, we investigated novicidin as a possible antibiotic enhancer. The actions of 23 

novicidin in combination with rifampicin, ceftriaxone and ceftazidime were investigated against 94 24 

AAC Accepted Manuscript Posted Online 27 July 2015
Antimicrob. Agents Chemother. doi:10.1128/AAC.01245-15
Copyright © 2015, American Society for Microbiology. All Rights Reserved.

 on M
ay 24, 2019 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St George's Online Research Archive

https://core.ac.uk/display/200760457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aac.asm.org/


 

2 
 

antibiotic resistant clinical Gram-negative isolates and 7 strains expressing New Delhi metallo-β-25 

lactamase-1 (NDM-1). Using the chequerboard method, novicidin combined with rifampicin showed 26 

synergy with over 70% of the strains, reducing the minimum inhibitory concentrations (MIC) 27 

significantly. The combination of novicidin with ceftriaxone and ceftazidime was synergistic against 28 

89.7% of ceftriaxone-resistant strains and 94.1% of ceftazidime-resistant strains.  Synergistic 29 

interactions were confirmed using time kill studies with multiple strains. Furthermore, novicidin 30 

increased the post-antibiotic effect (PAE) when combined with rifampicin or ceftriaxone. Membrane 31 

depolarisation assays revealed that novicidin alters the cytoplasmic membrane potential of Gram-32 

negative bacteria. In vitro toxicology tests showed novicidin to have low haemolytic activity and no 33 

detrimental effect on cell cultures. We demonstrated that novicidin strongly rejuvenates the 34 

therapeutic potencies of ceftriaxone or ceftazidime against resistant Gram-negative bacteria in vitro. 35 

In addition, novicidin boosted the activity of rifampicin. This strategy can have major clinical 36 

implications in our fight against antibiotic resistant bacterial infections.  37 

INTRODUCTION  38 

Bacterial infections remain one of the leading causes of death worldwide. The ever escalating problem 39 

of antibiotic resistance leads to the redundancy of many antibiotics, resulting in increased morbidity 40 

and mortality in both developed and developing countries. In particular, the effectiveness of 41 

antimicrobial agents against Gram-negative pathogens, for example Enterobacteriaceae, are being 42 

compromised at an alarming rate (1).  43 

Bacteria in the Enterobacteriaceae family cause an arsenal of serious infections including pneumonia, 44 

wound infections, meningitis, urinary tract infections, intra-abdominal infections (1) and nosocomial 45 

bacteriema (2). Extended spectrum β-lactamase (ESBL) producing strains now predominate in many 46 

areas, conferring resistance to cephalosporins and remaining sensitive only to carbapenems and the 47 

older, more toxic polymyxin antibiotics such as colistin (3). Furthermore, since 2007, infections with 48 
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New Dehli metallo-β-lactamase 1 (NDM-1) producing ‘superbugs’ have emerged. For these infections 49 

virtually all antibiotics, including carbapenems, are ineffective. Most NDM-1 strains are usually 50 

susceptible only to ‘last line’ drugs like colistin, which exhibits nepro- and neuro-toxicity (4), and the 51 

bacteriostatic glycylcycline tigecycline (5). The most optimal strategy to overcome resistant infections 52 

is to use novel antimicrobial agents. However, the traditional strategy of antibiotic discovery cannot 53 

maintain pace with the rapid rate of resistance emergence and resistance occurs just a few years after 54 

market release (6). In addition, the discovery of novel antibiotics is costly and arduous which means 55 

producing large numbers of antibiotic classes within a short period of time is extremely challenging 56 

(7-9).  57 

Reviving the potency of existing antibiotics by combining them with novel agents is an extremely 58 

desirable strategy to tackle resistance (10).  Antimicrobial peptides, in particular those targeting the 59 

bacterial cell envelope, have been shown to synergise with conventional antibiotics (11). The dual 60 

action of weakening of the cell envelope and increasing permeability may allow the intracellular 61 

antibiotic concentration to reach a lethal dose, which is unachievable by the antibiotic alone. 62 

Furthermore, the use of multiple agents in combination may reduce or retard the emergence of 63 

resistance to the individual antimicrobial components (10, 12).  64 

It has been suggested that novicidin, a novel 18-residue cationic antimicrobial peptide, acts by 65 

inserting itself into the head group region of the selectively targeted bacterial membrane bilayer. This 66 

subsequently causes membrane perturbation, transient pore formation, and is bactericidal via the 67 

resulting leakage of bacterial cell contents (13-15). Significant antimicrobial effects have been noted 68 

with several Gram-negative organisms, such as Escherichia coli and Salmonella enterica (15). 69 

Novicidin was developed from ovispirin, which in turn originated from an ovine cathelicidin known 70 

as sheep myeloid antimicrobial peptide (SMAP)-29 (13). This derivement allowed for construction of 71 

a peptide more suitable for use as a therapeutic agent (14). 72 
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In this study, we aimed to investigate the effects of novicidin in combination with conventional 73 

antibiotics, namely rifampicin and third generation cephalosporins, ceftriaxone and ceftazidime, 74 

against 101 Gram-negative strains including resistant E. coli and bacteria in the Klebsiella-75 

Enterobacter-Serratia (KES) group. Additionally, investigations were carried out to determine the 76 

mechanism of action, haemolytic activity and cytotoxicity of novicidin. 77 

MATERIALS AND METHODS 78 

Bacterial strains and growth conditions. Bacterial strains used were 94 antibiotic resistant Gram-79 

negative clinical isolates including 61 E. coli and 33 isolates in the KES group from St Georges 80 

Hospital, London. In addition, 7 strains harbouring the blaNDM plasmid were used: ATCC BAA-2468, 81 

BAA-2469, BAA-2470, BAA-2471, BAA-2472 and BAA-2473 and NCTC 13443. Strain ATCC 82 

BAA-2468 is identified as Enterobacter cloacae; ATCC BAA-2469 and BAA-2471 as E. coli; and 83 

ATCC BAA-2470, BAA-2472, BAA-2473 and NCTC 13443 as Klebsiella pneumoniae. Bacterial 84 

strains were grown in nutrient broth no. 2 (Oxoid, UK) and on tryptone soya agar plates (Oxoid, UK). 85 

Antibiotics used were as follows: rifampicin (Sanofi), ceftriaxone (Stravencon), ceftazidime 86 

(Wockhardt), cefixime (Suprax) and cefotaxime (Reig Jofre). Antibiotics were prepared in water or 87 

the provided solvent to an appropriate concentration. Novicidin was kindly provided by Novozymes 88 

A/S, Denmark. 89 

In vitro susceptibility of novicidin and antibiotics. The minimum inhibitory concentration (MIC) of 90 

novicidin, rifampicin, ceftriaxone, ceftazidime, cefixime and cefotaxime for the 101 strains were 91 

calculated using the broth micro dilution method. The MIC for each agent was identified as the lowest 92 

concentration required to inhibit bacterial growth. The MIC50 and MIC90 were calculated, defined as 93 

the lowest concentration required to inhibit growth in 50% and 90% of the strains respectively.  94 

Chequerboard assays to measure combination effects of novicidin and antibiotics. The 95 

chequerboard assay method was used for the measurement of combination effects of novicidin with 96 
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the antibiotics.  Combinations of two drugs were prepared in 96 well plates (Fisher Scientific UK) 97 

using drug concentrations starting from two fold higher than their MIC values, then serially diluted in 98 

a two-fold manner. After addition of a log-phase bacterial inoculum of 1-5 x 105 colony forming units 99 

(CFU)/ml, plates were incubated at 37°C for 24 hours. and then read using ELx800 absorbance 100 

microplate reader (BioTek). The effects of the combinations were examined by calculating the 101 

fractional inhibitory concentration index (FICI) of each combination as follows: (MIC of drug A, 102 

tested in combination)/(MIC of drug A, tested alone) + (MIC of drug B, tested in combination)/(MIC 103 

of drug B, tested alone). The profile of the combination was defined as synergistic if the FICI was 104 

≤0.5, indifferent if the FICI was >0.5 but ≤4.0 and antagonistic if the FICI was >4 (16). 105 

Time kill curves of antibiotics alone and in combination with novicidin. Two-fold serial drug 106 

dilutions were prepared and added to a 96-well plate alone and in combination, and incubated at 37°C 107 

with a log-phase bacterial inoculum of 1-5 × 107 CFU/ml.  At 0, 1, 2, 4, 7 and 24 hours of incubation, 108 

viability expressed as CFU/ml was determined by plating 100 µl of serial dilutions onto tryptone soya 109 

agar (Oxoid) plates followed by incubation at 37°C for 24 hours. Colonies were counted using 110 

aCOLyte colony counter (Synbiosis) and analysed using the accompanying software. Synergistic 111 

activity was defined as a ≥2-log10 decrease in CFU counts at 24 hours of the combination compared 112 

with the most effective single agent, in addition to ≥2-log10 decrease compared with the 0 hour count. 113 

Indifference was defined as a ≤1-log10 fold change in CFU counts, and antagonism as a ≥2-log10 114 

increase in CFU at 24 hours, of the combination compared with the most effective single agent (17). 115 

Measurement of bacterial cytoplasmic membrane potential. The permeability of the bacterial 116 

cytoplasmic membrane after drug treatment was assessed using a fluorescence assay as previously 117 

described (18, 19).  Log-phase cultures were washed twice and resuspended in a rejuvenating buffer 118 

(5 mM HEPES, pH 7.2, 20mM glucose) to an optical density of 0.05 at 600 nm. Membrane potential 119 

sensitive dye DiSC3(5) (3’3-Dipropylthiadicarbocyanine iodide, Sigma) was added to the resuspended 120 

cells to a final concentration of 0.4 µM and incubated until a stable reduction in fluorescence was 121 
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achieved as a result of DiSC3(5) uptake and cell quenching due to an intact membrane. 100 mM of 122 

KCl was added to equilibrate the K+ ion concentration intra- and extracellularly. The bacterial cell 123 

suspension was added to a 96-well microtitre plate, followed by addition of drugs in triplicate. 124 

Fluorescence was measured using GloMax-Multi+ microplate reader (Promega) at an excitation 125 

wavelength of 622 nm and an emission wavelength of 670 nm. Any drug induced disruption of the 126 

cytoplasmic membrane resulted in an increase in measurable florescence. 127 

Post-Antibiotic Effect (PAE) of antibiotics alone and in combination with novicidin. Bacteria 128 

were cultured overnight at 37°C in nutrient broth. 1 ml of the culture was transferred to fresh nutrient 129 

broth medium containing single or combinatory drugs. For the single drugs, 2, 5 or 10 fold higher than 130 

MIC values of the drug were utilised. For the combinations, 5 fold higher than the minimal 131 

enhancement concentrations of both drugs were selected according to the chequerboard results.  After 132 

1 hour of drug exposure, the cultures were washed three times to remove the antimicrobial agents. The 133 

bacterial cells were resuspended into nutrient broth and grown at 37°C with continuous shaking at 100 134 

rpm.  Bacterial viability was determined by CFU counting at 0, 1, 2, 3, 4, 6 and 8 hours.  The PAE 135 

was calculated as follows: PAE = T – C, whereby T= time taken for drug exposed culture to increase 136 

by 1 log CFU counts, and C = time taken for control culture to increase by 1 log CFU counts (20). 137 

Ex vivo haemolysis assay. A venous blood sample from a male human donor was collected shortly 138 

before testing. 10 µl aliquots of the heparinized blood were added to 0.5 ml of saline solution (0.9% 139 

NaCl) containing different concentrations of novicidin in triplicate. After 1 hour of incubation at 140 

37°C, the mixtures were centrifuged for 5 minutes at 5000 × g to sediment intact cells. The 141 

supernatants were isolated and the absorbance values were measured at a wavelength of 545 nm. 142 

Haemolysis of novicidin was analysed against negative (0% lysis) and positive controls (100% lysis) 143 

to calculate the percentage of haemolysed cells, using the formulae as follows: haemolysis = (ODtest - 144 

ODnegative control) / (ODpostitive control – ODnegative control) x 100.  An ethic approval (H-D-2007-0055) was 145 

obtained from Danish National Committee on Health Research Ethics for using human blood.  146 
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Assessment of cytotoxicity using neutral-red uptake assay. To assess the effects of cytotoxicity of 147 

novicidin, the L929 mouse fibroblast cell line was utilised. Cells were grown in Eagle’s minimum 148 

essential medium (EMEM) with 10% foetal bovine serum (EBS) to 80% confluence. Adherent cells 149 

were harvested and seeded at a concentration 5 × 105 cells per well into a 96 well microtitre plate 150 

which was incubated for 24 hours at 37°C. Different concentrations of novicidin were added to the 151 

cells and incubated at 37°C for 24 and 72 hours. Neutral red (25 mg/L) was added post treatment for 3 152 

hours at 37°C and removed by washing the cells twice with phosphate buffered saline containing 153 

CaCl2/MgCl2.  Intracellular neutral red was extracted using neutral red removal solution (50% ethanol, 154 

1% acetic acid and 49% water) for 15 minutes.  Neutral red uptake was measured at 540 nm and cell 155 

viability was determined as percentage of the untreated control.  Sodium dodecyl sulphate (SDS) was 156 

used as a positive control. 157 

RESULTS 158 

In vitro susceptibility of novicidin and the antibiotics. The MIC for novicidin, rifampicin, 159 

ceftriaxone, ceftazidime, cefixime and cefotaxime were assessed for the 94 Gram-negative clinical 160 

isolates and 7 NDM-1 strains. As shown in Table 1, the MIC for novicidin for the 101 strains ranged 161 

from 1 to 8 mg/L with an MIC50 and MIC90 at 2 and 4 mg/L, respectively. The MIC for rifampicin 162 

varied between 4 to >1024 mg/L. The MIC50 and MIC90 were 16 mg/L and 64 mg/L, respectively. 163 

The MIC for ceftriaxone, ceftazidime, cefixime and cefotaxime ranged between 0.03125 and 2048 164 

mg/L. The MIC50 and MIC90 were 1024 and 2048 mg/L for ceftriaxone, 128 and 1024 mg/L for 165 

ceftazidime, 256 and  2048 mg/L for cefixime, and 512 and 2048 mg/L for cefotaxime, respectively.   166 

Chequerboard analysis of combination effects. The combination effects of novicidin combined 167 

with rifampicin, ceftriaxone and ceftazidime were determined using the broth microdilution 168 

chequerboard assay against 94 clinical isolates and 7 NDM-1 strains. The FIC indices for the 169 

combinations are shown in Table 2. The combination of novicidin with rifampicin was shown to have 170 
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synergistic activity with over 70% of both E. coli and isolates in KES group, with FIC indices 171 

between 0.018 and 0.5. In addition, the combination was shown to have synergistic effects with all 7 172 

NDM-1 strains. Novicidin reduced the MIC of rifampicin between 2 to 512-fold, with the majority of 173 

strains exhibiting 4 or 8-fold reductions in MIC values (Supplementary Table 1, 2 and 3). Novicidin 174 

combined with ceftriaxone showed synergy with 57.4% of the E. coli strains and 69.7% of isolates in 175 

KES group. The combination of novicidin with ceftazidime presented synergy with 63.9% of the E. 176 

coli strains and 78.8% of isolates in KES group. The FIC indices for the NDM-1 strains were unable 177 

to be determined as the MIC for ceftriaxone and ceftazidime was higher than the maximum achievable 178 

chequerboard concentration of 2048 mg/L. As revealed in Table 3, synergistic activities were shown 179 

in the majority (89.7%) of the ceftriaxone-resistant strains compared to a minority of the ceftriaxone-180 

sensitive strains (16.7%). A similar pattern was observed with the novicidin and ceftazidime 181 

combination, whereby synergy was seen in 94.1% of resistant strains compared with 3.8% of sensitive 182 

strains. Novicidin reduced the MIC of ceftriaxone or ceftazidime between 2 to more than 2048-fold 183 

(Supplementary Table 1 and 2). 184 

Time kill assays confirming synergy of novicidin combined with rifampicin, ceftriaxone or 185 

ceftazidime. Time kill assays were performed to examine the activities of novicidin in combination 186 

with rifampicin, ceftriaxone and ceftazidime against 5 strains of E. coli and KES group clinical strains 187 

which represented an FIC index <0.5 for each drug combination. The combination of rifampicin and 188 

novicidin was also tested against the 7 NDM-1 strains. A range of different concentrations was tested 189 

according to chequerboard analysis and the most effective and synergistic activities are shown. As 190 

seen in Figure 1, rifampicin at 2 mg/L (Fig. 1A and Fig. 1B) and at 256 mg/L (Fig. 1C and 1D) failed 191 

to reduce the viability of the clinical isolate and the NDM-1 E. coli, novicidin at 0.5 or 0.25 mg/L 192 

(Fig. 1A and 1B) and at 4 or 2 mg/L (Fig. 1C and 1D) showed initial kill of the bacteria but regrowth 193 

was seen. However, when rifampicin at 2 mg/L combined with novicidin at 0.5 (Fig. 1A) or 0.25 (Fig. 194 

1B) mg/L, 100% kill of the E. coli cells was achieved at 2 and 4 hours post treatment, respectively.  195 
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Similarly, when rifampicin at 256 mg/L combined with novicidin at 4 (Fig. 1C) or 2 (Fig. 1D) mg/L, 196 

complete kill of the NDM-1 E. coli was seen at 4, 7 and 24 hours post treatment, respectively.  There 197 

were significant differences in the reduction of CFU counts between the combination of novicidin 198 

with rifampicin and each of the single drug (rifampicin or novicidin) treatment (P<0.0001).   199 

Novicidin and ceftriaxone combinations were tested against ceftriaxone resistant E. coli and KES 200 

group clinical isolates.  As seen in Fig. 1E, 1F, 1G and 1H, ceftriaxone at 2048 mg/L was unable to 201 

reduce the CFU counts of both strains. However, when novicidin was added in the culture at 1 or 0.5 202 

mg/L and 2 or 1 mg/L, the bacterial cells were rapidly killed showing 100% reduction in CFU count at 203 

2 or 4 hours post treatment for the E. coli isolate respectively (Fig. 1E and 1F), and at 1 or 2 hours 204 

post treatment for the KES group strain (Fig. 1G and 1H) respectively, demonstrating significant 205 

synergy. There were significant differences in the reduction of CFU counts between combination of 206 

novicidin with ceftriaxone and each of the single drug (ceftriaxone or novicidin) treatment 207 

(P<0.0001). The ability of novicidin enhancement to rifampicin or ceftriaxone was also compared 208 

with another defensin, plectasin which was neither bactericidal on its own nor boosting the activity of 209 

rifampicin (Fig. 1I) or ceftriaxone (Fig. 1J) against Gram-negative bacteria to validate the assay. 210 

Similar patterns of combination activities were observed for the strains tested when novicidin was 211 

combined with ceftazidime (data not shown). 212 

Membrane permeabilising effects of novicidin against E. coli and KES group isolates. The effects 213 

of novicidin at the cytoplasmic bacterial membrane with both E. coli and an isolate from the KES 214 

group were investigated with fluorescence assays. Immediately after novicidin exposure, a sharp 215 

concentration dependent increase in fluorescence occurs with the E. coli strain (Fig. 2) indicating 216 

disruption of the bacterial membrane which led to the leakage of the fluorescent dye. A similar effect 217 

was observed when novicidin was used to treat the strain in the KES group despite only high 218 

concentrations of novicidin such as 64 and 32 mg/L resulting in an increase in fluorescence (data not 219 

shown).   220 
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Post-antibiotic effect of novicidin and novicidin-antibiotic combinations. The PAE of novicidin, 221 

rifampicin or ceftriaxone singly and in combination was determined; rifampicin was used at 5-fold 222 

higher than the MIC level and ceftriaxone at 10-fold higher than the MIC level. As novicidin was 223 

rapidly bactericidal at 5-fold higher than its MIC concentration, 2-fold higher than MIC level was 224 

used to induce the PAE. Due to their enhanced synergistic activities, the same concentrations for 225 

novicidin and rifampicin or ceftriaxone used singly for PAE induction would completely kill all the 226 

bacterial cells within 1 hour if combined. Therefore, to induce PAE with combination treatment, 5-227 

fold higher than the minimal enhancement concentrations for novicidin and rifampicin or ceftriazone 228 

were used, chosen from chequerboard results. As shown in Fig. 3A, the PAE of both novicidin and 229 

rifampicin was estimated as 52.8 minutes for the E. coli strain.  The novicidin and rifampicin 230 

combination doubled the PAE to 121.8 minutes despite substantially lower concentrations being used 231 

(P<0.0001).  As shown in Fig. 3B, the PAE of novicidin was 84 minutes and ceftriaxone produced no 232 

PAE. The novicidin and ceftriaxone combination exhibited a prolonged PAE of 117 minutes 233 

(P<0.0001).     234 

Haemolytic effects of novicidin. Haemolysis of novicidin was tested using human blood. As shown 235 

in Table 4, at the lowest tested novicidin concentration of 125 mg/L, haemolysis occurred at a rate of 236 

4.4% ranging up to 19.9% at the highest tested concentration of 1000 mg/L. The 50% haemolytic 237 

concentration could not be accurately predicated due to the non-linear correlation between novicidin 238 

concentration and haemolysis, however is shown to be >1000 mg/L from the current data. 239 

Extrapolation provides an estimate of between 2500 and 3000 mg/L.  100% haemolysis was seen 240 

when the blood was added into distilled water (Table 4). The experiments were repeated twice with 241 

reproducible results.  242 

Determination of cytotoxicity by neutral-red uptake. To assess the cytotoxicity of novicidin, 243 

neutral-red uptake was measured after treatment of the murine fibroblasts with different 244 

concentrations of novicidin. As seen in Table 5, cell viability was well conserved and remained 245 
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between 93% to 99% after 24 hours of novicidin exposure, and 98% to 102% after 72 hours exposure 246 

for all tested concentrations. This indicates low levels of general cytotoxicity even with prolonged 247 

exposure. SDS was used as a positive control: concentrations of 80, 100 and 120 mg/L reduced cell 248 

viability to 80%, 9% and 0% at 24 hours and 55%,  0% and 0% at 72 hours, respectively, confirming 249 

the validity of the assay. The experiments were repeated twice with reproducible results.  250 

DISCUSSION 251 

Novicidin is a newly derived antimicrobial peptide. In this study, we demonstrated for the first time 252 

that novicidin synergised with rifampicin and third generation cephalosporins (ceftriaxone and 253 

ceftazidime) against Gram-negative antibiotic-resistant bacterial strains in vitro. The 94 clinical 254 

isolates from the Enterobacteriaceae family covered a broad host distribution in the South London 255 

area and the 7 NDM-1 strains represented the most resistant type of Gram-negative bacteria.  Most of 256 

the ceftriaxone and ceftazidime resistant bacteria were also resistant to cefotaxime and cefixime 257 

indicating these were ESBL producing strains.  258 

Rifampicin is an important component of the combination regimen used for the treatment of 259 

tuberculosis and many  Gram-positive bacterial infections (21). Rifampicin is not considered to be 260 

standard treatment for Enterobacteriaceae infections, and thus a breakpoint for resistance is not 261 

available. Our results showed that the MIC50 and MIC90 for rifampicin were 16 and 32 mg/L, 262 

respectively. Recently, rifampicin has been introduced in combination therapy for the treatment of 263 

infections caused by multi-drug resistant Gram-negative bacteria (22, 23). Our chequerboard analysis 264 

reveals that the combination of novicidin and rifampicin showed synergistic effects with over 70% of 265 

the tested strains with marginally higher effectiveness with the bacterial strains in KES group 266 

compared with E. coli. Novicidin was able to revive the activity of rifampicin by reduction of 267 

rifampicin MIC between 2 to 512 fold. The combination was also synergistic with all of the strains 268 

harbouring NDM-1 plasmids. Synergistic activity of novicidin with rifampicin was confirmed using 269 
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time kill assays, a method allowing for a more dynamic analysis of bactericidal and combinatorial 270 

effects. Time kill assays were performed with multiple strains, repeatedly demonstrating that at 271 

concentrations at which both novicidin and rifampicin were ineffective alone, when combined, rapid 272 

bactericidal activities were seen with 100% elimination of the bacterial cells within a few hours of 273 

drug exposure, which substantially speeded up the treatment duration. Rifampicin alone required 274 

higher concentrations such as 128 mg/L to completely eradicate E. coli cells in culture (data not 275 

shown) and this concentration was only able to reduce the CFU counts of a KES group strain by 2 276 

logs (data not shown). However when combined with novicidin at 0.5 or 1 mg/L, rifampicin at 277 

concentrations of just 2 mg/L killed 100% of the bacterial cells at 4 or 2 hours post treatment (Fig. 1A 278 

and 1B).  The combination was also able to enhance the activities of rifampicin against the NDM-1 279 

strains (Fig. 1C and 1D), however required high rifampicin concentrations.  280 

Novicidin also enhanced the activities of ceftriaxone and ceftazidime. Interestingly, the majority of 281 

synergy was observed with those strains showing resistance to ceftriaxone or ceftazidime. This was 282 

also confirmed with time kill assays tested against multiple strains. Ceftriaxone has a long half-life 283 

and is used to treat septicaemia, pneumonia, meningitis and urinary tract infections. Clinical 284 

pharmacokinetic data revealed that after a single intravenous injection of a standard 2000 mg dose, the 285 

plasma Cmax was approximately 257 mg/L and at 24 hours post administration, the plasma 286 

concentration was approximately 15 mg/L. However, in the urine, the Cmax of ceftriaxone was 287 

approximately 2692 mg/L within 2 hours following 2000 mg intravenously administrated (24). 288 

Ceftazidime, like ceftriaxone, has broad spectrum activity and is one of the few agents in this class to 289 

be used clinically against Pseudomonas spp. Ceftazidime pharmacokinetic data shows comparative 290 

serum Cmax, as a 1000 mg intravenous dose produced a peak concentration of approximately 140 291 

mg/L.  Similarly, much higher concentrations are present in the urine. Up to 6 hours post infusion of a 292 

50 mg/kg dose of ceftazidime, the concentration in collected urine samples ranged from 2370 to 11, 293 

340 mg/L, with approximately 75% of the drug being recovered unchanged (25). Based on this data, it 294 
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may be argued that novicidin-cephalosporin combinations may not be clinically appropriate for the 295 

treatment of septicaemia as 2048 mg/L appears to be an unattainable serum concentration. However, 296 

pharmacokinetic analysis of novicidin in combination with the antibiotics may give more realistic 297 

estimations of the concentrations required to achieve synergistic and bactericidal effect. Nevertheless, 298 

the extremely high concentrations of both ceftriaxone and ceftazidime in the urine indicate that either 299 

of these in combination with novicidin may be clinically applicable in treating urinary tract infections. 300 

The combination of novicidin with rifampicin or ceftriaxone was able to suppress bacterial growth 301 

against our tested bacterial strains after the drugs had been removed.  Interestingly, although 302 

ceftriaxone  alone was unable to produce a PAE (26),  a prolonged PAE was generated in the 303 

combination with novicidin. Therefore, novicidin and the antibiotic combinations, possibly by 304 

prolonging the PAE, are able to reduce the likelihood of resistance development. A longer PAE also 305 

contributes a therapeutic advantage in devising dosing intervals for drug regimens. Generally a longer 306 

PAE enables less frequent drug doses whilst maintaining therapeutic efficacy; this can reduce adverse 307 

effects and increase patient compliance (20).  308 

The precise mechanism underlying the antibiotic enhancing activities of novicidin is unclear. Due to 309 

decreased cell envelope permeability and altered efflux-pump systems, Gram-negative bacteria are 310 

intrinsically resistant to many antibiotics, such as rifampicin. Rifampicin inhibits bacterial DNA-311 

dependant RNA polymerase (23) and its action on bacterial cells is concentration dependent. It has 312 

been shown that compounds which target the cell wall or cell membrane were found to potentiate the 313 

activities of other antibiotics (11, 18, 27, 28). Previous work on artificial membranes showed that low 314 

concentrations of novicidin resulted in transient pore formation and increased concentrations cause 315 

cell membrane disruption (13, 29). It is also suggested that novicidin accumulates on the membrane 316 

surface until a detergent-like disintegration occurred (known as the carpet mechanism) (13). 317 

Consistent with this finding, we showed that novicidin disturbed the cytoplasmic membrane potential 318 

by depolarising the membrane, and even at very low concentrations, significant fluorescence release 319 
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was observed. It is likely that the enhanced activities of rifampicin by novicidin was due to increased 320 

cell membrane permeability against the Gram-negative bacteria leading to higher intracellular 321 

accumulation of rifampicin (30, 31). 322 

Cephalosporins are β-lactam antibiotics and interact with transpeptidases also known as penicillin 323 

binding proteins (PBP) (32), blocking the terminal step in bacterial cell wall biosynthesis (33). 324 

Accordingly, the synergy between novicidin and ceftriaxone or ceftazidime may be attributed to a 325 

‘double hit’ mechanism: (1) the disruption of the membrane by novicidin, and (2) the inhibition of cell 326 

well biosynthesis by ceftriaxone or ceftazidime, which may be sufficient in reducing the integrity of 327 

the cell envelope, resulting in cell death. Our chequerboard analysis showed that synergy was more 328 

likely with ceftriaxone or ceftazidime resistant strains, and resistance to such agents is usually due to 329 

the acquisition of plasmids carrying ESBL genes, producing enzymes which hydrolyse the β-lactam 330 

ring of antibiotics.  It is unclear how novicidin enhances the activities of these cephalosporins against 331 

resistant strains. We hypothesized that the enhanced antibiotic activities was likely due to the action of 332 

pore formation by novicidin, leading to the elimination of enzymes or plasmids, the resistance 333 

determinants. However, this notion needs to be further tested. 334 

The findings from our study demonstrate proof of concept, displaying the potential of peptide-335 

antibiotic combinations which undoubtedly contribute to important clinical applications. Firstly, our 336 

demonstration of novicidin as a powerful antibiotic enhancer strongly illustrates that other similar 337 

peptides or compounds may potentially be beneficial above and beyond their direct anti-microbial 338 

properties. Secondly, addition of novicidin reduced MICs and improved the rate of bactericidal 339 

activities of antibiotics, therefore highly resistant Gram-negative bacteria which are extremely 340 

difficult to kill can be eliminated from the bacterial culture. Finally, novicidin exhibited a very low 341 

haemolytic activity which was in agreement with those found by Dorosz et al (14). In addition, 342 

novicidin was non-toxic and cell viability was well conserved after treatment with different 343 

concentrations of novicidin. Combination therapy with novicidin shows promise for becoming a novel 344 
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and much clinically desired therapeutic option to treat “superbug” infections. In vivo work is under 345 

way aiming to expose the therapeutic potential of novicidin in the combination regimen to treat 346 

infections caused by antibiotic resistant Gram-negative bacteria.  347 
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Table 1. MIC values for novicidin and antibiotics used in this study. 

 

 MIC range (mg/L) MIC50 (mg/L) MIC90 (mg/L)

Novicidin 1 - 8 2 4 

Rifampicin 4 - >1024 16 32 

Ceftriaxone 0.03125 - >2048 1024 2048 

Cefixime 0.03125 - >2048 256 2048 

Ceftazidime 0.03125 - >2048 128 1024 

Cefotaxime 0.03125 - >2048 512 2048 
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Table 2. Combination activity of novicidin with rifampicin, ceftriaxone and ceftazidime 
against the 101 Gram-negative Enterobacteriaceae strains 

      
Total no. (%) of strains with activity when 

novicidin combined with 

Strains Combination 
Activity FICI Rifampicin Ceftriaxone Ceftazidime 

E. coli  Synergy ≤0.5 43 (70.5%) 35 (57.4%)  39 (63.9%) 
Indifferent >0.5 <4 18 (29.5%) 26 (42.6%) 22 (36.1%)

Antagonism ≥4 0 0 0 
Isolates in KES group   Synergy ≤0.5 28 (84.8%) 23 (69.7%) 26 (78.8%) 

Indifferent >0.5 <4 5 (15.2%) 10 (30.3%) 7 (21.2%) 
Antagonism ≥4 0 0 0

NDM-1 strains Synergy ≤0.5 7 (100%) - - 
Indifferent >0.5 <4 0 - - 

  Antagonism ≥4 0 - -
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Table 3. Combination activity of novicidin with ceftriaxone and ceftazidime against the 94 Gram-
negative clinical isolates 

Total no. (%) of strains with activity of novicidin  
combined with ceftriaxone and ceftazidime 

Strains (total no.) Synergy Indifferent Antagonism 

FICI ≤0.5 FICI >0.5  <4 FICI ≥4 
Ceftriaxone resistant strains [58] 52 (89.7%) 6 (10.3%) 0 
Ceftriaxone sensitive strains [36] 6 (16.7%) 30 (83.3%) 0 
Ceftazidime resistant strains [68] 64 (94.1%) 4 (5.9%) 0 
Ceftazidime sensitive strains [26] 1 (3.8%) 25 (96.2%) 0 
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FIG 1 Time-kill analysis showing the effects of novicidin in combination with rifampicin, 1 

ceftriaxone and ceftazidime against antibiotic resistant E. coli and strains.  The peptide and 2 

antibiotics alone or each combined with novicidin were added to the bacterial cultures and 3 

CFU counts were carried out at different time points. Combination of rifampicin at 2 mg/L 4 

and novicidin at 1 mg/L (A) or 0.5 mg/L (B) against a clinical isolate of E. coli. Combination 5 

of rifampicin at 256 mg/L and novicidin at 4 mg/L (C) or 2 mg/L (D) against a NDM-1 E. 6 

coli. Combination of ceftriaxone at 2048 mg/L and novicidin at 1 mg/L (E) or 0.5 mg/L (F) 7 

against a clinical isolate of E. coli. Combination of ceftriaxone at 2048 mg/L and novicidin at 8 

2 mg/L (G) or 1 mg/L (H) against a clinical isolate of the KES group.  Negative controls 9 

were included as (I) combination of plectasin at 32 mg/L with rifampicin at 256 mg/L against 10 

a DNM-1 E. coli and (J) combination of plectasin at 32 mg/L with ceftriaxone at 2048 mg/L 11 

against a clinical isolate of the KES group. These results shown are mean with standard 12 

deviation (SD) of two independent experiments.   13 
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FIG 2 Determination of cytoplasmic membrane potential by novicidin against a clinical 1 

isolate of E. coli. Log phase E. coli culture was incubated with DiSC3(5) to a final 2 

concentration of 0.4 µM until no more quenching was detected, which was followed by 3 

addition of 0.1 M KCl.  Novicidin were incubated with the cultures at different 4 

concentrations. The changes in fluorescence were monitored at various time points.  The data 5 

was mean with SD of two independent experiments.  6 

 7 
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FIG 3  Induction of PAE of rifampicin (A) and ceftriaxone (B) by novicidin against a clinical 1 

isolate of E. coli.  Concentrations used for single drug PAE induction are rifampicin 80 mg/L, 2 

novicidin 2 mg/L and ceftriaxone 1024 mg/L. For combination PAE induction, rifampicin 3 

was 20 mg/L and novicidin was 0.625 mg/L; ceftriaxone was 640 mg/L and novicidin was 4 

0.625 mg/L. The data was mean with SD of two independent experiments. 5 

 6 
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Table 4.  The haemolytic effects of novicidin at different concentrations  

Novicidin concentration (mg/L) Haemolysis (%) 
125 4.4 
250 7.7 
500 13.2 
750 13.3 
1000 19.9 

Negative control* 0 
Positive control** 100 

 

*blood was mixed with saline solution. **blood was mixed with distilled water 
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Table 5. Cell viability following treatment with novicidin assessed via neutral red uptake 

Concentrations (mg/L) 
 

Viability (%) 
24 hours 72 hours 

Novicidin 0 100 100 
25 95 102 
50 93 102 
100 99 98 
200 99 101 

SDS 80 80 55 
  100 9 0 
  120 0 0 
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