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Despite continued efforts to improve health systems worldwide, emerging

pathogen epidemics remain a major public health concern. Effective response

to such outbreaks relies on timely intervention, ideally informed by all available

sources of data. The collection, visualization and analysis of outbreak data are

becoming increasinglycomplex, owingto the diversity in types of data, questions

and available methods to address them. Recent advances have led to the rise of

outbreak analytics, an emerging data science focused on the technological and

methodological aspects of the outbreak data pipeline, from collection to analysis,

modelling and reporting to inform outbreak response. In this article, we assess

the current state of the field. After laying out the context of outbreak response,

we critically review the most common analytics components, their inter-

dependencies, data requirements and the type of information they can provide

to inform operations in real time. We discuss some challenges and opportunities

and conclude on the potential role of outbreak analytics for improving our

understanding of, and response to outbreaks of emerging pathogens.

This article is part of the theme issue ‘Modelling infectious disease outbreaks

in humans, animals and plants: epidemic forecasting and control‘. This theme

issue is linked with the earlier issue ‘Modelling infectious disease outbreaks in

humans, animals and plants: approaches and important themes’.

1. Introduction
Emerging infectious diseases are a constant threat to public health worldwide.

In the past decade, several majoroutbreaks, such as the 2009 influenza pandemic [1],
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the Middle-East Respiratory Syndrome coronavirus (MERS-

CoV) [2–4], the emergence of Zika [5,6] and the West African

Ebola virus disease (EVD) outbreak [7,8], have been potent

reminders of the need for robust surveillance systems and

timely responses to nascent epidemics [9]. The West African

EVD outbreak, by far the largest such epidemic in recorded his-

tory, in particular, had a strong impact on global health security

and public health policy and practice [7,8,10]. It highlighted the

difficulties of maintaining situational awareness in the absence

of standards for surveillance, data collection and analysis, as

well as the challenges of mounting and sustaining a large-scale

international response [7,8,11,12]. Despite the lessons learnt

[9,13,14], the recent (2018) EVD outbreaks in Democratic Repub-

lic of the Congo [15,16] are a stark reminder that a large number

of these challenges remain.

An important feature of the modern response to epidemics

is the increasing focus on exploiting all available data to inform

the response in real time and allow evidence-based decision

making [3,4,7,8,13,17]. Using data for improving situational

awareness is complex, involving a range of inter-connected

tasks and skills from point-of-care data collection to the gener-

ation of informative situational reports (sitreps). The science

underpinning these data pipelines involves a wide range of

approaches, including database design and mobile technology

[18,19], frequentist statistics and maximum-likelihood esti-

mation [7], interactive data visualization [20,21], geostatistics

[22–24], graph theory [20,25,26], Bayesian statistics [8,27,28],

mathematical modelling [29–31], genetic analyses [32–36]

and evidence synthesis approaches [37]. This accretion of

heterogeneous disciplines, which may be best summarized as

‘outbreak analytics’, forms an emerging domain of data

science: an ‘interdisciplinary field that uses scientific methods,

processes, algorithms and systems to extract knowledge and

insights from data in various forms’ [38], dedicated to inform-

ing outbreak response. Outbreak analytics sits at the crossroads

of public health planning, field epidemiology, methodological

development and information technologies, opening up excit-

ing opportunities for specialists in these fields to work together

to meet the needs for an epidemic response.

In this article, we outline this developing research field and

review the current state of outbreak analytics. In particular, we

focus on how different analysis components interact within

functional workflows, and how each component can be used

to inform different stages of an outbreak response. We discuss

key challenges and opportunities associated with the deploy-

ment of efficient, reliable and informative data analysis

pipelines and their potential impact.

2. The outbreak response context
(a) The different phases of an outbreak response
The focus of the public health response shifts during the

course of an epidemic or outbreak, and so do the analytics.

We identify four main stages (figure 1). The detection stage

starts with the first case and ends with the first intervention

activities (e.g. patient isolation, contact tracing, vaccination)

and involves surveillance systems and mostly qualitative

risk assessments. Next, the early response is the initial part

of the intervention during which the first simple analytics

can take place, essentially centred around estimating trans-

missibility. This blends into the intervention stage, where

more complex analytics may be involved to inform plann-

ing (e.g. vaccination strategies), which ends once the last

reported case has recovered or died. The post-intervention
stage is for lessons to be learned, for improving prepared-

ness for the next epidemic and for training and capacity

building [39].

(b) Questions during and after the intervention
During the early response, efforts are dedicated to estimating

the likely impact of the outbreak and anticipating the nature,

scale and timing of resources needed [7,13,15]. Theoretically,

different factors including not only the total number of cases

and fatalities but also the morbidity and overall impact on qual-

ity of life, as well as societal and economic impact, should

ideally be taken into account when attempting to predict

disease burden [40–43]. Generally, as the demographic and

morbidity data needed by composite measures of health-

adjusted life years [40] are lacking in outbreak response

contexts, efforts tend to focus on other proxies of impact: asses-

sing transmissibility, predicting future case incidence and

associated mortality and investigating risk factors [1,3,7,15].

Analytical needs to diversify as the intervention progresses.

While investigations of transmissibility, mortality and risk

factors remain key throughout [8], new questions may arise to

inform the implementation of control and mitigation measures.

These may focus on predicting the impact of potential measures

including testing (e.g. ‘Could a rapid test help reduce inci-

dence?’ [29]), vaccine development (e.g. ‘Could a candidate

vaccine be evaluated in this outbreak?’ [44,45]), vaccination

campaigns (e.g. ‘Which is the optimal vaccination strategy?’

[46,47]) or travel restrictions (e.g. ‘Should international travel

be restricted?’ [48]), or on estimating the impact of current

measures such as improvements in access to care (e.g. ‘Has the

Figure 1. Successive phases of an outbreak response. The histogram along the top represents reported (yellow) and unreported (grey) incidence.
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delay between symptom onset and hospitalization been

reduced?’ [14,15]). As case incidence reduces, statistical model-

ling can also be useful for assessing or predicting the end of an

outbreak [49–51]. At the field operational level, outbreak

response analytics may be best focused on informing and moni-

toring core surveillance activities and performance indicators,

such as contact tracing [11], through the use of tools for contact

data visualization [52], mapping [53,54] and on analysis pipe-

lines integrating mobile data collection tools [18,19,55,56]

with automated reporting systems [57–59]. Finally, the post-

intervention phase lends itself to retrospective studies, which

can assess further the impact of interventions [60], tease apart

finer processes driving the epidemic dynamics such as contact

patterns [12,61], study risk factors [54,62], identify avenues for

fortifying surveillance [13,36,63] and evaluate, improve and

develop modelling techniques [28,64,65].

(c) What are outbreak data?
The term ‘outbreak data’ encompasses different types of

information, of which we first distinguish ‘case data’ from ‘back-
ground data’. Case data include the description of reported cases

gathered in linelists, i.e. flat files where each row is a case and

each column a recorded variable (e.g. dates of onset and admis-

sion, gender, age, location), thereby fulfilling the definition of

‘tidy data’ in the data science community [66]. Case data also

include exposure and contact tracing data, either stored within

a linelist or in separate files, pathogen whole genome sequencing

(WGS) and data pertaining to outbreak investigations (e.g. case–

control and cohort study data). Background data document the

underlying characteristics of the affected populations. This

includes demographic information (e.g. maps of population den-

sities, age stratification, mixing patterns), movement data (e.g.

borders, traveller flows, migration), health infrastructure

(e.g. healthcare facilities, drug stockpiles) and epidemiological

data themselves (e.g. levels of pre-existing immunity). A final

type of data we consider here is ‘intervention data’, which refers

to information on decisions made and efforts deployed as part

of the intervention, such as vaccination coverage, the extent of

active case finding or potential changes in the epidemiologi-

cal case definition. An in-depth discussion of data needs in

outbreaks can be found in Cori et al. [13].

3. Outbreak analytics
(a) An overview of the outbreak analytics toolbox
We use the term ‘outbreak analytics’ to refer to the variety of

tools and methods used to collect, curate, visualize, analyse,

model and report on outbreak data. These tools and their

inter-dependencies are summarized in an exemplary workflow

represented in figure 2, derived from analyses pipelines used

during recent epidemics of pandemic influenza [1], MERS-

CoV [4] and EVD [7,8,17]. Note that workflows may vary

substantially in other epidemic contexts. For instance, analyses

of food-borne outbreaks may focus on traceback data [67–69],

while vector-borne disease analysis may focus heavily on

modelling the vector’s ecological niche [70,71].

(b) Tools for the collection of epidemiological data
Tools for data capture have become a focus of much discussion

in recent years as those involved in outbreak response seek

to make use of important technological advances including

mobile datacollection, cloud computing and built-in automated

data analyses and reporting. In resource-limited settings, in par-

ticular, epidemiological data are still often collected with pen

and paper, the advantages of which are familiarity, simplicity,

low cost and reliability where access to Internet and power

sources may be limited. However, there are some downsides

to using paper as a data management tool, becoming increas-

ingly important with larger outbreaks, as any system for

the printing and distribution, collection and storage and digitiz-

ation of forms becomes overwhelmed. Additionally, two-stage

processes involving transcription of data from forms typically

introduces additional data entry errors [72–75] and substantial

delays from data capture to analysis [72].

Electronic data collection (EDC) is becoming increasingly

popular [18,19,55,56]. These tools make use of widely avail-

able, low-cost hardware (e.g. smartphones and tablets) [76]

that can, when appropriately configured, consume little

power and collect data offline, making them suitable for use

in resource-poor settings. Some of those may be part of existing

surveillance systems or be deployed instead for specific

enhanced surveillance and response activities during an out-

break. EDC platforms can also enhance data quality through

the use of restriction rules and logical checks, and enforce

reporting (even when there are zero cases) and entry of essen-

tial variables [72,76]. EDC can decrease the delay between data

collection, centralization and analysis, which is critical for

data-driven responses. Time can be saved through ‘form

logic’ (e.g. automatically skipping sections of a survey not

relevant to a participant), while real-time, automated centrali-

zation, data analysis and reporting can be directly built into

the platform. In addition, mobile-based EDC enables the collec-

tion of other types of data including GPS coordinates,

photographs, barcode (useful to link case data and clinical

specimens) and even aiding diagnostics by directly interfacing

with point-of-care diagnostic devices [77–79].

Maintaining confidentiality and privacy is a legitimate con-

cern whenever data concerning human subjects are collected.

While EDC systems provide opportunities for unauthorized

interception and access to such information, many systems

support end-to-end encryption during data transfer [80],

although few provide additional security through encryption

at the level of data entry.

(c) Descriptive analyses
The first, and arguably one of the most important steps in

data analysis is exploration, where visualization plays a

central role, completed with informative summary statistics

[81,82]. The first type of graphics needed for rapid assessment

of ongoing dynamics is the epidemic curve (epicurve), which

shows case incidence time series as a histogram of new onset

dates for a given time interval [83–85]. Cumulative case

counts, sometimes used in the absence of a raw linelist, are

best avoided in epicurves, as they tend to obscure ongoing

dynamics and create statistical dependencies in data points

that will result in biases and lead to under-estimating

uncertainty in downstream modelling [86].

Maps have been at the core of infectious disease epide-

miology from a very early stage [87]. Nowadays, they are

typically used to visualize the distribution of disease [88], for

representing the ‘ecological niche’ of infectious diseases at

large scales [23,24,89] and for assessing the spatial dynamics

of an outbreak and strategizing interventions [7,8]. Providers

of free and crowd-sourced [90] geographical data like the

royalsocietypublishing.org/journal/rstb
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Humanitarian Open Street Maps Team (Humanitarian

OpenStreetMap Team Home; see https://www.hotosm.org/

(accessed 26 September 2018)), the Missing Maps project (Mis-

singMaps; see https://www.missingmaps.org/ (accessed 26

September 2018)), healthsites.io (see https://healthsites.io/

(accessed 26 September 2018)) and the Radiant Earth Foun-

dation (Radiant Earth Foundation – Earth imagery for

impact; see https://www.radiant.earth (accessed 18 November

2018)) provide layers of spatial data that include information on

the location of households and health facilities, among other

determinants. Several tools including SaTScan and ClusterSeer

are routinely applied to surveillance system data for automated

outbreak detection and the evaluation of clustering of disease

by time and space [91]. Other examples of freely available map-

ping tools that can help track the spread of infectious diseases

include the Spatial Epidemiology of Viral Haemorrhagic

Fevers (VHF) disease visualization (see http://www.health-

data.org/datavisualization/spatial-epidemiology-viralhemor-

rhagic-fevers; accessed 19 September 2018), which maps risks of

emergence and spread of VHF diseases, Nextstrain [92] and

Microreact [93], which focus on mapping pathogen evolution

and epidemic spread, and HealthMap [94], which provides

resources for the rapid detection of outbreaks. Geographical

locations of reported cases can also be useful for informing

more complex modelling approaches [95].

Figure 2. Example of outbreak analytics workflow. This schematic represents eight general analyses that can be performed from outbreak data. Outputs containing
actionable information for the operations are represented as hexagons. Data needed for each analysis are represented as a different colour in the center, using plain
and light shading for mandatory and optional data, respectively. (Online version in colour.)
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In epidemics driven by person-to-person transmission, a

last essential source of data is contact data [20], which includes

data on case exposure [12] as well as contact tracing, where

appropriate [11,63]. Exposure data document transmission

pairs, which can yield precious insights into ‘paired delays’

(figure 2) including the serial interval (time between onsets

of a case and their infector) or the generation time (time

between the dates of infections of a case and their infector)

[7,8], which are in turn useful for estimating transmissibility

[27,28,96,97]. Exposure data can also be used to investigate

the occurrence and determinants of super-spreading events

[12] and help identify introduction events in the case of zoono-

tic diseases [98]. Contact tracing, through the early detection of

new cases and their subsequent isolation and treatment, plays a

central role in reducing onward transmission and therefore

containing outbreaks [11,63,99], while additionally providing

potential information on risk factors [7,11].

Summary statistics are a useful complement to data visual-

ization in the exploratory phase of data analysis. Some metrics,

such as transmissibility, require the use of statistical or math-

ematical models in order to be estimated (see §3d below) and

are therefore not readily available as descriptive tools. Other

useful statistics can be readily computed from linelists, includ-

ing different demographic indicators of the reported cases

(e.g. gender, age, occupation [7,100,101]), case fatality ratios

(the proportion of cases who died of the infection) or case

delays such as the times to hospitalization, recovery or death,

reported as a whole [1,7,8] or stratified by groups [100,101].

The incubation period (time from infection to symptom onset)

is another important delay for informing the intervention (e.g.

to define the duration of contact tracing or declare the end of

an outbreak), but can be harder to derive as it requires data on

case exposure as well. Note that in the case of delays, these are

best analysed by characterising the full distribution (e.g. by fit-

ting to an appropriate probability distribution such as

discretized Gamma [7]) rather than reported as a single central

value [7,8,102,103].

(d) Quantifying transmissibility
The ‘transmissibility’ of a disease is here used to refer to the

rate at which new cases arise in the population, resulting

either in epidemic growth or decline [1,3,27,28]. Rather than

an intrinsic property of a specific disease, transmissibility

thus defined quantifies the propagation of a pathogen in a

given epidemic setting and is impacted by multiple factors

including population demographics, mixing and levels pre-

existing immunity. Importantly, estimates of transmissibility

reported in the literature will typically be biased towards

higher values, as subcritical outbreaks are by definition less

likely to be detected. Several metrics of transmissibility can

be used depending on the type of data available and can be

estimated using different approaches.

A first measure of transmissibility is the growth rate (r),

which is estimated from a simple model where case incidence

is either exponentially growing (r . 0) or declining (r , 0).

Typically, r is estimated directly from epicurves (figure 2)

using a log-linear model, where r is defined as the slope of a

linear regression on log-transformed incidence [104,105].

Besides its simplicity and its computational efficiency, this

approach has the benefits of being embedded in the linear

modelling framework, thereby allowing one to measure the

uncertainty associated with a given estimate of r, to test for

differences in growth rates, e.g. between different locations,

and to derive short-term incidence predictions. Moreover, the

growth rate can also be used to estimate the doubling and halv-

ing times of the epidemic, i.e. the time during which incidence

doubles (respectively is halved), as alternative metrics of trans-

missibility [103]. Unfortunately, the log-linear model can only

fit exponentially growing or decaying outbreaks, which may

not always be appropriate in the presence of complex spatial

or age structure, or owing to changes in reporting, transmissi-

bility or proportion of susceptible individuals over time.

Besides, it cannot readily accommodate time periods with no

cases, so that its applicability may in practice be restricted.

While r quantifies the speed at which a disease spreads, it does

not contain information on the level of the intervention that is

necessary to control a disease [106]. This is better characterized

by the reproduction number (here generically noted ‘R’), which

measures the average number of secondary cases caused by

each primary case. Researchers typically distinguish the basic

reproduction number (R0 [104]), which applies in a large, fully

susceptible population, without any control measures, from

the effective reproduction number (Reff ), which is the number

of secondary cases after accounting for behavioural changes,

interventions and declines in susceptibility [96]. The current

reproduction number determines the dynamics of the epidemic

in the near future, with values greater than 1 predicting an

increase in cases, and values less than 1 predicting control

[104]. The value of R can also be used to calculate the fraction

of the population that needs to be immunized (typically through

vaccination) in order to contain an outbreak [104].

Different methodological approaches have been developed

to estimate the reproduction number. R can be approximated

using estimates of the growth rate r combined with knowledge

of the generation time distribution [97]. R can also be derived

from compartmental models [104,107]. The formula will

depend on the type of model used, but such estimation

will usually require that different rates (e.g. rates of infection,

recovery, death) are either known or estimated by fitting the

model to data [104,107]. Real-world complexities can be incor-

porated into this approach; however, fitting such models can be

challenging and may require computationally intensive algor-

ithms such as data augmentation, approximate bayesian

computation, or particle filters [108]. Compartmental models

also require assumptions about the total population size and

the proportion of the population at risk, which may be difficult

to estimate in an outbreak. As an alternative, branching process

models can be used to estimate R directly from incidence data

[27,28,96,109]. This requires a pre-specified distribution of the

generation time, or of the serial interval, although recent devel-

opments suggest that in some cases, the generation time

distribution itself can also be simultaneously estimated [4].

Branching process models are usually much simpler to fit to

data than their compartmental counterparts, which facilitates

their use in real time [27].

Beyond the mere estimation of transmissibility, it is often

essential to forecast future incidence for advocacy and plan-

ning purposes, e.g. to compare different interventions and

epidemic scenarios [7,8,15,30]. A variety of mathematical and

statistical models, including those reviewed here for estimating

transmissibility, can also be used for short-term incidence fore-

casting [65]. Despite the growing body of research focusing on

predicting incidence during epidemics [65,110], there are cur-

rently no gold standards and the relative performances of

forecasting methods largely remain to be assessed. Methods
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that have been developed and applied in other fields to rigor-

ously assess not just the accuracy of forecasts but also how

well models quantify the inherent uncertainty in making

predictions, are only rarely applied in infectious disease epide-

miology [111,112]. Whether it is to estimate R or predict future

incidence, the most appropriate method ultimately depends on

the particular epidemiological setting, existing knowledge of

the transmission dynamics and data availability. Branching

process models, for example, can be used for a quick estimate

of the current value of R from the recent trend in case numbers

and, by extrapolating this forward, of expected case numbers in

the near future [27,28,96]. Mechanistic or simulation models,

on the other hand, aim to include a more explicit representation

of the different factors that might influence transmission. They

can be a more natural choice for assessing the expected impact

of possible interventions, but they usually require careful para-

metrization and often intensive computation [29,30,45,113],

both of which can be challenging early in an outbreak when

data are scarce and rapid turnaround crucial.

(e) Analytical epidemiological techniques
Analytical epidemiological studies use data to better describe

outbreaks and populations at risk and inform real-time and

subsequent response efforts. Typically, these are conducted

during the intervention and post-intervention phases of an out-

break response (figure 1). They include observational designs

such as retrospective cohort and case–control studies to ident-

ify risk factors and quantify associations between potential

causes and their outcomes (typically, the disease in question),

and experimental designs, such as randomized-control studies

used to estimate the impact of interventions such as vaccination

and treatments [114]. These studies reside outside of the

normal scope of outbreak response activities, being inserted

ad hoc as functions that are not necessarily routine response

activities such as strengthening surveillance. In the case of

observational epidemiological studies, data on exposures and

outcomes are required, permitting estimations of the increased

risk of disease among people exposed to risk factors of interest

[54,62,115,116]. In the case of experimental epidemiology, data

on outcomes of interest are collected to permit estimations of

heterogeneity among groups (e.g. in the presence/absence of

intervention).

The usefulness of such studies in informing outbreak

response is highly context-dependent. Observational studies

may be undertaken early on in the intervention phase to

help identify ongoing infection sources of environmental,

food-borne or water-borne nature [117] and to stop the out-

break at its source. In longer-running outbreaks, they can

provide insights into opportunities for control [53,115,118]

and inform global policy decisions that relate to outbreak

response [119]. However, the time and expertise needed to

prepare and implement these studies may preclude their

application in the midst of an ongoing outbreak, so that the

cost and benefits of such an undertaking need to be carefully

weighed in emergency settings.

( f ) Genetic analyses
Whole genome sequencing of pathogens is increasingly afford-

able and reliable, and therefore more frequent in outbreak

investigations [1,120–126]. As technology is making real-time

sequencing in the field a developing standard in the coming

years [127,128], genetic analysis will likely carve out its own

space in the outbreak analytics toolkit.

Different methods can be used to extract information from

pathogen WGS. In bacterial genomics, molecular epidemiol-

ogy methods have been used extensively for defining strains

of related isolates [32,129], which can be used to infer various

features of the pathogens sampled such as their origins, antimi-

crobial resistance profiles, virulence or antigenic characteristics

[130–132]. These methods usually exploit only a fraction of the

information contained within pathogens’ genomes, as they rely

on genetic variation in a limited number of housekeeping

genes [32,129]. While these methods will likely remain useful

in years to come, substantially more information can be

extracted by using WGS to reconstruct phylogenetic trees,

which represent the evolutionary history of the sampled iso-

lates, assuming the absence of selection or horizontal gene

transfers [133]. Different types of phylogenetic reconstruction

methods can be used, including fast, scalable distance-based

methods [134] or more computer-intensive approaches using

a maximum-likelihood [135,136] or the Bayesian framework

[33,137]. Phylogenies can be used to assess the origins of a

set of pathogens [138], patterns of geographical spread [125],

host species jumps [139,140], past fluctuations in the pathogen

population sizes [141] and even, in some cases, the reproduc-

tion number [1]. Importantly, there is a growing tendency to

analyse phylogenetic trees in the broader context of other epi-

demiological data (mainly geographical locations until now),

which is facilitated by user-friendly Web applications [92,93].

A further step towards integrating WGS alongside epide-

miological data is the reconstruction of transmission trees

(who infects whom) using evidence synthesis approaches.

This methodological field has been growing fast over the past

decade [25,142–148], but most applications of these methods

remain within academia and their usefulness in the field in

an outbreak response context needs to be critically assessed.

A potential benefit of accurately reconstructing transmission

trees lies in the identification of multiple introductions, the

quantification of the proportion of unreported cases and the

detection of heterogeneities in individual transmissibility

[145]. Unfortunately, the reconstruction of transmission trees

is a difficult and computationally intensive problem. First,

most diseases do not accumulate sufficient genetic diversity

during the course of an outbreak to allow the accurate recon-

struction of transmission chains, so that multiple data sources

need to be used [35], making these methods more data-

demanding than most other approaches in outbreak analytics

(figure 2). In addition, the complex nature of the problem

requires the use of Bayesian methods for model fitting,

making these approaches difficult to interpret by non-experts

[145,146,148].

4. Discussion
In this article, we reviewed methodological and technological

resources forming the basis of outbreak analytics, an emerg-

ing data science for informing outbreak response. Outbreak

analytics is embedded within a broader public health infor-

mation context that starts with disease surveillance systems,

followed by risk assessment and management, the epidemiolo-

gical response itself, and finishes with the production of

actionable information for decision making. Part of the chal-

lenge that this new field will face in the coming years
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pertains to the seamless integration of data analytics pipelines

within existing workflows. As responders can allocate only

limited time to data analysis, analytics resources should

produce simple, interpretable results, highlighting the most

pressing issues that need addressing and monitoring all

relevant indicators to inform the response.

Outbreak analytics and resulting outputs are central to the

surveillance pillar of any outbreak response, yet resources and

capacities to ensure data availability and quality are often lim-

ited owing to operational constraints [16]. Priorities in terms of

data needs should be defined by what actionable information it

may give access to through the available analytics pipelines

[13]. In this respect, we foresee that typical linelist data such

as dates of events (e.g. onset, reporting, hospitalization, dis-

charge), age, gender, disease outcome, geographical locations

and exposure data will fulfil most needs, while other data

such as WGS may only be useful for specific diseases and con-

texts [34,35]. Intervention data are rarely collected but should

be given more consideration, as they are key to assessing the

impact and effectiveness of control measures, both during

and after the operations. Similarly, data on the fraction of

cases reported (and its variations through time), as well as be-

havioural changes (e.g. care-seeking behaviour) in the affected

populations, can be very important sources of information for

modelling [149].

Fortunately, what we called ‘background data’ in this

article can be gathered and shared outside of the epidemic con-

text. Besides maps, population census, sero-surveys or genetic

databanks, data on the natural histories of diseases derived

from past epidemics, such as key delay distributions and trans-

missibility, can form a useful substitute to real-time estimates,

especially in the early stages of outbreaks when such data may

be lacking. While crowd-sourced initiatives are promising and

have been used successfully in low resource settings [90], more

efforts are needed to collate and curate open data sources,

assess their quality and make them widely available to the

community. We argue that international public health agencies

and non-governmental agencies should play a central role in

orchestrating such background data preparedness.

Outbreak analytics is a developing field, and as such, there

remain many gaps in terms of data collection, analysis and

reporting tools. Some methodological challenges persist, such

as better characterising forecasting methods [28,64,65], includ-

ing spatial information and population flows into existing

transmission models [95], and improving the integration of

different types of data for reconstructing transmission trees

[35]. In order to ensure transparent methods and availability

to analysts in any setting, the implementation must be as

freely available, open-source software. Among other popular

programming languages, such as Python, Java, or Julia, the R

software [150] arguably offers the largest collection of free

tools for data analysis and reporting, and an increasing

number of packages for infectious disease epidemiology

[20,21,27,84,145] may form a solid starting point for the devel-

opment of a comprehensive, robust and transparent toolkit for

the analysis of epidemic data [151]. Importantly, the use of a

common platform for the development and use of outbreak

analytics tools will also likely contribute to standardizing

data practices, including collection, sharing and analysis.

A final point relates to the use and dissemination of these

new resources: how can outbreak analytics best help improve

public health? As noted by Bausch & Clougherty [39], health
science should not be an entity unto itself, but a means to an end.

Insofar as it can help field epidemiologists collect, visualize

and analyse data, and subsequently provide decision-makers

with actionable information, outbreak analytics will likely

occupy an increasing space in field epidemiology over the

years to come. We foresee that the dissemination of free train-

ing resources [152], the modernization of field epidemiology

training programmes and the deployment of applied data

scientists to the field with a sustained capacity building in

resource-poor and vulnerable countries will be instrumental

in shaping the future of this emerging field of health science.
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