
              

City, University of London Institutional Repository

Citation: Faggio, G. ORCID: 0000-0001-9766-859X, Silva, O. and Strange, W.C. (2019). 
Tales of the City: What Do Agglomeration Cases Tell Us About Agglomeration in General? 
(19/10). London, UK: City, University of London. 

This is the published version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  http://openaccess.city.ac.uk/22241/

Link to published version: 19/10

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/200759301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 

 
 

Department of Economics 

 
Tales of the City: What Do Agglomeration Cases Tell Us About 

Agglomeration in General? 
 

Giulia Faggio 
City, University of London  

and 
Centre for Economic Performance, LSE 

 
Olmo Silva1 

London School of Economics and Political Science 
and 

Centre for Economic Performance, LSE 
 

William C. Strange 

Rotman School of Management, University of Toronto 
 
 

Department of Economics 
Discussion Paper Series 

No. 19/10 
  
 

1 Corresponding author: Olmo Silva, Department of Geography and Environment, London School of Economics and Political Science, Houghton Street, WC2A 
2AE London, UK. Email: O.Silva@lse.ac.uk 
 
 

mailto:O.Silva@lse.ac.uk


 
 

Tales of the City: 
What Do Agglomeration Cases Tell Us About Agglomeration in General?* 

 
 
 

Giulia Faggio 
Department of Economics, 
City, University of London 

and 
Centre for Economic Performance, LSE 

 
 

Olmo Silva 
Department of Geography and Environment, 

London School of Economics and Political Science (LSE) 
and 

Centre for Economic Performance, LSE 
 
 

William C. Strange 
Rotman School of Management, 
University of Toronto, Canada 

 
 
 
 
 
 

May 15, 2019 
 
 
 
 
 
 

*We thank the Economics and Social Research Council (ESRC) UK and the Social Sciences and Humanities Research 
Council for financial support. We also thank Filippo Boeri for outstanding research assistance. We are also grateful 
for the useful comments and suggestions we received from Stephan Heblich, Simona Iammarino, Dan McMillen, 
Henry Overman, Matt Turner and participants at the 2018 UEA Conference (New York), the 2018 NARSC Meetings 
(San Antonio), and the 2018 Singapore Management University Conference on Urban and Regional Economic. We 
are responsible for any errors or omissions. 
 



 
 

Tales of the City:   
What Do Agglomeration Cases Tell Us About Agglomeration in General?* 

 
 
Abstract: This paper considers the heterogeneous microfoundations of agglomeration economies. It studies 
the co-location of industries to look for evidence of labor pooling, input sharing, and knowledge spillovers. 
The novel contribution of the paper is that it estimates single-industry models using a common empirical 
framework that exploits the cross-sectional variation in how one industry co-locates with the other 
industries in the economy. This unified approach yields evidence on the relative importance of the 
Marshallian microfoundations at the single-industry level, allowing for like-for-like cross-industry 
comparisons on the determinants of agglomeration. Using UK data, we estimate such microfoundations 
models for 97 manufacturing sectors, including the classic agglomeration cases of automobiles, computers, 
cutlery, and textiles. These four cases – as with all of the individual industry models we estimate – clearly 
show the importance of the Marshallian forces. However, they also highlight how the importance of these 
forces varies across industries – implying that extrapolation from cases should be viewed with caution. The 
paper concludes with an investigation of the pattern of heterogeneity. The degree of an industry’s clustering 
(localization), dynamism, incumbent firm size, and worker education are shown to contribute to the pattern 
of heterogeneous microfoundations. 
 

Keywords: Agglomeration; microfoundations; heterogeneity; industrial clusters. 
JEL codes: R10; R12; L52; L60. 
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I. Introduction 

The economic literature on agglomeration has proceeded along the lines of most economic research: 

theories generate predictions, and these predictions are brought to data for quantitative econometric testing. 

Of course, the abstraction inherent to this sort of research program leaves out important specific details. A 

more qualitative literature on agglomeration considers specific cases. These case studies have considered 

a range of industries – including the classic ‘tales’ of cutlery, textiles, automobiles, and computers. Because 

the case studies embrace much of the detail that economic theory and econometric analysis are forced to 

abstract away from, they are highly valuable complements to more quantitative economic research. 

However, despite their usefulness, taken in aggregate, these studies raise a question: how much can be 

learned in general from particular agglomeration cases? 

 A prior paper of ours, Faggio et al. (2017), begins to address this question by considering patterns 

in the microfoundations of agglomeration economies. The paper builds on Ellison et al. (2010), who 

consider the coagglomeration of industry pairs. In this approach, a tendency for pairs linked in the supply 

chain to coagglomerate is consistent with input sharing, while coagglomeration of industry pairs linked in 

patent citations is consistent with knowledge spillovers. Lastly, a co-location tendency of an industry pair 

drawing on the same worker skills (as evidenced by the pattern of employment by occupation) is consistent 

with labor pooling. The key result in Ellison et al. is that Marshall’s three forces – input sharing, knowledge 

spillovers and labor pooling – are all positively associated with the tendency of industries to 

coagglomerate. Faggio et al. (2017) extends Ellison et al. (2010) by documenting systematic variation in 

microfoundations across industry pairs. The coagglomeration of industry pairs is sometimes driven by 

input market linkages, sometimes by labor market relationships, and some other times by patterns of 

knowledge spillovers. This variation is important for its own sake as well as for the light it sheds on the 

microfoundations of agglomeration economies. For instance, industry pairs both characterised by the 

presence of smaller firms show stronger effects from input linkages – a result in the spirit of Chinitz (1961).   

 The present paper further explores the heterogeneity in microfoundations. It does so by using a 

common empirical framework that identifies the importance of the Marshallian foundations at the single-

industry level by exploiting the cross-sectional variation in how one industry co-locates with all other 

industries in the economy. This unified approach yields novel evidence on the relative importance of labour 

pooling, input sharing and knowledge spillovers, allowing for like-for-like cross-industry comparisons on 

the determinants of agglomeration. Furthermore, this approach allows us to characterize the forces that 

drive one industry’s coagglomeration (e.g., the industry is dominated by small firms or high levels of firms 

entry) rather than the forces the drive the coagglomeration of industry pairs with specific characteristics 

(e.g., both industries in the pair have small firms or considerable entry; as in Faggio et al., 2017).  

Our evidence delivers the important cautionary insight that particular cases do not generalize easily 

and directly to the universe of industries – or to other industries – and that evidence gathered by pooling 

data across all sectors masks very significant differences. Indeed, the pattern we document reveals a stark 
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heterogeneity in the relative importance of the three Marshallian forces for industrial co-location – with 

few industries impacted by the agglomeration forces in the same way.  

These findings have the potential to inform policy interventions aimed at stimulating the 

emergence of economic hubs. A local planner interested in promoting the development of a cluster in a 

given industry should be especially careful in acting on lessons learned from another industry with very 

different microfoundations. Given the renewed interest in ‘active’ industrial policy in the UK and 

elsewhere in the world to engender local economic growth and stimulate productivity and innovation, our 

evidence is highly topical.1 See for example the ‘Industrial Strategy 2018’ White Paper of the UK 

Government or the Franco-German 2019 manifesto for ‘European Industrial Policy’ (Chatterji et al., 2014, 

Duranton, 2011, and Neumark and Simpson, 2015 present a critical account of similar initiatives for the 

US). 

In order to carry out our analysis, we employ confidential firm level data for 97 manufacturing 

industries from the UK’s Business Structure Database (BSD) covering the years 1997-2008. We match 

this information with a range of other data on industry characteristics in order to arrive at proxies for the 

Marshallian agglomeration forces. We consider agglomeration at the Travel-to-Work-Area (TTWA) level. 

These areas are constructed to be self-contained labor markets. In that sense, they correspond to U.S. 

Metropolitan Statistical Areas or Canadian Census Metropolitan Areas. 

The estimates of the individual industry models shed light on the nature of industry heterogeneity 

in agglomeration. We devote much of our attention to four classic cases: cutlery, textiles, cars and 

computers. Cutlery was considered by Marshall (1890). For this industry, we find evidence that input 

linkages and labor market pooling are important – while knowledge spillovers are not. The picture is 

different when considering textiles – which has also been of historical importance for the development of 

manufacturing in the UK (Landes, 1969). For this industry, we find large and significant labor pooling 

effects and significant but smaller knowledge spillovers. Conversely, the impact of input sharing is small 

and insignificant. These results show that one would not want to generalize from cutlery to textiles, and 

illustrate more generally the limits of extrapolation.  

Without doubt, the computer and the car industries are amongst the most salient ‘tales’ in the 

agglomeration literature – though for opposite reasons. Saxenian (1994) offers an important and often 

quoted analysis of the Silicon Valley – and its glowing success. Conversely, Glaeser (2011) provides an 

informative discussion about the car industry’s declining cluster surrounding Detroit – contrasting it to the 

thriving computer agglomeration in Greater San Jose. Our evidence shows that for the computer industry, 

knowledge spillovers are very important – while input sharing and labor market pooling seem unrelated to 

the co-location pattern of this industry with other sectors in the economy. Conversely, for the automobile 

industry, labor pooling has a large and significant effect, while knowledge spillovers have a smaller but 

                                                      
1 For example, previous work by Devereux et al. (2007) shows that government subsidies are more effective in 

attracting firms to locations where large agglomerations pre-exists.  
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still significant coefficient. Input sharing instead has a small and insignificant impact. In short, we see a 

very different pattern of agglomeration effects across these four exemplary industries.  

A similar heterogeneity appears when considering the drivers of coagglomeration for the rest of 

the individual industries. A handful of industries display relatively similar patterns to one of the four classic 

cases. But more often than not industries are characterised by individual patterns in terms of agglomeration 

microfoundations. Once again, this illustrates the limits to generalization. It also clarifies that, because of 

the substantial heterogeneity that we document, pooled regressions are not a valuable tool for identifying 

the microfoundations of agglomeration for individual sectors (nevertheless, pooled regressions are 

informative about common patterns that hold across industries). 

As mentioned, to understand the pattern of heterogeneity, we consider the relationship between a 

range of industry characteristics and the industry-level coefficients on the Marshallian forces. We do this 

across all the industries in our sample and consider the following attributes: an industry’s agglomeration 

(localization), its dynamism (proxied by its new firms’ creation rate), its incumbent firms’ size, and its 

workers’ education. In studying the patterns, we are forced to deal with various ambiguous predictions 

arising from theory. For instance, different theoretical frameworks suggest that the agglomeration 

(localization) of a given industry could be a substitute or a complement for that industry’s coagglomeration 

with other industries. In fact, it is not hard to imagine a model of either sort.2 On the one hand, there may 

be a substitution effect of agglomeration if the presence of own industry activity fosters agglomeration – 

making cross-industry coagglomeration not as valuable. The complementarity argument, on the other hand, 

would suggest that industries that benefit from labor pooling, input sharing, and knowledge spillovers will 

seek to enjoy these benefits within and across sectors – i.e., by both agglomerating and coagglomerating. 

We see similar ambiguities in considering other channels by which agglomeration economies are created. 

For example, industry dynamism might strengthen agglomeration effects associated with matching – 

potentially raising the coefficients on any of the three Marshallian microfoundations. However, entry might 

deny market participants the trust needed for agglomeration effects to arise, therefore inhibiting the 

diffusion of knowledge (as in Helsley and Strange, 1994). There are similar ambiguities associated with 

the likely effect of the size of incumbent firms and with workers’ education – a standard, but imperfect, 

proxy for skills.  

In order to (empirically) resolve some of these ambiguities, we regress our estimated coefficients 

for the Marshallian agglomeration forces on our proxies for own-industry agglomeration, industry 

dynamism, incumbent firm size, and worker education. Regarding whether agglomeration and 

coagglomeration are complements or substitutes, we find that for labor pooling and knowledge spillovers, 

complementarity dominates. However, we find little effects on input sharing. Regarding dynamism, we 

find that more dynamic industries have larger labor pooling coefficients. Conversely, input sharing 

coefficients are smaller for the most dynamic industries. We do not find a significant relationship with the 

                                                      
2 Duranton and Puga (2004) characterize agglomeration economies as arising from sharing, matching, and learning. 

It is possible for any of these forces to operate within industries, across industries, or both. 
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knowledge spillover coefficients. Next, we find no impact of incumbent size on labor pooling, while input 

sharing is less important with large existing firms – a Chinitz (1961) effect. For knowledge spillovers, we 

find instead a sort of anchor effect – with smaller firms having smaller effects. Finally, for education, the 

labor pooling effect is strongest for the less educated workers but input sharing is strongest with a more 

educated workforce – a pattern suggestive of the nursery effects discussed by Vernon (1960). We find no 

significant effect for knowledge spillovers. 

The bottom line of all of the analysis is that the individual industry models both deepen the cases 

(which makes them more valuable) and clarify the limitations of extrapolating from the cases (which makes 

the cases less valuable). Taken together, the individual industry models coupled with the regressions 

exploring the regularities in the heterogeneity pattern can assist in the use of cases by suggesting situations 

in which a given case might apply to with reasonable accuracy.  

The rest of the paper is structured as follows. In Section II we present the data and describe the 

main variables we use. In Section III, we present our findings on the four classic cases of agglomeration – 

namely cutlery, textile, cars and computers. Section IV discusses the heterogeneity we find when we 

explore all the manufacturing industries in our sample. Finally, Section V presents our attempt at 

rationalising this heterogeneity. Some concluding remarks are presented in Section VI. 

 

II. Data  

A. Data and variable construction 

The core data we use to carry out our analysis is the UK Business Structure Database (BSD) covering the 

period 1997 to 2008. The data is an annual snapshot (taken in April at the closing of the fiscal year) of the 

Inter-Departmental Business Register (IDBR), which consists of constantly-updated administrative 

business data collected for taxation purposes. Businesses liable for value-added taxation (VAT) and/or 

with at least one employee registered for tax collection appears on the IDBR. In 2004, the Office for 

National Statistics (ONS) estimated that businesses listed on the IDBR accounted for approximately 99 

per cent of economic activity in the UK.  

Businesses tracked in the dataset are structured into enterprises and local units, where the first refers 

to the overall business organization while the second can be thought of as a plant or establishment. In the 

majority of cases (70 per cent), enterprises only have one local unit. In our work, we make use of data at 

the local unit level including plants belonging to both single- and multi-plant enterprises and located in 

England, Wales and Scotland. We neglect Northern Ireland because of poor data coverage.  

The initial raw data includes approximately three million local units every year. However, in order to 

prepare the data for our analysis, we carry out a series of checks and drop a number of units. These mainly 

deal with inconsistencies in terms of anomalous opening/closing dates of establishments, and outliers in 
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terms of concentration of establishments in very small-scale geographical units. The Web Appendix to 

Faggio et al. (2017) provides more detail of our sample selection and data cleaning procedures.3 

For our analysis, we focus on three-digit industries of the UK Standard Industry Classification (SIC) 

1992 and restrict our attention to manufacturing (SIC151-SIC372). We exclude, however, a few industries 

for the following reasons. First, ‘Manufacturing of tobacco products’ (SIC160) is dropped because of its 

limited number of plants throughout the sample period (e.g., 43 in 1997). Second, we disregard five 

industries for which we cannot measure one of our key variables of interest – namely, knowledge 

spillovers: ‘Reproduction of recorded media’ (SIC223); ‘Manufacturing of machine tools’ (SIC294); 

‘Manufacturing of weapons & ammunition’ (SIC296); ‘Recycling of metal waste and scrap’ (SIC371;) and 

‘Recycling of non-metal waste and scrap’ (SIC372).4 After these restrictions, our sample covers 97 

manufacturing 3-digit sectors for a total of 4,656 unique pairwise industry combinations for twelve years 

(1997-2008). The complete dataset thus contains 55,872 industry-pair-by-year observations. 

In terms of geographical units of aggregation, we use Travel-to-Work Areas (TTWAs) – which are 

designed to guarantee that at least 75% of the resident population works in the area and that 75% of the 

people working in the area are resident there. These delineate areas that can be considered as self-contained 

labor markets and economically relevant aggregates. In 2007, there were 243 TTWAs within the United 

Kingdom. We focus on Britain (excluding Northern Ireland), split TTWAs into urban and rural ones, and 

only consider 84 urban TTWAs with population in excess of 100,000 residents. More detail is provided in 

the Web Appendix to our previous work (Faggio et al., 2017).5 

To measure coagglomeration, we use the Ellison et al. (2010) metric calculated using the total 

employment shares of the selected 97 three-digit industries contained in the 84 urban TTWAs. More 

formally, let us denote total employment in industry i by Ni; and denote the employment in metropolitan 

area m and industry i by nmi. The share of a given industry i’s employment in metropolitan area m is defined 

as smi = nmi /Ni, while the metropolitan area’s share of national employment is denoted by xm. For industries 

i and j, the Ellison et al. (2010) coagglomeration measure is defined as:  

γC
ij = 

∑
∑

=

=

−
M

1m
2

m

mmj
M

1m mmi

)(x1

)x-(s )x-(s
. (1) 

                                                      
3 Accessible at: http://personal.lse.ac.uk/silvao/Heterogeneous%20Agglomeration%20Web%20Appendix.pdf  
4 Note that we checked whether our results substantially change if we include these sectors despite the missing data 

on knowledge spillovers. Broadly speaking, we found this was not the case. However, we prefer working with a clean 

dataset in which each variable we use is measured for every sector we consider. Similarly, we have checked that our 

results carry through if we use the 94 sectors we considered in our previous work (obtained by re-aggregating sectors 

with low employment/firm counts; see Faggio et al., 2017). 
5 In some extensions, we experimented with keeping rural areas or excluding London from our analysis. Overall, we 

find similar results. These are not tabulated for space reasons, but are available from the authors. 

http://personal.lse.ac.uk/silvao/Heterogeneous%20Agglomeration%20Web%20Appendix.pdf
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 This measure is related to the covariance of industries across metropolitan areas. In order to study 

how this tendency of industry to co-locate is affected by the three standard Marshallian agglomeration 

forces of labour pooling, input sharing and knowledge spillovers, we construct the following proxies. 

To measure the importance of labor pooling, we use the UK Labour Force Survey (LFS) data 

between 1995 and 1999 – at the beginning of our observation window – and investigate whether industries 

use similar types of workers. The LFS is a representative quarterly survey of households living in the UK 

sampling between 64,000 (earlier years) and 52,000 (later years) households every quarter, equivalent to 

about 120,000-150,000 individuals. In our work, we focus on 16-59 aged women and 16-64 aged men, and 

on individuals either working as employees or as self-employed. We only consider individuals with non-

missing information on educational qualifications, industry of employment and occupation. Furthermore, 

we only keep those who live in English, Welsh or Scottish TTWAs – while we drop Northern Ireland (as 

we did for our main BSD data). Finally, we select individuals living in urban areas and working in 

manufacturing – leaving us with a sample of about 35,000 workers a year. We then use the 331 occupation 

groups defined by the three-digit LFS Standard Occupation Classification (SOC 1990, which categorizes 

occupations on the basis of skill level and skill content at a very detailed level) in conjunction with the 97 

manufacturing industries defined at the three-digit SIC level to calculate Shareio and Sharejo. These 

measure the shares of employees of occupation o in the total employment of industry i and j, respectively. 

Using this information, we proxy for labour pooling by measuring the similarity of employment in 

industries i and j computed as the correlation between Shareio and Sharejo.  

To assess the importance of this input sharing, we use the ONS Input-Output Analytical Tables (I-

O henceforth) for 1995 to 1999. This allows us to measure the extent to which industries buy and sell 

intermediate inputs from one another. Specifically, we first calculate the shares of inputs that each industry 

within a pair buys from each other as fractions of their total intermediate inputs, and the shares of outputs 

that they sell to each other as fractions of their total output (excluding sales directly to consumers). We 

then follow Ellison et al. (2010) and Faggio et al. (2017) and proxy input sharing by taking the maximum 

of either the upstream linkages (i.e., the largest between the share of inputs that sector i buys from sector j 

and vice versa) or the downstream linkages (i.e., the largest between the share of output that sectors i sells 

to sector j, and vice versa) between two industries.6 

Lastly, in order to obtain a proxy for knowledge spillovers, we track patent citation flows using 

information on UK inventors contained in the European Patent Office (EPO) data for the years 1997 to 

                                                      
6 The sector classification used in the I-O Tables is more aggregated than the three-digit SIC industrial classification 

used in the BSD, and only includes 77 manufacturing industries. We assign input-output shares to SIC three-digit 

sectors belonging to the same I-O sector code using an apportioning procedure based on their employment share 

within the group (averaged between 1995 and 1999). 
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2009.7 Approximately 144,000 patents were filed by 160,000 UK inventors (multiple inventors can be 

recorded for each patent). These generated a stream of more than 77,000 citations of UK patents over the 

observed time-window. In order to construct knowledge spillover measures we exclude self-citations from 

the same inventor (or the company at which he/she is based), as well as citing patents filed after 

2000/before 1981, and cited patents filed after 1997. The latter two restrictions guarantee that on average 

cited patents are at least three years older than citing ones, and allows us to center our knowledge-spillover 

measures in the initial years of our sample (i.e. up to 2000) – so that they are measured at a similar time as 

the labor-pooling and input sharing metrics. Using these data, we measure the extent to which patents 

associated with industry i cite patents associated with industry j and vice-versa. One challenge lies with 

creating a mapping between sectors and patents – which are categorized using technological classes. 

Following the literature, we use a probabilistic mapping based on the Industry of Manufacture (IOM).8 

After applying these mapping procedures, we investigate the number of citations that a patent in sector i is 

receiving from patents in sector j, and the number of patents in sector j that a patent in sector i is citing. 

Our final indicator for knowledge spillovers consider the maximum patent-citation flow between sector i 

and sector j – normalized by total citations in that industry. 

Using the various data sources discussed above, we construct an additional set of sector/sector-

pair characters that we deploy in our analysis. To begin with, we create proxies that capture industry-pairs’ 

similarity in terms of their reliance on natural and other geographically concentrated resources. These 

variables are used in our analysis of the agglomeration microfoundations to control for the tendency of 

certain industries to co-locate simply because of their reliance on resources and inputs that are unevenly 

distributed across space. In particular, we measure industries’ use of primary inputs as a share of total 

inputs (using the I-O Tables) considering their purchasing from the following ‘natural resources’ sectors: 

agriculture, forestry, fishing, mining and quarrying. We also consider their usage of water and energy 

separately, as well as the share of inputs bought from transport-related sectors. In addition, we create a 

proxy for access to business services by considering the share of inputs bought from this compartment. 

Using these shares, we then construct proxies for the dissimilarity of industry pairs in terms of their reliance 

on these resources by measuring (one half of) the absolute value of the difference in the shares of these 

various inputs used by the pair.  

Furthermore, we characterize sectors (not sector pairs) along four dimensions, which we use to 

study the heterogeneity in the strength of the agglomeration microfoundations that we document. First, we 

calculate an industry’s agglomeration (localization) as measured by the Ellison and Glaeser (1997) index 

of spatial concentration at the three-digit sectoral level (obtained from the BSD data). Second, we consider 

industry dynamism by measuring the entry share of new firms in the sector (i.e., the incidence of new firms 

                                                      
7 We acknowledge that patent citations are an imperfect proxy for knowledge spillovers (see, for a discussion, Breschi 

et al., 2005). However, alternative proxies for KS (e.g., based on innovation surveys or on various proximity metrics) 

have similar limitations. More details about the EPO dataset can be found in Breschi and Lissoni (2004).  
8 These probabilistic correspondences were developed by Statistics Canada and are discussed in Silverman (2002). 
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at time t in the total number of firms in that year; using the BSD data). Third, we consider data on the share 

of college graduates in each industry to measure average education levels (obtained using the LFS data). 

Lastly, we characterize sectors by measuring the average size of its incumbents – i.e., the employment of 

firms operating both at time t and t-1 (based on the BSD data). 

 

B. Key descriptive statistics 

Descriptive statistics for our industry-pair dataset are presented in Table 1. The first row of the table shows 

that our measure of coagglomeration γC is centered on zero with a standard deviation of 0.008, a minimum 

of -0.043 and a maximum of 0.175. These figures are similar to the patterns in Faggio et al. (2017) – where 

we used 94 manufacturing industries (instead of 97) – and consistent with the findings of Ellison et al. 

(2010), who similarly report a right-skewed distribution of γC for the US displaying a higher co-location 

tendency.  

The next three rows present descriptive evidence for our proxies for the Marshallian forces. The 

mean value for labor pooling is 0.225 with a standard deviation of 0.187, a maximum value of 0.968 and 

a minimum of -0.033. We find instead that the mean values of our input sharing and knowledge spillover 

proxies are much closer to zero – at 0.013 and 0.016, respectively – but the distributions have a strong right 

skew – with maximum values of 0.782 and 0.420, respectively. This confirms the pattern we found in 

Faggio et al. (2017) suggesting that most industries do not share intermediates or ‘knowledge’ – but a few 

are very highly interlinked. 

The bottom half of Table 1 presents descriptive statistics on our proxies for industry-pairs’ 

(dis)similarity in their use of natural and other non-manufacturing resources. The largest mean value is 

found for the dissimilarity in the use of natural resources (at 0.053), while the smallest relates to use of 

water (0.001). The other three measures have similar mean values at around 0.015-0.020. 

The attributes we use to characterize industry are presented graphically in Appendix Figure 1. The 

top-left plot presents the Ellison-Glaeser Index (EGI) of agglomeration. Its mean value is 0.032 with a 

standard deviation of approximately 0.06. However, more than 40% of industries have values close to zero, 

and the distribution is clearly right skewed. Consistently, the EGI median is substantially smaller at 0.008. 

The top-right figure displays the distribution of the entry share of new firms, which has mean and median 

both at around 0.100, and a standard deviation of approximately 0.033. Next, the bottom-left plot shows 

that distribution of the industries’ share of highly educated workers – with a mean/median of 0.099/0.078 

and a standard deviation of 0.08. Lastly, the bottom-right plot presents the incumbent firms’ size 

distribution. It should be noted that the figure excludes the sector ‘Processing of nuclear fuel’ (SIC233), 

which is clearly an outlier with 399 employees on average. Without this industry, the mean/median 

employment of incumbent firms is 23.7/19.2 with a standard deviation of 18.3. 
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III. Four classic agglomeration tales 

In order to study the microfoundations of agglomeration economies, we link the proxies for the three 

standard Marshallian forces discussed above to our measure of industrial coagglomeration γC using the 

following empirical model:  

γC
ijt = α + βLP LPij + βIO IOij + βKS KSij + Σk=1

5 λk Dissij
k

 + εijt,     (2) 

where γC
ijt is the Ellison et al. (2010) measure of coagglomeration between sectors i and j at time t; LPij, 

IOij and KSij denote the measure of labor-pooling (LP), input sharing (IO) and knowledge spillovers (KS) 

between sectors i and j; Dissij
k
 is one of the measures of dissimilarity between sectors i and j in terms of 

use of primary resources and non-manufacturing inputs; and εijt is an error term uncorrelated with all other 

variables. Throughout the analysis, we standardize variables to have unitary standard deviation at the level 

of the full dataset – i.e., when considering all manufacturing sectors. This eases comparison of the relative 

strength of the three Marshallian forces. 

This approach is based on the idea that more coagglomeration between industry pairs will take 

place when the links between industries are stronger. Ellison et al. (2010, Mathematical Appendix) 

establish this formally in a particular model of agglomeration. O’Sullivan and Strange (2018) reach a 

similar conclusion in the context of an agent-based model. 

We begin our analysis by estimating equation (2) including all manufacturing sectors in our data. 

In this case, the sample includes 4,656 industry pairs repeated over 12 years, giving rise to 55,872 

observations. Standard errors are clustered at the industry-pair level.9 Results are reported in the top row 

of Table 2 and confirm prior findings that all three Marshallian forces are significant determinants of co-

location but labor pooling has a much stronger effect than input sharing and knowledge spillovers. In 

particular, the standardized effect of LP is approximately 10% – two and a half times the impact of IO (at 

3.7%) and five times larger than the impact of KS (at 2%).10 

It is worth emphasizing that this estimation is across the universe of industry pairs (as in Ellison 

et al., 2010, and as in some specifications in our prior paper, Faggio et al., 2017) rather than for individual 

industries – which is instead our focus here.  In our previous paper, we thoroughly assessed the robustness 

of these findings – for example, by excluding London, by controlling for average population or 

employment of the TTWAs in which the industry pairs are located, or by accounting for the industries’ 

own agglomeration – and established their causal nature. In the current work, we have carried out a similar 

                                                      
9 Note that while there is time-variation in γC

ijt, our proxies for LPij IOij and KSij are fixed and averaged at the 

beginning of our observations window (1995-1999). Because standard errors are clustered at the sector-pair level, 

our results are equivalent to collapsing the dataset to one observation per industry pair – i.e., to 4,565 observations. 

However, we work with the expanded data set because in some extensions we investigate whether our results change 

if we only consider the first/second half of our time window, or exclude the last two years (corresponding to the 

‘Great Recession’). We found broadly comparable results irrespective of the exact years considered. 
10 One possible explanation for the weaker KS results is that knowledge spillovers are more difficult to define and 

measure that other Marshallian forces (see footnote 6).  
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(albeit less extensive) set of checks and reached similar conclusions: our findings most likely capture the 

causal impact of the three Marshallian forces on co-location – holding fixed other potential confounders. 

Although these results are not reported for brevity, they are available upon request. 

We now turn to individual industry models, specifically for our four salient classic tales of 

agglomeration – namely, the textile (SIC171-SIC177), cutlery (SIC286), computer (SIC300) and 

automobile (SIC341) sectors. When considering microfoundations for these specific single sectors (or sets 

of sectors in the case of textiles), the empirical model in equation (2) is identified by exploiting variation 

in how one of these industries co-locates with the remaining 96 industries in the economy. Note that while 

these models allow for maximal heterogeneity, the results are noisier given the limits imposed on this 

approach by the data. 

To begin with, the second row of Table 2 presents our evidence for the textile industry. This set of 

sectors has been of historical importance for the development of manufacturing in the UK (Landes, 1969). 

Our findings reveal very large and significant labor pooling effects at 0.367 – three and a half times larger 

than the average for the whole of manufacturing (at 0.101). We also find significant but smaller knowledge 

spillovers (at 0.143). Both estimates are significantly larger than the corresponding LP and KS for all other 

sectors in our data (excluding the textile group) with p-values on the null of no difference at 0.014 and 

0.000, respectively. Conversely, the coefficient of input sharing is small (at 0.012) and insignificant. As 

for our sectoral characterisation, textile industries are more agglomerated (localized) than the average 

manufacturing sector (the EGI index is 0.081 vs. 0.032 across all manufacturing sectors), and have a less 

educated workforce than average (the share of college graduate is 0.050 compared to a manufacturing-

wide average of 0.099). The sector also has average levels of new firms’ entry and close-to-average size 

of incumbent firms. 

The picture is different when considering another salient industry – namely cutlery. The industry 

was considered by Marshall (1890) who used it as a classic example of agglomeration driven by sharing 

of inputs and services. Indeed, he wrote that “many cutlery firms … put out grinding and other parts of 

their work, at piece-work prices, to working men who rent the steam power which they require, either from 

the firm from whom they take their contract or from someone else’’ (Marshall, 1890, p. 172). The results 

in Table 2 support these intuitions. The coefficient on input linkages is very large and significant (at 0.599 

– sixteen times larger than for the average manufacturing sector). Testing the equality of the IO coefficients 

between cutlery and all other sectors in our data leads us to reject the null of no difference with a p-value 

of 0.007. For cutlery, the IO coefficient is also twice as large as the coefficient on labor market pooling (at 

0.238), which is also significant (and significantly different from the rest of manufacturing; p-value on the 

significance of the difference: 0.034). Conversely, knowledge spillovers are not significant and slightly 

negative. Clearly, these results show that one would not want to generalize from cutlery to textiles, and 

illustrate the perils of extrapolation. Testing whether the strength of IO (as well as KS) between cutlery 

and textiles is the same clearly leads us to reject the null – though from a statistical point of view LP is 

found to have the same importance in both sectors. In terms of its attributes, cutlery is characterised by 
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average sectoral agglomeration, relatively low entry rates and low educated workers, further emphasising 

that even in terms of underlying organizational structure cutlery and textiles are not comparable – despite 

being both classic examples of the historical development of the UK industrial clusters. Finally, the small 

size of its incumbent firms – at 11 employees (40% of the manufacturing average) – coupled with the very 

large impact of the IO proxy provides support to the intuitions in Chinitz (1961), who emphasised the 

importance of input sharing among small firms as a driver of agglomeration.  

Without doubt, the computer industry is the salient industry in the agglomeration literature. One 

example is Saxenian’s (1994) highly impactful work on the Silicon Valley. Given previous discussion of 

this sector in the literature, it is no surprise that the regression results in Table 2 show a very large and 

significant coefficient on knowledge spillovers at 0.215 – ten times larger than for the average 

manufacturing sector (and statistically different from KS in the rest of the economy; p-value on the 

significance of the difference: 0.000). The input sharing coefficient is also positive but substantially smaller 

and non-significant (at 0.017 – half the size of the impact for manufacturing overall, though the difference 

is not statistically significant). The computer industry is somewhat unusual in displaying a slightly negative 

and insignificant coefficient on labor market pooling (at -0.058; statistically different from the rest of 

manufacturing). It is worth noting that the latter result does not mean that there is no labor market pooling 

in this industry. Instead, there could be significant labor pooling taking place within the computer sector 

itself. Note also that, although the computer industry is similar to cutlery in having small incumbents, the 

‘organizational’ Chinitz-type IO effects are dominated here by the importance of knowledge effects. This 

is possibly due to its highly educated workforce and high entry share – features that distinguish this sector 

from the previous ‘tale’. It is thus manifestly problematic to extrapolate from the cutlery industry to the 

computer industry. Similarly, however appealing it might be to use the computer industry to illustrate 

agglomeration economies in general, the logic of extrapolating from the computer industry is similarly 

strained. 

The car industry is also highly salient in the agglomeration literature. In the US, this industry’s 

declining cluster centered around Detroit is often contrasted to the prosperous computer cluster in Great 

San Jose. A very informative discussion along these lines can be found in Glaeser (2011). Somewhat 

surprisingly, our sectoral characterisation uncovers similarities between these two sectors in the UK. 

Looking at Table 2, the car industry has more highly educated workers than manufacturing on average – 

like the computer sector (though less markedly so) – and a high entry share. It is also not markedly more 

agglomerated than the average manufacturing sector (unlike textiles; although computers are clearly less 

agglomerated). The only remarkable difference with respect to the computer industry is that incumbents 

in the car sector are very large. Despite these broad similarities, the pattern of the regression coefficients 

differs. Labor pooling has a large and significant effect (at 0.291), while knowledge spillovers have a much 

smaller but still significant coefficient (at 0.100). Input sharing instead has a small insignificant impact (at 

0.017). This evidence shows once again that even within sectors that share some features in terms of their 

organization and characteristics, the microfoundations of agglomeration can be different. Indeed, tests on 
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whether LP and KS have the same impact across the two sectors reject the null – though the rejection is 

borderline for knowledge spillovers (largely due to the imprecision of the estimate for the car sector). 

In a nutshell, the evidence on the four tales shows that agglomeration is very heterogeneous. In the 

next section, we further substantiate this claim by exploring the variation in the strength of the three 

Marshallian forces across all the 97 manufacturing sectors in our data. 

 

IV. Individual industry models 

In this section, we characterise the heterogeneity in the microfoundations of agglomeration more 

completely by estimating single-industry co-location models for all the manufacturing sectors covered by 

our data. Stated differently, we estimate the empirical model in equation (2) industry-by-industry – i.e., 

considering all 97 sectors we track and not just the four classic tales. As already discussed, these models 

are identified by the variation in the coagglomeration patterns of one industry with the remaining 96 in the 

economy. 

The most important findings from this exercise are presented in Table 3 and Figure 1. The full set 

of estimates is presented in Appendix Table 1. While it is not possible to discuss every industry’s pattern 

in the text of the paper, we believe these results have the potential to be of interest to a wide range of 

scholars and policymakers. 

The first result that emerges is the striking heterogeneity in the strength of the Marshallian forces 

across manufacturing industries as clearly displayed in the panels of Figure 1. This heterogeneity is not 

only visually sizeable but is also statistically significant: F-tests on whether the LP, IO and KS estimates 

are identical across sectors clearly reject the null (similarly, F-tests for the joint significance of the three 

sets of Marshallian forces reject the hypothesis that they are jointly equal to zero). 

Looking at estimates for LP across all the industries, we find a mean estimated effect of 0.138,11 

but a substantially smaller median impact at 0.059 (see top panel of Table 3). This difference is due to a 

spread-out distribution of estimates (standard deviation of 0.268) with an evident stretch towards positive 

values (skew 1.44). The top-right plot of Figure 1 further reveals that the estimated effect distribution easily 

covers the (-0.5,0.5) interval but stretches well above this range on the positive side of the horizontal axis 

– reaching values above one (i.e., a unitary standardized effect). However, not all of these estimates are 

significant. The bottom right plot of the figure also reveals that the associated standard errors – though 

mainly concentrated in the (0,0.25) interval – are relatively spread out giving rise to approximately 36% 

(35 out of 97) significant estimates. 

It is also interesting to reflect on the nature of the ‘top four’ and ‘bottom four’ sector with the 

highest/lowest LP estimates. All industries in the top four belong to the broad textile sector – which we 

already analysed as one of our classic tales. The bottom four sectors are instead very different from each 

other. ‘Manufacture of musical instruments’ (SIC363) and ‘Cutting, shaping, and finishing of stone’ 

                                                      
11 Note that the average of the Marshallian force effects estimated industry-by-industry does not necessarily coincide 

with the corresponding effects estimated by pooling data for all industries – i.e., for the average sector. 
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(SIC267) are likely to have highly specialized workers – a situation where pooling with another industry 

may not be possible. In contrast, ‘Manufacture of games and toys’ (SIC365) and ‘Manufacturing of 

vegetable and animal oils and fats’ (SIC154) seem likely to involved standardized labor, where pooling 

with specific partner industries may not be needed. Interestingly, none of these sectors has a highly 

educated workforce – with shares of college graduate ranging between 0.03 and 0.11.  

Regarding IO, we find a much smaller average effect at 0.056 and an even smaller median impact 

at 0.017 (see Table 3). This reflects the fact that nearly 40% of the sectors have IO effects very close to 

zero (see Figure 1). On the other hand, the distribution is significantly spread out (std.dev. 0.251) with an 

even more pronounced right skew than LP (2.905 vs. 1.444). This lends support to our previous claim that 

the majority of sectors are not tightly related via input-output linkages – but some industries are clearly 

very interconnected. For these industries, IO is a very strong determinant of co-location. We also find 

relatively stretched out standard errors – once again giving rise to 35 (out of 97) significant estimates. 

We further note that one of our classic tales – cutlery – is among the ‘top four’ sectors with the 

largest IO estimates. The other three are two industries in the same sector division – i.e., the manufacture 

of ceramics (SIC262 and SIC263) – and ‘Manufacture of coke oven products’ (SIC231). While the last 

seems at first only loosely associated with the previous two, it turns out it is not: this sector uses the output 

of the ceramic industry for the maintenance and repairs of its oven (in a process called ‘ceramic welding’). 

It is also interesting to note that the ceramic compartment is arguably another classic tale. For example, 

the Italian district of Sassuolo has been known for being a world-leading ceramic-production cluster for 

decades (Porter, 1990). Similarly, in England, Stoke-on-Trent – and more generally Staffordshire – hosts 

highly concentrated and specialised pottery and ceramic-related productive activities. Conversely, little 

stands out when we look at the ‘bottom four’ sectors – although for two of them (SIC181 and SIC183, 

relating to the processing of leather and fur) we would have expected higher IO effects (considering that 

they might feed into the textile and fashion manufacturing). 

Lastly, we find much smaller mean and median values for the estimated effects of KS – at 0.018 

and 0.011, respectively (see Table 3). The distribution is also less spread out (std.dev. 0.089) than for LP 

and IO, and has a small, negative skew of -0.339. Yet, visually the distribution is clearly much more 

symmetric than what we found for LP and IO (see Figure 1) with values mostly concentrated in the (-

0.2,0.2) interval and just above 25% of the industries displaying KS effects very close to zero. As a result 

of this relative compression and associated standard errors, we find that only approximately 16% of the 

estimates (16 out of 97) are significant. 

When looking at the ‘top four’ KS sectors, we find that one of the classic tales – i.e., the computer 

industry – clearly ranks very high in terms of its responsiveness to knowledge flows. More surprisingly, 

we also find ‘Preparation/spinning of textile fibres’ (SIC171) among the ‘top four’, and two sectors in the 

ceramic-and-related compartment – namely ‘Manufacture of ceramic goods other than for construction’ 

(SIC262) and ‘Manufacture of cement, lime and plaster’ (SIC265). The former also has the highest IO 

coefficient while the latter – despite belonging to the same compartment – has a small and negative IO 
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estimate (-0.15). Interestingly, neither sector has a high share of college graduates (0.057 and 0.107, 

respectively) making them different from the computers (with a 0.294 share of college graduates). 

Nevertheless, all three industries significantly respond to the benefits of sharing knowledge. At the 

opposite end, the ‘bottom four’ sectors form a disparate group which includes a high skilled sector – 

‘Processing of nuclear fuel’ (SIC233; share of graduates 0.317) – and a very unskilled one – ‘Manufacture 

of leather clothes’ (SSIC181; with zero college graduates).  

Next, we carry out an attempt at identifying industries that resemble the four classic tales discussed 

above in terms of the relative strength and significance of their estimated microfoundations. To do so, we 

proceed as follows: i- we sort the data contained in Appendix Table 1 on the basis of the strength of the 

Marshallian force that best identifies a given tale – for example, on the basis of the IO effect which, at 

0.599, characterises cutlery; ii- we focus on a relative tight neighbourhood around the estimate of the force 

that characterises the tale – i.e., we focus on IO values two standard errors up or down from 0.599; iii- we 

mainly consider sectors that report a statistically significant coefficient within the identified range for the 

Marshallian force under consideration (e.g., IO for cutlery); and iv- we identify industries that resemble 

the tale under investigation on the basis of the other two forces – e.g., they are similar to cutlery along LP 

and KS in terms of both strength and statistical significance (bearing in mind that we are already focussing 

on industries with similar input-sharing effects by selecting industries with significant IO estimates around 

0.599). While this is not an exact approach, it reveals potentially useful insights in terms of possible 

similarities between our classic cases and other manufacturing industries. 

Starting with textiles, we basically find that no other sector reproduces the kind of pattern that 

characterises this industry (SIC171-SIC177; LP=0.367, significant; IO=0.012, insignificant; KS=0.143, 

significant). If anything, there is some heterogeneity within the textile group when considering its various 

sub-sectors. For example, ‘Preparation/spinning of textile fabrics’ (SIC171), ‘Textile weaving’ (SIC172), 

‘Manufacture of knitted and crocheted fabrics’ (SIC176) and ‘Manufacture of knitted and crocheted 

articles’ (SIC177) are relatively similar with high estimate LP effects and still sizeable but smaller KS 

effects. However, SIC176 has a relatively low KS (at 0.045, still more than double the 0.02 manufacturing 

average) while SIC171 has a positive and significant impact of input sharing (at 0.095). Furthermore, 

‘Manufacture of textile articles, except apparel’ (SIC174) displays a very different pattern with a very large 

effect of IO (at 0.169), but no impact for LP (0.029) and KS (0.0049). 

When focussing on the pattern for cutlery (SIC286; LP=0.238, significant; IO=0.599, significant; 

KS=-0.039, insignificant), we find some similarities with ‘Pressing of iron and steel’ (SIC273; LP=0.329, 

significant; IO=0.418, significant; KS=-0.032, insignificant) and ‘Manufacture of ceramic tiles’ (SIC263; 

LP=0.376, significant; IO=1.109, significant; KS=0.106, insignificant). While the former resembles 

cutlery in terms of its core production processes, the latter is in a very different compartment – and in fact 

displays too large a coefficient on KS. We also find some similarities with ‘Forging and pressing’ (SIC284; 

LP=0.352, significant; IO=0.327, significant; KS=-0.077, insignificant) – clearly positioned in a closely 
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related industry – although the relative strength of LP and IO in this sector makes it somewhat different 

from cutlery (where IO clearly dominates). 

Next, we look for similarities to the computer industry (SIC300; LP=-0.058, insignificant; 

IO=0.017, insignificant; KS=0.215, significant), but struggle to find any. The closest sectors we identify 

are ‘Manufacture of accumulators, cells and batteries’ (SIC314, LP=0.007, insignificant; IO=-0.039, 

insignificant; KS=0.141, insignificant) and ‘Manufacture of pesticides’ (SIC242; LP=-0.007, insignificant; 

IO=0.045, insignificant; KS=0.118, significant) – although for the former the impact of KS is not 

significant despite being the dominant force. 

Finally, when we hone in on cars (SIC341; LP=0.291, significant; IO=0.017, insignificant; 

KS=0.100, significant), we find no other sector that displays a similarly large and significant LP effect 

while also having a positive and significant impact of KS and no effect (neither positive nor negative) of 

IO. If anything, the industries with pattern closest to automobiles are in the textile compartment (for 

example, SIC177-‘Manufacture of knitted and crocheted articles’) although these tend to display 

substantially larger LP effects and insignificant KS. 

We conclude this section by investigating the correlations between the three Marshallian forces 

across the industrial sectors in our sample. Our findings are presented diagrammatically in Figure 2. This 

displays linear prediction from univariate regressions of one of the three Marshallian forces on the other 

two – one at the time (for example LP on IO and then LP on KS). The figure shows that sectors with high 

LP also tend to have high IO – but these same sectors tend to have low KS. Conversely, we find that the 

association between IO and KS is positive.12  

All in all, the evidence from this section confirms our previous conclusions. The forces that govern 

agglomeration are very heterogeneous. Extrapolation from salient cases to other sectors should be carried 

out carefully, as should ‘interpolation’ from regressions that pool all manufacturing sectors to characterise 

the behaviour of specific industries. We believe that the individual industry models have the potential to 

guide this sort of analysis: a local planner interested in promoting the emergence of a cluster in a given 

industry should be especially careful in acting on lessons learned from another industry with very different 

microfoundations. Put the other way, the planner should only attempt to extrapolate from industries that 

are similar in their agglomeration tendencies.  

In the next section, we try to systematise the patterns we have found so far by relating the strength 

of the Marshallian forces in different sectors to some of their underlying characteristics in ways that are 

informed by the theories of agglomeration.  

 

 

                                                      
12 When pairing up Marshallian forces, we used the force with the smallest amount of variation as right-hand side 

variable to guarantee that the predictions plotted in the graph cover the actual variation taken by this force (and do 

not ‘predict’ out-of-sample). Unsurprisingly, the graphs display the same tendency when we run regressions swapping 

right- and left-hand side variables though the actual slopes are different. 
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V. Understanding the patterns 

A. Theoretical foundations and empirical approach 

This section considers the patterns of microfoundations that are present in the individual industry models 

documented in Sections III and IV and develops a simple approach to systematize our findings. This 

involves estimating models of the relationship between four key industry characteristics – namely, 

localization, new firm entry, workforce education and size of incumbent firms – and the estimated 

individual industry coefficients on Marshallian microfoundations that we discussed above. This approach 

builds on the analysis in Faggio et al. (2017), where the characteristics of industry pairs were related to 

Marshallian coefficients estimated across the universe of industry pairs. The key difference between the 

current work and our previous analysis is that here we consider individual industries – as opposed to 

industry pairs. This delivers direct evidence on the correlates of one industry’s microfoundations and 

generates insights that can be used to guide policy.  

In order to conduct our investigation, we focus on some fundamental questions that are theory-

grounded and related to the fundamental nature of agglomeration forces. First, we investigate whether 

coagglomeration is a substitute or a complement to localization – namely the ‘own’ agglomeration of an 

industry. This question is related to the old ‘urbanization’ vs. ‘localization’ issue, where the focus is 

whether agglomeration economies depend primarily on the scale of the entire city (urbanization) or that of 

an individual industry (localization). The older contributions in this literature employ cross-sectional 

reduced form approaches to looking at which effect is strongest. See, for instance, Glaeser et al (1992) and 

Henderson et al (1995), or the Rosenthal-Strange (2004) survey.  

On the microfoundations side of this debate, some research shows effects that appear to operate 

within industries (e.g., Fallick et al., 2006), while other research shows effects operating between industries 

(e.g., Ellison et al., 2010). Theoretically, it is straightforward to conceive of a model where both effects 

are at work. In such situation, the agglomeration of an industry may be a substitute or a complement to the 

coagglomeration of the industry with other sectors. The substitution effect of agglomeration would argue 

as follows: if the presence of own industry activity creates an external increasing return within the industry, 

then cross-industry coagglomeration is not as valuable. The potential complementarity argument would 

instead suggest that industries that benefit from Marshallian forces will seek to enjoy these benefits both 

by coagglomerating with other industries and by locating with other own-industry firms. Helsley and 

Strange (2002) provide a model where there is a potential for both substitute and complement relationships 

of this sort. In sum, there are theoretical arguments – and some empirical evidence – that both 

complementarity and substitution can be at work. We will further consider this issue by relating an 

industry’s Ellison-Glaeser (1997) Index (EGI) of agglomeration to the industry-level coefficients that 

capture the strength of labor pooling, input sharing, and knowledge spillovers. 

Second, we study how industry dynamism relate to the agglomeration microfoundations. Vernon 

(1960) argues that the distinction between stable and unstable industries is key to understanding the nature 

of increasing-returns productive activities. In Vernon’s view, the dynamism found in unstable industries 
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serves to strengthen microfoundations. This result is a clear comparative static in a range of models. For 

instance, in the Helsley and Strange’s (1990) model of labor market matching, more instability would be 

reflected in a greater loss associated with poorly matched employers and workers. This would in turn raise 

the marginal benefit of market thickness, implying stronger agglomeration economies. Similarly, in 

Duranton and Puga’s (2001) model of nursery cities, agglomeration is more valuable at the prototype stage 

than when the product is in ordinary production. In both cases, a dynamic industry will benefit more from 

coagglomeration with related industries. On the other hand, dynamism might instead weaken 

microfoundations. Helsley and Strange (2004) show that repeated interactions are needed to get knowledge 

sharing and, by extension, other microfoundations. To the extent that more dynamic industries make it less 

likely that interactions are repeated, this suggests that industry dynamism might be negatively associated 

with the strength of Marshallian forces. In short, the effect of dynamism could go either way and the 

relationship between an industry’s dynamism and the strength of Marshallian agglomeration forces is an 

empirical question. In the analysis below, we proxy dynamism with entry share and we explore the 

relationship between the incidence of new firms and the estimated strength of the Marshallian forces at the 

industry level. 

 The third question that we consider is the relationship of workforce education to agglomeration. It 

is common to equate education with skill. Bacolod et al. (2009a, 2009b, 2010) show that this is somewhat 

misleading: education is an input in skills, but there is not a one-to-one relationship between the two. Skill 

is a heterogeneous concept, with cognitive and social skills more strongly related to education than the 

physical skills that dominate the skilled trades – like Marshall's cutlery workers, discussed earlier in the 

paper. If educated workers have more specialized skills, then labor pooling effects might be stronger in 

sectors with a more educated workforce. Nonetheless, since education is at best an imperfect proxy for 

skills, this relationship might not hold. Similarly, input sharing is also sometimes seen as operating 

especially strongly for high technology products (Porter, 1990), which might also mean that input sharing 

is stronger in industries with more educated workers. Having said this, there is no reason why input sharing 

could not apply to low technology products – suggesting that the relationship between the average 

education of an industry’s workforce and input sharing could go either way. Similarly, although a worker 

must know something in order to have knowledge that might spill over, there is ambiguity: Marshall’s 

cutlery workers – while clearly skilled – almost certainly did not hold university degrees. In order to 

consider these issues empirically, we investigate the relationship between education – specifically the share 

of graduates in the industry’s workforce – and industry-by-industry Marshallian coefficients estimated in 

Section IV.    

 Fourth and finally, we explore how firm size is related to microfoundations of agglomeration. 

Again, prior research establishes the possibility of large firms either discouraging or encouraging 

agglomeration. On the one hand, Chinitz's (1961) classic paper argues that small firms have larger effects 

– in particular, by fostering input sharing linkages. See Rosenthal-Strange (2003, 2010) for empirical 

results consistent with this idea. On the other hand, other empirical work (see among others Feldman, 2003 
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and Agrawal and Cockburn, 2003) show ‘anchor’ effects whereby large firms have important externalities. 

In the analysis that follows, we reassess these questions by studying the relationship between an industry’s 

mean employment of incumbent firms – i.e., those already in the market – and that industry’s Marshallian 

coefficients.  

The estimating equation we use to implement these ideas takes the following very simple form: 

βai  = ΣjδjXji + εi,          (3) 

where βai gives the value of the coefficient for Marshallian force a – with a ∈{LP, IS, IO} – for industry i 

(which we estimated using equation 2 sector-by-sector), while Xji represents the value of the industry 

characteristic j – with j ∈{EGI, Entry, Education, Incumbent} – for industry i. We start by estimating 

univariate models where we enter one of these characteristics at a time, and then present multivariate 

models including all industry characteristics together. Furthermore, we also estimate simple linear models 

like those indicated by equation (3), as well as non-linear models in which dummies that capture quantiles 

of the underlying sectoral attributes are used to characterize industries. In the latter case, we estimate 

models where we regress the Marshallian coefficients on dummies for observations in the top 10% and 

bottom 10% of the various industry characteristics.   

 For all models, our preferred approach is to present and discuss estimates that come from 

specifications where industries are weighted by the inverse of the standard error of the Marshallian 

coefficients. This approach means more weight is placed on industries where Marshallian forces are 

estimated with greater precision, while our results are not ‘pulled’ by outlier industries with potentially 

large but far from significant estimates of LP, IO and KS. This correction is similar to the one routinely 

used in meta-analysis – where studies are generally weighted on the basis of the underlying sample size or 

the variance of the variables under consideration. As noted by Borenstein et al. (2009) the two approaches 

are almost equivalent – given that the (inverse of the) variance is proportional to the sample size. Since in 

our analysis all sectors occur an identical number of times in the industry-by-industry regression spelled 

out in equation (2) and so contribute in the same way to the estimation of the industry-specific LP, IO and 

KS, we cannot weigh by sample size. Instead, we weight by the inverse of the standard error – which we 

find is an intuitive way to account for the precision of our estimates given that significance levels are 

conventionally established by looking at the coefficient-to-standard error ratio (i.e., the t-test).13 We also 

estimated unweighted models, which are reported in the Web Appendix (Table A2.1). While the results 

from this second approach yield similar intuitions, the estimates are noisier and the patterns less clear. 

However, unweighted models do not account for the fact that large estimated Marshallian coefficients need 

not to be statistically significant – and so should be ‘discounted’ in our analysis. So we consider this 

                                                      
13 We also experimented with weights inversely proportional to the variance of our estimates. This approach returned 

similar patterns, but it was overly ‘aggressive’ in that it heavily penalized even coefficients that were quite precisely 

estimated.  
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approach less reliable. Finally, in all specifications we adjust standard errors for heteroscedasticity by using 

a standard ‘robust’ variance-covariance matrix correction.  

 

B. Results 

Table 4 presents results of weighted univariate regressions. For each Marshallian force, the first column 

reports the results of a continuous model, while the second column gives results of a model which includes 

dummies identifying observations in the top-10% and bottom-10% of the distribution of a given sector 

characteristic, as described above.  

The top panels of the table address whether agglomeration and coagglomeration are substitutes or 

complements. The results suggest the latter is more likely the case. The labor pooling coefficient rises with 

the degree to which an industry is agglomerated according to the EGI measure. So does the knowledge 

spillover coefficient. The complementarity result holds for both the continuous measure and for the dummy 

approach. For input sharing, however, the results are weaker. The estimate in the continuous model is close 

to zero. However, the bottom-10% dummy is significantly negative – which is consistent with 

agglomeration and coagglomeration being complements.   

The second set of results in Table 4 concerns industry dynamism as proxied by the entry share. 

With regard to labor pooling, there is a positive and significant relationship between the presence of new 

firms and the LP coefficient. The bottom-10% dummy is significant and negative, suggesting that the 

positive relationship is driven, at least in part, by the least dynamic sectors (i.e., those with the lowest rate 

of entry). Krugman (1991a; 1991b) showed that labor pooling can increase productivity in part by reducing 

unemployment when a city’s employers experience labor demand shocks that are not perfectly correlated. 

The finding here seems similar in the sense that industries with a lot of entry (and possibly exit) exhibit LP 

to a greater extent. On the other hand, we fail to find a statistically significant relationship between 

dynamism and input sharing or knowledge spillovers. One explanation would be that input and knowledge 

relationships take longer to form. Alternatively, this could be the result of the ambiguities in the theoretical 

predictions discussed above – with ‘negative’ and ‘positive’ forces cancelling out and leaving it impossible 

to form tight predictions on the likely strength of these microfoundation forces on the basis of this sector 

specific characteristic.  

The third set of results in Table 4 concerns the share of educated workers. The sharpest results we 

find are for knowledge spillovers. Industries with a high share of college graduates have larger KS 

coefficients. The dummy model (final column) shows that the top-10% dummy coefficient is positive and 

significant, suggesting that the relationship may be driven by the sectors with the very highest education 

levels. The coefficient on the top-10% dummy is also significant for input sharing. The continuous 

specification for input sharing, however, shows a positive but insignificant coefficient. Lastly, for LP, the 

bottom-10% dummy is positive and significant. This somewhat puzzling result echoes a similar finding in 

Faggio et al (2017), where low-education industry pairs showed a greater degree of labor pooling. In the 

current paper, we see that industries with the very least educated workers have the largest coefficients for 
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labor pooling. This presumably reflects labor pooling operating strongly outside of sectors with highly 

educated workers. This is consistent with the argument above that education is not identical to skills.   

Finally, the bottom panel of Table 4 presents results that focus on the size of incumbent firms. The 

results on input sharing show some parallels with Chinitz (1961) – though they are not especially strong. 

The negative and significant top-10% dummy means that the sectors with the largest incumbents have the 

least input sharing. This is consistent with large firms being more weakly linked to their local supply 

chains, as in Chinitz. Having said this, it is worth noting that the coefficient on incumbent employment in 

the continuous model is positive, though very small and insignificant. With regard to knowledge spillovers, 

the bottom-10% coefficient is negative and significant. This suggests that industries with the smallest 

incumbents have the smallest knowledge spillover coefficients. This is consistent with the anchor 

hypothesis offered by Feldman (2003) and Agrawal-Cockburn (2003). Finally, for labor pooling, we see a 

negative and significant coefficient on the bottom-10% dummy, consistent with the industries with the 

smallest firms showing the least LP. This could be explained by an organizational dimension of labor 

pooling: large firms can expand when their rivals are hit with negative shocks.14 

So far, we have presented the results from the perspective of industry characteristics. It is however 

instructive to do the reverse, and consider the results from the perspective of Marshallian forces (i.e., 

columns rather than rows). It is clear that labor pooling is important for agglomerated industries, and 

especially dynamic ones. It appears to be strongest for the least educated workers and weakest for sectors 

with the smallest firms. There is some evidence that input sharing is most important for agglomerated 

industries. Furthermore, it becomes less important when incumbents are very large. It is also strongest for 

the most educated industries. Finally, knowledge spillovers are strongest for agglomerated industries with 

educated workers and weakest for the industries with small incumbents.   

 The models presented in Table 4 give the results of univariate estimation. Table 5 presents results 

for multivariate specifications. The results on the complementarity of agglomeration and coagglomeration 

continue to hold. Similarly, the results on worker education and knowledge spillovers and labor pooling 

are also fairly robust, while the association between share of college graduates and input sharing obtained 

in Table 4 is significantly weakened (the estimates point in the same direction, though they are smaller and 

associated with bigger standard errors). The results on the two industrial organization variables – namely, 

entry share and size of incumbents – are somewhat different now. Starting with entry share, the associations 

retain their signs for all three Marshallian forces but the estimated magnitudes are smaller and clearly not 

significant (with the exception of the coefficient on the bottom-10% dummy for input sharing which 

increases in size and turns significant, indicating that input sharing is important for less dynamic 

industries). Regarding the second, the significant associations between the size of incumbent firms and 

                                                      
14 We also studied the association between the strength of the Marshallian forces and the age of the sector (measured 
as the difference between the last year in our data and the year in which the oldest firm in the industry was established; 
as an example, for computers-SIC300 this would be 2007-1961=46) but failed to find any striking patterns. Results 
are presented in Table A2.2 in the Web Appendix. 
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LP/IO/KS we observed in Table 4 are somewhat replicated in the multi-variate models of Table 5 – 

although the estimates lose some of their size and thus become insignificant.  

 While the results in Table 5 are an important check on the univariate associations presented in 

Table 4, the small number of observations in our analysis and some relatively strong patterns of correlation 

between our four industry attributes imply that there is a risk that collinearity causes the multi-variate 

estimates to lose precision. For example, the correlation between the share of skilled workers and the size 

of incumbent firms is 0.3697 (significant at the 5% level), while the share of graduates displays a 0.2028 

correlation (5% significant) with the entry share and a negative -0.2116 association (5% significant) with 

the EGI index.15 These patterns suggest the findings reported in Table 4 might be preferred.  

 Notwithstanding, the bottom line of our analysis is that we find a robust result on the relationship 

between agglomeration and coagglomeration. Industries that appear to benefit from the latter also seem to 

benefit from the former. This is true for all three Marshallian forces. For instance, an industry that 

agglomerates or clusters also tends to coagglomerate with other industries with a similar mix of 

occupations. We also find robust results on education, with industries with educated workforces tending 

to coagglomerate more with industries that are linked in innovation through patent citations. Industries 

with less educated workforces seem to show more tendency to labor market pooling. Finally, regarding 

industrial organization, univariate models show that dynamic industries see stronger labor pooling, while 

industries with large incumbents are less sensitive to input links to other industries. These results are 

however less robust to multivariate specifications.  

 

VI. Conclusions 

This paper employs UK data to consider the microfoundations of agglomeration economies. Using 

the variation in the other industries with which a given industry co-locates, we estimate the importance of 

Marshallian labor pooling, input sharing, and knowledge spillovers at the level of the individual industry.  

The results support Marshall’s analysis of agglomeration in a specific sense: each of the forces is 

shown to play an important role in the co-location patterns for a number of industries. However, the forces 

are not universal – something which Marshall himself never claimed to be the case. Some industries co-

locate with other industries that have similar workforce needs. Others instead co-locate with industries to 

which they are linked via supply chains or in knowledge.   

 These findings are important for the understanding of the forces that drive agglomeration. The 

heterogeneity in the nature of the agglomeration process was noted previously by Faggio et al (2017). This 

previous paper looked at heterogeneity at the level of pairs of industries. The present paper, in contrast, 

provides evidence of heterogeneity in microfoundations at the level of the individual industry. The paper 

offers robust evidence that agglomeration is a complement to coagglomeration rather than being a 

substitute: an industry that co-locates with other industries linked in a particular way (e.g., in technology 

                                                      
15 The figures refer to un-weighted correlations. Correlations weighted by the inverse of the LP, IO and KS standard 

errors (as in the regressions of Tables 4 and 5) provide similar intuitions. 
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and knowledge) will also have a tendency to cluster (which presumably gives additional valuable 

technological links). The paper further shows that an industry’s dynamism, incumbent firm size, and 

worker education contribute to the pattern of heterogeneous microfoundations. Our strongest results are 

that industries with high levels of entry display high coefficients on labor pooling and that industries with 

high levels of worker education have larger coefficients on knowledge linkages. 

 These results have the potential to be important for policy design. It is natural, of course, for a 

policymaker interested in local economic development to make use of the experiences of other planners in 

other locations. As a general matter, the individual industry models show the peril of extrapolation from a 

one-industry agglomeration case to the larger phenomenon of agglomeration. Different industries 

manifestly differ in the importance of Marshallian forces, and a policy that is helpful to one industry may 

not be helpful to another. Making matters more concrete, our results clearly show that devising a policy 

based on the lessons of the computer industry in order to make an area attractive to automobile producers 

will most likely not be successful. Nevertheless, the individual industry models do have more positive 

implications for policy: extrapolation will more likely be on-target if the industries considered are similar 

– something that can be assessed using the paper’s results. 

Our results similarly show that policy makers should exercise caution when using results from 

pooled industry regressions to understand the microfoundations of agglomeration for specific industries. 

The substantial variation in microfoundations means that pooled industry regressions offer too blunt a tool 

for identifying an individual industry’s reasons for clustering. Evidence based on single-industry models 

as those described in this paper can, instead, provide important insights on one industry’s agglomeration 

patterns either by exploring the behaviour of the same industry in other locations or by investigating the 

behaviour of a set of industries that share similar characteristics with the industry in question. 
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Main Tables 

 

Table 1: Descriptive statistics – Estimation sample for coagglomeration models 

  
Mean 

Std. 
Dev. 

 
Min. 

 
Max. 

Coagglomeration measures and Marshallian forces 

TTWA total employment coagglomeration (γC) 0.000 0.008 -0.043 0.175 

Labor pooling (correlation) 0.225 0.187 -0.033 0.968 

Input-output sharing (maximum) 0.013 0.044 0.000 0.782 

Knowledge spillovers 
(maximum of inward/outward citation) 

0.016 0.037 0.000 0.420 

 

Additional Controls 

Energy dissimilarity index 0.015 0.018 0.000 0.099 

Water dissimilarity index 0.001 0.001 0.000 0.006 

Transport dissimilarity index 0.014 0.017 0.000 0.078 

Natural Resources dissimilarity index 0.053 0.097 0.000 0.367 

Services dissimilarity index 0.020 0.019 0.000 0.102 

Note: Number of observations: 55,872. The sample contains non-repeated pairwise combination of 97 manufacturing SIC1992 3-digit 
industries over 12 years (1997-2008). The following sectors are not considered: Manufacturing of Tobacco Products (SIC160) because of a 
small number of plants throughout the period (43); Reproduction of recorded media (SIC223); Manufacturing of machine tools (SIC294), 
Manufacturing of weapons & ammunition (SIC296), Recycling of metal waste & scrap (SIC371) and Recycling of non-metal waste & scrap 
(SIC372) because of missing data on knowledge flows as measured by patent citations.  
Sources: The coagglomeration index is computed using the ONS UK Business Structure Database 1997-2008. Labor correlation indices are 
computed from the UK Labour Force Survey 1995-1999. Input-Output measures are calculated using ONS UK Input-Output Tables for 1995-
1999. Knowledge spillover measures are calculated using the UK data retrieved from the EPO-PATSTAT dataset made available to us by 
Bocconi University. Cited patents sampled for the years 1978 to 1997. Citing patents sampled for the years 1981 to 2000. Additional control 
measures are calculated using the UK Input-Output tables for 1995-1999. 
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Table 2: Coagglomeration and Marshallian forces – Whole Economy and Selected single-industry models 

Sector Description SIC Code  Effect of LP Effect of IO Effect of KS EGI Entry 
Share 

Share 
Highly  

Educated 

Incumbent 
Employment 

Size 
All All 

 
.1014*** .0366** .0199** 0.0321 0.1047 0.0986 27.61 

(.0144) (.0149) (.0092)     
Preparation, weaving &  
finishing of textiles 

171-177 
 

.3672*** .0119 .1426*** 0.0810 0.1084 0.0505 20.83 

(.1126) (.0566) (.0349)     
Mfg. of cutlery, tools &  
general hardware 

286 
 

.2377*** .5987*** -.0392 0.0379 0.0774 0.0375 11.22 

(.0681) (.2204) (.0514)     
Mfg. of office machinery  
& computers 

300 
 

-.0577 0.0174 .2150*** 0.0066 0.1658 0.2938 10.69 

(.0844) (.0187) (.0518)     
Mfg. of cars engines &  
bodies for vehicles 

341 
 

.2914*** .0172 .1005* 0.0451 0.1664 0.1029 34.58 

(.0658) (.0470) (.0536)     

Note: Regression coefficients come from single-industry regressions that exploit the variation in the coagglomeration of the industry in question with other industries (mutually exclusive pairs only) over twelve years. 
Number of observations as follows. All sectors: 55872. Textiles (SIC171-177): 7812. Cutlery (SIC286), Computers (SIC300) and Cars (SIC241): 1152. Standard errors clustered at the industry pair level. The Ellison-
Glaeser Agglomeration Index (EGI) reported is an average across industries and years.  
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Table 3: Summary statistics for the Marshallian forces 

 Mean Median SD Skewness Top 4  Top 4 industry description Bottom 4  Bottom 4 industry description 

Labour  pooling 0.1380 0.0587 0.2677 1.444 SIC176 Mfg. of knitted & crocheted fabrics SIC363 Mfg. of musical instruments 
(LP)     SIC171 Preparation/spinning of textile fibres SIC267 Cutting, shaping & finishing of stone 
     SIC173 Finishing of textiles SIC154 Mfg. of vegetable and animal oils and fats 
     SIC172 Textile weaving SIC365 Mfg. of games & toys 
         
Input-Output 0.0556 0.0172 0.2510 2.9055 SIC 262 Mfg. of ceramic goods other than for construction SIC232 Mfg. of refined petroleum products 
(IO)     SIC263 Mfg. of ceramic tiles & flags SIC181 Mfg. of leather clothes 
     SIC231 Mfg. of coke oven products SIC183 Dressing/dyeing of fur; mfg. of fur articles  
     SIC286 Mfg. of cutlery, tools & general hardware SIC157 Mfg. of prepared animal feeds 
         
Knowledge spillovers 0.0182 0.0106 0.0888 -0.3387 SIC262 Mfg. of ceramic goods other than for construction SIC233 Processing of nuclear fuel 
(KS)     SIC265 Mfg. of cement, lime and plaster SIC181 Mfg. of leather clothes 
     SIC300 Mfg. of office machinery & computers SIC183 Dressing/dyeing of fur; mfg. of fur articles  

     SIC171 Preparation/spinning of textile fibres SIC362 Mfg. of jewellery & related articles 
Note: The table presents descriptive statistics of estimates of the effect of labour pooling (LP), input-output (IO) and knowledge spillovers (KS) on industrial coagglomeration. Coefficients come from single-industry 
regressions that exploit the variation in the coagglomeration of the industry in question with other industries (mutually exclusive pairs only). Our dataset comprises of 97 industries. The full set of estimates is presented 
in Appendix Table 1. 
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Table 4: Relationship between estimated Marshallian forces strength and sectoral characteristics – 
Univariate regression results; weighted by inverse of standard error 

    
Labour pooling Input sharing Knowledge spillovers 

    (1)  (2) (3)  (4) (5)  (6) 

EGI – 
Agglomeration  

Index- 

continuous .1505***  . .0006  . .0181**  . 
(.051)   (.020)   (.009)   

top .  .2262*** .  -.0007 .  .0458* 
   (.056)   (.047)   (.024) 

bottom 
.  -.0337*** .  -.0021*** .  -.0090 
   (.013)   (.006)   (.006) 

Entry  
Share 

continuous .0131*  . .0003  . .0037  . 
(.008)   (.004)   (.004)   

top .  .0071 .  -.0083 .  -.0006 
   (.046)   (.010)   (.011) 

bottom 
.  -.0329** .  .0031 .  -.0015 
   (.013)   (.007)   (.009) 

Share 
Highly  

Educated 

continuous .0053  . .0059  . .0077*  . 
(.007)   (.004)   (.004)   

top .  .0080 .  .0213*** .  .0213* 
   (.010)   (.008)   (.012) 

bottom 
.  .0501* .  -.0084 .  -.0041 
   (.025)   (.013)   (.007) 

Incumbent 
Employment  

Size 

continuous -.0002  . .0032  . .0023  . 
(.027)   (.013)   (.009)   

top .  .0024 .  -.0203** .  -.0009 
   (.054)   (.009)   (.010) 

bottom .  -.0258* .  -.0136 .  -.0171*** 
   (.013)    (.011)    (.006) 

Note: robust standard errors in parenthesis. Number of observations 97 except in the panel focusing on Incumbent Employment Size where 
SIC233 (Processing of nuclear fuel, an outlier with 399 employees) is excluded. Results using the continuous version of the variables listed in 
the first column are reported in Columns (1), (3) and (5). Results using dummies identifying industries in the top 10% and bottom 10% of these 
variables are reported in Columns (2), (4) and (6). 
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Table 5: Relationship between estimated Marshallian forces strength and sectoral characteristics – 

Multivariate regression results; weighted by inverse of standard error 

    
Labour pooling Input sharing Knowledge spillovers 

    (1)  (2) (3)  (4) (5)  (6) 

EGI – 
Agglomeration  

Index 

continuous .1464***  . .0071  . .0171**  . 
(.055)   (.020)   (.008)   

top .  .2200*** .  .0017 .  .0478* 
   (.064)   (.045)   (.024) 

bottom 
.  -.0272* .  -.0208*** .  -.0063 
   (.017)   (.007)   (.006) 

Entry  
Share 

continuous .0051  . -.0007  . .0024  . 
(.009)   (.003)   (.003)   

top .  -.0006 .  -.0080 .  -.0002 
   (.050)   (.010)   (.014) 

bottom 
.  -.0103 .  .0140* .  .0079 
   (.018)   (.008)   (.005) 

Share 
Highly  

Educated 

continuous -.0101  . .0061  . .0078**  . 
(.007)   (.004)   (.004)   

top .  -.0083 .  .0077 .  .0216* 
   (.012)   (.008)   (.012) 

bottom 
.  .0465* .  -.0113 .  .0028 
   (.027)   (.017)   (.008) 

Incumbent Employment  
Size 

continuous -.0061  . .0016  . -.0043  . 
(.023)   (.011)   (.008)   

top .  -.0115 .  -.0138 .  .0014 
   (.054)   (.014)   (.012) 

bottom .  -.0249 .  -.0174 .  -.0148 
   (.021)    (.013)    (.009) 

Note: See Table 4. 
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Figures 
 
 

Figure 1: Distribution of the estimated strength of the Marshallian forces 

 
Note: The top two plots and the bottom left plot present histograms for the distribution of the effect of labour pooling (LP), input-output (IO) 
and knowledge spillovers (KS) on industrial coagglomeration. These coefficients come from single-industry regressions that exploit the 
variation in the coagglomeration of the industry in question with other industries (mutually exclusive pairs only) over twelve years. Our dataset 
comprises of 97 industries. The bottom right plot presents the distribution of standard errors of the three set of Marshallian forces estimates 
(LP, IO and KS). Standard errors clustered at the industry pairs. The full set of estimates is presented in Appendix Table 1.  
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Figure 2: Associations (linear fit) between Marshallian forces across industrial sectors 

 
Note: The plots presents linear-fit lines obtained from regressing one Marshallian force on another Marshallian force as detailed in the legend. 
When pairing up Marshallian force, the one with the smallest amount of variation was used as right-hand side variable to make sure the 
predictions plotted in the graph cover the actual variation in the variable on the right-hand side (and do not ‘predict’ out-of-sample). The 
original Marshallian forces were normalized to have zero mean so that all plots cross at the axis origins. Regression coefficients (standard 
errors) are follows. LP on IO: 0.0811 (0.0696); LP on KS: -0.0694 (0.3810); IO on KS: 0.9210 (0.5021). 
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Appendix Tables and Figures  
 
 

Appendix Table A1.1: Single-Industry estimates of the impact of Labour Pooling, Input-Output and Knowledge Spillovers on Industrial Coagglomeration 

  Labour Pooling  Input-Output  Knowledge Spillovers 
Industrial code Sector Description Estimate Std. Err. Signif. Estimate Std. Err. Signif. Estimate Std. Err. Signif. 
151 Production/processing/preserving of meat 0.1144 0.0901  -0.0037 0.0179  -0.0178 0.0288  

152 Processing/preserving of fish 0.1161 0.2072  0.0094 0.1136  0.0077 0.0612  

153 Processing/preserving of fruit & vegetables -0.0058 0.0506  0.0098 0.0397  0.0115 0.0144  

154 Mfg. of vegetable and animal oils and fats -0.3919 0.4087  -0.1383 0.5135  0.0915 0.1468  

155 Mfg. of dairy products -0.0213 0.0209  0.0398 0.0358  0.0073 0.0121  

156 Mfg. of grain mill products, starches and starch 0.0518 0.0726  -0.0355 0.0364  0.0160 0.0270  

157 Mfg. of prepared animal feeds 0.1328 0.0908  -0.2696 0.1181 ** 0.0353 0.0287  

158 Mfg. of other food products -0.0720 0.0642  0.0222 0.0332  0.0391 0.0305  

159 Mfg. of beverages -0.0335 0.0542  0.0727 0.0426 * -0.0164 0.0133  

171 Preparation/spinning of textile fibres 1.1082 0.3623 ** 0.0950 0.0355 ** 0.1873 0.0979 * 

172 Textile weaving 0.7900 0.2244 ** -0.0889 0.1052  0.1676 0.1068  

173 Finishing of textiles 0.8650 0.1601 ** -0.0565 0.0421  0.0215 0.0640  

174 Mfg. of textile articles, except apparel 0.0289 0.0238  0.1698 0.0316 ** 0.0049 0.0191  

175 Mfg. of other textiles 0.4365 0.1477 ** -0.0302 0.1193  0.0637 0.0869  

176 Mfg. of knitted & crocheted fabrics 1.2135 0.5229 ** 0.0611 0.0781  0.0451 0.1029  

177 Mfg. of knitted & crocheted articles 0.4989 0.3553  -0.0143 0.1072  0.1101 0.0740  

181 Mfg. of leather clothes 0.5175 0.4088  -0.3740 0.0830 ** -0.2870 0.2129  

182 Mfg. of wearing apparel and accessories 0.4702 0.2682 * -0.0665 0.1132  0.0439 0.1103  

183 Dressing/dyeing of fur; mfg. of fur articles 0.4631 0.4687  -0.3656 0.1123 ** -0.2629 0.2050  

191 Tanning/dressing of leather -0.0078 0.3913  0.0628 0.0364 * 0.0127 0.0583  

192 Mfg. of luggage, handbags & similar 0.1993 0.1238  -0.0419 0.0262  -0.0615 0.0380  

193 Mfg. of footwear 0.1070 0.1403  0.1030 0.2553  0.0385 0.0392  

201 Sawmilling/planning/impregnation of wood 0.1074 0.0927  -0.0146 0.0513  0.0529 0.0414  

202 Mfg. of veneer sheets, plywood, laminboard & other 
panels/boards 0.0131 0.0504  0.0298 0.0275  -0.0103 0.0117  
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203 Mfg. of builders’ carpentry & joinery 0.0427 0.0518  0.0063 0.0224  -0.0077 0.0132  

204 Mfg. of wooden containers 0.1214 0.1030  -0.0350 0.0404  0.0194 0.0097 ** 

205 Mfg. of other products of wood, cork & straw 0.0058 0.0238  0.0128 0.0116  -0.0129 0.0094  

211 Mfg. of pulp, paper & paperboard 0.1179 0.0821  -0.0049 0.0263  -0.0218 0.0350  

212 Mfg. of articles of paper & paperboard -0.0099 0.0602  0.0222 0.0175  0.0101 0.0237  

221 Publishing 0.3071 1.0654  0.3239 0.2916  0.0941 0.2019  

222 Printing and service activities related to printing -0.1370 0.3212  0.4208 0.3346  0.0415 0.1362  

231 Mfg. of coke oven products 0.0698 0.1178  0.8325 0.7713  -0.0071 0.1150  

232 Mfg. of refined petroleum products -0.1138 0.1474  -0.5365 1.1437  -0.0458 0.0525  

233 Processing of nuclear fuel 0.2348 0.1448  -0.2691 0.6758  -0.3038 0.1909  

241 Mfg. of basic chemicals 0.0165 0.0532  0.0439 0.0238 * 0.1018 0.0517 * 

242 Mfg. of pesticides & agro-chemical products -0.0068 0.1019  0.0045 0.0320  0.1182 0.0562 ** 

243 Mfg. of paints, varnishes & similar 0.0376 0.0467  0.0338 0.0335  -0.0744 0.0927  

244 Mfg. of pharma., medicinal chemicals & botanical 
products 0.0128 0.0614  -0.1268 0.1177  0.0228 0.0402  

245 Mfg. of soap, detergents, perfumes & 
cleaning/polishing preparations 0.0077 0.0371  0.0869 0.0410 ** 0.0369 0.0270  

246 Mfg. of other chemical products 0.0668 0.0488  0.0469 0.0202 ** -0.0683 0.0716  

247 Mfg. of man-made fibres 0.5491 0.2419 ** 0.1170 0.0539 ** 0.1104 0.0928  

251 Mfg. of rubber products 0.1856 0.1853  0.0440 0.0311  0.0209 0.0415  

252 Mfg. of plastic products 0.0955 0.0661  -0.0074 0.0183  0.0091 0.0154  

261 Mfg. of glass & glass products -0.0181 0.0353  0.0650 0.0238 ** -0.0140 0.0265  

262 Mfg. of ceramic goods other than for construction 0.2598 0.1787  1.4854 0.4645 ** 0.2885 0.1142 ** 

263 Mfg. of ceramic tiles & flags 0.3761 0.1799 ** 1.1089 0.5490 ** 0.1058 0.0763  

264 Mfg. of bricks, tiles and construction products, in 
baked clay 0.2820 0.1506 * -0.1363 0.2789  0.0777 0.0553  

265 Mfg. of cement, lime and plaster -0.1422 0.0556 ** -0.1543 0.0749 ** 0.2793 0.0914 ** 

266 Mfg. of articles of concrete, plaster, lime & cement 0.0807 0.0921  0.0111 0.0637  0.0068 0.0352  

267 Cutting, shaping & finishing of stone -0.4656 0.3024  0.1115 0.0521 ** -0.0342 0.0252  

268 Mfg. of other mineral products 0.0494 0.0800  -0.0926 0.0653  0.0538 0.0347  

271 Mfg. of basic iron, steel & of ferro-alloys 0.2807 0.1173 ** 0.3323 0.1759 * 0.1774 0.1807  

272 Mfg. of tubes 0.2514 0.1019 ** 0.2342 0.1524  -0.0802 0.0370 ** 



 

34 
 

273 Other processing of iron, steel & production of 
ferro-alloys 0.3292 0.1097 ** 0.4186 0.1995 ** -0.0317 0.0817  

274 Mfg. of basic precious & non-ferrous metals 0.3036 0.0558 ** 0.0428 0.0342  -0.0385 0.0192 ** 

275 Casting of metals 0.6708 0.1286 ** -0.0110 0.0668  -0.0232 0.0484  

281 Mfg. of structural metal products 0.0652 0.0299 ** 0.1393 0.0405 ** 0.0107 0.0182  

282 Mfg. of tanks, reservoirs, radiators & boilers 0.2048 0.0774 ** 0.1902 0.0945 ** -0.0530 0.0398  

283 Mfg. of steam generators, except boilers -0.0003 0.0385  0.0168 0.0607  0.0000 0.0344  

284 Forging, pressing, stamping & rolling metal 0.3519 0.1195 ** 0.3274 0.1566 ** -0.0769 0.1015  

285 Treatment/coating of metals 0.0587 0.0312 * 0.1398 0.0383 ** -0.0239 0.0114 ** 

286 Mfg. of cutlery, tools & general hardware 0.2377 0.0654 ** 0.5987 0.2117 ** -0.0392 0.0494  

287 Mfg. of other fabricated metal products 0.1758 0.0389 ** 0.0917 0.0430 ** 0.0524 0.0297 * 

291 Mfg. of other machinery for production/use of 
mechanical power N.E.C. 0.1179 0.0633 * 0.0697 0.0334 ** -0.0071 0.0413  

292 Mfg. of other general purpose machinery 0.0338 0.0152 ** -0.0012 0.0026  0.0170 0.0144  

293 Mfg. of agricultural/forestry machinery 0.1168 0.0667 * 0.0452 0.0421  -0.0175 0.0587  

295 Mfg. of other special purpose machinery 0.0240 0.0432  0.0914 0.0527 * 0.0221 0.0149  

297 Mfg. of domestic appliances 0.0473 0.0560  0.1435 0.0670 ** 0.0082 0.0440  

300 Mfg. of office machinery & computers -0.0577 0.0811  0.0174 0.0180  0.2150 0.0497 ** 

311 Mfg. of electric motors, generators & transformers -0.0189 0.0116  0.0201 0.0187  0.0197 0.0120  

312 Mfg. of electricity distribution & control apparatus 0.0148 0.0103  0.0133 0.0116  0.0017 0.0135  

313 Mfg. of insulated wire & cable 0.0179 0.0442  0.0174 0.0210  0.0358 0.0315  

314 Mfg. of accumulators, cells & batteries 0.0071 0.0619  -0.0389 0.0315  0.1409 0.0951  

315 Mfg. of lighting equipment & lamps -0.0782 0.0442 * 0.0226 0.0321  0.0031 0.0276  

316 Mfg. of electrical equipment N.E.C. 0.0075 0.0274  0.0298 0.0175 * 0.0043 0.0128  

321 Mfg. of electronic valves, tubes & electronic 
components 0.0543 0.0369  0.0042 0.0206  -0.0113 0.0284  

322 Mfg. of TV/radio transmitters & 
telephones/telegraphs 0.0313 0.0338  0.0004 0.0193  0.0392 0.0113 ** 

323 Mfg. of TV/radio receivers & sound/video 
recording/reproducing 0.0314 0.0180 * 0.0295 0.0499  0.0385 0.0145 ** 

331 Mfg. of medical, surgical & orthopaedic equipment 0.0189 0.0201  0.0345 0.0141 ** 0.0094 0.0087  

332 Mfg. of instruments for measuring, checking, 
testing & navigating 0.0320 0.0125 ** 0.0365 0.0096 ** 0.0197 0.0183  

333 Mfg. of industrial process control equipment 0.0884 0.0439 ** 0.0075 0.0270  -0.0277 0.0218  
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334 Mfg. of optical & photographic equipment 0.0258 0.0444  0.0336 0.0248  0.0071 0.0445  

335 Mfg. of watches & clocks -0.0549 0.2471  -0.1312 0.0759 * 0.0168 0.0295  

341 Mfg. of motor vehicles 0.2914 0.0632 ** 0.0172 0.0452  0.1005 0.0514 * 

342 Mfg. of bodies for vehicles, trailers & semi-trailers 0.1684 0.1061  -0.0034 0.0407  0.0193 0.0234  

343 Mfg. of parts & accessories for vehicles/engines 0.2739 0.0639 ** 0.1177 0.0480 ** 0.0126 0.0304  

351 Building & repairing of ships/boats 0.2039 0.0773 ** -0.0502 0.1227  0.0084 0.0471  

352 Mfg. of railway/tramway locomotives/rolling stock -0.1168 0.0512 ** -0.0139 0.0117  -0.0039 0.0143  

353 Mfg. of aircraft/spacecraft 0.1872 0.0666 ** -0.1883 0.0793 ** -0.0347 0.0644  

354 Mfg. of motorcycles/bicycles 0.1558 0.0465 ** 0.0088 0.0240  0.0268 0.0161 * 

355 Mfg. of other transport equipment N.E.C. 0.0275 0.0661  0.0008 0.0210  -0.0045 0.0188  

361 Mfg. of furniture 0.0002 0.0310  0.0186 0.0136  0.0085 0.0155  

362 Mfg. of jewellery & related articles 0.6844 1.1279  0.0164 0.0366  -0.0918 0.1461  

363 Mfg. of musical instruments -0.4802 0.2851 * 0.0016 0.0119  0.0700 0.0542  

364 Mfg. of sports goods 0.0334 0.0272  0.0058 0.0176  -0.0802 0.0510  

365 Mfg. of games & toys -0.1465 0.0933  -0.0686 0.0346 * 0.1817 0.0642 ** 

366 Miscellaneous manufacturing N.E.C -0.0107 0.0270  -0.0272 0.0122 ** 0.0357 0.0282  
           

Note: Regression coefficients come from single-industry regressions that exploit the variation in the coagglomeration of the 97 industry in question with other 96 industries (mutually exclusive pairs only). Standard errors 
clustered at the industry pairs. Sector codes and description taken from the Office for National Statistics SIC 1992 classification list. 
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Appendix Figure 1: Distribution of industry characteristics 

 
Note: Number of observations 97 except for average continuous employment which excludes SIC233 (Processing of nuclear fuel, an outlier with 
399 employees). EGI is the Ellison and Glaeser Index of agglomeration. Descriptive statistics for the four indicators are as follows. EGI: mean 
(0.0321), SD (0.0603) and median (0.0084). Entry Share: mean (0.1047), SD (0.0327) and median (0.099); Share Highly Educated: mean (0.0986), 
SD (0.0801) and median (0.0783); Incumbent Employment Size: mean (23.733), SD (18.291) and median (19.221).  
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Web Appendix  – Additional regressions 
 
 

Table A2.1: Relationship between estimated Marshallian forces strength and sectoral characteristics – 
Univariate regression results; un-weighted regressions 

    
Labour pooling Input sharing Knowledge spillovers 

    (1)  (2) (3)  (4) (5)  (6) 

EGI – 
weighted  

regressions 

continuous .1065***  . .0830  . .0094  . 
(.038)   (.068)   (.020)   

top .  .3126*** .  .1130 .  .0076 
   (.096)   (.161)   (.059) 

bottom 
.  -.1545** .  -.0413* .  -.0116 
   (.059)   (.025)   (.012) 

Entry  
Share 

continuous -.0118  . -.0091  . .0227**  . 
(.021)   (.026)   (.009)   

top .  -.1377** .  -.0436 .  .0590** 
   (.069)   (.049)   (.027) 

bottom 
.  -.0291 .  .0325 .  -.0383 
   (.057)   (.102)   (.029) 

Share 
Highly  

Educated 

continuous -.0606***  . -.0352  . .0051  . 
(.022)   (.022)   (.013)   

top .  -.0658 .  -.1342* .  -.0198 
   (.049)   (.075)   (.043) 

bottom 
.  .1895 .  -.1478** .  -.0576 
   (.118)   (.058)   (.041) 

Incumbent 
Employment  

Size 

continuous .0009  . -.0058  . .0447**  . 
(.070)   (.060)   (.019)   

top .  -.0825 .  .0154 .  .0285 
   (.088)   (.106)   (.024) 

bottom .  -.0804 .  -.1358** .  -.0687 
   (.123)    (.059)    (.044) 

Note: robust standard errors in parenthesis. Number of observations 97 except in the panel focusing on Incumbent Employment Size where SIC233 
(Processing of nuclear fuel, an outlier with 399 employees) is excluded. Results using the continuous version of the variables listed in the first 
column are reported in Columns (1), (3) and (5). Results using dummies identifying industries in the top 10% and bottom 10% of these variables 
are reported in Columns (2), (4) and (6). 
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Table A2.2: Relationship between estimated Marshallian forces strength and age of sector – 
Univariate regression results; weighted by inverse of standard error 

    
Labour pooling Input sharing Knowledge spillovers 

    (1)  (2) (3)  (4) (5)  (6) 

Age of  
sector 

continuous 0.0026   -0.0036   0.0029   
(0.0066)   (0.0042)   (0.0039)   

top   0.0070   0.0261*   0.0017 
  (0.0169)   (0.0140)   (0.0135) 

bottom 
  0.0732***   0.0033   -0.0110 
  (0.0274)   (0.0085)   (0.0087) 

Note: robust standard errors in parenthesis. Number of observations 97. Results using the continuous version of the variables listed in the first 
column are reported in Columns (1), (3) and (5). Results using dummies identifying industries in the top 10% and bottom 10% of these variables 
are reported in Columns (2), (4) and (6). Age of the sector identified as the difference between the final year in the data set (2007) and the year of 
opening of the oldest plant in the sector (e.g., for computer SIC300, this would be 2007 – 1961 = 46).  
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