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Abstract

Typicality lemmas have been successfully applied in many information theoretical prob-

lems. The conventional strong typicality is only defined for finite alphabets. Conditional

typicality and Markov lemmas can be obtained for strong typicality. Weak typicality can

be defined based on a measurable space without additional constraints, and can be easily

defined based on a general stochastic process. However, to the best of our knowledge, no

conditional typicality or strong Markov lemmas have been obtained for weak typicality in

classic works. As a result, some important coding theorems can only be proved by strong

typicality lemmas and using the discretisation-and-approximation-technique.

In order to solve the aforementioned problems, we will show that the conditional typical-

ity lemma can be obtained for a generic typicality. We will then define a multivariate typical-

ity for general alphabets and general probability measures on product spaces, based on the

relative entropy, which can be a measure of the relevance between multiple sources. We will

provide a series of multivariate typicality lemmas, including conditional and joint typicality

lemmas, packing and covering lemmas, as well as the strong Markov lemma for our pro-

posed generalised typicality. These typicality lemmas can be used to solve source and chan-

nel coding problems in a unified way for finite, continuous, or more general alphabets. We

will present some coding theorems with general settings using the generalised multivariate

typicality lemmas without using the discretisation-and-approximation technique. Generally,

the proofs of the coding theorems in general settings are simpler by using the generalised

typicality, than using strong typicality with the discretisation-and-approximation technique.
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Chapter 1

Introduction

1.1 Motivations

Typicality lemmas have been successfully applied in many information theoretical prob-

lems. Meanwhile, there still exist some limitations, which we will discuss in this section,

due to the conventional definitions of typicality. This inspires us to introduce a generalised

definition of typicality.

The conventional strong typicality is only defined for finite alphabets. Conditional typ-

icality and Markov lemmas can be obtained for strong typicality, due to the property of

empirical distribution in its definition. However, it is difficult to generalise this to continu-

ous or more general alphabets. In [1, Chap. 3], continuous coding theorems were proved by

strong typicality lemma and a discretisation-and-approximation technique, which originated

in the problem of the semi-continuous channel [2, Chap. 5] ([cf. [3, Chap. 6]).

Mathematically, the applicability of the discretisation-and-approximation technique needs

to be verified for every continuous coding theorem. The verification should not be ignored

for rigorousness, if strong typicality lemmas are used. Hence, if we can find a new defi-

nition of typicality based on general alphabets with all necessary typicality lemmas, these

procedures will be circumvented or simplified.

Weak typicality [4] can be defined based on a measurable space without additional con-

straints, and can be easily defined based on a general stochastic process. However, to the
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best of our knowledge, no conditional typicality or strong Markov lemmas have been ob-

tained for weak typicality in classic works of probability theory or information theory. As

a result, some important coding theorems can only be proved by strong typicality lemmas

and using the discretisation-and-approximation technique.

In order to solve the aforementioned problems, we intend to define a typicality for gen-

eral alphabets and probability measures, such that the discretisation and approximation can

be circumvented in proofs of general coding theorems. Besides this, the proposed typicality

will be defined based on the multivariate measure. Conventionally, the weak typicality is

defined by the difference between the empirical entropy and the entropy of a given probabil-

ity distribution. Similarly, the joint weak typicality can be defined by the difference between

the information density and the mutual information determined by a given joint probability

measure (see [4, Sec. 3.1]). The entropy is a measure of the uncertainty of a single source,

and mutual information is a measure of the relevance of two sources. Hence, we are inspired

to propose a multivariate typicality definition based on the relative entropy, which can be a

measure of the relevance between multiple sources (cf. [5]).

1.2 Contributions

In this thesis, we will generalise the notion of weak typicality. This new definition of typi-

cality is for any general alphabet and any general measure on a product space. This will be

based on a study of a generic typicality. We will provide a series of multivariate typicality

lemmas, including conditional and joint typicality lemmas, packing and covering lemmas,

as well as the strong Markov lemma for our proposed generalised multivariate typicality.

This will change the current status that some basic lemmas including the conditional typi-

cality lemma and the strong Markov lemma had only been obtained for strong typicality and

thus was restricted in applications with general alphabets and probability measures. These

typicality lemmas can be used to solve source and channel coding problems in a unified

way for finite, continuous or more general alphabets. We will present some coding the-

orems with general settings using the generalised multivariate typicality lemmas without
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using the discretisation-and-approximation-technique. Generally, the proofs of the coding

theorems in general settings are simpler by using the generalised typicality, than using strong

typicality with the discretisation-and-approximation technique.

1.3 Thesis Outline

The first two articles in my publication list will contribute most parts of this thesis. The rest

which are co-authored will be irrelevant.

In Chap. 2, we will introduce basic mathematical notations and information theoretical

definitions for this thesis. We will also review previous works on typicality.

In Chap. 3, we will revisit some approaches to the achievability proof of the channel

coding theorem. We will specify the relevance of different approaches and then provide a

unified method of the achievability proof, where the typicality plays a key role in this unified

method, hence it is sufficient to study the typicality for various probability measures, in

order to solve channel coding problems with various general settings.

In Chap. 4, we will focus on the typicality according to the conclusion in Chap. 3.

We will first study a generic typicality and specify that a property similar to the renowned

conditional typicality lemma exists for the generic typicality. We will then propose a gener-

alised definition of weak typicality for general multivariate alphabets and general measures

on product spaces. Based on this new definition, we will derive several typicality lemmas,

including conditional and joint typicality lemmas, packing and covering lemmas, as well as

the strong Markov lemma. Most of the lemmas have not been defined for the conventional

typicality. My publication 1 will contribute to this part. For the convenience of application,

we will also provide bivariate versions of the typicality lemmas, some of which have been

presented in my publication 2.

In Chap. 5, we will follow the typicality lemmas in Chap. 4 and study several source

or channel coding problems. Achievablily proofs of these problems are provided based

on generalised typicality lemmas. Our generalised conditional typicality lemma will be

applicable for Cover’s strong rate-distortion theorem, channel with input constraint, Gelfand
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-Pinsker coding for the channel with state, multi-user broadcast channel (BC) coding, all

with general settings. Our generalised strong Markov lemma will be applicable for the

general Berger-Tung problem. We specify that in most cases it will be simpler to prove

the coding theorems by using the generalised typicality, than using strong typicality with

the discretizsation-and-approximation technique. We also provide a second-order analysis

on multiple access channel (MAC), and specify that a second-order weak typicality is also

useful. Most examples have been presented in my publications 1 and 2.

In Chap. 6, we will conclude this thesis and provide some possible topics for future

researches.

1.4 List of Publications

As a First Author

1. W. Liu, X. Chu and M. Vehkapera, "On generalised Multivariate Typicality Lemmas,"

under correction and to be resubmitted, 2018.

2. W. Liu, X. Chu and J. Zhang, "On a generalised typicality with respect to general

probability distributions," 14th Canadian Workshop Inf. Theory, St. John’s, NL,

Canada, 6-9 July 2015.

As a Co-Author

1. Y. Wu, S. Wang, W. Liu, W. Guo and X. Chu, "Iunius: A cross layer peer-to-peer

system with device-to-device communications," IEEE Trans. Wireless Commun., vol.

15, no. 10, pp. 7005-7017, Oct. 2016.

2. J. Weng, W. Liu, H. Hu, X. Chu and J. Zhang, "A mathematical formulation for

channel map and its application in MIMO systems," Loughborough Antennas Propag.

Conf., Loughborough, UK, 2-3 Nov. 2015.
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3. H. Shao, D. Wu, Y. Li, W. Liu and X. Chu, "An improved SNR estimation algorithm

for asymmetric pulse-shaped signals," IET Commun., vol.9, no. 14, pp. 1788-1792,

Sept. 2015.

4. Y. Wu, W. Liu, S. Wang, W. Guo and X. Chu, "Network coding in device-to-device

(D2D) communications underlaying cellular networks," IEEE ICC’15, London, UK,

8-12 June 2015.





Chapter 2

Preliminary

2.1 Mathematical Notations

In this thesis, we consider general alphabets and probability measures represented by a

probability space (X,BX,PX). X can be any abstract alphabet and (X,BX,PX) can be ex-

pressed by a product space in this thesis. P{·} denotes the probability of an event, E(·)

denotes the mathematical expectation and D(·) denotes the variance. We also borrow ‘×’

and ‘∏’ notations from [6] to denote the product probability and the conditional product

probability. We follow the convention that letters in upper and lower cases stand for ran-

dom variables and corresponding realizations, respectively. In order to introduce and study

the multivariate typical sequence, we denote by Xn = (X1,X2, · · · ,Xn) an n-length sequence,

and by X = (X1,X2, · · ·) a semi-infinite sequence, where X and Xn are X-valued stochas-

tic processes. PX denotes the infinite sequence {PXn}∞
n=1 of probability measures, where

Xn is a subsequence of X for each n. We denote a joint probability measure as PXY and

PXY = {PXnY n}∞
n=1 and transition probability measure as PY |X and PY|X = {PY n|Xn}∞

n=1. All

logarithms are taken to the base e. PXnY n is not necessarily a product probability measure de-

noted as PXn ×PY n . Sometimes we use a subscript to distinguish different probability spaces

and sequences, for example, an Xk-valued sequence is denoted as Xn
k = (Xk,1,Xk,2, · · · ,Xk,n).

For brevity, we denote a tuplet of sequences {Xn
k }k∈K by Xn

K, and {Xk}k∈K by XK. K al-

ways stands for a finite index set throughout this thesis. Besides the sequences of random
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variables, we will also introduce sequences of sets, which is denoted as An(X) or A(n),

where we use brackets in the superscript when it might be confused with product spaces.

As in [7], we only use n once in a single notation, for example,

Pn
XY (B)

.
= PXnY n(B(n)),

dn
PX ||QX

(x) .
= dPXn ||QXn (x

n),

An(X ,Y ) .
=An(Xn,Y n).

2.2 Probability and Information Theory

A communication system is basically pictured by models including information sources, in-

formation channels, encoders and decoders. Messages are generated at information sources

and next encoded into transmittable signals for information channels, the transmitted signals

will then be received and decoded by receivers. Since statistical communication theory and

information theory were established in 1940s, probability notions have been introduced to

rigorously describe information and communication models. Then it is possible to analyse

coding problems with mathematical and probabilistic tools. In this section, we will provide

or reformulate a group of probabilistic definitions from [6], and those definitions will be

fundamental components of information models which will be used in this thesis.

Definition 1 (Measurable Space) Given a set X, a non-empty collection B of subsets of X

is called a σ -algebra on X if

1. A∁ ∈B for every A ∈B,

2.
⋃

∞
n=1An ∈B for every {An ∈B}∞

n=1.

The pair (X,B) is called a measurable space.

Definition 2 (Signed Measure) Given a measurable space , then a signed measure on (X,B)

is a set function µ : B 7→ R such that

1. µ ( /0) = 0,
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2. µ

(
∞⋃

n=1
A(n)

)
=

∞

∑
n=1

µ

(
A(n)

)
for every disjoint sequence {A(n)}∞

n=1 in B.

If µ(A)≥ 0 for every A ∈B, then µ is called a positive measure.

If µ is positive and µ(X) = 1, then µ is called a probability measure.

Definition 3 (Indicator Function) Given a set X and let A⊂X, then an indicator function

on X w.r.t. A is defined by

χA(x) =

1 if x ∈A,

0 if x /∈A.

Definition 4 (Measurable Function) Given two measurable spaces (X,B) and (Y,F), the

a mapping from X into Y is called a measurable function relative to B and F if the inverse

image f−1(F) ∈B for every F ∈ F.

Definition 5 (Probability Space) Given a measurable space (Ω,H) and a probability mea-

sure P on (X,H), then the triplet (Ω,H,P) is called a probability space. The set Ω is called

the sample space and elements of the σ -algebra H are called events.

Definition 6 (Random Variable) Given a probability space (Ω,H,P) and a measurable

space (X,B), then a function X from Ω into X and relative to H and B) is called a random

variable taking values in (X,B).

Definition 7 (Stochastic Process) Given a measurable space (X,B) and an arbitrary set

T , and for each t ∈ T let Xt be a random variable taking values in (X,B), then the collection

{Xt |t ∈ T} is called a stochastic process with state space (X,B) and parameter set T .

Equivalently, a stochastic process {Xt |t ∈ T} can be defined as a random variable X

taking values in the product space (XT ,BT ).

Particularly, if T = N+, we denote the stochastic process by X = (Xn)
∞
n=1.

Definition 8 (Probability Law) Given a random variable defined on a probability space

(Ω,H,P) and taking values in (X,B), and let PX be an image measure of P under X, namely,

PX(A) = P(X−1(A)) = P{X ∈ A},
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for every A ∈B, then PX is a probability measure on (X,B) and is called distribution.

Given a stochastic process {Xt |t ∈ T}, or equivalently, X, the probability law X is de-

fined as the distribution PX of X. PX determines every joint distribution defined by

PXt1 ···Xtn
(At1 ×·· ·×Atn) = P{Xt1 ∈ At1, · · · ,Xtn ∈ Atn}

with n over N+, and t1, · · · , tn over T , and At1, · · · ,Atn over B.

Throughout this thesis, we will denote random variables by X ,Y, · · · , and the correspond-

ing measurable spaces as (X,BX),(Y,BY ), · · · .

We will then employ the above probabilistic notion to define the basic information the-

oretical notions needed in this thesis.

In information theory, information source is described as a source generating random

signals over from a collection of symbols called source alphabet. It can be formally defined

as follows.

Definition 9 (Information Source) Given a source alphabet X, an information source is a

stochastic process X = (Xn)
∞
n=1 with state space (X,BX) and probability law PX.

Specifically, if PX is i.i.d., namely, for all n, Pn
X = ∏

n
k=1 PXk , where PXk = PX , then this

source is stationary memoryless with respect to PX .

Definition 10 (Information Channel) Given a measurable space (X×Y,BXY ). An infor-

mation channel is a set of conditional probability measures

{PY |X(·|x)|x ∈ X},

where PY |X(·|x) is a probability measure defined on (Y,BY ).

Specifically, a channel with respect to the code-length n is defined by

{Pn
Y |X(·|x)|x

n ∈ Xn},
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and by

{PY|X(·|x)|x ∈ XN+
}

when the code-length goes to infinity. Throughout this thesis, we briefly use Pn
Y |X or PY|X to

specify a channel when it is not confusing.

Remark 1 In some books, the information channel is defined in terms of regular conditional

probability. This is stricter than Defn. 10, which is not necessary a regular conditional

probability on (X×Y,BXY ).

We here present a general point-to-point channel coding problem in terms of the decod-

ing error probability and channel capacity.

Definition 11 (Channel Coding) Given a channel PY|X, and for every fixed code-length n,

given a message index set M(n) = {1,2, · · · ,M(n)}, we set an encoding function ϕ(n) : Xn →

M(n) and a decoding function ψ(n) :M(n) → Yn, then the average decoding error probability

ε(n) is calculated by

ε
(n) =

1
M(n)

M(n)

∑
k=1

P{ψ
(n)(ϕ(n)(k)) ̸= k}.

We say that ϕ(n) and ψ(n) specifies an (n,N(n),ε(n))-code. If there exists a sequence of

(n,enR,ε(n))-code in code-length n, then R is called an achievable rate. The channel capac-

ity C is defined as the supremum of all achievable rates.

2.3 A Review on the Method of Typicality

The notion of typicality, which is more precisely described by various definitions of typical

sets and typical sequences, plays a essential and profound role in the probabilistic informa-

tion theory. All these definitions are based on some certain divergence between the empirical

measure of a sequence and a given probability measure.

Strong typicality, which originated from Wolfowitz’s work [8] and was well studied in

Csiszár and Körner’s book [9], is defined by the uniform distance1 (see [10], [11, Sec. 10.6]
1The uniform distance is the maximum |P(x)−Q(x)| over all x ∈ X given probability measures P and Q

on the measurable space (X,B).
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and [1, Chap. 2]) or the total variation distance (see [12]) between the empirical mea-

sure and a given discrete probability measure directly. We will first introduce the relevant

notions.

The empirical measure is defined as follows.

Definition 12 (Empirical Measure) Given mutually independent random variables

X1,X2, · · · ,Xn

taking values in the measurable space (X,BX) and having the identical distribution PX ,

then the empirical measure or the empirical distribution determined by the realisation xk =

Xk(ω),k = 1,2, · · · ,n is defined as

P̄X(A) =
1
n

n

∑
k=1

χA(Xk(ω)) =
1
n

n

∑
k=1

χA(xk), n ∈ N+,ω ∈ Ω,A ∈BX.

Before defining the total variation distance, we need to define the partition of a set.

Definition 13 (Partition) Given a set X, then a countable collections of subsets {A(n)}∞
n=1

of X is called a partition of X if A(i)∩A( j) = /0 whenever i ̸= j, and if X=
⋃

∞
n=1A

(n). Given

a measurable space (X,B), if {A(n)}∞
n=1 is a partition of X and A(n) ∈ B for every n, then

{A(n)}∞
n=1 is called a B-measurable partition of X.

In general, the total variation distance is defined as follows (see [13, p. 7]).

Definition 14 (Total variation distance) Given two probability measures P and Q on the

measurable space (X,BX), the total variation distance between P and Q is

∥P−Q∥= sup∑
k
|P(A(n))−Q(A(n))|,

where the supremum is taken over all partitions {A(n)}∞
n=1 of X.

For the total variation distance, more details will be discussed in Sec. 2.4.
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Conventionally, the strong typicality can only be defined for discrete probability mea-

sures [14]. Recently, Mitran has provided a generalised definition of the empirical measure

and then proposed a weak* typicality for general measures [15]. Though this typicality in-

cludes a “weak*” in its name, it is actually a generalisation of strong typicality, because it

eventually considers a metric of distance between the empirical measure and a given mea-

sure based on the Polish space.

Distinct from strong typicality, weak typicality is defined by the difference between the

empirical entropy and the entropy of a given probability measure (cf. [11, Section 3.1]).

As the entropy is a functional of the measure, the empirical entropy is a functional of the

empirical measure. Fundamental properties of both weak and strong typicality are rooted in

the weak law of large numbers (LLN).

Instead of the entropic functional, more general functionals can also be introduced in

the definition of typicality. In [16], Raginsky proposed a generalised strong typicality based

on a class of measurable functions of the standard Borel space. In [17], Jeon defined a

generalised typicality on the measurable space by introducing an abstract typicality criteria

determined by an integrable function.

From the definition of strong typicality and weak typicality, and using the typical average

lemma and Pinsker’s inequality, it can be deduced that every strongly typical set is a subset

of some weakly typical set. This was discussed in [1, Sec. 2.4 and Bibliographic Notes].

The conditional typicality lemma is one of the commonly used lemmas in the method

of typical sequences. It was formally proposed in [1, Sec. 2.5], but had actually been

implied in El Gamal and van der Meulen’s alternative proof [18] of Marton’s inner bound

on the capacity region of the broadcast channel (BC) [19]. In addition to Marton’s inner

bound, the conditional typicality lemma can be applied to derive, e.g., the Gelfand-Pinsker

theorem [20]. Historically, Wolfowitz had considered the binary chanel coding problem,

and proposed a binary and second-order version of the conditional strong typicality lemma

[8, Lem. 2.1.2]. This has been pointed out and restated by Ahlswede in [3, 21].

However, the conventional conditional typicality lemma is based on strong typicality,

which is only defined for discrete probability measures. This is because in the proof of the
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conditional strong typicality lemma in [1, Appd. 2A] strictly relies on the strong typicality

definition. We can not simply replace the probability measure and the empirical measure

with the entropy and the empirical entropy to obtain a proof in the same form for the weak

typicality.

Cover proposed a trivariate version of conditional typicality lemma, which he called

“Markov lemma” [11, Lem. 15.8.1]. Although Mitran has generalised this Lemma in [15],

his result is restricted to Polish alphabets, because the weak* typicality is based on the

weak* convergence property on a Polish space. On the other hand, though weak typicality

can be defined for general code alphabets and general probability measures, no conditional

typicality lemma based on weak typicality has been proposed.

Similar to the conditional typicality lemma, the mutual covering lemma was implied in

[18], and then summarized in [1, Lem. 8.1]. A multivariate version of the mutual covering

lemma was also obtained in [1, Lem. 8.2]. In [22], a multivariate covering lemma for the

discrete memoryless case was proposed. Previously in [23] a stronger version which is

called subset typicality lemma by the authors was considered.

The strong Markov lemma [1, Lem 12.1], which is considered as a strictly stronger ver-

sion of the most commonly used conditional typicality lemma and Cover’s Markov lemma,

plays a unique role in some scenarios stricter than those where the conditional typical-

ity lemma is sufficient. Recently, some researchers have extended the Markov lemma for

countable alphabets [24, 25]. However, there is still a lack of the Markov lemma based on a

definition of typicality with respect to a general joint measure on a product space.

Besides aforementioned asymptotic typicality lemmas, there are recently some works

on non-asymptotic ones [26, 27]. Essentially, Feinstein-type lemmas are expressed in a

non-asymptotic fashion, and it is possible to obtain non-asymptotic typicality lemmas from

Feinstein-type lemmas.
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2.4 Equivalent Definitions of Total Variation Distance

As mentioned in Sec. 2.3, total variation distance is used by Cuff in his typicality definition.

Total variation distance is generally used in information theoretical works. However, total

variation distance is often defined by various authors in different forms, and the equivalence

of those definitions were rarely discussed in literatures. Hence, in this chapter, we will

introduce the equivalent definitions of total variation norm from mathematical literatures

and explicitly prove the equivalence of three forms of total variation distance definitions.

We will reformulate and reorganise definitions and theorems from [6, 28, 29], including

Defns. 15-20 and Thms. 1-7, as follows.

Definition 15 (Normed Linear Space) A real (or complex) vector space X is called a normed

linear space if to each x ∈ X there is associated a real number ∥x∥, called the norm of x,

such that

1. ∥x∥ ≥ 0 for all x ∈ X and ∥x∥= 0 if and only if x = 0,

2. ∥x+ y∥ ≤ ∥x∥+∥y∥ for all x,y ∈ X,

3. ∥αx∥= |α|∥x∥ for all x ∈ X and all α ∈ R (or α ∈ C).

Definition 16 (Total Variation) Given a measurable space (X,B) with a signed measure

µ , for every A ∈B, we define a set function |µ| on B by

|µ|(A) = sup
∞

∑
n=1

∣∣∣µ(A(n))
∣∣∣ ,

where the supremum is taken over all B-measurable partitions {A(n)}∞
n=1 of A, then |µ| is

called the total variation of µ . More specifically, we denote ∥µ∥= |µ|(X).

Theorem 1 (Total Variation Measure) Given a measurable space (X,B) with a total vari-

ation |µ|, then |µ| is positive measure on B and is thus called a total variation measure.

Theorem 2 (Total Variation Norm) Given a measurable space (X,B), then the set of all

signed measures on B is a vector space, ∥µ∥ is a norm on this vector space and is thus

called a total variation norm.
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Definition 17 (Positive and Negative Variations) Given a measurable space (X,B) with

a signed measure µ and the associated total variation measure |µ|, and define

µ
+ =

1
2
(|µ|+µ),

µ
− =

1
2
(|µ|−µ),

µ+ and µ− are called positive and negative variations of µ , respectively. Thus

µ = µ
+−µ

−,

|µ|= µ
++µ

−,

From Thm. 2, µ+ and µ− are both positive measures on B.

The following theorem provides an equivalent definition of the total variation norm.

Theorem 3 (Hahn-Jordan Decomposition) Given a measurable space (X,B) with a signed

measure µ , then there exists a set B ∈ B with B∁ = X \B, and such that the positive and

negative variations µ+ and µ− of µ satisfy

µ
+(A) = µ(A∩B),

µ
−(A) = µ(A∩B∁)

for every A ∈B.

(B,B∁) is called a Hahn decomposition of X induced by µ , and (µ+,µ−) is called the

Jordan decomposition of µ .

Corollary 1 (Decompositional Definition of Total Variation Norm) Given a measurable

space (X,B) with a signed measure µ , the associated total variation norm ∥µ∥ and the

associated positive and negative variations µ+ and µ−, then

∥µ∥= µ
+(X)−µ

−(X) = sup
B∈B

(
µ(B)−µ(B∁)

)
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Definition 18 (Absolute Continuity) Given a measurable space (X,B) and singed mea-

sures µ and ν , then ν is called absolutely continuous w.r.t. µ (denoted by ν ≪ µ) if

µ(A)= 0⇒ ν(A)= 0 for every A∈B. Furthermore, µ and ν are called equivalent (denoted

by ν ≈ µ) if ν ≪ µ and µ ≪ ν .

Definition 19 (Concentration) Given a measurable space (X,B) and a singed measure µ ,

then µ is called concentrated on C ∈B if µ(A) = µ(A∩C) for every A ∈B.

Definition 20 (Mutual Singularity) Given a measurable space (X,B) and singed mea-

sures µ and ν , then µ and ν are called mutually singular (denoted by µ ⊥ ν) if there

exists C ∈B such that µ(C) = ν(C∁) = 0.

Theorem 4 (Lebesgue Decomposition) Given a measurable space (X,B) with a positive

σ -finite measure µ and a signed measure ν , there exits a unique pair of signed measures

νa and νs on B such that νa ≪ µ , νs ⊥ µ and ν = νa + νs. Thus there exists C ∈ B such

that µ(C) = νa(C) = νs(C∁) = 0.(νa,νs) is called the Lebesgue decomposition of ν w.r.t.

µ . Furthermore, if ν is positive, then νa and νs are also positive.

Theorem 5 (Radon-Nikodym Derivative) Given a measurable space (X,B) with a posi-

tive σ -finite measure µ and a signed measure ν such that ν ≪ µ , then there exists a B-

measurable function g such that for every B-measurable function f ,

∫
f dν =

∫
f g dµ.

Such g is unique µ-a.e., and is called a Radon-Nikodym derivative denoted by g = dν/dµ .

Theorem 6 Given a measurable space (X,B) with a signed measure µ , then µ ≪ |µ| and

h = dµ/d|µ| satisfies |h(x)|= 1 for every x ∈ X.

Theorem 7 Given a measurable space (X,B) with a positive measure µ and a signed mea-

sure ν such that ν ≪ µ , let g = dν/dµ , then for every A ∈B,

|ν |(A) =
∫

A
|g| dµ.
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Corollary 2 (Integral Definition of Total Variation Norm for Positive Measure) Given a

measurable space (X,B) with a positive measure µ and a signed measure ν such that

ν ≪ µ , let g = dν/dµ , then

∥ν∥=
∫

|g| dµ.

We will then prove the following theorems, which provides another equivalent definition

of the total variation norm.

Theorem 8 Given a measurable space (X,B) with a positive measure µ and a signed mea-

sure ν , let (νa,νs) be the Lebesgue decomposition of ν w.r.t. µ , g = dνa/dµ , h = dν/d|ν |,

h̄ = 1/h, and C be any set in B such that µ(C) = νa(C) = νs(C∁) = 0, then for every A ∈B,

|ν |(A) =
∫

A
|g| dµ +

∫
A

h̄ dνs. (2.1)

Furthermore, if ν(B)≥ 0 for every B ∈B such that B ⊆C, then

|ν |(A) =
∫

A
|g| dµ +ν(A∩C). (2.2)

Proof: For every B-measurable function f ,

∫
f dν =

∫
f h d|ν |, (2.3)

and on the other hand,

∫
f dν =

∫
f dνa +

∫
f dνs =

∫
f g dµ +

∫
f dνs. (2.4)

For every A ∈B, let f = h̄χA in (2.3) and (2.4), then

∫
f h d|ν |= |ν |(A), (2.5)∫
f g dµ =

∫
A

h̄g dµ, (2.6)∫
f dνs =

∫
A

h̄ dνs. (2.7)
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And for every A ∈B such that A ⊆C∁, from (2.3)-(2.7) and νs(C∁) = 0, we have

|ν |(A) =
∫

A
h̄g dµ,

µ and |ν | are both positive, thus h̄g ≥ 0 µ-a.e. on C∁. Because |h| = 1, we have h̄g = |g|

µ-a.e. on C∁. Hence, for every A ∈B,

∫
A

h̄g dµ
(a)
=
∫

A∩C∁
h̄g dµ =

∫
A∩C∁

|g| dµ
(b)
=
∫

A
|g| dµ, (2.8)

where (a) and (b) are both from µ(C) = 0.

Finally, (2.1) is obtained from (2.3)-(2.7) and (2.8). And if ν(B) ≥ 0 for every B ∈ B

such that B ⊆C, then again from |ν | is positive, we have h ≥ 0 |ν |-a.e. on C. From |h|= 1

and νa(C) = 0, we have |ν | = 0 ⇒ ν = 0 ⇒ νs = 0 and thus h = 1 νs-a.e. on C. Hence,∫
A h̄ dνs = νs(A∩C) = ν(A∩C), and (2.2) is obtained.

Corollary 3 (Integral Definition of Total Variation Norm for Signed Measure) Given a

measurable space (X,B) with a positive measure µ and a signed measure ν , let (νa,νs) be

the Lebesgue decomposition of ν w.r.t. µ , g = dνa/dµ , h = dν/d|ν |, h̄ = 1/h, and C be any

set in B such that µ(C) = νa(C) = νs(C∁) = 0, then

∥ν∥=
∫

|g| dµ +
∫

h̄ dνs.

Furthermore, if ν(B)≥ 0 for every B ∈B such that B ⊆C, then

∥ν∥=
∫

|g| dµ +ν(C).

In general, for a vector space X, the distance between two vectors x,y ∈ X induced by

a norm ∥·∥ is defined as ∥x− y∥. Hence we can define the total variation distance from the

equivalent definitions of total variation norm in theorem 2 and corollaries 1 and 2.

Definition 21 (Total Variation Distance) Given a measurable space (X,B) with a positive

σ -finite measure µ and signed measures ϕ and λ , then the total variation distance ∥ϕ −λ∥
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between ϕ and λ is defined in three equivalent forms as follows.

1.

∥ϕ −λ∥= sup
∞

∑
n=1

∣∣∣ϕ(A(n))−λ (A(n))
∣∣∣ ,

where the supremum is taken over all B-measurable partitions {A(n)}∞
n=1 of X.

2.

∥ϕ −λ∥= sup
B∈B

(
(ϕ(B)−λ (B))−

(
ϕ(B∁)−λ (B∁)

))
= 2 sup

B∈B
(ϕ(B)−λ (B)) .

3. Let ν = ϕ − λ , (νa,νs) be the Lebesgue decomposition of ν w.r.t. µ , g = dνa/dµ ,

h = dν/d|ν |, h̄ = 1/h, then define

∥ϕ −λ∥=
∫

|g| dµ +
∫

h̄ dνs.

If ϕ ≪ µ and λ ≪ µ , then νa = ϕ −λ and νs = 0, let g1 = dϕ/dµ and g2 = dλ/dµ ,

then

∥ϕ −λ∥=
∫

|g1 −g2| dµ.

If ϕ is positive and λ is positive and σ -finite, and let µ = λ , f = dϕa/dµ , (ϕa,ϕs)

be the Lebesgue decomposition of ϕ w.r.t. µ , and C be any set in B such that µ(C) =

ϕa(C) = ϕs(C∁) = 0, then νa = ϕa−λ , νs = ϕs, g = f −1 µ-a.e., νa(C) = νs(C∁) = 0,

ν is positive on C and ν(C) = ϕ(C). Hence,

∥ϕ −λ∥=
∫

| f −1| dλ +ν(C),

And more specifically, if ϕ is positive,λ is positive and σ -finite, and ϕ ≪ λ , let f =

dϕ/dλ , then

∥ϕ −λ∥=
∫

| f −1| dλ .

More specifically, under the conditions of Defn. 21, it can be verified that the total

variation distance between two discrete probability measures ϕ and λ has the equivalent
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definitions as follows.

1.

∥ϕ −λ∥= sup
∞

∑
n=1

∣∣∣ϕ(A(n))−λ (A(n))
∣∣∣ ,

where the supremum is taken over all B-measurable partitions {A(n)}∞
n=1 of X.

2.

∥ϕ −λ∥= 2 sup
B∈B

(ϕ(B)−λ (B)) .

3.

∥ϕ −λ∥= ∑
x∈X

|ϕ(x)−λ (x)|.

The first definition is used in Pinsker’s book [13], where Pinsker’s inequality was origi-

nally proposed; the second definition is commonly used in later works; the third definition

is used by Cuff for his typicality definition [12], where he used a normalised coefficient 1
2 .





Chapter 3

Typicality in Coding Problems

In [30], random coding, Feinstein-type lemmas, and typicality method were treated as dif-

ferent approaches to the achievability proof of the channel coding theorem. They have been

considered as different methods providing different error probability bounds in later books

or lecture notes (see [11, p. 240] and [31, Sec. 17.4]). In this chapter, we will revisit some

of the achievability proofs and show the relevance of different approaches. We will also

point out that typicality plays a fundamental role in these proofs.

3.1 Asymptotic Equipartition Property and Typicality

The asymptotic equipartition property (AEP) or entropy equipartition property expresses

a property of an X-valued random sequence Xn with probability distribution Pn
X that the

logarithm of its probability Pn(X) is close to −H(Xn) defined with Pn
X , and the probability

of the event that Xn satisfies AEP approaches 1 when n tends to infinity [32]. We illustrate

the mathematical definition of AEP for the i.i.d. case as follows (cf. [11, 33–35]).

Theorem 9 (AEP) If Xn is an i.i.d. sequence generated according to PX , then

lim
n→∞

P
{∣∣∣∣−1

n
logPn

X(X)−H(X)

∣∣∣∣< ε

}
= 1
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for any ε > 0. We denote

An
ε(X) =

{
xn |

∣∣∣∣−1
n

logPn
X(x)−H(X)

∣∣∣∣< ε

}
,

and we have (1− ε)en(H(X)−ε) ≤ |An
ε(X)| ≤ en(H(X)+ε) for sufficiently large n.

The theorem can be naturally derived from the weak law of large numbers (WLLN) or

Chebychev’s inequality. If we replace X with a pair (X ,Y ) in Thm. 9, we will obtain the

joint AEP.

Typicality describes the property of a set with a PX -probability close to 1 of sequences

xn’s, and this set is naturally called a typical set [36]. Both notions of the AEP and the

typicality originated in Shannon’s celebrated work [37] (see [38]).We can see that AEP has

already provided a possible approach to define the typicality. The AEP and typicality have

been used in many pioneering works (ex. [39, 40]) and current textbooks (ex. [11, 14, 41–

43]) as major tools for deriving coding theorems.

Theorem 10 Given a stationary and memoryless channel with X,Y and PY |X(·|x), then the

channel capacity C = sup
PX

I(X ;Y )

We first provide a proof based on the AEP in terms of entropy, when the channel alphabet

is finite (cf. [35]).

Proof:

Random coding For fixed PX and n, randomly and independently generate enR many

xn(m)’s according to the n-fold product of PX , i.e. xn(m) is a realization of the i.i.d. Xn-

valued stochastic process Xn(m). Send xn(m) when M = m.

Decoding Assume yn is received. If (xn(m̂),yn)∈A
(n)
ε where A(n)

ε =A
(n)
ε (X ,Y )∩(A(n)

ε (X)×

A
(n)
ε (Y )), then declare m̂ is sent.
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Error analysis E = E1 ∪E2, where E1 = {(xn(m),yn) /∈ A
(n)
ε } and E2 = {(xn(m̂),yn) ∈

A
(n)
ε } for some m̂ ̸= m. lim

n→∞
P(E1) = 0 following the AEP and joint AEP. As for E2, we

have

P(E2)≤ ∑
m̂ ̸=m

P{(Xn(m̂),Y n) ∈A
(n)
ε } ≤ enRP{(X̃n,Ỹ n) ∈A

(n)
ε },

where X̃n ∼ Pn
X and Ỹ n ∼ Pn

Y are independent, Furthermore,

P{(X̃n,Ỹ n) ∈A
(n)
ε } ≤ ∑

A
(n)
ε

Pn
X(x)P

n
Y (y)

≤|A(n)
ε (X ,Y )|e−n(H(X)−ε)e−n(H(Y )−ε)

≤en(H(X ,Y )+ε)e−n(H(X)−ε)e−n(H(Y )−ε)

according to the AEP and joint AEP. Hence, lim
n→∞

P(E2) = 0 when R < I(X ;Y ) = H(X)+

H(Y )−H(X ,Y ).

Joint typicality can be defined based on the joint AEP. In fact, A(n)
ε = A

(n)
ε (X ,Y )∩

(A
(n)
ε (X)×A

(n)
ε (Y )) was exactly the definition of jointly typical set in [11]. In [4], Han

defined the jointly typical set as

Tn
ε (X ,Y ) =

{
(xn,yn) |

∣∣∣∣1nin(x;y)− I(X ;Y )
∣∣∣∣< ε

}
,

where

in(x;y) = log
Pn

XY (x,y)
Pn

X(x)P
n
X(y)

is called information density1. It is evident that A(n)
ε ⊂ Tn

δ
(X ,Y ) where δ = 3ε . Similar to

the joint AEP,

lim
n→∞

P{(Xn,Y n) ∈ Tn
ε (X ,Y )}= 1,

where (Xn,Y n) ∼ Pn
XY and Pn

XY is n-fold product of PXY . We then provide an alternative

proof based on Han’s typicality definition.

Proof:
1We will formally introduce the notion of information density for general random variables. Here we only

use the discrete version.
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Random coding The same as the first proof.

Decoding Assume yn is received. If (xn(m̂),yn) ∈ Tn
ε (X ,Y ), then declare m̂ is sent.

Error analysis E=E1∪E2, where E1 = {(xn(m),yn) /∈Tn
ε (X ,Y )} and E2 = {(xn(m̂),yn)∈

Tn
ε (X ,Y )} for some m̂ ̸= m. We have

lim
n→∞

P(E1) = lim
n→∞

P{(X̃n,Ỹ n) /∈ Tn
ε (X ,Y )}= 0 (3.1)

following the property of the jointly typical set. Similar to the first proof, we have

P(E2)≤ enRP{(X̃n,Ỹ n) ∈ Tn
ε (X ,Y )},

and

P{(X̃n,Ỹ n) ∈ Tn
ε (X ,Y )} ≤ ∑

Tn
ε (X ,Y )

Pn
X(x)P

n
Y (y)

= ∑
Tn

ε (X ,Y )

Pn
X(x)P

n
Y (y)

Pn
XY (x,y)

Pn
XY (x,y)

≤e−n(I(X ;Y )−ε) (3.2)

according to the definition of jointly typical set. Hence, lim
n→∞

P(E2) = 0 when R < I(X ;Y ).

In the alternative proof, we do not use the entropy and get rid of bounding the cardinality

of the typical set. As is generally known, information entropy is defined only for finite

and countably infinite valued random variables, and the AEP is well defined only when

the entropy with respect to the given probability distribution is finite. Although the AEP

was generalised to the continuous alphabet by replacing the entropy and the cardinal of

typical set with the differential entropy and volume of typical set [11], it is not plausible for

the general alphabet. Besides, the differential entropy of a continuous probability is not a

measure of uncertainty as exact as entropy, and was considered ‘not the prettiest object in
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information theory’ [44]. On the contrary, in(X ;Y ) in Han’s joint typicality definition can

be generalised to any abstract alphabet by replacing the fractional with the Radon-Nikodym

derivative. Hence we intend to employ similar notions of typicality in this thesis.

3.2 Feinstein-Type Lemma and Typicality

In [45] Feinsten provided a rigorous proof of Shannon’s channel coding theorem. The key

steps had then been extracted and reformulated by different authors (including Feinsten

himself) in [2, 46–48]. This is usually called Feinstein’s fundamental lemma, and then was

used in many books (ex. [49, 50]). Other forms of Feinstein-type lemmas were obtained in

[4, 7, 8, 51, 52].

Basically, we can restate the Feinstein-type lemma as follows.

Lemma 1 Given a stationary and memoryless channel with X,Y and PY |X , and ε > 0, then

for sufficiently large n, there exits a set {xn
k}

Mn
k=1 and a measurable partition {D(n)

k }Mn
k=1 of Yn

with Pn(Dk|xk)> 1− ε for all k = 1,2, · · · ,Mn, and Pn
Y (

Mn⋃
k=1

Dk)≥ ε

2 , where Pn
Y is a channel

output distribution induced by any channel input distribution Pn
X .

Proof: The details of the proof can be found in the aforementioned works. Here we

state the major steps extracted from those proofs.

Fix Pn
X and denote Pn

XY = Pn
X ×Pn

Y |X . Let {An}∞
n=1 be a set sequence satisfying An ∈Bn

XY

and Pn
XY (A)> 1− ε

2 for sufficiently large n, and

A(n)(x) = {yn | (xn,yn) ∈A(n)}.

Then we choose {xn
k}

Mn
k=1 from all xn ∈ Xn and {D(n)

k }Mn
k=1 as

D
(n)
1 =A(n)(x1),

D
(n)
k =A(n)(xk)\

k−1⋃
j=1

D
(n)
j , k = 2, · · · ,Mn,
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subject to

Pn
Y |X(D

(n)
k |xk)> 1− ε, k = 1, · · · ,Mn.

Due to the assumptions on {D(n)
k }Mn

k=1, there always exists a maximum Mn.

Fix Pn
X , and let Pn

Y be the marginal distribution of Pn
X ×Pn

Y |X . When Mn is the largest as

mentioned above, we have

Pn
Y |X(A(x)|x) = Pn

Y |X(
Mn⋃
k=1

Dk)+Pn
Y |X(A(x)\

Mn⋃
k=1

Dk)≤ Pn
Y |X(

Mn⋃
k=1

Dk)+1− ε,

thus we have

Pn
XY (A)≤ Pn

Y (
Mn⋃
k=1

Dk)+1− ε.

Then from the condition on which we set {An}∞
n=1, we have for sufficiently large n

Pn
Y (

Mn⋃
k=1

Dk)≥
ε

2
. (3.3)

Furthermore, if we let {D(n)
k }Mn

k=1 be taken in different forms, we can estimate Mn and ε

in various ways.

Theorem 11 In Lem. 1, Mn and εn can be estimated as Mn > en(C−ε) for all 0 < ε ≤ 1,

where C = sup
PX

I(X ;Y ).

Proof: Following the proof of Lem. 1, let A(n)(x) be taken as

A(n)(x) =
{

yn |
∣∣∣∣−1

n
logPn

Y (y)−H(Y )
∣∣∣∣< δ1 ∧

∣∣∣∣−1
n

logPn
Y |X(y|x)−H(Y |X)

∣∣∣∣< δ2

}
,

for some δ1,δ2 > 0, or

A(n)(x) =
{

yn |
∣∣∣∣1nin(x;y)− I(X ;Y )

∣∣∣∣< ε

2

}
,
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for some ε > 0. For both cases, by the AEP or the property of typicality, we have

Pn
Y (A(x)) = ∑

A(n)(x)

Pn
Y (y

n)< e−n(H(Y )−H(Y |X)−δ1−δ2)

or

Pn
Y (A(x))< e−n(I(X ;Y )−ε) (3.4)

We set δ1 +δ2 <
ε

2 and take the maximizing Pn
X , then we have for both cases that

Pn
Y (

Mn⋃
k=1

Dk)≤ Pn
Y (

Mn⋃
k=1

A(xk))< Mne−n(C− ε

2 ). (3.5)

Then following (3.3) and (3.5), we have

Mn >
ε

2
e−n(C− ε

2 ) > e−n(C−ε)

for sufficiently large n and when n > 2
ε

log 2
ε
.

More details of the proof can be found in [46, Chap. IV] and [2, Sec. 4.1], [47, Sec. 3]

(see also [49, Thm. 7.7] and [53, Lem. 3.7.1]).

Theorem 12 In Lem. 1, Mn and εn can be estimated as εn ≤ Mne−a +Pn
XY{i ≤ a} for all

a > 0, where i = 1
n in(x;y).

Proof: Following the proof of Lem. 1, let A(n)(x) be taken as

A(n)(x) =
{

yn | 1
n

in(x;y)> a
}
,

for some a > 0. We only specify that equation (3.3) is equivalent to the lower bound in-

equalities in both [47] and [48]. Hence, Thm. 12 is essentially equivalent to Thm. 11. More

details of the proof can be found in [48, Thm. 2] (see also [50, Lem. 14.1]) and [4, Lem.

3.4.1].

Theorem 13 In Lem. 1 Mn and εn can be estimated as Mn > e(nC−c
√

n) for all 0 < εn ≤ 1

and some constant c = c(εn).
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Proof: Following the proof of Lem. 1, let A(n)(x) be taken as

A(n)(x) =
{

yn | ∥π(x, ·|xn,yn)−Pn
XY (x, ·)∥< γ

√
n
}
, (3.6)

thus following the lemmas in [21, Sec. 5.2.7], we have for sufficiently large n that

Pn
Y (

Mn⋃
k=1

Dk)< Mne−(nC−c(γ)
√

n). (3.7)

It should be noted that we remedy the definition of Tn
W,δ (x) in [21, Sec. 5.2.7] following

a similar way of the strong typicality in [1], and obtain the A(n)(x) in (3.6), without any

changes in the conclusion.

Then similar to the proof of Thm. 11, Thm. 13 can be established following (3.3) and

(3.7). More details of the proof can be found in [21, Thm. 29] (see also [8, Thms. 3.2.1 and

7.2.1])

The Feinstein-type lemma essentially provides a group of codewords and corresponding

decision regions of a channel coding scheme with a bounded decoding error probability. In

the above statement, ε is a maximal error probability, while in some works [4, 7], ε was

an average error probability. Specifically, in [4, Lem. 3.4.1], Han took the decision regions

basically according to the jointly typical set, hence established a direct link between the

Feinstein-type lemma and the joint typicality, despite the minor difference in error proba-

bility. In [51], Shannon provided an average error probability by employing random coding

and the maximum likelihood decoding.

Although the above derivations of error probability were through different approaches,

we can establish a link between those results. Here we derive the Feinstein-type lemma in

terms of a maximal error probability from the one in terms of an average error probability,

without any difficulty.

Lemma 2 Given a memoryless channel with X,Y and PY |X , and a set {xn
k}

Mn
k=1 and a parti-

tion {D(n)
k }Mn

k=1 of Yn with 1
Mn

Mn
∑

k=1
Pn(Dk|xk)> 1− εn for any εn, where Mn > en(C−εn). then
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we can obtain a set {x̃n
k}

M̃n
k=1 and a partition {D(n)

k }M̃n
k=1 with Pn(D̃k|x̃k)> 1− γn for all k for

any γn for sufficiently large n, where M̃n > en(C−γn).

Proof: Because 1
Mn

Mn
∑

k=1
Pn(Dk|xk)> 1− εn, then we have at least Mn

2 many xn
k’s with

Pn(Dk|xk) > 1− εn
2 in {xn

k}
Mn
k=1, otherwise 1

Mn

Mn
∑

k=1
Pn(Dk|xk) will be no larger than 1− εn.

We let M̃n =
Mn
2 > en(C−εn)−log2 and γn =

εn
2 + log2

n , thus the lemma is proved.

3.3 Information Stability, Information-Spectrum and Typ-

icality

We will study coding problems relevant to general stochastic processes rather than i.i.d.

ones in this thesis. Hence, it is necessary to extend the AEP and the joint typicality, as

well as the Feinstein-type lemma, to more general cases. Historically, the AEP for Markov,

stationary and ergodic sources were studied in [33, 37, 54]. A description of the AEP for

general stochastic processes can be found in [53, Sec. 2.5]. Feinstein-type lemmas were

also studied for stationary processes [4, 52] or more general ones without stationarity or

ergodicity [4, 52].

The notions of information stability [7, 13, 55] and information-spectrum [4, 56, 57] are

relevant to this topic. We introduce them as follows.

Definition 22 (Information Stability) Given stochastic processes X= {Xt |t ∈ T} and Y=

{Yt |t ∈ T} with state spaces (X,BX) and (Y,BY ) and parameter set T , T = R or T = N+,

then (X,Y) is called information stable if information density i(xt ;yt) exists and mutual

information between satisfying X t and Y t satisfies 0 < I(X t ;Y t)< ∞ for sufficiently large t,

and if i(X t ;Y t)
I(X t ;Y t) converges to 1 in probability when t → ∞, namely, if

lim
t→∞

P
{∣∣∣∣ i(X t ;Y t)

I(X t ;Y t)
−1
∣∣∣∣> ε

}
= 0 (3.8)

for every ε > 0.
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Definition 23 (Information Spectrum) Given stochastic processes X = (Xn)
∞
n=1 and Y =

(Yn)
∞
n=1 with state spaces (X,BX) and (Y,BY ), then the spectral inf-mutual information rate

between X and Y is defined as 2

I(X;Y) = p− liminf
n→∞

1
n

i(Xn;Y n).

According to Defn. 23, we have

lim
n→∞

P{i(Xn;Y n)< I(X;Y)− ε}= 0 (3.9)

for every ε > 0.

We will show how to apply these notions to achievability proofs for more general cases.

For the case of the stationary and memoryless channel, from equations (3.2) and (3.4), we

can see that typicality plays essential roles in the two approaches to the achievability proof

of the channel coding theorem. We still use Tn(X ,Y ) to denote the jointly typical set, and

define

Tn(Y |x) = {yn | (xn,yn) ∈ Tn(X ,Y )}.

Then equation (3.1) can be reformulated as

lim
n→∞

Pn
XY (T(X ,Y )) = 1, (3.10)

equation (3.2) can be reformulated as

(Pn
X ×Pn

Y )(T(X ,Y ))< e−n(I(X ;Y )−ε) (3.11)

for sufficiently large n, and equation (3.4) can be reformulated as

Pn
Y (T

n(Y |x))< e−n(I(X ;Y )−ε) (3.12)

2The limit inferior in probability of X is defined as p− liminf
n→∞

Xn = sup{β | lim
n→∞

P{Xn < β}= 0}.
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for sufficiently large n. It is evident that (3.12) implies (3.11).

As for more general channel models, if we keep the structure of the proof in the last two

sections, replace I(X ;Y ) with lim
n→∞

1
n I(Xn;Y n), and redefine the jointly typical set as

Tn(X ,Y ) =
{
(xn,yn) |

∣∣∣∣ i(xn;yn)

I(Xn;Y n)
−1
∣∣∣∣≤ ε

}
,

where (X,Y) is information stable, then (3.10) holds following (3.8) in the definition of

information stability, and (3.11) holds following the new definition of joint typicality, by

a derivation similar to that of (3.2). Therefore, the achievability proof of a more general

channel coding theorem is obtained. Similarly, we can also replace I(X ;Y ) with I(X;Y),

and redefine the jointly typical set as

Tn(X ,Y ) = {(xn,yn) | i(Xn;Y n)≥ I(X;Y)− ε},

then (3.10) holds following (3.9), and (3.11) holds following the new typicality definition.

This shed a light to a unified method of achievability proofs of general coding problems.

3.4 Conclusion

In this chapter, we have specified the relevance of different approaches to the achievabil-

ity proof of the channel coding theorem. We have then proposed a unified method of the

achievability proof, where the typicality plays a key role in this unified method, hence it

is sufficient to study the typicality for various probability distributions, in order to solve

channel coding problems with various general settings.





Chapter 4

Generalised Typicality Lemmas

4.1 A Generic Typicality

The conditional strong-typicality lemma was formally proposed in [1]. The proof in [1,

Appd. 2A] followed the authors’ typicality definition and probabilistic bounding methods.

The conditional strong-typicality lemma states a fact in probability that for each set

sequence {T(n)
ε (X ,Y ) ∈ Xn ×Yn}∞

n=1 satisfying lim
n→∞

P(n)
XY (Tε(X ,Y )) = 1, there exists a set

sequence {U(n) ∈Xn}∞
n=1 satisfying lim

n→∞
P(n)

X (U) = 1, and the marginal set sequence {V(n)
x ∈

Yn}∞
n=1 determined by an arbitrary sequence xn ∈ U(n) satisfies lim

n→∞
P(n)

Y |X(Vx|x) = 1.

Intuitively, there should exist a set sequence {U(n) ∈ Xn}∞
n=1 satisfying the aforemen-

tioned properties for any {A(n) ∈ Xn ×Yn}∞
n=1 satisfying lim

n→∞
P(n)

XY (U) = 1; otherwise

lim
n→∞

P(n)
XY (A) = 1 would not be established. However, there is no direct proof for this con-

jecture. The proof in [1, Appd. 2A] is not applicable for a general case, because it strictly

relies on the strong typicality definition.

Motivated by those, we wish to study whether the property showed in the conditional

strong-typicality lemma can be generalised and is irrelevant to the definition of typicality.

If it is the case, we can obtain similar conditional typicality lemmas for various typicality

definitions, which will find applications in general coding problems. We will first introduce

the notion of generic typical set sequence, which extracts parts of asymptotic properties of

conventional definitions typical sets.
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Definition 24 (Generic typical set sequence) Given a sequence of probability spaces

{(X(n),B(n),P(n))}∞
n=1, then we call {A(n) ∈ B(n)}∞

n=1 a generic typical set sequence w.r.t.

{P(n)}∞
n=1 if it holds asymptotically almost surely 1 in terms of P(A(n)) = P(n)(A), namely,

lim
n→∞

P(n)(A(n)) = 1. (4.1)

Remark 2 In Lem. 5, we will set a sequence of the proposed generalised typical sets and

prove that this sequence satisfies condition (4.1). Besides, in [59], Somekh-Baruch proposed

a sequence {A(n)}∞
n=1 satisfying condition (4.1).

Next, we will extend Lem. 4.3.2 in [2] to the general case. The original version of

this lemma played a key role in the proof of Feinstein’s fundamental lemma. The original

version is based on the discrete probability space, and it is non-trivial to generalise its proof

if we intend to obtain a similar conclusion based on a general probability space. We will

prove the generalised version by using a theorem related to the conditional expectation.

Lemma 3 (Feinstein) Fix PU and PV |U and let PUV = PU ×PV |U . Let A ∈ U×V be a set

such that PUV (A)> 1− ε , and E ∈ U be a set such that PU(E)> 1−δ . For each u ∈ U, let

Au = {v∈V | (u,v)∈A}. Let F= {u∈U |PV |U(Au|u)≥ 1−γ}, then PU(E∩F)> 1−δ − ε

γ
.

Proof: We set X = E[χA(U,V )|U ], thus X ≤ 1 and E(X) = E[χA(U,V )] = PUV (A).

Then we have

P{X ≥ 1− γ} ≥ 1−P{1−X ≥ γ} ≥ 1− E(1−X)

γ
> 1− ε

γ
, (4.2)

where the second to the last inequality follows the Markov inequality for non-negative real

random variables.

On the other hand, according to the relation between conditional distribution and condi-

1In probability theory, an event sequence {E(n)} holds asymptotically almost surely if and only if
lim
n→∞

P(E(n)) = 1 (see [58, p. 6]).
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tional expectation (see [6][Thm. 2.19] 2), we have

E[χA(U,V )|U ] =
∫

χA(U,v) dPV |U(v|U)
∆
= h(U), (4.3)

where

h(u) =
∫

χA(u,v) dPV |U(v|u) = PV |U(Au|u). (4.4)

Thus

P{X ≥ 1− γ}= PU({u | h(u)≥ 1− γ}) = PU(F) (4.5)

From (4.2) and (4.5), we obtain

PU(F)> 1− ε

γ
. (4.6)

Finally, we bound the probability of E∩F by

PU(E∩F) = PU(E)−PU(E\F)≥ PU(E)−PU(U\F)> 1−δ − ε

γ
, (4.7)

which establishes this lemma.

Based on Lem. 3 study an asymptotic property of the generic typical set sequence. This

will be a fundamental conclusion of our main results.

Lemma 4 (Conditional Generic Typicality) Given a sequence of probabilities {P(n)
X }∞

n=1,

a sequence of transition probabilities {P(n)
Y |X}

∞
n=1 and a sequence of product probability

spaces {(X(n) × Y(n),B
(n)
X ⊗B

(n)
Y ,P(n)

XY )}∞
n=1 where P(n)

XY = P(n)
X ×P(n)

Y |X for each n, and let

{A(n)(X ,Y ) ∈B
(n)
X ⊗B

(n)
Y }∞

n=1 be a generic typical set sequence w.r.t. {P(n)
XY }∞

n=1, namely,

lim
n→∞

P(n)
XY (A(X ,Y )) = 1, (4.8)

let A(n)(Y |x) = {y(n) ∈ Y(n) | (x(n),y(n))∈A(n)(X ,Y )} for each x(n) ∈X(n) and A(n)(X |Y ) =

2 It implies that given random variables U and V with the conditional distribution PV |U and a measurable
function f (U,V ), then

E[ f (U,V )|U ] =
∫

f (U,v) dPV |U (v|U).
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{x(n) ∈ X(n) | P(n)
Y |X(A(Y |x)|x)> 0}, then {A(n)(X ,Y )}∞

n=1 has the following properties that

lim
n→∞

P(n)
X (A(X |Y )) = 1, (4.9)

and there exists a sequence of {F(n) ∈B
(n)
X }∞

n=1 such that

lim
n→∞

P(n)
X (F) = lim

n→∞
P(n)

X (A(X |Y )∩F) = 1, (4.10)

and for every {x(n) ∈ F(n)}∞
n=1,

lim
n→∞

P(n)
Y |X(A(Y |x)|x) = 1. (4.11)

Proof: For every n, we have

P(n)
XY (A(X ,Y )) =

∫
X(n)

P(n)
Y |X(A(Y |x)|x) dP(n)

X (x)

=
∫
A(n)(X |Y )

P(n)
Y |X(A(Y |x)|x) dP(n)

X (x) (4.12)

≤
∫
A(n)(X |Y )

dP(n)
X (x) = P(n)

X (A(X |Y )) (4.13)

From (4.8) and (4.13), we obtain that lim
n→∞

P(n)
X (A(X |Y )) = 1.

Because lim
n→∞

P(n)
XY (A(X ,Y )) = lim

n→∞
P(n)

X (A(X |Y )) = 1, there must exist real sequences

{εn}∞
n=1 and {δn}∞

n=1 with 0 < εn,δ < 1 for every n, such that lim
n→∞

εn = lim
n→∞

δn = 0 and

P(n)
XY (A(X ,Y ))> 1− εn,P

(n)
X (A(X |Y ))> 1−δn

for every n. Let γn =
√

εn for every n, then

lim
n→∞

γn = lim
n→∞

εn

γn
= 0.

Under the assumption of Lem. 4, we make substitutions in Lem. 3 as follows. For

each n let U = X(n),V = Y(n),ε = εn,δ = δn.γ = γn,A = A(n)(X ,Y ),E = A(n)(X |Y ),Au =
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A(n)(Y |x), and

F = F(n) = {x(n) ∈ X(n) | P(n)
Y |X(A(Y |x)|x)≥ 1− γn}.

Because P(n)
Y |X(A(Y |x)|x)≤ 1 for every n, we obtain

lim
n→∞

P(n)
Y |X(A(Y |x)|x) = 1

for every {x(n) ∈ F(n)}∞
n=1. From Lem. 4 we have

P(n)
X (A(n)(X |Y )∩F)> 1− εn

γn

for every n. Because

P(n)
X (A(n)(X |Y )∩F)≤ P(n)

X (F)≤ 1

for every n, we obtain

lim
n→∞

P(n)
X (F) = lim

n→∞
P(n)

X (A(X |Y )∩F) = 1.

4.1.1 A Necessary Presumption of Lemma 3

It is evident that the sequence of robust typicality sets constructed in the conventional con-

ditional typicality lemma [1, Section 2.5] satisfies condition (4.8) in Lem. 3. In [1, Problem

2.17], it is shown that the conditional typicality lemma is not necessarily established for a

given {xn}∞
n=1, where xn ∈ Tn

ε (X) (for robust typicality) for all n ∈ Z+. We can prove that

the given xn actually falls out of Tn
ε (X |Y ) asymptotically.

In the above problem, PXY is given as the production probability measure of two Bernoulli

measures B(1/2), and xn is given as a binary sequence with kn 1’s followed by (n− kn) 0’s,

where kn = ⌊(n/2)(1+ ε)⌋. According to the definition of robust jointly typical set, xn

will fall out of Tn
ε (X |Y ) if ⌈kn/2⌉/n− 1/4 > ε/4. Let {n′l} be a subsequence of all n’s
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satisfying n = 4ln + 1. Assume that kn = (n/2)(1+ ε)− δn and ⌈kn/2⌉ = kn/2+ γn. Be-

cause kn = 2ln +1/2+(2ln +1/2)ε −δn, (2ln +1/2)ε −δn +1/2 is an integer denoted by

Nln . Then because ⌈kn/2⌉= ln +Nln/2+ γn, γn = 1/2 if Nln is odd, thus ⌈kn/2⌉/n−1/4 =

ε/4+(1− δn)/(2n) > ε/4. The range 0 < ε < 1 implies that there exist infinitely many

odd Nln’s in {Nln}. Hence, there exist infinitely many n’s such that xn /∈ Tn
ε (X

n|Y n).

4.2 A Generalised Multivariate Typicality

Although the generic typicality provides the conditional property, it is not related to any

information quantities in its definition, thus we can not directly obtain relevant lemmas

that is applicable in information theoretical problems. In this chapter, we will introduce a

generalised weak typical set, which can be used to construct a generic typical set sequence.

We will then provide typicality lemmas that can then be applied to coding problems.

Conventionally, the weakly typical set An
ε(X), also called the entropy-typical set, with

respect to a probability distribution Pn
X = ∏

n
k=1 PX of which the entropy is finite, is defined

as the set of all Xn-valued sequences such that

|1
n

h(xn)−H(X)| ≤ ε, (4.14)

where

h(xn) =
n

∑
j=1

log
1

PX(x j)
(4.15)

is the entropy function of xn with respect to Pn
X , and H(X) is the entropy with respect to PX .

There also exists weak typicality defined for pairs of sequences. This is called joint

typicality. In [4, Sec. 3.1], the mutual information density between two random variables,

which is defined as

i(x;y) = log
dPXY

dPX ×PY
(x,y), (4.16)

plays a key role in the definition of joint weak typicality. The jointly weakly typical set

An
ε(XY ) with respect to Pn

XY = ∏k = 1nPXY is defined as the set of all sequence pairs (xn,yn)
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such that

|1
n

i(xn,yn)− I(X ;Y )| ≤ ε, (4.17)

where I(X ;Y ) is the mutual information between X and Y . The asymptotic property of

i(Xn;Y n), or more specifically, the LLN is the fundamental of definitions of typicality and

joint typicality. Inspired by [4, Sec. 3.1], we proposed a jointly weakly typicality with re-

spect to the distribution of a general stochastic process, by replacing the mutual information

rate with the spectral mutual information which is an asymptotic measure of the relevance

of two stochastic processes [60].

As is generally understood, entropy is a measure of the uncertainty of a single source,

and mutual information is a measure of the relevance of two sources. It is natural for us to

obtain a multivariate typicality definition based on the relative entropy, which is a measure

of multiple dependence and relevance of multiple sources (cf. [5]).

First we introduce the the notions of relative entropy and relative entropy density (see

[54]).

Definition 25 (Relative Entropy Density) Given PX and QX satisfying PX ≪ QX , then the

relative entropy density dPX ||QX (x) is defined as

dPX ||QX (x) = log
dPX

dQX
(x). (4.18)

The relative entropy is the expectation of the relative entropy density, i.e.,

D(PX ||QX) =
∫

dPX ||QX (x) dPX(x). (4.19)

We also introduce the spectral relative entropy rates following the information spectrum

fashion (see [4, Sec. 4.1]). This is an extension of relative entropy for general stochastic

processes.

Definition 26 (Spectral Conditional Inf- and Sup-Relative Entropy Rate) With given PX

and QX and let X ∼ PX, we define the spectral inf- (or sup-)relative entropy rate as limit
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inferior (or superior) in probability3, i.e.,

D(PX||QX) = p− liminf
n→∞

1
n

dn
PX ||QX

(X), (4.20)

D(PX||QX) = p− limsup
n→∞

1
n

dn
PX ||QX

(X). (4.21)

Similar to joint weak typicality, the multivariate typicality is defined based on the dis-

tance between the relative entropy rate of a tuplet of sequences and the spectral relative

entropy rate.

Definition 27 (Multivariate Inf- and Sup-Typicality) Given a probability measure PXK

where K is an index set, let S⊊K and S∁ =K\S, we define the multivariate ε-inf-typicality

sequence w.r.t. PXK
as any xn

K satisfying

∣∣∣∣∣1ndn
PX

S∁
|XS || ∏

k∈S∁
PXk |XS

(xK)−D(PX
S∁

|XS
|| ∏

k∈S∁
PXk|XS

|PXS
)

∣∣∣∣∣≤ ε (4.22)

for all S ⊊K. Similarly, we define the multivariate ε-sup-typicality sequence w.r.t. PXK
as

any xn
K satisfying

∣∣∣∣∣1ndn
PX

S∁
|XS || ∏

k∈S∁
PXk |XS

(xK)−D(PX
S∁

|XS
|| ∏

k∈S∁
PXk|XS

|PXS
)

∣∣∣∣∣≤ ε (4.23)

for all S ⊊ K. The multivariate inf- and sup-typicality set are denoted as Tn
ε(XK) and

T
n
ε(XK), respectively.

The conditional typicality lemma plays significant roles in proofs of some coding prob-

lems. In order to generalise the lemma to multivariate cases, we first introduce the notion of

conditional multivariate typicality.

Definition 28 (Conditional Multivariate Sup- and Inf-Typicality) Under the assumptions

of Defn. 27, for any S ⊊ K, the conditionally sup- and inf-typical sets T
n
ε(XS∁

|xS) and

3The limit inferior in probability of X is defined as p− liminf
n→∞

Xn = sup{β | lim
n→∞

P{Xn < β} = 0}, and the

limit superior in probability of X is defined as p− limsup
n→∞

Xn = inf{α | lim
n→∞

P{Xn > α}= 0}.
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Tn
ε(XS∁

|xS) with respect to a general joint probability distribution PXn
K

and a given sequence

xn
S are defined as

Tn
ε(XS∁

|xS) = {xn
S∁

∈ Xn
S∁
|Π(xn

S,x
n
S∁
) ∈ Tn

ε(XK)},

T
n
ε(XS∁

|xS) = {xn
S∁

∈ Xn
S∁
|Π(xn

S,x
n
S∁
) ∈ T

n
ε(XK)},

where S∁ = K \ S and Π(·, ·) is a permutation function that rearranges the elements of

(xn
S,x

n
S∁
) according to K.

4.3 Generalised Typicality Lemmas

Following Lem. 3, we will derive several elementary typicality lemmas, including the con-

ditional typicality lemma and the strong Markov lemma, for the generalised multivariate

typicality. Joint typicality and covering lemmas will be further results based on the con-

ditional typicality lemma. We will collectively call our results as typicality lemmas. The

generalised multivariate typicality lemmas can be applied to multivariate coding problems

with general settings, whereas their counterparts in discrete or memoryless cases are applied

to more restricted coding problems.

4.3.1 Generalised Conditional and Joint Typicality Lemmas

The following lemma is a direct corollary of Lem. 3 and the definition of the multivariate

typicality.

Lemma 5 (Multivariate Conditional Typicality) Given a probability measure PXK
where

K is an index set, let S⊂K and S∁ =K\S, we set

Tn
ε(XS|XS∁

) = {xn
S ∈ Xn

S|P
n
X
S∁

|XS
(Tε(XS∁

|xS)|xS)> 0}.

Then

lim
n→∞

Pn
XS
(Tε(XS|XS∁

)) = 1, (4.24)
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and there exists a sequence of {F(n) ∈B
(n)
XS
}∞

n=1 such that

lim
n→∞

P(n)
XS

(F) = 1, (4.25)

and for every n and every {x(n)S ∈ F(n)}∞
n=1,

lim
n→∞

Pn
X
S∁

|XS
(Tε(XS∁

|xS)|xS) = 1. (4.26)

The following multivariate joint typicality lemma is a counterpart of [1, Problem 2.16],

which is a corollary of the discrete and i.i.d. version of conditional typicality lemma [1].

Similarly, the multivariate joint typicality lemma is derived from the multivariate conditional

typicality lemma.

Lemma 6 (Multivariate Joint Sup-Typicality) Given a probability measure PXK
where K

is an index set, we set a sequence of sets {Hn ∈ Xn
K}

∞
n=1 satisfying limn→∞ PXK

(Hn) = 1,

let S ⊂K,S∁ =K \S and Hn(x
S∁
) = {xn

S|(x
n
S,x

n
S∁
) ∈Hn}, then for sufficiently large n and

all xn
S ∈ T

n
ε(XS|XS∁

),

(1− ε)exp(−n(D(PX
S∁

|XS
|| ∏

k∈S∁
PXk|XS

|PXS
)+ ε)) (4.27)

≤(∏
k∈S∁

Pn
Xk|XS

)(Tε(XS∁
|xS)∩H(x

S∁
))

≤exp(−n(D(PX
S∁

|XS
|| ∏

k∈S∁
PXk|XS

|PXS
)− ε)). (4.28)

Proof: Following Defn. 27 and multivariate conditional sup-typicality lemma, then

we have

(∏
k∈S∁

Pn
Xk|XS

)(Tε(XS∁
|xS)∩H(x

S∁
)) =

∫
T

n
ε (XS∁

|xS)∩Hn(x
S∁

)
d ∏

k∈S∁
Pn

Xk|XS

=
∫
T

n
ε (XS∁

|xS)∩Hn(x
S∁

)

d∏k∈S∁ Pn
Xk|XS

dPX
S∁

|XS

dPX
S∁

|XS
,

which establishes the lemma.



4.3 Generalised Typicality Lemmas 45

4.3.2 A Generalised Multivariate Covering Lemma

In this section, we will introduce a multivariate version of the covering lemma based on the

generalised multivariate typicality. This lemma will be applicable in multi-terminal coding

problems.

Lemma 7 (Multivariate Covering) Given a probability measure PXK
where K= {0,1, · · · ,K},

let

(Xn
0 ,X

n
1 (m1), · · · ,Xn

K(mK))∼ Pn
X0
×

K

∏
k=1

Pn
Xk|X0

,

where mk ∈Mkn with |Mkn|= enRk for all k ∈K\{0} and for all n. If

∑
k∈S

Rk > D(PXS|X0||∏
k∈S

PXk|X0|PX0), (4.29)

for all S⊆K\{0} and S ̸= /0, then there exists an ε > 0 such that

lim
n→∞

P

 ⋂
∏

k∈K
Mk

⋂
L⊆K

{(Xn
0 ,X

n
l1(ml1), · · · ,X

n
lL(mlL)) /∈ T

n
ε(XL)}

= 0,

where L= {l1, · · · , lL}.

Proof: We employ the combinatorial counting and bounding techniques from [1]

and [22]. Similar to [1, Appendix 8A], we set

Mn = {mK ∈ ∏
k∈K

Mk |
⋂
L⊆K

{(Xn
0 ,X

n
l1(ml1), · · · ,X

n
lL(mlL)) ∈ T

n
ε(XK)},

and obtain that

P{|Mn|= 0} ≤ D(|Mn|)
E2(|Mn|)

.

We can express |Mn| as

|Mn|= ∑
mK∈ ∏

k∈K
Mk

χε(mK),
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where the indicator function is χε(mK) is defined as χ
T

n
ε (XK)(X

n
0 ,X

n
1 (m1), · · · ,Xn

K(mK)).

Hence we obtain that

|Mn|2 = ∑
mK∈ ∏

k∈K
Mk

χε(mK)+ ∑
m′
K

̸=mK

m′
K
∈ ∏

k∈K
Mk

∑
mK∈ ∏

k∈K
Mk

χε(mK)χε(m′
K).

Then we calculate for any m′
K ̸= mK with S= {k ∈K|mk = m′

k} and S∁ =K\{0}\S that

E[χε(mK)χε(m′
K)]

=
∫
Tn

ε (X0|XK\{0})

∫
Tn

ε (XS|x0X
S∁

)
(
∫
Tn

ε (XS∁
|x0xS)

dPn
X
S∁

|X0XS
)2 dPn

XS|X0
dPn

X0

≤
∫
Tn

ε (X0|XK\{0})
((∏

k∈S∁
Pn

Xk|X0
)(T

n
ε(XK\{0}|x0xS)))2(∏

k∈S
Pn

Xk|X0
)(T

n
ε(XS|x0)) dPn

X0

≤exp(−n(D(PXS|X0 ||∏
k∈S

PXk|X0 |PX0)+2D(PX
S∁

|X0XS
|| ∏

k∈S∁
PXk|X0 |PX0XS

)−3ε))),

where the last step follows the multivariate joint sup-typicality lemma. We can then prove

this lemma similarly to last steps in [1, Appendix 8A].

In the discrete version of multivariate lemma [22], the constraint on ∑
k∈S

Rk is in terms

of calculation of entropy terms, which are not well defined for general cases. From eqn.

(4.29), we can see the entropy terms has been circumvented. This is because we introduce

the relative entropy rate in our multivariate typicality definition. We can also expect that both

the expression and the proof will be much more complicated if we use mutual information

density instead in the typicality definition.

4.3.3 A Generalised Markov Lemma

In this section, we will generalise the strong version of Markov lemma based on our gen-

eralised multivariate typicality. Similar to its special case that is the conditional typicality

lemma, the strong Markov lemma can also be derived from Lem. 3.

Lemma 8 (Markov) Given a probability measure PXYZ satisfying that Pn
XY Z = Pn

X |Y ×Pn
Y ×
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Pn
Z|Y for all n, let (xn,yn) ∈ Tn

ε(XY |Z)4 and QZn|Y n be a conditional probability satisfying

that

lim
n→∞

Qn
Z|Y = lim

n→∞
Pn

Z|Y (4.30)

almost everywhere. Then

lim
n→∞

Qn
Z|Y (Tε(Z|xy)|y) = 1. (4.31)

Proof: From Lem. 3 and the Markovity assumption on the joint probability, it is

apparent that

lim
n→∞

Pn
Z|Y (Tε(Z|xy)|y) = 1, (4.32)

which establishes this lemma due to the convergence presumption on Qn
Z|Y .

Remark 3 If we set Qn
Z|Y = Pn

Z|Y in Lem. 8, we will obtain a weak version of Markov

Lemma, which is an extension of the weak Markov lemma based on strong typicality and for

the memoryless case [11, Lem. 15.8.1].

Remark 4 In the strong version of the Markov Lemma (see [1, Lem. 12.1]) based on the

strong typicality and finite alphabet, the second condition implies the convergence presump-

tion in Lem. 8.

4.4 Bivariate Typicality Lemmas

For the convenience of applications in point-to-point coding problems, we will introduce a

couple of bivariate typicality lemmas based on our generalized typicality definition. Most

of the proofs are based on the proofs of the multivariate typicality lemmas in Sec. 4.3.

Definition 29 (Sup- and Inf-Typicality) A sequence pair (xn,yn) is called jointly ε-inf-

typical with respect to a general probability distribution Pn
XY if∣∣∣∣1nin(x,y)− I(X;Y)

∣∣∣∣≤ ε,

4In this notation of typical set, we omit the comma between X and Y . We might use similar notations later
in this thesis when there would be no confusion.
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when PY n|Xn(·|xn) is absolutely continuous with respect to Pn
Y , and the spectral inf-mutual

information rate I(Xn;Y n) (see [4, Def. 3.2.1]) is defined as the limit inferior in probability

of 1
n in(x,y).

Similarly, a sequence pair (xn,yn) is called jointly ε-sup-typical with respect to Pn
XY if∣∣∣∣1nin(x,y)− I(X;Y)

∣∣∣∣≤ ε,

where the spectral sup-mutual information rate I(Xn;Y n) (see [4, Def. 3.5.2]) is defined as

the limit superior in probability of 1
n in(x,y).

Let Tn
ε(XY ) and T

n
ε(XY ) denote the set of all general jointly ε-inf-typical sequences and

the set of all general jointly ε-sup-typical sequences, respectively.

Remark 5 Different from [15] and [16], the proposed generalised typicality in Definition

29 is not based on the measure of a Polish or a Borel space, which introduces a metric.

Definition 30 (Conditionally Sup- and Inf-Typicality) The conditionally sup- and inf-typical

sets T
n
ε(Y |x) and Tn

ε(Y |x) with respect to a general joint probability distribution Pn
XY and a

given sequence xn are defined as

T
n
ε(Y |x) = {yn ∈ Yn|(xn,yn) ∈ T

n
ε(XY )},

Tn
ε(Y |x) = {yn ∈ Yn|(xn,yn) ∈ Tn

ε(XY )}.

Lemma 9 (Conditional Typicality) Given PXY, we set

Tn
ε(X |Y ) = {xn ∈ Xn|Pn

Y |X(Tε(Y |x)|x)> 0},

T
n
ε(X |Y ) = {xn ∈ Xn|Pn

Y |X(Tε(Y |x)|x)> 0}.

Then

lim
n→∞

Pn
X(T

n
ε(X |Y )) = lim

n→∞
Pn

X(T
n
ε(X |Y )) = 1; lim

n→∞
Pn

Y |X(Tε(Y |x)|x) = 1,
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for any {xn}∞
n=1, where xn ∈ Tn

ε(X |Y ) for all n, and

lim
n→∞

Pn
Y |X(Tε(Y |x)|x) = 1,

for any {xn}∞
n=1, where xn ∈ T

n
ε(X |Y ) for all n.

Proof: Similar to Lem. 5, this lemma is a corollary of Lem. 3.

Remark 6 Under the condition of Lemma 9, if given an xn and let Y n ∼ PY n|Xn(·|xn), then

we have

Pn
Y |X(Tε(Y |x)|x) = P{(xn,Y n) ∈ Tn

ε(XY )},

Pn
Y |X(Tε(Y |x)|x),= P{(xn,Y n) ∈ T

n
ε(XY )}.

Lemma 10 (Joint Inf-Typicality) Given PXY, for all n and for all xn ∈ Tε(X
n|Y n),

e−n(I(X;Y)+ε) ≤ Pn
Y (Tε(Y |x))≤ e−n(I(X;Y)−ε);

e−n(I(X;Y)+ε) ≤ (Pn
X ×Pn

Y )(Tε(XY ))≤ e−n(I(X;Y)−ε).

Proof: Let XS = X and X
S∁

= Y in Lem. 6, then this conclusion is obtained.

Remark 7 Under the condition of Lemma 10, if given Ȳ n ∼PȲ n|Xn(·|xn) where PȲ n|Xn(·|xn)=

Pn
Y (·) and (X̃n,Ỹ n)∼ PX̃nỸ n where PX̃nỸ n = Pn

X ×Pn
Y , we have

Pn
Y (Tε(Y |x)) = P{(xn,Ȳ n) ∈ Tn

ε(XY )},

(Pn
X ×Pn

Y )(Tε(XY )) = P{(X̃n,Ỹ n) ∈ Tε(X
nY n)}.

Similarly, we obtain the joint sup-typicality lemma.

Lemma 11 (Joint Sup-Typicality) Given PXY, for all n and for all xn ∈ Tε(Xn|Y n)

e−n(I(X;Y)+ε) ≤ Pn
Y (T

n
ε(Y |x))≤ e−n(I(X;Y)−ε),

e−n(I(X;Y)+ε) ≤ (Pn
X ×Pn

Y )(Tε(XY ))≤ e−n(I(X;Y)−ε).
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As counterparts to the conventional method of typical sequences, we will first prove the

following two lemmas which will be used in our achievability proof.

Lemma 12 (Packing) Given PXY, for all n ∈ Z+, let Ỹ n ∼ PỸ n , which is not necessarily

equal to Pn
Y , Xn(m)∼ Pn

X ,m ∈Mn with |Mn|= enR, and Xn(m) are independent of Ỹ n for all

m ∈Mn. If R < I(X;Y), then there exists an ε > 0 such that

lim
n→∞

P

( ⋃
m∈Mn

{(Xn(m),Ỹ n) ∈ Tn
ε(XY )}

)
= 0.

Proof: From the union bound and the joint inf-typicality lemma (Lemma 10), we

have

P

( ⋃
m∈Mn

{(Xn(m),Ỹ n) ∈ Tn
ε(XY )}

)
= ∑

m∈Mn

P{(Xn(m),Ỹ n) ∈ Tn
ε(XY )}

≤ ∑
m∈Mn

∫
T

Y n|Xn
ε

P{(Xn(m), ỹn) ∈ Tn
ε(XY )}dPỸ n(ỹn)

≤|Mn|e−n(I(X;Y)−ε) ≤ en(R−I(X;Y)+ε),

which establishes the lemma.

Lemma 13 (Covering) Given PXY, for all n ∈ Z+, let Xn ∼ Pn
X , Y n(m)∼ Pn

Y ,m ∈Mn with

|Mn| = enR, and Xn and Y n(m)’s are independent of each other. If R > I(X;Y), then there

exists an ε such that

lim
n→∞

P

( ⋂
m∈Mn

{(Xn,Y n(m)) /∈ T
n
ε(XY )}

)
= 0.

Proof: From the joint sup-typicality lemma (Lemma 11) and the inequality (1−

y)n ≤ e−yn for 0 ≤ y ≤ 1 and n ≥ 0 [11, Lemma 10.5.3], we have

P

( ⋂
m∈Mn

{(Xn,Y n(m)) /∈ T
n
ε(XY )}

)

≤(1− e−n(I(X;Y)+ε))|Mn| ≤ exp(−en(R−I(X;Y)−ε)),
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which establishes the lemma.

Lemma 14 (Mutual Covering) Given PXY, let Xn(m1)∼ Pn
X ,m1 ∈M1n with |M1n|= enR1 ,

Y n(m2) ∼ Pn
X ,m2 ∈ M2n with |M2n| = enR2 , Xn(m1)’s are pairwise independent, Y n(m2)’s

are pairwise independent, and {Xn(m1)}m1∈M1n is independent of {Y n(m2)}m2∈M2n . If R1+

R2 > I(X ;Y ), then there exists an ε > 0 such that

lim
n→∞

P

 ⋂
(m1,m2)∈
M1n×M2n

{(Xn(m1),Y n(m2)) /∈ T
n
ε(XY )}

= 0.

Proof: Let X0 be a constant, XS = X and X
S∁

= Y in Lem. 7, then this conclusion is

obtained.

4.5 Conclusion

In this chapter, we generalised the conventional weak typicality for a general multivariate

probability measure of the general stochastic process with a general abstract alphabet. We

have provided a collection of typicality lemmas based on our proposed typicality. We have

first proposed a general asymptotic conclusion for the generic typical set sequence. Based

on this conclusion, we obtained the conditional typicality lemma and the strong Markov

lemma for our generalised typicality, filling the gap that there were no such types of lemmas

for the weak typicality. We have also obtained several packing and covering lemmas. For

the convenience of some applications, we have provided corresponding bivariate versions

of the typicality lemmas.





Chapter 5

Applications of Generalised Typicality

Lemmas in Coding Problems

In this chapter, we will show several applications of generalised multivariate typicality lem-

mas, in source and channel coding problems with general alphabets and general source/channel

measures. These problems are classical ones when restricted in discrete or i.i.d. scenarios,

while we will here show it is possible to directly resolve them without any discretisation-

and-approximation technique. In general, we only focus on achievability proofs in this

chapter.

5.1 Applications in Source Coding

5.1.1 Rate-Distortion Problem with a General Source

In [11, Sec. 10.6], the authors studied a rate distortion problem with a discrete memoryless

source, based on conditional strong typicality lemma, and obtain a result stronger than many

other works.

In this section, we will extend this problem to a general scenario. As in [61] and [4, Sec

5.5], we state the problem as follows.

Definition 31 (Rate Distortion) Given a source X = (Xn)
∞
n=1 with state space (X,BX) and
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probability law PX, let (xn)
∞
n=1 be any realisation of (Xn)

∞
n=1 and (yn)

∞
n=1 is a Yn-valued

sequence which is assumed to recover (xn)
∞
n=1, then the distortion measure is defined as

a sequence of measurable functions {d(n)}∞
n=1, where d(n)(xn,yn) is a positive measurable

function on Xn ×Yn for all n. For all n, we set an encoding function ϕ(n) : Xn →M(n) and

a decoding function ψ(n) : M(n) → Yn, where M(n) = {mn}Mn
n=1.

Definition 32 A pair (R,D) is called achievable if there exists a sequence of {(ϕ(n),ψ(n))}∞
n=1

satisfying

p− limsup
n→∞

1
n

d(n)(X ,ψ(ϕ(X)))≤ D

and

p− limsup
n→∞

1
n

Mn ≤ R.

Definition 33 The rate-distortion function R(D|X) is defined as the supremum of R over all

achievable (R,D).

Theorem 14 Given a general source X with a PX and a distortion measure {d(n)}∞
n=1, then

a) the rate-distortion function

R(D|X) = inf
PY|X:D(X,Y)≤D

I(X,Y).

where

D(X,Y) = p− limsup
n→∞

1
n

d(n)(X ,Y );

and b) there exists a sequence of {A(n) ⊂ Yn} satisfying that lim
n→∞

Pn
X(A) = 1 and for each

{xn ∈A(n)}, d(n)(x,ψ(φ(x)))≤ D.

Proof: The first conclusion has been proved in [4, Sec 5.5]. We will here prove the

second conclusion, which is an extension of the proof in [11, Sec. 10.6].

Fix a PY|X. First we define

S
(n)
δ

=

{
(xn,yn) ∈ Xn ×Y n |

∣∣∣∣1nd(n)(x,y)−D(X,Y)

∣∣∣∣< δ

}

and set T(n) = Tn
ε (XY )∩S

(n)
δ

.
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Random codebook generation For all n, generate enR many Y n(mn)’s according to PY n .

Encoding For each xn, we assign an index mn if (xn,Y n(mn)) ∈ T(n).

Decoding Output Y n(mn) if mn is received.

Error probability analysis An error will occur when we can not pick out a typical pair

for any xn in the coding procedure, or when the decoding output provides a distortion larger

than D. The latter implies that (xn,Y n(mn)) /∈ T(n) for all mn.

Remark 8 Part b) of Thm. 14 is the counterpart of a strong conclusion obtained in [11,

Sec. 10.6], for discrete memoryless rate distortion problem.

Remark 9 In [1, Sec. 3.8], a Gaussian rate-distortion problem with a quadratic distor-

tion measure was resolved by employing the strong typicality and the discretisation-and-

approximation-technique. However, it might be difficult to resolve a rate-distortion problem

with general a source and a general distortion measure, by the same technique based on

the strong typicality. Hence, our generalised typicality is more useful in the general rate-

distortion problem.

5.1.2 Multiple Description Problem with General Sources

The multiple description problem is an multi-terminal extension of the rate-distortion prob-

lem. The tightest inner bound of the rate-distortion region for the discrete memoryless case

was obtained by El Gamal and Cover [1, Sec. 13.3]. In this section, we will derive an

El-Gamal-Cover-type inner bound for the case where the source is general.

Definition 34 (Multiple Description) Given a source X=(Xn)
∞
n=1 with state space (X,BX)

and probability law PX, define distortion measures d(n)
k (xn,yn),k = 0,1,2, encoding func-

tions ϕ
(n)
k : Xn → M

(n)
k ,k = 1,2 and decoding functions ψ

(n)
0 : M(n)

1 ×M
(n)
2 → Yn

0,ψ
(n)
k :

M
(n)
k → Yn

k ,k = 1,2, where M
(n)
k = {mn}Mn

n=1,k = 0,1,2. The encoding outputs are called

descriptions.
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Definition 35 A tuplet (R1,R2,D0,D1,D2) is called maximum-achievable if there exits a

code with rate pair (R1,R2) satisfying

D(X,Y j) = p− limsup
n→∞

1
n

d(n)
j (X ,Yj)≤ D j, j = 0,1,2.

Definition 36 The maximum-rate-distortion region R(D0,D1,D2) is defined as the closure

of all maximum-achievable rate pairs with respect to (D0,D1,D2).

Theorem 15 Given a general source X with a PX, then R(D0,D1,D2) is the closure of all

R1,R2 satisfying that

R1 > I(X,Y1),

R2 > I(X,Y2),

R1 +R2 > I(X;Y0,Y1,Y2)+ I(Y1,Y2),

with some input measure PY0Y1Y2|X satisfying that D(X,Y j)≤ D j, j = 0,1,2.

Proof: Fix a PY0Y1Y2|X. For j = 1,2, we define

S
(n)
δ , j =

{
(xn,yn

j) ∈ Xn ×Y n
j |
∣∣∣∣1nd(n)

j (x,y j)−D(X,Y j)

∣∣∣∣< δ

}

and set T(n) = Tn
ε (XYj)∩S

(n)
δ , j; then divide M j into M0 j at rate R0 j and M j j at rate R j j.

Random codebook generation The codebook will be generated randomly and (condi-

tionally) independently in each step. For j = 1,2, generate enR j j sequences Y n
j j(m j j)’s ac-

cording to PXn
j
. Then for each (m11,m22), generate enR0 Y n

j j(m11,m22,m0)’s according to

Pn
Y0|Y1Y2

.

Encoding For a source sequence xn, pick out any tuplet

(xn,yn
1(m11),yn

2(m22),yn
0(m0,m11,m22))
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from T(n). Then send m0 = (m01,m02), m1 = (m01,m11) and m2 = (m02,m22).

Decoding Decoders output yn
j(m j j), j = 1,2 and yn

0(m0,m11,m22), respectively.

Error probability and distortion analysis First we consider the error in the encoding

procedure. If T(n) is empty, then an error occurs. By the general multivariate covering

lemma and the fact that the rate of Xn is 0, the probability of this error approaches 0 if

R11 > I(X,Y1),

R22 > I(X,Y2),

R0 +R11 +R22 > I(X;Y0,Y1,Y2)+ I(Y1,Y2).

The expression of the inner bound can be obtained by Fourier-Motzkin elimination.

Then we consider the maximum-distortion. For j = 0,1,2 and arbitrary γ > 0, we have

P{1
n

d(n)
j (Xn,Y n

j (M j))> D(X;Y j)+ γ}< P{((Xn,Y n
j (M j)) /∈ T(n)},

where the RHS approaches 0 if R j > I(X,Y j). This implies that

p− limsup
n→∞

1
n

d(n)
j (X ,Yj)≤ D(X;Y j)+ γ ≤ D j + γ.

Because γ can be arbitrarily small, there must exist a code satisfying

p− limsup
n→∞

1
n

d(n)
j (X ,Yj)≤ D(X;Y j)+ γ ≤ D j.

The theorem is proved.

As for the stationary memoryless case in [1, Sec. 13.3], we can provide an alternative

proof through our general conclusion. The technique we employ here is similar as in [4,

Sec. 7.8].

Corollary 4 In Thm. 15, if the source X is a stationary and memoryless one with a PX , then
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R(D0,D1,D2) is the closure of all R1,R2 satisfying that

R1 > I(X ,Y1|Q),

R2 > I(X ,Y2|Q),

R1 +R2 > I(X ;Y0,Y1,Y2|Q)+ I(Y1,Y2|Q),

with some input measure PQPY0Y1Y2|XQ with |Q| ≤ 6, satisfying that D(X ,Yj)=E(d j(X ,Yj))≤

D j, j = 0,1,2.

Proof: Fix a PQPY0Y1Y2|XQ with Q= {1,2,3,4,5,6}, satisfying that

D(X ,Yj) = E(d j(X ,Yj))≤ D j, j = 0,1,2.

In R(D0,D1,D2) of Thm. 15, for any n, let Pn
Y0Y1Y2|X follow PY0kY1kY2k|Xk

= PY0Y1Y2|XQ(·|·,q) if

nq−1 < k ≤ nq, where n0 = 0,nk = ⌈n∑
k
l=1 PQ(q)⌉ for q = 1,2,3,4,5,6. Then we have

in(X ;Y1) =
6

∑
q=1

nq −nq−1

n

nq

∑
k=nq−1

i(Xk;Y1k).

Because limn→∞

nq−nq−1
n = PQ(q), then following the LLN, we have

I(X,Y1) = p− lim
n→∞

6

∑
q=1

nq −nq−1

n

nq

∑
k=nq−1

i(Xk;Y1k)

=
6

∑
q=1

PQ(q)I(X ;Y1|Q = q)

= I(X ;Y1|Q).

Similarly, we can obtain the other two constraints. D(X,Y j)=D(X ;Yj) can also be obtained

according to the LLN.
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5.1.3 Memoryless Berger-Tung Inner Bound with General Alphabets

The Berger-Tung Inner bound is obtained for a multi-terminal lossy source coding problem.

In [1, Sec. 12.1], it is proved based on a strong typicality based Markov lemma with fi-

nite alphabets. In this section we generalise it to a general alphabet scenario with a slight

restriction.

First we provide a specified Markov lemma for this problem, which is also based on the

proposed multivariate typicality.

Lemma 15 With a given PXYZ satisfying that Pn
XY Z(x

n,yn,zn)=∏
n
k=1 PX |Y (xk|yk)×PY (yk)×

PZ|Y (zk|yk) for all n, let (xn,yn) ∈ Tn
ε(XY |Z). If QZn|Y n ≤ enεPZn|Y n , and for any δ > 0,

[
d(PX |Y ×PZ|Y )

d(PX ×PZ)

]1+δ

is PX |Y ×PZ|Y -integrable, then

lim
n→∞

QZn|Y n(T
Zn|XnY n

ε ) = 1.

Proof: Note that the spectral inf-relative entropy rate degrades to relative entropy

rate in this case. Let

g(x,y,z) =
d(PX |Y ×PY ×PZ|Y )

d(PX ×PY ×PZ)
(x,y,z)

=
d(PX |Y ×PZ|Y )

d(PX ×PZ)
(x,y,z),

which satisfies the log-exponential property in [17, Sec. VI], which makes this lemma as a

special case of [17, Cor. VI.4].

Because the random coding, typicality decoding and error analysis is trivial, we omit the

proof and results. We only point out here that a closeness of two conditional probability in

the form of QZn|Y n ≤ enεPZn|Y n can be obtained following a similar way in [1, App. 12B].
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5.2 Applications in Channel Coding

5.2.1 Channel Coding with Input Constraint

This problem is based on the point-to-point channel coding problem. We will first define

the channel input constraint as follows.

Definition 37 Given a channel PY|X, if for all n, we impose a constraint on the channel

input that Γ(n)(xn)
.
= Γ(n)(x) < γn, where γn > 0 and Γ(n)(·) is a measurable function, then

the sequence {Γ(n)(x)< γn}∞
n=1 is called the input constraint.

A Feinstein-type lemma with input constraint was considered in [7].

Theorem 16 Given a general channel PY|X with the input constraint {Γ(n)(x) < γn}∞
n=1,

then the capacity is

C = sup
P

I(X;Y),

where

P= {PX|E(Γ(n)(X)< γn,n = 1,2, · · ·}.

Proof:

Random coding For fixed PX ∈ P and n, randomly generate enR many xn(m)’s according

to Pn
X .

Decoding Assume yn is received. If (xn(m̂),yn) ∈ Tn
ε (X ,Y ), then declare m̂ is sent.

Error analysis E= E0 ∪E1 ∪E2, where

E0 = {Γ
(n)(X)≥ γn},

E1 = {(Xn(m),Y n) /∈ Tn
ε (X ,Y )},

E2 = {(Xn(m̂),Y n) ∈ Tn
ε (X ,Y )}
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for an m̂ ̸= m. We set a

Tn = Tn
ε (X ,Y )∩{(xn,yn) | Γ

(n)(x)< γn}

for all n. When Xn and Pn
X satisfies E(Γ(n)(X)) < γn, {Tn}∞

n=1 is a generic typical set se-

quence, and

E1 = {(Xn(m),Y n) /∈ Tn},

E2 = {(Xn(m̂),Y n) ∈ Tn.}

Hence, lim
n→∞

P{E0} = lim
n→∞

P{E1} = lim
n→∞

P{E2} = 0 when R < I(X;Y) and E(Γ(n)(X) < γn

for all n.

5.2.2 Gelfand-Pinsker Coding

Gelfand-Pinsker (GP) coding problem [20] is a channel coding problem in which a channel

state is noncausally available at the encoder. We restate the general GP coding problem [62]

as follows. The channel is defined by the input X, the output Y, the general state S ∼ PS,

and the transition probability PY|SX. For a fixed codelenth n, the encoder f is a mapping

from M×Sn to Xn where M is the message set and S is the state space, and the decoder g is

a mapping from Yn to M. The average error probability εn is the average probability of the

event that g(Y n) is not equal to the sent message. In [62], Tan obtained the capacity of the

generalised GP coding.

Theorem 17 (Gelfand-Pinsker-Tan) The capacity of the general channel PY|XS with gen-

eral non-causal state S only available at the encoder is C = sup
PUX∈P

I(U;Y)− I(U;S), where

P is the set of all PUX’s satisfying that U → (X,S)→ Y forms a Markov chain.

In order to prove the achievability of the capacity, Tan employed a modified piggyback

coding lemma (PBL) [63, Lemma 4.3] to get around a counterpart of the conditional typical
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lemma in the case where typicality is defined by the information-spectral quantity. In the

following, we will recover the achievability of the capacity of the general GP coding using

our proposed conditional typicality lemma (Lemma 5), instead of a lemma analogous to

PBL.

Analogous to the proof of [1, Theorem 7.3], we employ the random coding and the typ-

icality decoding techniques to prove the achievability of Theorem 17. The difference is that

we employ the general information-density-based definition of typicality in the decoding

metrics and the error analysis.

Random codebook generation For fixed PU|S,PX|US and let PUSXY be determined by PS

and the transition probability measures PU|S,PX|US and PY|USX = PY|SX. For R̃ > R, a fixed

codelength n and each m ∈ M, randomly and independently generate en(R̃−R) un(l)’s ac-

cording to PUn , where l’s are indices of the sequences. For each un(l) and sn, randomly and

independently generate an xn(sn, l) according to PXn|UnSn(·|un(l),sn).

Encoding Assume that a specified message M is sent. Choose a un(L) from un(l)’s cor-

responding to M such that (un(L),sn) ∈ T
UnSn

ε ∩ T
Un|Y n

ε , where PUnY n is the marginal of

PUnSnXnY n , and then the index L is specified. Send the corresponding xn(sn,L).

Decoding Assume that yn is received. The decoding output returns that m̂ is sent if there

exists an un(l̂) satisfying (un(l̂),yn) ∈ TUnY n

ε , where un(l̂) corresponds to m̂.

Error probability analysis εn ≤ P(E1)+P(E∁
1 ∩E2)+P(E3), where the error events are

E1:(Un(l),Sn) /∈ T
UnSn

ε ∩T
Un|Y n

ε for all Un(l) corresponding to M, E2:(Un(L),Y n) /∈ TUnY n

ε ,

E3:(Un(l),Y n) ∈ T
UnY n

ε for some Un(l) corresponding to m ̸= M.

From the covering lemma and the bivariate conditional typicality lemma, limn→∞ P(E1)=

0 if R̃−R > I(U;S); from bivariate conditional typicality lemma, limn→∞ P(E∁
1 ∩E2) = 0;

and from the packing lemma, limn→∞ P(E3) = 0 if R̃ < I(U;Y). The achievability is estab-

lished.
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5.2.3 Multi-User BC with a Common Message

The capacity region of a general two-user broadcast channel (BC) was obtained in [64]

by the information-spectrum approach. However, the single-letter expression of capacity

region of the discrete memoryless BC (SMBC) is still an open problem. The tightest inner

bound of this region is a Marton-type inner bound [1, 18, 19]. We will show that a Marton-

type inner bound of the capacity region of a K-user memoryless BC (MBC) can be derived

using the generalised multivariate typicality lemmas.

Theorem 18 Let K = {2, · · · ,K}. Given a K-receiver MBC PY1···YK |X with a common mes-

sage M0 for all receivers and a private massage M1 for receiver 1, then the capacity region

of the K-receiver MBC is the closure of the set of rate pair (R0,R1) satisfying

∑
k∈S

R̃1k > D(PVS|U ||∏
k∈S

PVk|U |PU), (5.1)

R11 + ∑
k∈S

R̄1k < I(VS,X ;Y1|U,V ∁
S ), (5.2)

R0 +R10 +R11 + ∑
k∈S

R̄1k < I(U,VS,X ;Y1|V ∁
S ), (5.3)

R0 +R10 < I(U ;Yk), (5.4)

and R1 = R10 + · · ·+R1K, R̄1k = R1k + R̃1k, for some PU ×∏
K
k=2 PVk|U ×PX |VK

and the given

PY1···YK |X and for each k ∈K and S⊂K.

Proof:

Codebook Generation Fix an input measure PU ×∏
K
k=2 PVk|U ×PX |VK

. Divide M1 into

M10,M11, · · · ,M1K and let. We suppose that the following random codebooks are all gen-

erated randomly and (conditionally) independently. First we generate en(R0+R10) sequences

un(m0,m10), each according to ∏
n
l=1 PU(ul). For each k ∈ K and m1k, we generate enR̃1k

sequences vn
k(m0,m10,m1k, l1k), where l1k = (m1k − 1)enR̃1k + 1, · · · ,m1kenR̃1k , each accord-

ing to ∏
n
l=1 PVk|U(vkl|ul). Then for each {m1k}K

k=2, we pick out a jointly typical tuple

{vn
k(m0,m10,m1k,L1k)}K

k=2. In the end, for each (m0,m10,m11, · · · ,m1K), we generate an
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xn(m0,m10,m11, · · · ,m1K), each according to ∏
n
l=1 PX |VK

(xl|vKl).

Encoding To send the message tuple (m0,m10,m11, · · · ,m1K), transmit xn(m0,m10,m11, · · · ,m1K).

Deoding Receiver 1 performs the joint-typicality decoding on (un,vn
2, · · · ,vn

K,x
n,yn

1). Re-

ceiver k where k ∈K performs the joint-typicality decoding on (un,vn
k ,y

n
k).

Error Probability Analysis In the codebook generation. if there exists no jointly typical

tuple {vn
k(m0,m10,m1k,L1k)}K

k=2, then an error occurs. According to the multivariate cover-

ing lemma, the probability of this sort of error event finally approaches 0 when n → ∞, if

for each S⊂K

∑
k∈S

R̃1k > D(PVS|U ||∏
k∈S

PVk|U |PU). (5.5)

Let R̄1k = R1k + R̃1k. In the typicality decoding, if any decoder output an estimated

message pair which is corresponding to a jointly typical tuple but is not equivalent to the

one sent by the transmitter, then an error occurs. According to the packing lemma, the

probability of this sort of error event finally approaches 0 when n → ∞, if for each k ∈ K

and S⊂K

R11 + ∑
k∈S

R̄1k < I(VS,X ;Y1|U,V ∁
S ), (5.6)

R0 +R10 +R11 + ∑
k∈S

R̄1k < I(U,VS,X ;Y1|V ∁
S ), (5.7)

R0 +R10 < I(U ;Yk). (5.8)

According to the joint typicality lemma, the probability of the error event that the sent

codeword xn(m0,m10,m11, · · · ,m1K) is not jointly typical with any received sequence finally

approaches 0 when n → ∞,
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5.3 Asymptotic Analysis on the Second-Order Coding Rate

of the General MAC

5.3.1 System Model and Basic Definitions

Definition 38 A general two-user multiple access channel (MAC) model is defined by the

channel components and channel coding.

Channel input and output are sets of random sequences (not necessarily stochastic pro-

cesses according to [65]) and

Y = {Y n = (Y (n)
1 , · · · ,Y (n)

n )}∞
n=1,

where X (n)
1,i ,X

(n)
2,i and Y (n)

i are random variables on X1,X2 and Y respectively, for every i

and n.

Channel transition probability is determined by the conditional probability measure

PY|X1X2(y|x1,x2), or equivalently, an infinite set of consistent conditional probability mea-

sures
{

PY n|Xn
1 Xn

2
(yn|xn

1,x
n
2)
}∞

n=1
.

An (n,N(n)
1 ,N(n)

2 ,ε(n)) channel code consists of the following elements.

Message sets the sets of message indices M(n)
1 = {1,2, · · · ,N(n)

1 },M(n)
2 = {1,2, · · · ,N(n)

2 },

where N(n)
1 and N(n)

2 equal to the cardinality of corresponding message set, respectively. The

random message pair (M1,M2) is uniformly distributed on M
(n)
1 ×M

(n)
2 .

Encoding functions ϕ
(n)
k : Mk → Xn

k ,k = 1,2.

Decoding function ψ(n) : Yn →M1 ×M2.

Decoding sets

{Di j}(i, j)∈M(n)
1 ×M

(n)
2
, where Di j = {yn|ψ(n)(y) = (i, j)}.



66 Applications of Generalised Typicality Lemmas in Coding Problems

Average error probability is the probability of the event that the decision output of the re-

ceiver does not equal to the actually sent message pair, i.e. ε(n) = P{(M̂1,M̂2) ̸= (M1,M2)}.

5.3.2 Upper and Lower Bounds on the Average Error Probability in

the General MAC

In this section, we will propose an upper bound and a lower bound on the average error

probability of the general MAC, in the non-asymptotic form.

Upper Bounds

First we will compare two previous results regarding the non-asymptotic upper bound.

Lemma 16 (Verdú’s Bound [66]) For any positive integer n and any positive real number

γ , there exists a (n,N(n)
1 ,N(n)

2 ,ε(n)) code satisfying

ε
(n) ≤ P{in(X1;Y |X2,U)≤ logN(n)

1 + γ}+P{in(X2;Y |X1,U)≤ logN(n)
2 + γ}

+P{in(X1,X2;Y |U)≤ log(N(n)
1 N(n)

2 )+ γ}+3e−γ (5.9)

for any input measure PUXn
1 Xn

2
satisfying that Xn

1 and Xn
2 are conditionally independent given

U.

Remark 10 Verdú did not specify the blocklength n explicitly in his original bound [66,

Theorem 4]. However, we learn from [66, Section I] that his bound can be expressed as

(5.9).

Lemma 17 (Han’s Bound [65]) For any positive integer n and any positive real number γ ,
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there exists a (n,N(n)
1 ,N(n)

2 ,ε(n)) code satisfying

ε
(n) ≤ P

(
{1

n
in(X1;Y |X2,U)≤ 1

n
logN(n)

1 + γ}∪{1
n

in(X2;Y |X1,U)≤ 1
n

logN(n)
2 + γ}

∪{1
n

in(X1,X2;Y |U)≤ 1
n

log(N(n)
1 N(n)

2 )+ γ}
)
+3e−nγ (5.10)

for any input PUXn
1 Xn

2
satisfying that Xn

1 and Xn
2 are conditionally independent given U.

Remark 11 Actually, the time-sharing random variable U is introduced by us in Han’s

bound [65, Lemma 3] to compare with Verdú’s bound. Han did not include U in his result

because the auxiliary variable is not necessary to obtain the asymptotic capacity region.

Verdu’s bound was obtained by introducing the non-asymptotic packing lemma and

covering lemma, while Han’s bound was an intermediate result in the asymptotic analy-

sis employing the standard analysis procedures of the information-spectrum method. The

difference between inequalities (5.9) and (5.10) mainly lies in the union bound. If we sub-

stitute nγ for γ in (5.9), the sum of the three probabilities are actually the union bound of

the first term in (5.10). Hence, Han’s bound is tighter in this scenario. On the other hand,

if we circumvent the union bound in Verdú’s proof, we can obtain a more general bound in

Lemma 18, which is applicable in not only the first-order but also higher-order analysis of

the coding rate.

Lemma 18 For any positive integer n and any positive real number γ , there exists an

(n,N(n)
1 ,N(n)

2 ,ε(n)) code satisfying

ε
(n) ≤ P

(
{in(X1;Y |X2,U)≤ logN(n)

1 + γ}∪{in(X2;Y |X1,U)≤ logN(n)
2 + γ}

∪{in(X1,X2;Y |U)≤ log(N(n)
1 N(n)

2 )+ γ}
)
+3e−γ

for any input PUXn
1 Xn

2
satisfying that Xn

1 and Xn
2 are conditionally independent given U.

The difference between our proposed upper bound and Verdu’s bound is that we do not

employ the union bound. We will show that this is a necessary improvement in Section 5.3.3,
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becauce from our bound, we can deduce a tight inner region of the asymptotic second-order

capacity region for the general MAC. Similar to the upper bound, we will also provide a

lower bound of the average error probability.

A Lower Bound

Han has provided a non-asymptotic lower bound to the average error probability [65, Lemma

4]. Inspired by the preceding comparison, we obtain a more general expression for the lower

bound. We will first introduce a lemma in probability theory, which will then be used in the

proof of our proposed lower bound in Lemma 20.

Lemma 19 Any probability measures P1 and Qi, i ∈ {1,2, · · · ,n} on a measurable space

(Ω,A) satisfy

max
A∈A

[P1(A)−
n

∑
i=1

aiQi(A)]

= P1
(
{ω|P1(ω)−

n

∑
i=1

aiQi(ω)≥ 0}
)
−

n

∑
i=1

aiQi
(
{ω|P1(ω)−

n

∑
i=1

aiQi(ω)≥ 0}
)

for any positive real numbers ai, i ∈ {1,2, · · · ,n}.

Remark 12 The essence of Lemma 19 was implied in Han’s proof [65, Lemma 4]. A spe-

cialized version of Lemma 19 was employed by Hayashi to prove inequality (65) in [67].

The following lemma depicts our proposed lower bound.

Lemma 20 All (n,N(n)
1 ,N(n)

2 ,ε(n)) codes must satisfy

ε
(n) ≥ P

(
{in(X1,Y |X2)≤ logN(n)

1 − γ}∪{in(X2,Y |X1)≤ logN(n)
2 − γ}

∪{in(X1,X2,Y )≤ log(N(n)
1 N(n)

2 )− γ}
)
−3e−

γ

2

for some input measure Pn
X1
×Pn

X2
, where Pn

Xk
(xk) =

χ
ϕ
(n)
k (M

(n)
k )

(xn
k)

N(n)
k

,k = 1,2, × denotes the

product probability measure and χA(·) denotes the indicator function of a set A.
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Proof: First we set

L(n) = {yn|Pn
1 (y)−N(n)

1 e−
γ

2 Q1(yn)−N(n)
2 e−

γ

2 Q2(yn)−N(n)
1 N(n)

2 e−
γ

2 Q12(yn)≥ 0}

for any probability measures P1,Q1,Q2 and Q12 on Xn.

From Lemma 19, we can obtain

P1(D
(n)
i j )−N(n)

1 e−
γ

2 Q1(D
(n)
i j )−N(n)

2 e−
γ

2 Q2(D
(n)
i j )−N(n)

1 N(n)
2 e−

γ

2 Q12(D
(n)
i j )

≤ P1(L
(n))−N(n)

1 e−
γ

2 Q1(L
(n))−N(n)

2 e−
γ

2 Q2(L
(n))−N(n)

1 N(n)
2 e−

γ

2 Q12(L
(n))

≤ P1(L
(n))

≤ P1

(
{yn|Pn

1 (y)−N(n)
1 e−

γ

2 Q1(yn)≥ 0}∩{yn|Pn
1 (y)−N(n)

2 e−
γ

2 Q2(yn)≥ 0}

∩{yn|Pn
1 (y)−N(n)

1 N(n)
2 e−

γ

2 Q12(yn)≥ 0}
)

= P1

(
{yn| log

Pn
1 (y)

Q1(yn)
≥ logN(n)

1 − γ

2
}∩{yn| log

Pn
1 (y)

Q2(yn)
≥ logN(n)

2 − γ

2
}

∩{yn| log
Pn

1 (y)
Q12(yn)

≥ logN(n)
1 N(n)

2 − γ

2
}
)
. (5.11)

Because P1,Q1,Q2 and Q12 are arbitrarily selected, we can obtain that for any
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(n,N(n)
1 ,N(n)

2 ,ε(n)) code and any positive real number γ

1− ε
(n) =

1

N(n)
1 N(n)

2

N(n)
1

∑
i=1

N(n)
2

∑
j=1

PY n|Xn
1 Xn

2
(D

(n)
i j |xn

1(i),x
n
2( j))

≤ 1

N(n)
1 N(n)

2

N(n)
1

∑
i=1

N(n)
2

∑
j=1

(
N(n)

1 e−
γ

2 PY n|Xn
2
(D

(n)
i j |xn

2( j))

−N(n)
2 e−

γ

2 PY n|Xn
1
(D

(n)
i j |xn

1(i))−N(n)
1 N(n)

2 e−
γ

2 PY n(D
(n)
i j )

+PY n|Xn
1 Xn

2

(
{yn|i(xn

1(i);yn|xn
2( j))≥ logN(n)

1 − γ

2
}

∩{yn|i(xn
2( j);yn|xn

1(i))≥ logN(n)
2 − γ

2
}

∩{yn|i(xn
1(i),x

n
2( j);yn)≥ logN(n)

1 N(n)
2 − γ

2
})
)

(5.12)

≤ 3e−
γ

2 +P
(
{in(X1,Y |X2)> logN(n)

1 − γ}∩{in(X2,Y |X1)> logN(n)
2 − γ}

∩{in(X1,X2,Y )> log(N(n)
1 N(n)

2 )− γ}
)
,

where (5.12) follows from (5.11). Thus, Lemma 20 is proved.

In the non-asymptotic bounds proposed in Lemmas 18 and 20, no nα coefficients are in-

cluded in logN(n) terms, which is different from Han’s bounds in [65]. Actually, our bounds

are more general because their applicability is not limited to first-order analysis. Besides,

it is possible to derive asymptotic results from the non-asymptotic bounds, as referred to in

[66]. In the next section, we will perform an asymptotic second-order coding rate analysis

for the general MAC, exactly based on the bounds in Lemmas 18 and 20.

5.3.3 An Asymptotic Second-Order Capacity Region of the General

MAC

It was shown in [67] that the second-order coding rate is more accurate than conventional

asymptotic results. In this section we will propose a second-order capacity region of the

general MAC based on the information-spectrum method. As is pointed out in Section

5.3.2, our proposed non-aymptotic upper and lower bounds will play a fundamental role in
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the derivation of the asymptotic second-order capacity region. First we define some basic

notions in the second-order analysis for the MAC, as a counterpart of Hayashi’s second-

order notations for the general single-user channel [67, Section VII].

Definition 39 A second-order coding rate pair (R(2)
1 ,R(2)

2 ) is (ε,R1,R2)-achievable if and

only if there exists a sequence of (n,N(n)
1 ,N(n)

2 ,ε(n)) codes satisfying

liminf
n→∞

1√
n
(logN(n)

1 −R1n)≥ R(2)
1 ,

liminf
n→∞

1√
n
(logN(n)

2 −R2n)≥ R(2)
2 ,

limsup
n→∞

ε
(n) ≤ ε.

The second-order (ε,R1,R2)-capacity region C(ε,R1,R2) is the set of all (ε,R1,R2)-achievable

second-order rate pairs.

Definition 40 Fixing the channel input X1,X2, we define a function of the first- and second-

order coding rates as

J(R1,R2,R
(2)
1 ,R(2)

2 |X1,X2)

= limsup
n→∞

P
(
{ 1√

n
(in(X1;Y |X2)−R1n)≤ R(2)

1 }∪{ 1√
n
(in(X2;Y |X1)−R2n)≤ R(2)

2 }

∪{ 1√
n
(in(X1,X2;Y )−R1n−R2n)≤ R(2)

1 +R(2)
2 }
)
.

Theorem 19 The second-order (ε,R1,R2)-capacity region of the general MAC is given by

C(ε,R1,R2) = cl
( ⋃

PX1×PX2

{(R(2)
1 ,R(2)

2 )|J(R1,R2,R
(2)
1 ,R(2)

2 |X1,X2)≤ ε}
)
,

where cl(·) is the closure operation of a set.

Proof: The proof is composed of two parts.



72 Applications of Generalised Typicality Lemmas in Coding Problems

Direct Part

We will prove the existence of a code satisfying the constraints in C(ε,R1,R2). By

employing Lemma 18 and setting

N(n)
1 = eR1n+R(2)

1
√

n−2δ
√

n,

N(n)
2 = eR2n+R(2)

2
√

n−2δ
√

n,

γ = δ
√

n,U = 0,

where δ is an arbitrary positive real number, we obtain

ε
(n) ≤ 3e−δ

√
n +P

(
{ 1√

n
(in(X1;Y |X2)−R1n)≤ R(2)

1 −δ}

∪{ 1√
n
(in(X2;Y |X1)−R2n)≤ R(2)

2 −δ}

∪{ 1√
n
(in(X1,X2;Y )−R1n−R2n)≤ R(2)

1 +R(2)
1 −3δ}

)
≤ 3e−δ

√
n +P

(
{ 1√

n
(in(X1;Y |X2)−R1n)≤ R(2)

1 }∪{ 1√
n
(in(X2;Y |X1)−R2n)≤ R(2)

2 }

∪{ 1√
n
(in(X1,X2;Y )−R1n−R2n)≤ R(2)

1 +R(2)
1 }
)
.

Then, from Definition 40, we have

limsup
n→∞

ε
(n) ≤ J(R1,R2,R

(2)
1 ,R(2)

2 |X1,X2) (5.13)

and

C(ε,R1,R2)⊇ cl
( ⋃

PX1×PX2

{(R(2)
1 ,R(2)

2 )|J(R1,R2,R
(2)
1 ,R(2)

2 |X1,X2)≤ ε}
)
. (5.14)

Remark 13 Similar to [68], we can prove that the second-order capacity region of the

general MAC is a convex and closed set. Hence we can include the closure operation.
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Converse Part For any second-order (ε,R1,R2)-achievable rate pair (R(2)
1 ,R(2)

2 ), there

exists a (n,N(n)
1 ,N(n)

2 ,ε(n)) code satisfying

1√
n
(logN(n)

1 −R1n)≥ R(2)
1 −δ , (5.15)

1√
n
(logN(n)

2 −R2n)≥ R(2)
2 −δ , (5.16)

limsup
n→∞

ε
(n) ≤ ε. (5.17)

Substitution of (5.15), (5.16) and γ = δ
√

n into Lemma 20 results in

ε
(n) ≥ P

(
{ 1√

n
(in(X1;Y |X2)−R1n)≤ R(2)

1 −2δ}∪{ 1√
n
(in(X2;Y |X1)−R2n)≤ R(2)

2 −2δ}

∪{ 1√
n
(in(X1,X2;Y )−R1n−R2n)≤ R(2)

1 +R(2)
2 −3δ}

)
−3e−

δ
√

n
2

≥ P
(
{ 1√

n
(in(X1;Y |X2)−R1n)≤ R(2)

1 −2δ}∪{ 1√
n
(in(X2;Y |X1)−R2n)≤ R(2)

2 −2δ}

∪{ 1√
n
(in(X1,X2;Y )−R1n−R2n)≤ R(2)

1 +R(2)
2 −4δ}

)
−3e−

δ
√

n
2 . (5.18)

By taking the limit of both sides in (5.18), we obtain

ε ≥ limsup
n→∞

ε
(n) ≥ J(R1,R2,R

(2)
1 −2δ ,R(2)

2 −2δ |X1,X2). (5.19)

Assuming

(R(2)
1 ,R(2)

2 ) /∈ cl
( ⋃

PX1×PX2

{(R(2)
1 ,R(2)

2 )|J(R1,R2,R
(2)
1 ,R(2)

2 |X1,X2)≤ ε}
)
.

Then there exists 0 < δ0 < min{R(2)
1 ,R(2)

2 } such that

(R(2)
1 −2δ0,R

(2)
2 −2δ0) /∈ cl

( ⋃
PX1×PX2

{(R(2)
1 ,R(2)

2 )|J(R1,R2,R
(2)
1 ,R(2)

2 |X1,X2)≤ ε}
)
.
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Hence,

J(R1,R2,R
(2)
1 −2δ0,R

(2)
2 −2δ0|X1,X2)> ε,

which contradicts (5.19). Thus we obtain

C(ε,R1,R2)⊆ cl
( ⋃

PX1×PX2

{(R(2)
1 ,R(2)

2 )|J(R1,R2,R
(2)
1 ,R(2)

2 |X1,X2)≤ ε}
)
.

Remark 14 From the proof, we can see the inner region given by (5.14) is exactly the ca-

pacity region. However, if we employ Verdú’s upper bound of the average error probability

in the direct proof, we will obtain a strictly smaller region in general. This illustrates the

necessity to propose the modified upper bound in Lemma 18.

Theorem 19 provides a second-order capacity region through the typical information-

spectrum analysing procedure, similar to Han’s first-order ε-capacity region analysis for

the general MAC [65, Section VII]. In the above proof, by applying our proposed non-

asymptotic bounds in Section 5.3.2, we obtain asymptotic inner and outer regions in (5.13)

and (5.19), respecively.

5.4 Conclusion

In this chapter, we have applied our generalised typicality lemmas to various coding prob-

lems.

In several source coding problems, with a minor modification on the typical set ac-

cording to the distortion, we have applied the conditional typicality lemma to the general

rate-distortion problem, and the multivariate covering lemma to the multiple description

problem. We have also applied the strong Markov lemma and the multivariate packing

lemmas to the Berger-Tung problems.

In several channel coding problems. we have proved the achievability of the capacity

of a general channel coding theorem with input constraint, with a minor modification on
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the typical set according to the constraint. We have then applied the conditional typicality

lemma to the Gelfand-Pinsker problem. We have also applied the multivariate covering

lemma to the general BC coding problem.

Besides those, we have also modified our generalised typicality in a second-order fash-

ion, and then applied it to a second-order analysis on the MAC coding problem.





Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, we have proposed and studied a generalised typicality. Specifically, we have

done the following works.

In Chap. 3, we have made a summary on different approaches to prove channel coding

problems. We have then pointed out that it is sufficient to study the typicality for various

cases.

In Chap. 4, We have proposed a generalised definition of weak typicality for general

multivariate alphabets and general measures on product spaces. We have then obtained

several typicality lemmas, including conditional and joint typicality lemmas, packing and

covering lemmas, as well as the strong Markov lemma, based our generalised typicality.

In Chap. 5, we have applied the typicality lemmas to some source and channel coding

problems with general sources or channels, using the generalised typicality lemmas in Chap.

4. We have specified that in most cases it will be simpler to prove the coding theorems by

using the generalised typicality, than using strong typicality with the discretisation-and-

approximation technique.

From Chaps. 3-5, we see that our proposed generalised typicality lemmas are useful in

information theoretical problems. We recognise that the discretisation-and-approximation

technique have succeeded in many problems. However, there exists no axiom or theorem as-
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suring the existence of a general coding theorem if there is a discrete one. The discretisation-

and-approximation technique is no more than a probability theoretical trick that treat a gen-

eral random variable as a limit of its quantised version. The definition and properties of

integration and several fundamental theorems (ex. multiplication theorem of expectation)

can be obtained in this way, and others can be based on them, but it would be not graceful

if the probabilistic theorists always resort to a quantised version before they prove a general

conclusion. As a comparison, our generalised typicality lemmas have provided a unified

approach to coding problems with discrete, continuous or more general settings, hence we

consider proofs of coding theorems will benefit from our approach,

6.2 Future Works

In this thesis, we have not considered the joint measure defined for the stochastic process

with an arbitrary index set. However, inspired by some previous works on coding problems

with continuous-time settings, we can extend our typicality definition and typicality lemmas

to more general cases. Non-asymptotic case is another possible topic, which is related to

second-order analysis.

6.2.1 Continuous-Time Case

The distribution on a product space is equivalent to one of a discrete time series. Further-

more, it is possible to define a typicality for distributions of more general stochastic pro-

cesses, which are not necessarily discrete time series. Historically, this was first mentioned

in Goldman’s book [69, Chap. III], as a notion of “typical function”. In [70], the authors

used a set which was essentially an continuous time extension of the weak typicality set.

Inspired by previous works, we expect to extend our proposed typicality to the more general

stochastic process.

More specifically, given a stochastic process (X,Y) = {(Xt ,Yt)|t ∈ R} with state space

(X×Y,BX ×BY ), and the probability law PXY as well as induced marginals PX and PY,

then we can define the mutual information between {Xt |t ∈ R} and {Yt |t ∈ R} as I(X;Y) =
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E[i(X;Y)], where the mutual information density

i(x;y) = log
dPXY

dPX ×PY
(x,y).

We denote {Xt |t ∈ (−∞, t]} by Xt , then the set sequence A (t) defined by

A (t) =

{
(xt ,yt) |

∣∣∣∣1t i(xt ,yt)− I(X;Y)

∣∣∣∣≤ ε

}

for all t ∈ R is a generic set sequence in the meaning of

lim
t→∞

P(t)(A(t)) = 1.

Hence, it is possible to extend our study on the generalised typicality to the continuous-time

case.

6.2.2 Non-Asymptotic Case

The typicality lemmas we have studied are all in the asymptotic regime. There have also

been researches on non-asymptotic typicality lemmas. Recently, Verdú, Liu, and Cuff has

proved non-asymptotic typicality, covering and mutual covering lemmas [26, 27, 66] and

showed some applications in multi-terminal problems. [71] also provided a non-asymptotic

mutual covering lemma. The alternative proof of Lem. 3 in Chap. 4 shows the possibility

to relate asymptotic typicality lemmas with their non-asymptotic counterparts.

Besides, as mentioned in Sec. 3.2 and studied in Sec. 5.3, we can also make second-

order analysis on general source and channel coding problems.
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[49] S. Guiaşu, Information Theory with Applications, ser. Adv. Book Program. McGraw-
Hill Books Company, 1977.

[50] R. M. Gray, Entropy and Information Theory, 2nd ed. Springer, 2011.

[51] C. E. Shannon, “Certain results in coding theory for noisy channels,” Inf. Contr., vol. 1,
no. 1, pp. 6 – 25, Sept. 1957.

[52] M. Rosenblatt-Roth, “The concept of entropy in probability theory and its application
in the theory of information transmission through communication channels,” Theory
Prob. Its Appl., vol. 9, no. 2, pp. 212–235, 1964.

[53] Y. Kakihara, Abstract Methods in Information Theory, 2nd ed., ser. Multivariate Anal.
World Sci. Publ., 2016, no. 10.

[54] A. R. Barron, “The strong ergodic theorem for densities: generalized Shannon-
McMillan-Breiman theorem,” Ann. Probab., vol. 13, pp. 1292–1303, 1985.

[55] M. S. Pinsker, “Some mathematical questions of theory of information transmission,”
Probl. Inf. Transm., vol. 43, no. 4, pp. 380–392, 2007.

[56] T. S. Han and S. Verdú, “Approximation theory of output statistics,” IEEE Trans. Inf.
Theory, vol. 39, no. 3, pp. 752–772, May 1993.

[57] S. Verdú and T. S. Han, “A general formula for channel capacity,” IEEE Trans. Inf.
Theory, vol. 40, no. 4, pp. 1147–1157, July 1994.

[58] T. Tao, Topics in Random Matrix Theory, ser. Grad. Stud. Math. Amer. Math. Soc.,
2012, vol. 132.

[59] A. Somekh-Baruch, “A general formula for the mismatch capacity,” CoRR, vol.
abs/1309.7964, 2013. [Online]. Available: http://arxiv.org/abs/1309.7964

[60] W. Liu, X. Chu, and J. Zhang, “On a generalised typicality with respect to general
probability distributions,” in Proc. IEEE 14th Canadian Workshop Inf. Theory, July
2015, pp. 165–169.

[61] Y. Steinberg and S. Verdú, “Simulation of random processes and rate-distortion the-
ory,” IEEE Trans. Inf. Theory, vol. 42, no. 1, pp. 63–86, Jan. 1996.

[62] V. Y. F. Tan, “A formula for the capacity of the general Gel’fand-Pinsker channel,”
IEEE Trans. Commun., vol. 62, no. 6, pp. 1857–1870, June 2014.

[63] A. D. Wyner, “On source coding with side information at the decoder,” IEEE Trans.
Inf. Theory, vol. 21, no. 3, pp. 294–300, May 1975.

[64] K. Iwata and Y. Oohama, “Information-spectrum characterization of broadcast channel
with general source,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol.
E88-A, no. 10, pp. 2808–2818, Oct. 2005.

http://arxiv.org/abs/1309.7964


References 85

[65] T. S. Han, “An information-spectrum approach to capacity theorems for the general
multiple-access channel,” IEEE Trans. Inf. Theory, vol. 44, no. 7, pp. 2773–2795,
Nov. 1998.

[66] S. Verdú, “Non-asymptotic achievability bounds in multiuser information theory,” in
Proc. 50th Annu. Allerton Conf. Commun. Contr. Comput., 2012, pp. 1–8.

[67] M. Hayashi, “Information spectrum approach to second-order coding rate in channel
coding,” IEEE Trans. Inf. Theory, vol. 55, no. 11, pp. 4947–4966, Nov. 2009.

[68] T. S. Han, “The capacity region of general multiple-access channel with certain corre-
lated sources,” Inf. Contr., vol. 40, no. 1, pp. 37–60, Jan. 1979.

[69] S. Goldman, Information Theory, ser. Prentice-Hall Electr. Eng. Prentice-Hall, 1953.

[70] T. Kadota and A. D. Wyner, “Coding theorem for stationary, asymptotically memory-
less, continuous-time channels,” Ann. Math. Stat., pp. 1603–1611, 1972.

[71] J. Radhakrishnan, P. Sen, and N. Warsi, “One-shot Marton inner bound for classical-
quantum broadcast channel,” IEEE Trans. Inf. Theory, vol. 62, no. 5, pp. 2836–2848,
May 2016.




	Declaration
	Acknowledgement
	Abstract
	Table of contents
	1 Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Thesis Outline
	1.4 List of Publications

	2 Preliminary
	2.1 Mathematical Notations
	2.2 Probability and Information Theory
	2.3 A Review on the Method of Typicality
	2.4 Equivalent Definitions of Total Variation Distance

	3 Typicality in Coding Problems
	3.1 Asymptotic Equipartition Property and Typicality
	3.2 Feinstein-Type Lemma and Typicality
	3.3 Information Stability, Information-Spectrum and Typicality
	3.4 Conclusion

	4 Generalised Typicality Lemmas
	4.1 A Generic Typicality
	4.1.1 A Necessary Presumption of Lemma 3

	4.2 A Generalised Multivariate Typicality
	4.3 Generalised Typicality Lemmas
	4.3.1 Generalised Conditional and Joint Typicality Lemmas
	4.3.2 A Generalised Multivariate Covering Lemma
	4.3.3 A Generalised Markov Lemma

	4.4 Bivariate Typicality Lemmas
	4.5 Conclusion

	5 Applications of Generalised Typicality Lemmas in Coding Problems
	5.1 Applications in Source Coding
	5.1.1 Rate-Distortion Problem with a General Source
	5.1.2 Multiple Description Problem with General Sources
	5.1.3 Memoryless Berger-Tung Inner Bound with General Alphabets

	5.2 Applications in Channel Coding
	5.2.1 Channel Coding with Input Constraint
	5.2.2 Gelfand-Pinsker Coding
	5.2.3 Multi-User BC with a Common Message

	5.3 Asymptotic Analysis on the Second-Order Coding Rate of the General MAC
	5.3.1 System Model and Basic Definitions
	5.3.2 Upper and Lower Bounds on the Average Error Probability in the General MAC
	5.3.3 An Asymptotic Second-Order Capacity Region of the General MAC

	5.4 Conclusion

	6 Conclusions and Future Works
	6.1 Conclusions
	6.2 Future Works
	6.2.1 Continuous-Time Case
	6.2.2 Non-Asymptotic Case


	References
	Blank Page

