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Abstract 

A wide range of lipid mediators are synthesised from Polyunsaturated 

Fatty Acids. These mediators regulate inflammation and many other processes 

in the human body, and perturbation of their signalling can contribute to the 

survival and proliferation of cancer cells. Prostaglandin E2 has the most diverse 

range of functions amongst the prostaglandins and other lipid mediators, and 

increased PGE2 signalling has been associated with promoting tumour growth 

and survival by a number of mechanisms. NSAIDs target the synthesis side of 

the prostaglandin pathway through PTGS2, but only recently has the 

importance of the degradation component, involving the enzyme HPGD and 

prostaglandin transporter SLCO2A1 been discovered.  

Although a number of publications have shown that HPGD is 

downregulated in colorectal cancer, in addition to other malignancies, the 

mechanisms by which this takes place remain unclear. Only a few studies have 

indicated a comparable role for SLCO2A1, and the potential for these two 

genes to be co-regulated. Therefore, understanding how these two genes are 

regulated could reveal the mechanisms by which their expression is lost, and 

potentially how they could be upregulated to complement the action of NSAIDs 

when used prophylactically, or as an adjunct to chemotherapy. 

 HPGD and SLCO2A1 expression was characterised, and the genes’ 

transcriptional start sites identified using two colorectal cancer cell lines. This 

information was used to design and carry out a promoter deletion series, which 

revealed the importance of the proximal 364 bp SLCO2A1 promoter region in 

driving transcription. Further analysis of this region revealed a possible role for 

the intestinal and colonic epithelium-specific transcription factor CDX2 for 

driving SLCO2A1 expression. Further experiments provided evidence to 
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suggest that the TGF-β pathway, which is known to drive HPGD expression, 

may also co-regulate SLCO2A1.  
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 Introduction 

 Lipid Mediators 

 Polyunsaturated fatty acid-derived signalling factors 

Lipid mediators, eicosanoids, have been implicated in numerous 

biological processes including those in reproduction, cardiovascular physiology, 

and the immune system. The mediators include prostaglandins, leukotrienes, 

thromboxanes, prostacyclins, lipoxins, resolvins and protectins, all of which can 

be synthesised from polyunsaturated fatty acids (PUFAs) (Figure 1.1) (Umar et 

al., 2016). Dietary PUFAs are typically classified by the position of the first 

carbon double bond from the end of the fatty acid hydrocarbon chain, the third 

or sixth, as ω-3 or ω-6, respectively (Innes and Calder, 2018). This distinction is 

important because the enzymes of the different mediator pathways are able to 

process more than one fatty acid substrate (Bannenberg and Serhan, 2010) 

The resulting mediators can have different or even opposing effects, depending 

on whether the original substrate was an ω-3 or ω-6 fatty acid (Liu et al., 2006; 

Thuresson et al., 2002; Laneuville et al., 1995).  
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Figure 1.1: Polyunsaturated fatty acid (PUFA) and eicosanoid synthesis 
Outline of ω-6 and ω-3 PUFA metabolism, demonstrating that the different 
classes of lipid mediator are synthesised from the different intermediate 
products. Desaturase enzymes introduce C=C carbon bonds into the fatty acid 
chain, while the elongases extend it by two carbon atoms. The ratios indicate 
the total number of carbon atoms in the fatty acid chain to C=C double bonds. 
Prostaglandin (PG), prostacyclin (PC), leukotriene (LK), thromboxane (TX), 
cyclooxygenase (COX) 
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In the immune system, the ω-6-derived mediators typically act to both 

drive and to resolve inflammation, and the recruitment of immune cells such as 

leucocytes (Kaley and Weiner, 1971). Arachidonic acid (AA) (or 

eicosatetraenoic acid) are the substrates from which a number of pro-

inflammatory prostaglandins, such as PGE2, and leukotrienes are synthesised 

(Bannenberg and Serhan, 2010). Likewise, the lipoxins and resolvins, which 

exert an anti-inflammatory action and initiate resolution of inflammation, are also 

produced from AA (Serhan et al., 1984a; Serhan et al., 2000; Serhan, 2007). 

On the other hand, ω-3 fatty acids, such as eicosapentaenoic acid (EPA) and 

docosahexenenoic acid (DHA), result in the generation of lipid mediators, such 

as the resolvins and protectins that drive resolution of inflammation (Serhan et 

al., 2000; Ariel et al., 2005). 

The enzymes that catalyse the first reactions in the lipid mediator 

synthesis pathways are the cyclooxygenases (PTGS1 and PTGS2) (Chulada et 

al., 2000) and the lipoxygenases (ALOX5, ALOX12 and ALOX15) (Gronert et 

al., 2005; Vainio et al., 2011) (Figure 1.1). The cycloxygenase pathway 

generates the prostaglandins, prostacyclins, and thromboxane (Hamberg et al., 

1975), while the lipoxygenases produce the leukotrienes, lipoxins, resolvins and 

protectins (Shimizu et al., 1984; Serhan et al., 1984b). The relative abundance 

of the ω-6 and ω-3 substrates can bias the generation of one type of mediator 

over another (Magrum and Johnston, 1983; Wada et al., 2007). Furthermore the 

potential for cell specific expression of the enzymes and their relative activity 

when competing for substrates, can allow substantial control of the mediators 

generated, impacting on cellular processes (Abeywardena et al., 1987).  
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Many of the individual eicosanoids are as yet not well understood in 

regards to their functional significance in health and disease, however that 

eicosanoids have an important role modulating the immune system is well 

established. The prostaglandins are of particular interest due to their role in 

regulating the initiation of acute inflammation, and the pathology resulting from 

sustained activity that results in chronic inflammation (Serhan et al., 2015). 

 

 Overview of the Prostaglandin Pathway 

Prostaglandins are a subclass of lipid mediators derived from PUFAs via 

the enzymatic pathways downstream of the cyclooxygenases (Hamberg and 

Samuelsson, 1971; B Samuelsson et al., 1975; Tootle, 2013). PUFAs, for 

example AA, when released from the membrane phospholipids through the 

action of phospholipase A2, can be converted to prostaglandin H2 (PGH2) by 

cyclooxygenases (Figure 1.2). PGH2 becomes the substrate for specific 

prostaglandin synthases (Ruan et al., 2011). The prostaglandins generated can 

then be exported from the cell, and exert their effects in an autocrine or 

paracrine manner through G-protein coupled cell surface receptors. 

Prostaglandins are short-lived molecules, as they can be subsequently rapidly 

removed from the extracellular space by transport into the cell by the 

prostaglandin transporter (PGT/SLCO2A1) (Hamberg and Samuelsson, 1971). 

They can then be deactivated, which is performed enzymatically by 15-hydroxy 

prostaglandin dehydrogenase (15-PGDH/HPGD). That prostaglandins can be 

rapidly metabolised, ensures that once they have performed their physiological 

function, homeostasis can be readily restored. 
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Figure 1.2: The 2-series prostaglandins and their receptors 
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 Prostaglandin synthesis  

Series 2 prostanoids (prostaglandins, prostacyclins and thromboxanes) 

are generated from arachidonic acid which is normally stored as part of the 

endoplasmic reticulum membrane and becomes available through membrane 

phospholipid hydrolysis by phospholipase A2 (Figure 1.4) (Gustafson-Svard et 

al., 1996). The cyclooxygenases PTGS1 and PTGS2 constitute the next step by 

production of PGH2 (Laneuville et al., 1995). This is the rate-limiting reaction in 

PGE2 synthesis (Yan et al., 2004). PTGS1 is generally considered to be a 

constitutively expressed enzyme, while PTGS2 is inducible following exposure 

for example to injury and inflammation (Umar et al., 2016). The 3-series 

prostanoids (PGD3, PGE3, PGF3, PGI3, and TXA3) are generated through the 

ability of PTGS2, but not PTGS1, to use EPA as a substrate (Yang et al., 

2014c). The enzymatic reactions with EPA and the PGH3 are approximately 

30% as efficient compared to AA and PGH2, meaning that the 3-series 

intermediates act as competitive inhibitors and reduce 2-series prostaglandin 

generation. 

Specific prostaglandin synthases metabolise the PGH2 precursor to 

generate Prostaglandin D2 (PGD2), prostaglandin E2 (PGE2), and prostaglandin 

F2 (PGF2) through isomerisation reactions (Wada et al., 2007). Prostaglandin I2 

(PGI2)/prostacyclin and thromboxane A2 (TXA2) can also be synthesised from 

PGH2 (Figure 1.4). The microsomal prostaglandin E synthase (PTGES) is the 

main enzyme that converts PGH2 to PGE2 (Jegerschöld et al., 2008). Two more 

prostaglandin E synthases exist (PTGES2 and PTGES3), however, PTGES is 

considered to be the predominant enzyme, considering that knockout of Ptges2 

in mice does affect overall PGE2 synthesis (Langenbach et al., 1995; Morham 

et al., 1995). PTGES is an inducible enzyme, and its upregulation coincides with 
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that of COX-2, therefore, suggesting a preferential increase in PGE2 synthesis 

over other prostaglandins (Hara et al., 2010). 

The control of prostaglandin production has been a means by which 

drugs act to reduce inflammation. The non-steroidal anti-inflammatory drugs 

(NSAIDs) exert their action through inhibition of PTGS1 (COX-1) and PTGS2 

(COX-2) (Ku et al., 1975; Serhan, 2002) (Bygdeman, 2003). While this 

effectively blocks the synthesis of 2-series prostaglandins and thromboxanes, it 

causes AA to be shunted across to the unaffected lipoxygenase pathways, so 

increasing the generation of alternative bioactive lipids (Bannenberg and 

Serhan, 2010). The archetypical NSAID, aspirin, is a non-selective inhibitor that 

irreversibly inactivates PTGS1 and PTGS2 by acetylating their active sites, and 

altering the latter’s substrate specificity, in addition to preventing the oxidation of 

AA, it increases the enzyme’s specificity for DHA and EPA (Rome et al., 1976; 

Serhan et al., 2000). The intermediate products formed then are further 

metabolised by the lipo-oxygenases to generate the D-series and E-Series of 

resolvins (from DHA and EPA, respectively). The prostaglandin synthases can 

also metabolise these intermediates to generate the 3-series prostaglandins 

(such as PGE3), which as described above further inhibit the action of the 2-

series prostaglandins (Bannenberg and Serhan, 2010). Aspirin also promotes 

the synthesis of the anti-inflammatory lipoxin 15-epi-LXA4 (from AA), which is 

more resistant to degradation (Takano et al., 1997).  

Although NSAIDs such as aspirin have been highly successful in treating 

a range of conditions, they have potentially serious side effects (Fanaroff and 

Roe, 2016). These include bleeding, ulceration, and renal, cardiovascular and 

gastrointestinal toxicity (Robert et al., 1976; Fung et al., 1974). Furthermore, 

these drugs are not suitable for certain patient groups, e.g. it may causes 
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aspirin-exacerbated respiratory disease in 7% of all asthma patients (Fanaroff 

and Roe, 2016). One key prostanoid that contributes to aspirin’s side effects is 

thromboxane A2 (TXA2). The anticoagulant side effects of aspirin is due to the 

preferentially inhibition by aspirin of COX-1, compared to COX-2, which is 

required for the production of the blood clotting lipid TXA2 in the platelets 

(Patrignani et al., 2003). Consequently, high doses of aspirin reduce the ability 

of blood clots to form where they would have life threatening consequences. 

COX-2 has been the subject of intense research as a drug target, not 

only as this would avoid COX-1 inhibition adverse effects, but also due to its 

upregulation, particularly during inflammation and in cancer, and as the rate-

limiting step in prostaglandin production, and its ability to alter the enzyme’s 

substrate specificity to generate anti-inflammatory mediators (Gustafson-Svard 

et al., 1996; Asting et al., 2011; Fink et al., 2014; Maeng et al., 2014; Pereira et 

al., 2014; Zelenay et al., 2015). A number of COX-2-selective inhibitors have 

been developed, and COX-2 remains the most studied member of the PGE2 

metabolic pathway, and the key drug target for suppressing PGE2 synthesis 

(Wang et al., 2018). COX-2 specific inhibitors do not detrimentally effect 

thromboxane A2 levels, but do however substantially impact on the balance with 

prostacyclin levels. Prostacyclin is a potent vasodilator that also inhibits platelet 

aggregation (Coceani et al., 1978; Johnson et al., 1977). These inhibitors have 

therefore been associated with higher levels of cardiovascular events, such as 

myocardial infarction, stroke, hypertension and congestive heart failure, with the 

altered prostacyclin levels relative to TXA2 thought to be the major contributory 

factor.  

As PTGES acts downstream of PTGS1 and 2, and as the specific 

synthase that generates PGE2, it has also been of interest as an alternative 
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drug target to decrease PGE2 synthesis. Although a number of inhibitors have 

been identified and entered clinical trials, as yet none have approved clinically 

(Koeberle and Werz, 2015). Certainly, it would be expected that there would be 

fewer side effects, by acting downstream of the COX enzymes, however, there 

could still be some shunting of the PGH2 precursor towards other synthase 

pathways. Consequently, there is interest in additional parts of the 

prostaglandin pathway that act further downstream that may affect fewer 

prostanoids thereby reducing harmful side effects.  

 

 Prostaglandin export  

PGE2 is secreted from the cells through multidrug resistance protein 4 

(MRP4) (Figure 1.4), which is encoded by the ATP-binding cassette subfamily C 

member 4 (ABCC4) gene (Chen and Tiwari, 2011). In addition to PGE2 and 

PGE1, MRP4 is also capable of exporting other substrates, including cyclic 

nucleotides (such as cGMP) and steroid derivatives, as well as glutathione 

(Chen and Tiwari, 2011; Reid et al., 2003). In the context of PGE2 synthesis 

pathway, MRP4 has an important role in accelerating PGE2 release, which 

would otherwise be much slower by simple diffusion or passage through other 

less efficient transporter proteins (Maeng et al., 2014). 

NSAIDs have also been found to inhibit MRP4’s export of PGE2, in 

addition to their effects on PTGS1 and PTGS2 (Reid et al., 2003; Kochel and 

Fulton, 2015). However, as the mechanism of PGE2 secretion is not fully 

understood, and given MRP4’s ability to transport anions other than PGE2, this 

membrane transporter may not be an ideal drug target (Shirasaka et al., 2013; 

Shimada et al., 2015). 
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 Prostaglandin receptor activation 

The prostanoids can activate downstream signalling pathways through a 

variety of cell surface receptors (Figure 1.4). Unlike the other prostanoids, which 

have one or two receptors that are expressed only in certain organs or tissues, 

there are four PGE2 receptors (EP1, EP2, EP3 and EP4) (Tootle, 2013). PGE2 

mediates its effects by binding to receptors, EP1-EP4 (Figure 1.2 and Figure 

1.4), encoded by the genes PTGER1, PTGER2, PTGER3 and PTGER4, 

respectively) (Edwards et al., 2012). These receptors are expressed by a range 

of cell types, and afford PGE2 signalling greater complexity, and the ability to 

control a range of functions, in addition to the local triggering of acute 

inflammation and initiation of resolution (Innes and Calder 2018). EP1 to EP4 

are all G-protein coupled receptors, which trigger an increase (EP2, EP4) or 

decrease (EP3) in intracellular cAMP, or trigger the release of intracellular Ca2+ 

(EP1) (Tootle, 2013). The EP2 and EP4 receptors are important because of 

their ability directly or indirectly trigger a positive feedback loop to increase 

PGE2 synthesis by upregulating PTGS2 and PTGES (Fujino, 2016). 

In addition, further cellular non-enzymatic dehydration and isomerisation 

reactions can generate additional products, e.g. PGE2, PGE1 and PGD2 can 

produce PGA2, PGA1, and PGJ2 respectively, that are all bioactive (Coceani et 

al., 1978; Eklund and Carlson, 1980; Straus and Glass, 2001). Some prostanoid 

products do not require G-protein involvement in their mechanism of action, as 

they are ligands for nuclear hormone receptors thereby altering transcription, 

e.g. 15-Deoxy-Δ12,14-Prostaglandin J2 and PGI2 can bind PPAR’s (Forman et al., 

1995; Kliewer et al., 1995). The potential downstream pathways activated from 

a single precursor molecule is therefore theoretically large. 
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 Termination of prostaglandin signalling through the actions of 
HPGD and SLCO2A1 

 Extracellular prostaglandins can be actively removed and internalised in 

order to terminate signalling. The prostaglandin transporter, encoded by the 

SLCO2A1 gene, fulfils this role (Kanai et al., 1995). This gene belongs to the 

solute organic anion transporter superfamily, which consists of eleven genes in 

the human, divided into six families (SLCO1, SLCO2, SLCO3, SLCO4, SLCO5 

and SLCO6) (Tamai et al., 2000; Hagenbuch and Stieger, 2013). SLCO2A1 is 

believed to function by importing prostaglandins such as PGE2 into the cell 

through the exchange of lactate ions that pass in the opposite direction (Chan et 

al., 2002b; Bao et al., 2002). 

SLCO2A1 (Figure 1.3) was first cloned and characterised in the rat and 

human more than two decades ago (Kanai et al., 1995; Lu and Schuster, 1998). 

In spite of subsequent research on prostaglandin transporter function, largely by 

the same research team, and the identification of potent inhibitor compounds 

with potential utility for example in hypertension, very little work has been 

carried out to elucidate the actual regulation of the SLCO2A1 gene (Bao et al., 

2002; Chan et al., 1999; Chang et al., 2010; Chi et al., 2006; Chi et al., 2008; 

Schuster et al., 2015). Few publications from other groups suggest possible 

regulators of the prostaglandin transporter, as little research on the actual 

control at the transcriptional level has been carried out (Topper et al., 1998; Chi 

et al., 2006; Gao et al., 2007).  

This is despite SLCO2A1’s importance in being the rate-limiting step for 

PGE2 degradation (Nomura et al., 2004; Schuster et al., 2015). While drugs can 

act as agonists or antagonists on receptors and components of signalling 

cascades, or inhibit the function of transporter proteins and enzymes, adequate 
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expression of the target gene that encodes the protein drug target is a 

prerequisite for their action. Therefore, in situations where the objective is to 

upregulate a particular gene, knowledge of its transcriptional regulation is 

essential so that any drugs can be targeted to the upstream pathway elements 

to stimulate expression or inhibit repression. 

 15-Hydroxyprostaglandin Dehydrogenase (15-PGDH, encoded by the 

HPGD gene) (Figure 1.3) is the enzyme that oxidizes PGE2 that is taken up into 

the cell by SLCO2A1. In this way, PGE2 signalling is terminated, as the 

intracellular PGE2 concentration is lowered, reducing the amount that could be 

potentially secreted through MRP4. Therefore, SLCO2A1 and HPGD constitute 

the degradation arm of the PGE2 metabolic pathway (Ensor et al., 1990; Chang 

et al., 2010). 

Unlike SLCO2A1, the 15-PGDH enzyme was discovered much earlier. 

15-PGDH was first isolated from pig lung in 1966, and from human placenta in 

1974 (Änggård and Samuelsson, 1969; Braithwaite and Jarabak, 1975; Nakano 

et al., 1969; Thaler-Dao et al., 1974). While most studies to characterise 

HPGD’s expression were historically conducted largely in the reproductive 

biology field (Braithwaite and Jarabak, 1975; Greenland et al., 2000; Nandy et 

al., 2003), HPGD gained attention as a tumour suppressor-like gene through 

the research by Dr. Sanford D. Markowitz’ group (Myung et al., 2006; Yan et al., 

2004), which has since led to renewed interest in this gene’s contribution to 

cancer development and progression. Both SLCO2A1 and HPGD represent 

potential new targets for the control of prostaglandin production. As they act 

further downstream than the prostaglandin synthesis enzymes, this may 

suggest that fewer adverse side effects would be expected, as there would be 

less perturbation of other parts of the lipid mediator pathways.  
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 Prostaglandin E2 

Although prostaglandins have a number of additional functions, such as 

the initiation of labour and parturition (PGE2, PGF2α) (Davis et al., 1999; Lim et 

al., 1997), or platelet aggregation during clot formation (TXA2), (Hamberg et al., 

1975), PGE2 remains one of the most intensely studied prostaglandins (Pelus 

and Hoggatt, 2011) because of the diverse range of biological processes it is 

involved in, and, unlike the other prostaglandins the complexity in its signalling 

through four G-protein-coupled receptors (Chi et al., 2014; Castellone et al., 

2005). Prostaglandin E2 belongs to a class of lipid cytokines that are 

synthesized from the fatty acid precursor arachidonic acid (all-cis-5,8,11,14-

Eicosatetraenoic acid), and generally acts locally in an autocrine or paracrine 

manner (Reid et al., 2003), given that its half-life in the bloodstream is less than 

one minute (Hamberg and Samuelsson, 1971). The main site of PGE2 

clearance in the blood are the lungs, which means that any PGE2 that enters 

venous blood is prevented from returning to systemic circulation (Piper et al., 

1970; Nakanishi et al., 2015). PGE2 has a wide range of functions that vary 

depending the organs and tissue types, and initiating stimulus. 

Although generally considered to be an inflammatory mediator, as 

described above, PGE2 displays an array of functions which depend on the 

context of its release and the organ where this takes place. In its role as an 

inflammatory mediator, release of PGE2 by damaged tissues leads to increased 

capillary endothelium permeability, the recruitment of immune cells to the site of 

injury, and sensitisation of sensory neurones that leads to hyperalgesia (Grösch 

et al., 2017). Yet, PGE2 also has a role in resolving inflammation, as its action 

on the neutrophils and macrophages is generally inhibitory (Dakin et al., 2017; 

Martínez-Colón and Moore, 2018). However, some authors have argued that 
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PGE2 also contributes to the resolution phase of acute inflammation, as 

evidenced by the effect of Ptges1 knockout in mouse models (Langenbach et 

al., 1999; Frolov et al., 2013). In this context, PGE2 also stimulates cell 

proliferation and angiogenesis, which promotes restoration of normal tissue 

function and wound healing (Liu et al., 2015; Shao et al., 2015). PGE2 also 

contributes to the regulation of body temperature, and it is largely responsible 

for triggering pyrexia during infection (Grösch et al., 2017). Impairment of PGE2 

synthesis and transport was shown to disrupt the increase in temperature in 

mice challenged with injected lipopolysaccharide (Nakamura et al., 2018; Poon 

et al., 2015).  

Stimulation of cell proliferation can be seen in primary hypertrophic 

osteoarthropathy (PHO) patients who have germline mutations in HPGD and 

SLCO2A1, where this causes the characteristic dermal hyperplasia, due to the 

reduced ability to degrade PGE2 or prevent it from entering the circulation 

(Seifert et al., 2012; Uppal et al., 2008). Interestingly, the dermal and bone 

features differ between patients with HPGD or SLCO2A1 mutations, 

emphasising the importance of prostaglandin compartmentalisation in the 

microenvironment for downstream effects. Furthermore, there are sex 

differences in PHO patients. Both men and women have similar features when 

HPGD is mutated, but women who have SLCO2A1 mutations are less likely to 

be identified as displaying PHO features, and are more susceptible to a form of 

chronic enteropathy with ulcer formation in the small intestine, which suggests 

that PGE2 signalling may be differentially regulated in men and women to result 

in these phenotypes (Uchida et al.,2017; Umeno et al., 2018). As PGE2 is not 

the only substrate for these to proteins, the effects in PHO patients may be due 

to other prostaglandin molecules.  
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PGE2 also affects haematopoiesis, where it reduces haematopoietic 

stem cell apoptosis by downregulating pro-apoptotic enzymes such as caspase-

3, and stimulates cell cycle progression (Pelus and Hoggatt, 2011). From the 

range of PGE2 actions however, it is clear how the effects on cell proliferation, 

angiogenesis, and suppression of granulocytes could promote tumour survival. 

PGE2 also regulates blood pressure, in part by inhibiting the reuptake of 

sodium ions and water in the kidneys’ collecting duct, promoting salt and water 

excretion (Qi et al., 2002); (Chi et al., 2008). This results in a reduction of blood 

plasma volume, and therefore blood pressure. PTGS, HPGD and SLCO2A1 are 

known to be expressed in renal collecting ducts, which demonstrate the 

autocrine and paracrine nature of PGE2 signalling (Nomura et al., 2004). 

Similarly, inhibition of SLCO2A1 in hypertensive rats has been also 

demonstrated to reduce blood pressure (Chi et al., 2015). This effect is largely 

mediated by the EP2 receptor (Kennedy et al., 1999). 

In the colon, PGE2 also controls motility, predominantly through the EP3 

receptor (Iizuka et al., 2014). In addition, PGE2 has been implicated in the 

regulation of water and electrolyte absorption. Although it has been 

demonstrated to promote secretion of fluids in rodent models, the same 

observations were not seen in human subjects (Rampton and Sladen, 1984; 

Rivière et al., 1991). Prostaglandins, including PGE2 also induce cervical 

maturation and contractions of the uterine smooth muscle. PGE2, and synthetic 

prostaglandin analogue such as carboprost, gemeprost or misoprostol, can thus 

be used for the induction of labour in a gynaecology setting (Bygdeman, 2003). 

Clearly, PGE2 has a range of tissue and cell specific effects, and attempts to 

control its level to resolve one aspect of its function, could potentially impact on 

other physiological processes.  
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 Colorectal cancer 

 Overview of Colorectal cancer 

Colorectal cancer incidence ranks third in men and second in women 

worldwide (Fitzmaurice et al., 2017). The highest incidence rates occur in 

Australia, Europe and North America, which accounts for considerable 

morbidity, particularly amongst the ageing population (Torre et al., 2015). In 

Europe, colorectal cancer is the second-most common malignancy in both men 

and women (Ferlay et al., 2018). Known risks included lifestyle factors such as 

smoking, amount of dietary fibre and processed meat consumed, but also 

environmental factors (e.g. radiation), and genetic predisposition. The incidence 

in the UK is not increasing and the overall survival rates are estimated to be 

approximately 60%. A high proportion of diagnoses are however made at a late 

stage, where survival rates are lower. Developing therapies for prevention and 

also detection and treatment of early stage disease is therefore of interest. The 

most common type of colorectal cancer is the colorectal adenocarcinoma, which 

develops from the colonic mucosal epithelium (Hugen et al., 2014; Bagante et 

al., 2018). 

The sequences of events that progressively lead to colorectal 

tumorigenesis were established first by the observation of chromosomal 

deletions, and later, the aberrant activation of oncogenes (such as KRAS), and 

the loss of tumour suppressor genes (such as APC and TP53) (Powell et al., 

1992). The process, briefly, involves the stages where normal epithelium begins 

to proliferate excessively, which leads to the formation of benign adenomas that 

can then progress to adenocarcinoma once there is invasion of the mucosa 

(Fearon and Vogelstein, 1990). 
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Rare forms of hereditary colorectal cancer syndromes have been crucial 

in establishing the key genes (such as APC in familial adenomatous polyposis 

(FAP) and pathways that become deregulated in sporadic cases of colorectal 

cancer (Knudson, 1985; Nishisho et al., 1991). Inactivating APC mutations are 

known to be one of the earliest events (Powell et al., 1992), and the mechanism 

by which this leads to uncontrolled epithelial cell proliferation has been 

characterised more recently (Barker et al., 2008; Bellis et al., 2012; Boman and 

Fields, 2013). The stem cells at the base of the crypts of Lieberkühn have been 

identified as the starting point for colorectal carcinogenesis, where APC 

mutations and consequent increase of β-catenin expression (which is normally 

targeted for degradation by APC) disrupt the normal asymmetric cell division 

that maintains the stem cell population and produces cells that differentiate into 

columnar epithelium as they migrate towards the colon lumen (Potten et al., 

1992; Bellis et al., 2012). 

While colorectal tumorigenesis has been traced to a specific cell type of 

origin (Barker et al., 2008), the sequence of key mutagenesis events leads to 

the aberrant activation or suppression of other genes’ expression that enable a 

tumour to grow in a self-sustaining manner. These common characteristics, or 

“hallmarks”, that are consistent across all cancers are increased proliferative 

signalling, insensitivity to growth suppressors, resistance to apoptosis, induction 

of angiogenesis, immortalisation and the ability to invade tissues and 

metastasize to distant sites (Hanahan and Weinberg, 2011). More recently, four 

more hallmarks have been added to the original six, and include genomic 

instability, inflammation (Van Den Brenk et al., 1974), immunosuppression in 

the tumour environment and dysregulation cellular respiratory pathways 

(Hanahan and Weinberg, 2011).  



 
 

20 
 

This classification has aided the development of therapies that target 

each of the hallmarks, although alone, such treatments prove inadequate due to 

the tumours’ capacity to evolve and adapt to the environmental stress 

(Hanahan, 2014). Signalling pathways typically influence many downstream 

genes, and ultimately, mechanisms that promote tumour survival (Fearon, 

2011). The importance of the tumour stroma and the cell types that are 

recruited by the cancerous cells, is also recognised, and more effective 

treatment regimens are envisioned to target multiple components to reduce the 

chance of the tumour being able to adapt (Hanahan, 2014). Therefore, 

understanding these pathways and manipulating them pharmacologically is a 

key strategy in the development of new anticancer drugs that can be used in 

addition to conventional chemotherapy and radiotherapy that target a tumours’ 

rapidly-dividing cells. 

 

 Dysregulation of the Wnt/β-catenin in colorectal cancer 

The Wnt/β-catenin signalling pathway is evolutionarily conserved, and 

has a diverse range of functions, including regulating cell proliferation, cell 

polarity, asymmetric cell division, cell migration, calcium deposition in bones, 

embryonic development or insulin sensitivity (Kahn, 2014; Mohammed et al., 

2016; Bellis et al., 2012). There are nineteen Wnt ligand genes encoded in the 

human genome (MacDonald et al., 2009; Kahn, 2014). The prototypical Wnt1 

was first characterised in the mouse  (Nusse et al., 1984), and later in 

Drosophila melanogaster (Baker, 1988), where evolutionary sequence 

conservation led to researchers adopting of the current “Wnt” name for this 

gene family to replace the preceding names for homologs between species (van 

Ooyen et al., 1985; Nusse et al., 1991). 
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β-catenin is a protein that functions both as a cell adhesion adaptor in 

complex with E-cadherin at the cytoplasmic side of the cell membrane 

(Gumbiner and McCrea, 1993), and as a transcriptional activator (Korinek et al., 

1997). When the pathway is not activated, (Figure 1.5) free β-catenin in the 

cytoplasm is unstable and is targeted for proteosomal degradation (Aberle et 

al., 1997). Activation of the signalling pathway by Wnt ligands prevents β-

catenin phosphorylation (Figure 1.4 and Figure 1.5), leading to its accumulation 

and translocation to the nucleus where it binds to activating TCF factors or 

displaces repressive members, driving expression of target genes (Mohammed 

et al., 2016). The signalling cascade can activate other downstream effectors in 

addition to β-catenin, such as small GTPases, or by inducing intracellular 

calcium cation release (Kikuchi et al., 2012; Mehdawi et al., 2016; Mohammed 

et al., 2016) 

However, dysregulation of the Wnt/β-catenin signalling pathway is a 

recurring event in range of malignancies, including breast, melanoma, 

hepatocellular and gastrointestinal cancers (Takayama et al., 1996; Ilyas et al., 

1997; Korinek et al., 1997; Morin et al., 1997; Chiurillo, 2015). Amongst the 

earliest direct downstream targets of the signalling cascade to be discovered 

were the proto-oncogenes c-Myc (MYC) and Cyclin D (CCND), which stimulate 

cell cycle progression and cell proliferation (MacDonald et al., 2009; Fearon, 

2011). Therefore, this unregulated proliferation would promote the accumulation 

of further mutations as the cells become resistant to cell cycle checkpoint 

signals and apoptosis. 
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Figure 1.5: Outline of the Wnt/β-catenin signalling pathway (inactive state) 
In the absence of Wingless-type (Wnt) ligand the Frizzled receptor and 

Low-density lipoprotein receptor family 5/6 (LRP5/6) co-receptor do not 
associate, and intracellular β-catenin targeted for degradation. Ademomatous 
polyposis coli (APC), Axin and GSK3β form a “destruction complex” that 
phosphorylates β-catenin. Casein Kinase 1α (CK1α) also participates in β-
catenin phosphorylation. Phosphorylated β-catenin is subsequently recognised 
by the E3 ubiquitin ligase β-TrCP, and ubuquitination targets β-catenin for 
proteosomal degradation. This prevents β-catenin accumulation in the 
cytoplasm and subsequent translocation to the nucleus. Therefore, T-cell 
specific factor (TCF) proteins that bind to the promoters of target genes 
associate with transcriptional repressors such as Groucho and Histone 
deacetylates (HDAC) are not displaced, leading to the repression of the target 
genes. 
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Figure 1.6: Outline of the Wnt/β-catenin signalling pathway (activated) 
Wnt binding to the Frizzled and LRP5/6 receptor complex. This recruits 
Dishevelled (Dlv) to the Frizzled intracellular domain. This induces translocation 
of Axin, GSK3β and CK1α to the LRP co-receptor cytoplasmic domain, which 
results in the dissociation of the APC/Axin/GSK3β complex. This prevents 
phosphorylation and ubiquitination of cytoplasmic β-catenin. β-catenin thus 
accumulates in the cytoplasm and is able to translocate to the nucleus where it 
displaces transcriptional repressors associated with repressor TCF factors 
(such as TCF3), and recruits TCF family members that drive transcription, (such 
as TCF4). In this way, β-catenin functions as a transcriptional activator in, 
driving expression of target genes. 
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In sporadic colorectal cancer, aberrant Wnt/β-catenin pathway activation 

is one of the earliest initiating events (Rubinfeld et al., 1993; Munemitsu et al., 

1995; Takayama et al., 1996; Boman and Fields, 2013). Germline mutations in 

APC were first discovered in the hereditary Familial Adenomatous Polyposis 

syndrome, and later in sporadic colorectal cancer cases (Fearon and 

Vogelstein, 1990; Nishisho et al., 1991; Powell et al., 1992). APC mutations 

often disrupt APC protein’s ability to bind β-catenin, and therefore enable 

phosphorylation by GSK3β (Rubinfeld et al., 1993; Fearon, 2011). Although 

mutations in other components of the pathway do occur (such as mutations or 

N-terminal deletion of β-catenin leading to the loss of its phosphorylation site), 

they are comparatively rare (Fearon, 2011). 

 APC also has a role in controlling cell polarity and mitosis. Its function is 

essential for regulating asymmetric cell division, as would be the case of a stem 

cell, where one daughter cell maintains its stem cell phenotype, while the other 

differentiates. This process is critical for renewing epithelia such as that of the 

intestinal and colonic on the luminal surface of the mucosa (Boman and Fields, 

2013). Therefore, in addition to their effects on proliferation, APC mutations also 

disrupt the stem cells’ polarity and capacity to divide asymmetrically, as 

discussed in section 1.2.1 above (Quyn et al., 2010; Bellis et al., 2012). 

 

 TGF-β signalling in colorectal cancer 

Transforming Growth Factor β (TGF-β) is a member of a superfamily of 

related cytokines (bone morphogenetic peptides, activins, inhibins and growth 

and differentiation factors), which share as common characteristics a disulphide 

bond-linked dipeptide homodimer as the active agent, similar receptor subunit 

structure, and post-translational modification to generate the active dipeptide 
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(Hinck and O'Connor-McCourt, 2011; Poniatowski et al., 2015). TGF-β exists in 

three isoforms, TGF-β1, TGF-β2 and TGF-β3, of which TGF-β1 and TGF-β2 

have greater affinity for the TGF-β receptor complex. The receptor (Figure 1.6) 

exists as a heterotetramer of two Type I receptors and two Type II receptors, 

with the type III receptors functioning as adaptors to assist binding between the 

active TGF-β and the receptor complex. This triggers a phosphorylation 

cascade, which in the case of TGF-β consists of the SMAD2 and SMAD4 

transcription factors that bind to the promoters of target genes to activate 

transcription.  

The TGF-β pathway is amongst one of the key signalling pathways that 

are dysregulated in colorectal cancer (Markowitz et al., 1995), where mutations 

lead to constitutive activation. The TGFβ type II receptor (TGFBR2) is mutated 

in approximately 25% of colorectal cancer cases, while mutations to the 

downstream SMAD2, SMAD3 or SMAD4 are less frequent (Fearon, 2011; de 

Miranda et al., 2015). The constitutive activity of the TGF-β pathway is a 

facilitating, rather than initiating, event in colorectal carcinogenesis. It is known 

to inhibit early tumour growth (Engle et al., 1999), a likely contributing factor 

being its suppression of Prostaglandin E2 signalling (discussed in sections 1.2.4 

and 1.2.5 below) (Yan et al., 2004). However, TGF-β signalling accelerates the 

growth of more advanced or metastatic tumours, and therefore the pathway 

components’ genes are generally viewed as tumour suppressors (Zhao et al., 

2018). Smad4+/-  heterozygous mice do not develop intestinal polyps, but 

compound Apc+/Δ716 Smad4+/-  heterozygotes developed fewer, but larger 

number of polyps than the Apc+/Δ716, mouse model, and several developed into 

carcinomas. This can also be seen in the cooperative role of SMAD proteins 

and mutant, but not wild-type, p53 in inducing target gene transcription to 
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promote metastasis (Dupont et al., 2004; Adorno et al., 2009). Therefore, this 

suggests that the TGF-β pathway becomes oncogenic in the presence of 

dysregulation in other suppressor pathways. 

TGF-β drives colorectal carcinogenesis is by increasing tumour cell 

metastatic potential through triggering epithelial to mesenchymal transition, and 

sustaining an immunosuppressive tumour microenvironment (Kasai et al., 2005; 

Takahashi et al., 2010; Tirino et al., 2013; Tauriello et al., 2018). Its ability to 

induce epithelial to mesenchymal transition has been observed in a number of 

cancer cell lines, (Kasai et al., 2005; Tirino et al., 2013; Yeung et al., 2013; Wu 

et al., 2014). This causes the downregulation of cell adhesion proteins, such as 

E-cadherin, and promotes cell motility, which facilitates tissue invasion 

(Tauriello et al., 2018; Lampropoulos et al., 2012). This has led to TGF-β 

pathway activation being one of the key markers used to classify colorectal 

cancer according to gene expression patterns (Guinney et al., 2015; 

Dienstmann et al., 2017). 
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Figure 1.7: Overview of the TGF-β signalling pathway 
The TGF-β receptor is a tetramer consisting of two TGFBR1 Type I receptors 
and two TGFBR2 Type II receptors. The TGFBR3 is a Type III receptor that 
facilitates the ligand’s binding to the receptor. The TGF-β disulphide-linked 
dimer binds to the extracellular domains of the TGFBR1 and TGFBR2. TGFBR2 
then phosphorylates the TGFBR1 in the glycine-serine repeat box (GS box) to 
expose the active site. The TGFBR1 in turn phosphorylates SMAD2 and 
SMAD3 (Hinck and O'Connor-McCourt, 2011). The co-activator SMAD4 forms a 
complex with the phosphorylated SMAD2 and SMAD3, which translocates to 
the nucleus to mediate transcriptional activation 
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 PGE2’s role in Colorectal Cancer 

PGE2’s normal actions can be subverted by tumours to promote their 

survival and sustain their continued growth. Due to its influence on 

inflammation, it has the ability to drive many of the hallmarks of cancer 

(Hanahan and Weinberg, 2011; Van Den Brenk et al., 1974). This includes cell 

proliferation (Castellone et al., 2005), angiogenesis (Kochel and Fulton, 2015), 

inhibition of apoptosis (Tai, 2011), inflammation (Choi and Zelig, 1994); 

(Gustafsson et al., 2010; Zhao et al., 2017), metastasis (Guillem-Llobat et al., 

2016; Wang et al., 2015), and immunosuppression in the tumour 

microenvironment (Hauptmann et al., 1993). 

In a study in 1987, it was found that colorectal tumours had increased 

levels of AA and PGE2, but not other prostaglandins, relative to normal colon, 

which in the context of more recent work, highlighted the importance of PGE2 in 

particular for promoting tumour survival (Bennett et al., 1987). PTGS2 (COX-2) 

was later discovered to be consistently upregulated not only in colorectal cancer 

(Eberhart et al., 1994; Sano et al., 1995; Gustafson-Svard et al., 1996; 

Soumaoro et al., 2004) but in other malignancies including breast (Wolf et al., 

2006), lung, (Maeng et al., 2014), prostate (Lodygin et al., 2005) and head and 

neck squamous cell carcinoma (St John et al., 2012), though the role of 

prostaglandins in colon cancer has been most widely studied. That APC+/Min 

mice with deleted COX-2 had reduced intestinal tumours highlighted the 

mechanistic importance of COX-2 (Oshima et al., 1996). Moreover PTGS2 

expression is not only upregulated within the tumour cells, but also in the 

surrounding stromal cells (Hara et al., 2010). As a result, the high local PGE2 

concentrations would promote tumour survival. In addition, PGE2 also drives a 

positive feedback loop, where, mainly through action on the EP2 and EP4 
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receptors (Fujino et al., 2003), induces the upregulation of PTGS2, as well as 

PGES (Seo et al., 2009; Sjögren et al., 2013) and MRP4 (Hara et al., 2010), 

thereby increasing both PGE2 synthesis and the capacity to export it into the 

extracellular environment.   

The utility of NSAIDs to inhibit PTGS2 (and drive the synthesis of anti-

inflammatory resolvins, as described in section 1.1.3 above) as a prophylactic 

treatment have been already established, where low-dose aspirin was found to 

reduce the risk of developing colorectal cancer (Hial et al., 1976; Pollard and 

Luckert, 1981; Kune et al., 1988; Thun et al., 1991) and Ptgs2 inhibition in 

Apc+/min mice (Jacoby et al., 2000). These drugs, such aspirin or celecoxib, can 

be used as adjuvant therapy following adenoma resection to reduce the chance 

of recurrence (Hua et al., 2018). However, their effectiveness is limited by the 

adverse effects that can result by PGE2, as well as other prostaglandins.   

 PGE2 is required for gastric epithelium mucus secretion, and NSAIDs, 

particularly when used long-term, in high doses, can lead to the development of 

gastric ulcers (Grösch et al., 2017). Likewise, the global inhibition of 

prostaglandins and thromboxanes also has an anticoagulant effect by reducing 

platelets’ ability to aggregate (Weiss et al., 1968; Zucker and Peterson, 1968). 

Given that PGE2 is the prostaglandin responsible for tumour growth, these 

adverse effects could be addressed by targeting PGE2 more specifically. 

However, COX-2-selective inhibitors have been associated with cardiovascular 

adverse effects, in spite of their reduced gastrointestinal side effects (Patrignani 

et al., 2003; Qi et al., 2002). 

 Furthermore, not all patients who undergo aspirin treatment experience a 

reduction in colorectal cancer risk (Fink et al., 2014). This is because, although 

NSAIDs act on one of the earliest steps in the PGE2 synthesis pathway, 
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compensatory mechanisms may evolve, or already exist to counteract the 

action of the NSAIDs. Low expression of HPGD was found to correlate with the 

loss of aspirin’s prophylactic effect, since this would result in longer PGE2 

persistence in the extracellular space (Fink et al., 2014). This reflects one of the 

major challenges in cancer treatment, where a tumour’s heterogeneous nature 

and its capacity to evolve to compensate against the inhibition of one pathway 

component, often result the development of resistance, and a more aggressive 

relapse. Therefore, targeting multiple components of the PGE2 metabolic 

pathway could offer a means to reduce the chance of compensatory 

mechanisms counteracting the action of NSAIDs (Hanahan, 2014).  

 

 Loss of HPGD and SLCO2A1 expression 

Within the past decade, there has been a shift in literature to also study 

the degradation component of the PGE2 pathway. Pioneering work by Dr. 

Sanford D. Markowitz (Yan et al., 2004; Myung et al., 2006) and other 

researchers established the loss of HPGD expression in colorectal, breast, and 

other cancers, demonstrating that both the synthesis and degradation arms of 

the pathway are dysregulated (Backlund et al., 2005; Castellone et al., 2005; 

Wolf et al., 2006).  

The ability of HPGD to antagonise the action of PTGS2, was first 

demonstrated in mRNA and protein expression levels between normal colon 

epithelium, and adenocarcinoma or colorectal cancer cell lines and the effects 

on cell and xenograft tumour growth (Yan et al., 2004; Backlund et al., 2005). 

Germline knockout of the mouse Hpgd gene, on its own, was shown to be 

insufficient to induce tumorigenesis, but when combined with a pre-existing 

genetic predisposition (Apc+/Min) or a carcinogen exposure (Azoxymethane), the 
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tumour burden in the mouse small intestine and colon was increased (Myung et 

al., 2006). As such it became clear that the control of PGE2 degradation was as 

important as the regulation of its synthesis. Furthermore, the above study also 

demonstrated that HPGD loss can stimulate colorectal cancer growth through 

prolonging PGE2 action, HPGD itself is not a tumour suppressor gene (in 

contrast to RB1 (Knudson, 1971) or APC (Powell et al., 1992). 

In colorectal adenocarcinoma samples, as well as other cancers, it was 

found that HPGD was downregulated, but not mutated, meaning that loss of 

HPGD expression was caused by perturbations in the gene’s transcriptional 

regulation (Yan et al., 2004). Therefore, stimulation of HPGD expression has 

been considered to be a mechanism to reduce PGE2 signalling within the 

tumour, a treatment that could be used in conjunction with, or as an alternative 

to, NSAIDs (Kaliberova et al., 2009; Na et al., 2011). Already, this has been 

attempted by one group, who trialled a drug on colorectal cancer cell lines that 

can induce HPGD expression (Seira et al., 2017). 

However, although the loss of HPGD in cancer has been demonstrated, as has 

its value as a prognostic marker, its transcriptional regulation remains to be fully 

determined (Thompson et al., 2013; Kang et al., 2014; Yang et al., 2014; Hu et 

al., 2015).  

Two studies characterised the proximal HPGD promoter, and were able 

to demonstrate with considerable evidence, that HPGD could be positively 

regulated by three transcription factor families (AP-1, Ets, and CREB), which 

bind directly to the promoter to exert their effect (Greenland et al., 2000; Nandy 

et al., 2003). AP-1 transcription factors, which consist of the Jun and Fos 

proteins, are expressed in colonic epithelial cells, and in adenocarcinomas 

(Zhang et al., 2005). Although they do not appear to influence tumour growth, 
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evidence suggests that their activity contributes to the tumour cells’ ability to 

metastasize (Bae et al., 2014; Iskit et al., 2015). Similarly, the Ets family of 

transcription factors has been implicated in driving carcinogenesis and tumour 

survival through a number of mechanisms (Sizemore et al., 2017). In colorectal 

cancer, Ets1 and Ets2 (Leprince et al., 1983) are expressed in 

adenocarcinomas, but not normal colon epithelium or in adenomas with low to 

medium dysplasia (Nakayama et al., 2001; Ito et al., 2002), with Ets1 

expression negatively correlated with patient survival in colorectal cancer 

patients (Peng et al., 2014). Although both AP-1 and Ets can upregulate HPGD 

expression, their established role in favouring the development of colon cancer 

indicates they would not be an ideal mechanism through which to increase 

HPGD levels. CREB is considered to be a ubiquitous transcription factor that 

regulates many aspects of cell proliferation and survival (Sakamoto and Frank, 

2009). As CREB can be activated by upstream phosphorylation cascades that 

result from increased intracellular cAMP, this may suggest a potential negative 

feedback mechanism for PGE2 to upregulate HPGD through the EP2 and EP4 

receptors (Nishihara et al., 2004). However, its role in colon cancer aetiology is 

not well established, suggesting that manipulating its expression to increase 

HPGD transcription must be viewed with caution at present. The other study to 

follow up the work on the HPGD promoter found an inverse correlation of β-

catenin and HPGD expression in both human and mouse intestine and colon, 

and proposed that β-catenin and TCF transcription factors act to suppress 

HPGD expression (Smartt et al., 2012b). Although their evidence and 

arguments to support this mechanism were not as robust, they established that 

loss of HPGD, as well as SLCO2A1, is an event that coincides with APC 

mutations and aberrant β-catenin activity, which is considered to be the initiating 
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event in colorectal cancer development (Smartt et al., 2012b; Barker et al., 

2008; Quyn et al., 2010; Boman and Fields, 2013). Therefore, their results 

suggested that HPGD and SLCO2A1 may be co-regulated by β-catenin (Smartt 

et al., 2012a; Smartt et al., 2012b). 

In contrast to HPGD, even less is known about SLCO2A1, and how it is 

regulated. The literature has generally appeared to be more biased towards 

HPGD, despite SLCO2A1’s important role to transport PGE2 into the cell and 

make it accessible to HPGD (Schuster et al., 2015). It has been observed that 

SLCO2A1 expression is also lost in colorectal cancer, and like HPGD, loss of 

SLCO2A1 can be associated with a poorer prognosis (Holla et al., 2008; 

Takeda et al., 2015). Moreover, while their analysis of SLCO2A1 was more 

superficial compared to that of HPGD, Smartt et al, (2012) demonstrated a 

potential for SLCO2A1 and HPGD to be co-regulated by β-catenin (Smartt et 

al., 2012a; Smartt et al., 2012b). 

SLCO2A1’s function has generally been accepted as an importer of 

PGE2 into the cell, based on evidence on a number of studies on cell line 

systems and immunohistochemistry (Bao et al., 2002; Nomura et al., 2005), 

rodent models (Chang et al., 2010; Chi et al., 2015; Liu et al., 2015), and PHO 

patients (Li et al., 2017b). However, a series of more recent studies have 

proposed that it may also function to transport PGE2 bidirectionally in certain 

cases, and possibly contribute to PGE2 secretion (Kasai et al., 2016; Shimada 

et al., 2015; Shirasaka et al., 2013). This was based on the theory that 

SLCO2A1 localised on cytoplasmic exosomes membranes may concentrate 

PGE2 prior to exocytosis (Kasai et al., 2016). 

The potential for HPGD and SLCO2A1 co-regulation is a possibility, 

considering how PGE2 is able to drive expression of its major synthesis 
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enzymes and exporter protein (Hara et al., 2010). An inverse relationship has 

been observed between PTGES2 and HPGD in one study on lung cancer cells, 

where upregulation of one gene led to the downregulation of the other (Tong et 

al., 2006a). Whether this relationship is important in colon cancer cells has yet 

to be determined. However with the observation that generally COX-2 is 

upregulated whilst HPGD expression is reduced or lost, indicates that both the 

synthesis and degradation components of the pathway are important in 

increasing PGE2 release and prolonging its action by a much reduced 

degradation rate. 

However, SLCO2A1 has not received comparable attention in the 

literature, in the context of colorectal cancer, with little information on 

transcriptional regulation beyond the in silico prediction of its transcriptional start 

site and predicted transcription factor binding sites (Lu and Schuster, 1998). A 

clearer understanding of transcriptional regulation of HPGD and SLCO2A1 

could lead to understanding the mechanisms by which their function is lost 

during carcinogenesis (Smartt et al., 2012a; Smartt et al., 2012b). This in turn 

could be used to develop strategies to reactivate and increase their expression 

to supplement or replace NSAIDs to which some patients do not respond (and 

which also have the adverse effects of reducing stomach mucus secretion, and 

COX-2 selective inhibitors’ association with cardiovascular problems). 
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 Aims 

 

Characterise the regulation of the HPGD and SLCO2A1 promoters using 

colorectal cancer cell lines as a model system 

 

Determine whether HPGD and SLCO2A1 have associated downregulated 

expression patterns in sporadic colorectal adenocarcinomas relative to normal 

colon mucosa. 
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 Methods 

 Protein procedures 

 Paraformaldehyde fixation and paraffin embedding of mouse 
organs 

The use of mouse tissues was covered under the project licence PPL 

70/7965. Lungs, kidneys, small intestine and colon from euthanized Apc+/Min and 

wild-type (WT) male mice were isolated and fixed overnight in 4% w/v 

paraformaldehyde solution at room temperature. The organs were subsequently 

washed in 1 × PBS and stored at room temperature in 70% w/w ethanol. The 

tissue samples were paraffin-infiltrated using a Leica ASP200 automated 

vacuum processor, and subsequently embedded into sectioning blocks. 

Formaldehyde-fixed paraffin-embedded (FFPE) blocks were stored at room 

temperature. 

 

 Preparing sections and slides from formaldehyde-fixed 
paraffin-embedded section mouse tissue  

Paraffin blocks were sectioned on a Leica RM2255 microtome, at 5-μm 

thickness, and dried at 37°C overnight on Superfrost Plus slides (Thermofisher 

Scientific, Massachusetts, USA). A second plain paraffin section was applied 

over the tissue to protect it from oxidation. Slides were then stored at 4°C and 

used for immunohistochemistry within two weeks of sectioning. 
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 Immunohistochemistry on formaldehyde-fixed paraffin-

embedded tissue sections 

Immunohistochemistry was carried out on 5-μm FFPE tissue sections to 

assess the efficacy of available commercial anti-HPGD and anti-SLCO2A1 

antibodies (Table 9) in staining human and mouse tissue. Ethical approval for 

the use of normal human kidney, colon and lung tissue sections for 

immunohistochemistry was covered by the GIFT ethics, reference number 

05/H00903/62. 

Sections were dewaxed and rehydrated by incubating for 5 minutes in 3 

serial xylene baths followed by 1 minute in 3 absolute (100% w/w) ethanol baths 

and then tap water for 5 minutes. Heat-induced epitope retrieval was carried out 

by microwaving the sections at full power for 10 minutes in pre-warmed sodium 

citrate buffer (pH 6.0), followed by cooling at room temperature for 20 minutes. 

Endogenous peroxidase blocking was carried out in 0.3% w/w hydrogen 

peroxide in methanol for 10 minutes at room temperature. Sections were 

blocked in 1 × Casein in Antibody Diluent solution (Vector Laboratories, UK) 

incubated at room temperature for 30 minutes before the addition of antibodies. 

The sections were incubated overnight at 4°C. Antibody specificity was 

evaluated using non-specific host antibodies (rabbit IgG), and a negative control 

with no primary antibody. 

The sections were washed in 1 × TBS + 0.01% w/w Tween-20 twice and 

once in 1 × TBS for 5 minutes. Horseradish peroxidase-conjugated anti-rabbit 

secondary antibody (EnVision, Dako. Agilent Technologies, California USA) 

was applied, and the slides incubated for 30 minutes at room temperature. 

Sections were washed in 1 × TBS + 0.01% w/w Tween-20 twice and once in 1 × 

TBS for 5 minutes. 100 μl of 3,3′-diaminobenzidine (Invitrogen, Massachusetts, 
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USA) was applied to each section for 10 minutes. After washing for 2 minutes 

under running water, the slides were counterstained with Mayer’s haematoxylin 

for 30 s, followed by 1 minute under running tap water, 1 minute in Scott’s tap 

water, and 1 minute under running tap water. 

Sections were dehydrated through the same 3 absolute ethanol and 3 

xylene baths in the reverse order and mounted using dibutyl phthalate in xylene 

(DePeX). They were visualised under a light microscope to assess antibody 

staining, and sections of interest were then imaged under a Nikon Eclipse 1000 

microscope fitted with a digital camera. Images were taken under the × 4, × 10 

and × 40 objective lenses. 

 

 Protein extraction from cultured cells 

A modified preparation of radioimmonoprecipitation assay (RIPA) buffer 

was used for cell lysis (50 mM Tris-HCl (pH8.0), 150 mM NaCl, 1% w/w Triton 

X-100, 2% w/w SDS and 0.5% w/w sodium deoxycholate). Working aliquots of 

buffer were supplemented with 1 × PhosSTOP phosphatase inhibitor cocktail 

(product code 04906845001, Roche, UK) 1 mM dithiothreitol, in the final 

volume. The cells were washed in ice-cold 1 × PBS, lysed with the buffer and 

then placed on ice for 10 minutes. Cell lysates were scraped, transferred to 

centrifuge tubes and incubated on ice for a further 10 minutes. They were then 

centrifuged for 20 minutes at 4°C at 12,000 × g, and supernatants stored at 

−80°C.   
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 Protein concentration measurement using bicinchoninic acid  

Protein concentration was determined against a BSA standard curve, 

using the bicinchoninic acid protein assay (product code 71285-3, Novagen, 

Wisconsin, USA). BSA standards and sample lysates were aliquoted in 

duplicate on a clear 96-well plate. Working solution was added, the reaction 

mixed for 30 s on a shaker, and then incubated for 30 minutes at 37°C. After 

cooling to room temperature for 10 minutes, the absorbance was measured on 

a Mithras LB 940 multimode microplate reader (Berthold Technologies, Bad 

Wildbad, Germany) with a 2 second exposure through a 570 nm filter. The 

results were transferred to a spreadsheet to plot a standard curve using the 

BSA standards. 

 

 Polyacrylamide gel electrophoresis of cell lysate proteins 

 1 μl NuPAGE Sample Reducing Agent (NP0004) and 4 μl of NuPAGE 

lithium dodecyl sulphate loading buffer (NP0007) were added to 16 μl of cell 

lysates containing 21–30 μg total protein. The mixture was boiled at 100°C for 5 

minutes and immediately transferred to ice to prevent protein refolding. 

Polyacrylamide gel electrophoresis was carried out using precast 4–12% w/v 

gradient 10-well gels (NuPAGE), in 1 × MOPS SDS running buffer (product 

number NP0001, Invitrogen, Massachusetts, USA) at 180 V for 60 minutes.   

 

 Transfer of proteins to PVDF membrane 

1 × NuPAGE transfer buffer, (product number NP0006-1, Invitrogen, 

Massachusetts, USA) containing 10% w/w methanol was used to carry out the 
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transfer of proteins to a polyvinylidene fluoride (PVDF) membrane (Amersham 

Hybond P, General Electric Healthcare Bio-Sciences, Massachusetts, USA). 

The membrane was pre-treated with 100% w/w methanol for 30 s, followed by 

two 5-minute washes in dH2O, and 20 minutes in 1 × transfer buffer + 10% w/w 

methanol. Proteins were transferred onto the membrane at 12 V for 16 hours. 

 

 Probing blotted proteins with SLCO2A1 and ACTB antibodies  

The membrane was blocked in 1 × PBS + 0.1% w/w Tween-20 + 5% w/v 

dried non-fat milk for 1 hour at room temperature. Primary antibodies were 

diluted in 1 × PBS + 0.1% w/w Tween-20 + 1% w/v dried non-fat milk. The 

primary antibody was applied to the membrane at 4°C for 16 hours.  

 After this, the membrane was washed 3 times in 1 × PBS + 0.1% w/w 

Tween-20 for 5 minutes. The pig anti-rabbit HRP-conjugated secondary 

antibody (product number P0217, Dako, UK) was diluted in 1 × PBS + 0.1% 

Tween-20 + 1% w/v dried non-fat milk at (1:130,000 initially) 1:3000. The 

membrane was incubated with the primary antibody for 1 hour at room 

temperature. 

 The membrane was then washed 3 times in 1 × PBS + 0.1% w/wTween-

20 for 5 minutes, and visualised using a Luminol-based chemiluminescence kit 

(Super Signal West Femto Maximum Sensitivity Substrate kit, product number 

34094, Thermofisher Scientific, Massachusetts, USA). The membrane was 

incubated in the dark for 5 minutes prior to imaging. Excess working solution 

was washed off and images taken at 10-s intervals for 2 to 10 minutes in a Bio-

Rad Molecular Imager® Gel Doc™ XR+ System (Bio-Rad, California, USA) 

using Image Lab 5.2.1 build 11 (Bio-Rad Laboratories, California, USA). The 
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same membranes were re-probed for β-actin (Abgent A0125a. Abgent Inc, 

California, USA) diluted 1:1000 and visualised as described above. 

 

 RNA Procedures  

 RNA extraction using the acid guanidinium thiocyanate–

phenol–chloroform method 

 RNA was isolated from cell lysates using TRIzol, a commercial reagent 

derived from the method of Chomczynski and Sacchi (1987). Cells were 

washed with room temperature 1 × PBS and lysed using the volume of TRIzol 

(Thermofisher, USA) recommended for flasks or culture plates. The lysates 

were scraped and transferred to microcentrifuge tubes. After incubation for 5 

minutes at room temperature, chloroform was added and the mixture shaken by 

hand for 15 seconds. Following a 3-minute incubation at room temperature, the 

mixture was centrifuged at 12,000 × g for 15 minutes at 4°C. The aqueous 

phase was transferred to a new tube and centrifuged as above. In a new tube, 

RNA was precipitated using 100% w/w isopropanol, and pelleted by 

centrifugation at 12,000 × g for 10 minutes at 4°C. The RNA pellet was washed 

with 75% w/w ethanol and spun at 7,500 × g for 10 minutes at 4°C two or three 

times. RNA was resuspended in RNase-free water and stored at -80°C. 

 

 Reverse transcription reactions 

 Between 2 μg and 5 μg of RNA was used for standard reverse 

transcription reactions. The reaction mixture was set up to contain 1 × cDNA 

first strand buffer (50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2, 5 mM 
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dithiothreitol), 2U/μl RNaseOUTTM RNAse inhibitor, 0.5 mM dNTPs, 2.5 ng/μl 

random hexamers, and 10U/μl of Superscript II or Superscript III reverse 

transcriptase (RT) (Thermofisher Scientific, Massachusetts, USA), in RNase-

free water. First, the RNA, random hexamer primers and dNTPs were mixed 

and incubated at 65°C for 5 minutes and cooled on ice for 2 minutes. The 

RNase inhibitor, dithiothreitol, reaction buffer and RNase-free water were then 

added, and the mixture pre-heated to 25°C for 2 minutes before adding the 

Superscript II RT. This pre-heating step was not required for the Superscript III 

RT.  

The reaction was then incubated at 25°C for 10 minutes, followed by 

42°C (Superscript II RT) or 55°C (Superscript III RT) for 60 minutes, and 70°C 

for 15 minutes. 2 U/μl of RNAse H was added to remove RNA template and the 

reaction incubated at 37°C for 20 minutes. 

 

 Preparation of cDNA for the RNA ligase-mediated rapid 

amplification of 5′-cDNA ends (RLM-RACE) 

 Total RNA was firstly dephosphorylated to prevent the downstream 

reaction of non-mRNA species, followed by removal of the 5′ mRNA cap and 

the ligation of the GeneRacer oligomer to the exposed 5′ mRNA ends prior to 

generation of cDNA. 4.55 μg (Caco-2) and 4.05 μg (LoVo) total RNA was used 

at the start of the procedure. 

The dephosphorylation reaction contained 1 × calf intestinal phosphatase  

(CIP) buffer (50 mM Tris-HCl (pH8.5), 0.1 mM EDTA), 1U/μl CIP, 4U/μl 

RNaseOUTTM RNAse inhibitor) and was incubated at 50°C for 1 hour. 



 
 

43 
 

Following phenol:chloroform extraction, the RNA was precipitated with 

the addition of 20 mg mussel glycogen, 10 μl 3M sodium acetate and 95% w/w 

ethanol. The RNA pellet was washed with 70% w/w ethanol and resuspended in 

8 μl DEPC-treated water for the next reaction. 1 μl of the RNA was run on a 

denaturing formaldehyde agarose gel to check for RNA degradation. 

The decapping reaction contained 1 × tobacco acid pyrophosphatase 

(TAP) buffer (50 mM sodium acetate (pH6.0), 0.1 mM EDTA, 0.1% w/w β-

mercaptoethanol, 0.01% w/w Triton X-100), 0.05 U/μl tobacco acid 

pyrophosphatase, and 4 U/μl RNaseOUTTM RNAse inhibitor. The reaction was 

incubated at 37°C for 1 hour, and RNA precipitated as described above.  

The 7 μl of resuspended RNA was added to the 250 ng of lyophilised 

GeneRacer RNA oligomer. The ligation reaction was set up in 1 × ligase buffer 

(33 mM Tris-acetate, 66 nM potassium acetate, 10 mM magnesium acetate, 0.5 

mM dithiothreitol), 1 mM ATP, 4 U/μl RNaseOUTTM RNAse inhibitor and 0.5 U/μl 

T4 DNA ligase. The reaction was incubated at 37°C for 1 hour, RNA 

precipitated as described above, and resuspended in 11 μl of DEPC-treated 

water.  

Due to the GC-rich nature of the HPGD and SLCO2A1 5′-UTRs, 

Thermoscript RT was used for the reverse transcription reaction in place of the 

Superscript RT III to ensure effective cDNA generation. The final reaction 

mixture contained 1 × cDNA synthesis buffer (50 mM Tris acetate (pH 8.4), 75 

mM potassium acetate, 8 mM magnesium acetate), 5 mM dithiothreitol, 2.5 

ng/μl random hexamer primers, 0.5 mM dNTP, 2 U/μl RNaseOUTTM RNAse 

inhibitor and 0.75 U/μl Thermoscript RT.  Random hexamer primers, dNTPs and 

DEPC-treated water were added to 10 μl of the RNA from the oligomer ligation 

reaction. These were incubated at 65°C for 5 minutes, followed immediately by 
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incubation on ice for a further 2 minutes. To this mixture, the cDNA synthesis 

buffer, dithiothreitol, RNAse inhibitor and ThermoScript RT were added, at the 

final concentrations described above. The reaction was incubated at 25°C for 

10 minutes, followed by 60°C for 60 minutes and 85°C for 5 minutes. 2 U/μl of 

RNAse H, in the final reaction volume, was added to remove RNA template and 

the reaction incubated at 37°C for 20 minutes. 

 

 DNA procedures 

 PCR primer design 

 All primers (Table 1) were designed using the Primer-BLAST program 

(Ye, et al, 2012), to check for possible off-target products.  

 

 Polymerase chain reaction (PCR) 

 Standard PCRs were set up in 1 × GoTaq Flexi buffer (M8901, 

Promega), or 1 × GoTaq Flexi buffer (green) (M8911, Promega, Wisconsin, 

USA) with 1.5 mM MgCl2, 200 μM dNTPs, 0.2 μM each forward and reverse 

primer,  in-house Taq polymerase and 10–40 pg/μl of template DNA in the final 

reaction volume (Table 2). All PCR reactions were carried out on a MJ 

Research DNA Engine Dyad Peltier Thermocycler (Bio-Rad, California, USA).  

 For applications where proof-reading capability was needed, the 

Platinum Pfx DNA polymerase and protocol were used (ThermoFisher 

Scientific, Massachusetts, USA) (Table 2). The final reaction mixture contained 

1 × Pfx amplification buffer, 1 mM MgSO4, 300 μM dNTPs, 0.3 μM each forward 

and reverse primer, 1U/μl Platinum Pfx DNA Polymerase and 10–40 pg/μl of 
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template DNA. A variation of this setup was followed for the RLM-RACE 

reactions. 

 

 RNA ligase-mediated rapid amplification of cDNA 5′-ends 

(RLM-RACE) and nested PCR 

For the first PCR step, the generic GeneRacer Oligomer forward primer 

and a gene-specific reverse primer were used in a ratio of 3:1, given the ligation 

of the oligomer to all mRNA sequences, and the reliance on the reverse primer 

for target gene specificity. The PCR reactions to amplify specific cDNA products 

for HPGD, SLCO2A1 and ACTB were set up according to the GeneRacer 

manual, including the recommended single-primer controls and no-DNA 

template (negative) controls. “Touchdown” PCR was carried out for the first 

PCR step (Table 5 and Table 6), and the subsequent nested PCR was a 

conventional reaction using the Platinum Pfx DNA polymerase, as described 

above (section 2.3.2).  

 

 DNA purification 

 Shrimp alkaline phosphatase (SAP) and exonuclease I were used to 

remove residual primers from PCR reactions prior to the RLM-RACE or 

sequencing. 5 μl of PCR reaction was treated with 2 μl SAP and exonuclease I 

(ExoSAP-IT), and incubated at 37°C for 15 min, followed by 80°C for 15 min, to 

remove dNTPs and primers.  

Where PCR products needed to be purified, a column-based kit system 

was used, derived from the methods of Hamaguchi and Geiduschek (1962) and 

Vogelstein and Gillespie (1979) (GeneElute, Sigma, Missouri, USA). If gel 
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extraction was carried out for PCR products or restriction fragments, the DNA 

was run on an agarose gel, 0.5% w/v to 2% w/v, depending on the DNA 

fragment sizes, alongside a 100-bp+ or 1-kb ladder. Ethidium bromide solution 

was added to a final concentration of 0.33 μg/ml in the agarose gel. Where 

crystal violet was used instead, the concentration in gel and 1 × TAE buffer was 

10 μg/ml. A clean scalpel was used to excise the bands of interest, and the 

Qiagen (Germany) or Sigma gel extraction kits were used to purify the DNA; 

sodium iodide solution was used to dissolve the agarose gel, and the DNA 

isolated using silica columns. The purified PCR products were eluted in 

autoclaved distilled water to facilitate use in downstream reactions.  

 

 Estimation of nucleic acid concentrations 

 Spectrophotometry (Nanodrop-1000, Thermofisher Scientific, 

Massachusetts, USA) was used for routine DNA and RNA concentrations. The 

PicoGreen and Qbit colorimetric assay systems were used as per the 

manufacturers’ instructions to estimate plasmid DNA concentration. These 

concentrations was used to adjust the volumes of luciferase expression vector 

and pUC19 to 50 ng/μl total DNA, with equivalent molar amounts of the 

expression vectors (section 2.3.15). 

 

 Agarose Gel Electrophoresis  

 Agarose gels (0.5–2% w/v) were prepared in 1 × TAE buffer; 0.33 μg/ml 

of ethidium bromide was added before pouring. Gels were generally run for 1 

hour, at 60 V (for 30 ml), 90 V (100 ml) or 120 V (200 ml and 300 ml, depending 

on gel mould size). 10 μg/ml of crystal violet was added to both the 1 × TAE 
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buffer and the agarose gel instead of ethidium bromide, if excision of specific 

bands from the gel was necessary.  

For denaturing gel electrophoresis, 1.3% w/v agarose, 6.67% w/v 

formaldehyde gels were prepared in 1 × MOPS buffer (20 mM MOPS, 1 mM 

EDTA, 13.4 mM sodium acetate, pH 7.0). RNA was added to loading buffer 

(60% w/w formamide, 19% w/w formaldehyde, 8% w/w glycerol, 1 × MOPS 

buffer, 4 μg/ml ethidium bromide and bromophenol blue) to prevent degradation 

and to increase sample volume for loading onto the gel (Chomczynski, 1992). 

All glassware and gel tanks were pre-treated with 3% w/w H2O2 in DEPC-

treated water for 10 minutes and washed with DEPC-treated water prior to 

buffer and gel preparation. For RNA formaldehyde gel running buffer, see 

Chomczynski, 1992. 

 

 Dye termination (Sanger) sequencing 

Dye termination (Sanger) sequencing was carried out using the BigDye 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, California, USA). 

Reactions were setup as in Table 3, terminated with 125 mM EDTA and the 

reaction products precipitated with 100% w/w ethanol. Following a 70% w/w 

ethanol wash step, the reaction products were resuspended in 10 μl Hi-DiTM 

formamide (Applied Biosystems, California, USA) and capillary electrophoresis 

carried out on an ABI 3130 Genetic Analyser (Applied Biosystems, California, 

USA). Analysis and base-calling of sequencing electropherograms were carried 

out using ABI Sequencing Analysis v5.2. 
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 Semi-quantitative gene expression by PCR band intensity  

 Relative expression of SLCO2A1 and GAPDH was measured by PCR. 

Owing to the low baseline expression of SLCO2A1 in A549 cells, 5 μg of total 

RNA was used in the reverse transcription reactions to generate cDNA for the 

PCR reactions. ImageLab 5.2.1 (Bio-Rad Laboratories, California, USA) was 

used to quantify PCR band intensity from the gel images. Band intensities were 

measured as the volume intensity. This is a value derived from the number of 

pixels and their brightness within each PCR band. The volume intensity ratio 

between SLCO2A1 and GAPDH was used to normalise SLCO2A1 band 

intensity to that of GAPDH. 

 

 Generation of the SLCO2A1 and HPGD promoter deletion 

series 

The human HPGD and SLCO2A1 promoter sequences were obtained 

from bacterial artificial chromosomes (BACs), RPCI-11 511O14 and RPCI-11 

252L8 for HPGD, and, RPCI-11 974M1 and RPCI-11 1063N7 for SLCO2A1. 

The pGL4.10[luc2] (catalogue number E6651, Promega. WI, USA) promoterless 

firefly luciferase vector was used as the backbone to construct all HPGD and 

SLCO2A1 promoter constructs. For both genes, the promoter was inserted in 

such a way that the −1 positions relative to the genes’ translational start sites 

preceded the +1 of the luciferase ATG start codon. For HPGD, AvrII and 

NruI/Bsp68I sites were introduced into the vector’s multiple cloning region, prior 

to the two-stage process of inserting the HPGD promoter fragment. Double 

restriction digests with single-cutting enzymes, and where not possible, proof-
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reading PCR, were used to generate the promoter deletion series for each 

gene.  

Colonies were screened by PCR and the correct ligation confirmed by 

sequencing. The constructs were named with a letter designating the gene (H 

or S), followed by a number denoting the 5′ position of the promoter fragment: 

Thus, the full length HPGD construct, which contained the −3082 to −1 region of 

the HPGD promoter was “H-3082”, and the full-length SLCO2A1 construct “S-

3198”. 

 

 Site-directed mutagenesis of EGR, SP and CDX 

transcription factor binding sites on the −364 to −1 SLCO2A1 

promoter 

 The two EGR, one SP and one CDX2 putative transcription factor 

binding sites chosen for investigation in the −364 to −1 region of the SLCO2A1 

promoter were mutated using the Quikchange II site-directed mutagenesis kit, 

using as template the S-364 deletion construct containing this proximal segment 

of the promoter. Based on the consensus sequences in the footprint-db and 

JASPAR databases, two of the most conserved bases were chosen for 

mutation. Two complementary primers with two adjacent point mutations in the 

same position were used for each transcription factor to amplify the entire 

plasmid. After DpnI treatment to digest the methylated template, the reaction 

was transformed into chemically competent E. coli. Colonies for each 

transcription factor binding site were screened by PCR (Table 1 and Table 2) 

and sequenced to verify the presence of the mutations.  
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To avoid unwanted mutations on the plasmid backbone due to DNA 

polymerase errors, the 364-bp SLCO2A1 promoter fragment was digested, and 

ligated into the pGL4.10[luc2] backbone from the same starting plasmid. The 

resulting colonies were screened by PCR and sequencing to confirm the 

presence of the promoter and point mutations, and plasmid DNA was prepared 

for subsequent transfections. 

 

 Linker scanning mutagenesis of the proximal 364 bp of 
the SLCO2A1 promoter  

 Linker scanning mutagenesis (Dykxhoorn, et al., 1997) uses the random 

insertion of small insert within a region of DNA in order to disrupt the function of  

regulatory elements or introduce mutations in a target protein. The procedure, 

based on (Haapa, et al, 1999) and since developed into a commercial kit, 

utilises an engineered transposable element comprising a kanamycin resistance 

gene (npt), and NotI restriction sites near the 5′ and 3′ ends. MuA transposase 

is used to mediate integration into the target plasmid. The integration event 

causes a 5-bp duplication of the target sequence adjacent to the insertion site. 

Digestion with NotI excises the transposon and kanamycin resistance gene, 

resulting in a 15-bp insertion (transposon ends encompassing NotI site, and the 

duplicated region). This results in a pool of insert-containing plasmids.  

The SLCO2A1 deletion construct containing the −364 to −1 segment of 

the SLCO2A1 promoter (S-364) already possessed an existing NotI restriction 

site. This was removed by restriction digestion followed by blunting and 

religation. Linker scanning mutagenesis was carried out on the resulting S-364-

NotI(x) plasmid, using the Mutation Generation System kit (Thermofisher 

Scientific).  
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Transposition reactions were set up using 182 ng of S-364-NotI(x), in 1 × 

MuA transposase buffer, 10 ng of kanamycin resistance transposon (M1-KanR) 

and 220 ng MuA transposase, in a 20-μl final volume. The reaction was 

incubated at 30°C for 1 hour, followed by 75°C for 10 minutes. 5 μl of the 

reaction was used to transform competent E. coli. Plasmid DNA was isolated 

from the resulting pooled colonies. 

In order to exclude unwanted insertions in the plasmid backbone, the 

pooled plasmids were digested with Acc65I and MreI to isolate and gel-purify 

the SLCO2A1 promoter sequence containing the transposon. This was then 

ligated to intact backbone from the original S-364-NotI(x) template. Digestion 

with NotI was used to remove the transposon to retain the 15-bp insertion after 

plasmid recircularization. Colonies were screened by PCR and sequencing to 

identify the positions of the inserts.  

 

 Restriction endonuclease digestion of DNA 

 All restriction enzymes used were purchased from New England Biolabs 

or Thermofisher Scientific (Table 7). Reaction volumes for single- and double-

digest reactions were set up as recommended, between 20 μl and 100 μl 

depending on the required yield of digestion products. All reactions (except for 

SfiI and BssHII, which required a reaction temperature of 50°C) were carried out 

at 37°C for 1 hour or overnight. Restriction endonucleases were denatured at 

65°C or 80°C for 20 minutes; otherwise the digestion products were isolated by 

column purification prior to dephosphorylation with shrimp alkaline phosphatase 

at 37°C for 1 hour followed by 65°C for 20 minutes, where necessary. Blunting 

of cohesive ends, where needed, was carried out using Pfx DNA polymerase 

(set up for as for PCR, but without primers) (Greenland et al., 2000), or by using 
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the Klenow fragment of DNA Polymerase I. The restriction fragments were 

purified either directly using spin columns, or by gel extraction of specific bands 

following electrophoresis on a crystal violet gel. 

 

 Ligation Reactions 

 Reactions were set up in 20 μl final reaction volume, in 1 × reaction 

buffer (50 mM Tris-HCl (pH 7.6), 10mM MgCl2, 1 mM ATP, 1 mM dithiothreitol, 

5% w/v polyethylene glycol-8000), and with 1 unit of T4 DNA ligase 

(Thermofisher Scientific, Massachusetts, USA). Reactions were carried out at 

16°C for 16 hours (overnight). 

 

 Library Generation using the Zero-Blunt TOPO vector 

Blunt-ended PCR products were ligated to the Zero-Blunt TOPO vector, 

set up as per the manual and incubated at room temperature for 30 minutes. 

The ligation products were then transformed into One Shot Top 10 DH10B or 

Library Efficiency DH5α E. coli as described below. Colonies were screened by 

PCR (Table 1 and Table 2) and the PCR products sequenced to identify the 

transcriptional start sites. 

 

 Preparation of 50 ng/μl equimolar dilutions of deletion 

series constructs  

 A spreadsheet (Microsoft, USA) was used to calculate the molar mass of 

each plasmid, and the volume of deletion construct plasmid, water and pUC19 

(makeweight) to be added in the equimolar mixture. Total DNA concentration, 
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by mass, was 50 ng/μl. Prior to the deletion series transfection, the equimolar 

dilutions of each construct were linearized and run on an agarose gel to check 

for equivalence.  

 

 Microbiology 

 Transformation of chemically competent Escherichia coli cells 

 Transformation of plasmid DNA was carried out in chemically competent 

E. coli cells. Plasmid DNA or ligation product (2–5 ng of DNA) was added to 50 

μl or 100 μl of the competent cells, and incubated on ice for 30 min. This was 

followed by heat shock at 42°C for 20–45 s, and incubation on ice for 2 minutes. 

Pre-warmed (37°C) S.O.C. medium was added as per the specific protocols. 

The transformed cells were incubated for 1 hour on a shaking 37°C incubator at 

200 RPM. The transformation reactions were plated on LB agar plates with 

ampicillin at a final concentration of 100 μg/ml, and incubated overnight for at 

37°C for 16 hours. Where blue-white screening was carried out, X-Gal was also 

added to the agar prior to pouring, to a final concentration of 50 μg/ml. Where 

used, kanamycin concentration was 60 μg/ml. 

 

 Alkaline lysis of E. coli cells and plasmid DNA isolation  

 Starter cultures were set up, in 3 ml LB medium with 100 μg/ml 

ampicillin, for 8 hours at 37°C, 200 RPM. A 1:1000 dilution was made in a larger 

volume (5–500 ml, depending on plasmid copy number and required DNA yield)  

for the overnight culture (37°C for 16 hours at 200 RPM) in LB medium + 100 

μg/ml ampicillin. The Qiagen Mini-Prep, Midi-Prep, Maxi-Prep, and Sigma 
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GenElute plasmid preparation kits were used to isolate DNA, according to the 

culture volume used and yield of plasmid DNA that was needed. Additionally, 

two aliquots from the overnight culture were used to make glycerol stocks (25% 

w/w glycerol in final volume) of all plasmids. 

 

 Cell culture 

 Culture of colorectal cancer cell lines and the A549 lung 

cancer cell line 

 Six colorectal adenocarcinoma cell lines and one lung adenocarcinoma 

cell line were used. RPMI 1640 medium + GlutaMAX (Gibco) + 10% w/w fetal 

calf serum (FCS, Thermo Fisher Scientific) was used for CaCo-2, HT-29, HT-

116, SW480 and SW620 cell lines. F12 nutrient mix + GlutaMAX + 10% w/w 

FCS was used for LoVo cells, and Dulbecco’s Modified Eagle Medium (Thermo 

Fisher Scientific) for the A549 lung adenocarcinoma cell line. The cells were 

maintained in a 37°C incubator, at 5% CO2 and 100% humidity. Cells were 

checked daily under a light microscope, and medium changed every two days.  

The cells were passaged at 70% to 80% confluency, in ratios of 1:10 to 

1:2. Medium was removed, and the cells washed with 1 × PBS. Cells were 

dissociated by treating with 1 × PBS + 1 × trypsin-EDTA (0.05% w/v) solution 

for 5 minutes. Trypsin was inactivated by the addition of complete cell medium. 

The suspended cells were pelleted by centrifugation at 400 × g at 20°C for 5 

minutes. After removing the supernatant, the cells were resuspended in cell 

medium, and aliquoted to new tissue culture flasks at the required split ratio. A 

haemocytometer was used to calculate cell density prior to seeding cells in well 

plates for experiments. 
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 Cell line verification 

Short tandem repeat analysis was carried out to verify the above cell 

lines every six months, and to identify any genetic drift from the accepted 

standards. 

 

 Transfection of cultured cells using Lipofectamine 2000 

On day 1, cells were seeded, at densities adjusted to obtain between 

60% and 70% confluence after 24 hours, depending on the plate format used. 

On day 2, cell media were changed and the transfection carried out. 

Lipofectamine 2000 and plasmid DNA were prepared in Opti-MEM medium in 

the order and incubation times recommended in the manual (Table 8).The 

resulting solution was added to cells. The dual luciferase assay was carried out 

on day 3, after 24 hours of treatment.  

 

 Estimation of transfection efficiency using yellow fluorescent 

protein-tagged tubulin alpha 1B 

 Caco-2 and LoVo cells were transfected using the YFP-TUBA1B 

plasmid, in a 24-well format. Transfection efficiency was estimated by the ratio 

of fluorescent to total cells in three fields of view per well after 24 and 48 hours, 

with medium being changed 24 hours after the transfection. 
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 Quantification of promoter activity using the dual luciferase 

assay 

 The dual luciferase assay kit (catalogue number E1910, Promega) was 

used to quantify promoter activity on a Mithras LB940 multimode microplate 

reader (Berthold Technologies GmbH & Co. KG, Germany). The reagents were 

prepared as described in the manual. The only modification to the protocol was 

to reduce reagent volumes from 100 μl to 50 μl.  

 Medium containing the transfection reaction was removed, and the cells 

washed in 100 μl 1 × PBS at room temperature. The cells were then lysed in 22 

μl 1 × passive lysis buffer (Promega) and incubated at room temperature on a 

shaker for 30 minutes. 20 μl of the lysates were transferred to a white-walled, 

flat-bottom 96-well plate (Lumitrac 200, item number 655075, Greiner Bio One 

International GmbH, Germany). The plate reader was programmed to run as 

recommended in the protocol, except for the dispensed reagent volume (50 μl). 

 

 Treatment of cells with TGF-β2 and smoothened agonist (SAG) 

 Caco-2, LoVo and A549 cells were seeded on two 6-well plates at a 

density of 1 × 105 cells/well (day 1), to be treated for 24 and 48 hours. Activated 

TGF-β2 (product number GTX48351-PRO, Genetex, Taiwan) was reconstituted 

in 1 × PBS (pH 7.4) + 0.1% w/v BSA to a stock concentration of 10 μg/ml and 

serial dilutions made in the same solvent were added to cell medium. Serial 

dilutions were made ranging from 200 ng/ml to 1.5625 ng/ml and 0 ng/ml. 

Smoothened agonist (product number SML1314, Sigma-Aldrich, USA) was 

reconstituted in filter-sterilised distilled water to a stock concentration of 1 mM; 
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serial dilutions were prepared in filter-sterilised water, and added to cell medium 

to a final concentrations of 10 nM to 0.625 nM, and 0 nM. 

On day 2, 24 hours after seeding, the medium was changed and 

replaced on both plates with the TGF-β2- or SAG-containing medium. On day 3, 

RNA was extracted from the 24-hour plate, and the medium changed on the 48-

hour plate. Next, on day 4, RNA was extracted from the 48-hour plate.  

A total of three (TGF-β2) and four (SAG) independent experiments were 

carried out at the 24- and 48-hour time points. All three cell lines were treated 

with TGF-β2, and the SAG treatments were carried out on A549 cells. Three 

independent experiments were carried out for A549 cells transfected with the 

SLCO2A1 promoter deletion series in the presence or absence of TGF-β2 for 

24 hours. There were three replicates within each experiment for each 

construct, with or without TGF-β2. 

 

 Statistics 

 The Student’s t-test was used for determining statistical significance 

when comparing experimental results for the firefly:Renilla luminescence ratios 

in the transfection experiments, and for RT-PCR band intensity ratios for 

SLCO2A1 and GAPDH. The calculations were set up and carried out on a 

spreadsheet (Microsoft Excel). 

  



 
 

58 
 

 Identification of the Transcriptional Start Sites of 
HPGD and SLCO2A1 in colorectal cancer cell lines 

3.1 Introduction 

The role of PGE2 signalling in facilitating cancer development, and the 

utility of NSAIDs in colorectal cancer prophylaxis have been established in the 

literature (section 1.2.4 and 1.2.5) (Bennett et al., 1987; Kune et al., 1988; 

Eberhart et al., 1994; Sano et al., 1995; Gustafson-Svard et al., 1996). More 

recently, the degradation component of the PGE2 pathway, involving HPGD 

(Yan et al., 2004; Backlund et al., 2005), and SLCO2A1 (Holla et al., 2008), has 

also been implicated in exacerbating increased PGE2 signalling alongside the 

known upregulation of PTGS2 (Sano et al., 1995; Gustafson-Svard et al., 1996). 

Elucidating the mechanisms of HPGD and SLCO2A1 regulation in relation to 

known signalling pathways that are perturbed in colorectal cancer would enable 

the pharmacologically reactivation HPGD expression to counteract excessive 

PGE2 signalling as an alternative or adjunct to PTGS2 inhibition by NSAIDs 

(Seira et al., 2017; Na et al., 2011). However, relatively little is known about how 

HPGD and SLCO2A1 transcription is regulated in the colon. 

The transcriptional start sites (TSS’s) delineate the start of the gene’s 

first exon from the upstream promoter sequence. Identifying the positions of a 

gene’s TSS is one of the first steps to elucidate its regulation at the 

transcriptional level (Bansal et al., 2014). It can help identify the key regulatory 

DNA regions in the core promoter, allowing potential insight into the 

transcription factors involved. Knowledge of the TSS positions is important for 

the design of a promoter deletion series experiment, so that deletion constructs 

do not encroach within exon 1, and experimental results can be interpreted 

correctly (Beliveau et al., 1999). 



 
 

59 
 

In the literature, only one publication has characterised the HPGD TSSs. 

The study by Greenland et al, (2000) found positions -34 and -36 (relative to the 

HPGD first exon ATG translational start site), to be HPGD’s TSS. However, 

their source of RNA (placenta) meant that their observations may not directly 

applicable to other organs or cell lines, as alternative isoforms can be generated 

by using different TSS’s, particularly in a tissue specific manner (Reyes and 

Huber, 2018). In addition, the method of choice used by Greenland et al, 

(2000), the Ribonuclease Protection Assay, lacked the sensitivity of alternative 

PCR-based techniques, such as the RNA Ligase-Mediated Rapid Amplification 

of 5’-cDNA Ends (RLM-RACE). 

 For SLCO2A1, no comparable experiments have been published in the 

literature. However, initial characterisation of the gene has been undertaken in 

the rat (Kanai et al., 1995) and human (Lu et al., 1996; Lu and Schuster, 1998), 

and a consensus transcriptional initiator sequence identified, indicating a 

possible human TSS at position -123. Therefore, the relative lack of data 

specifically for the colon or colorectal cancer cell lines meant that TSS’s had to 

be determined experimentally for HPGD and SLCO2A1.  

 In order to experimentally determine HPGD and SLCO2A1 TSS’s, mRNA 

transcripts from colorectal cancer cell lines needed to be isolated from the other 

RNA species, reverse-transcribed and sequenced (Volloch et al., 1994). RLM-

RACE is an established procedure that streamlines this process, was thus 

chosen. RLM-RACE has been used for determining TSSs, and applied 

successfully in large-scale mRNA sequencing studies (Chi et al., 2006; 

Olivarius et al., 2009). Unlike the ribonuclease protection assay used in the 

original Greenland et al, (2000) study for HPGD, RLM-RACE requires much 

lower quantities of RNA, owing to two PCR amplification steps in the procedure. 
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Moreover, this procedure is more sensitive, and allows for the detection of less 

common transcripts within a particular sample (Schaefer, 1995; Chi et al., 

2006). 

 

3.2 Aims 

Identify Colorectal Cancer cell lines that express both HPGD and SLCO2A1  

 

Determine experimentally the TSS of both HPGD and SLCO2A1 in the chosen 

colorectal cancer cell line models 

  



 
 

61 
 

3.3 Methods 

 RT-PCR to determine expression of HPGD and SLCO2A1 in 
colorectal cancer cell lines 

Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR) (sections 

2.2.1, 2.2.2, 2.2.3) was used on a panel of colorectal cancer cell lines to 

qualitatively identify which expressed both HPGD and SLCO2A1. Exon-

spanning primers were used to amplify gene-specific cDNA for HPGD, 

SLCO2A1 and GAPDH in six colorectal cell lines (Caco-2, HT-29, HCT-116, 

LoVo, SW480 and SW620) and one lung adenocarcinoma cell line (A549).  

 

 RLM-RACE for HPGD and SLCO2A1 using the Caco-2 and 
LoVo cell lines 

RLM-RACE (Figure 3.1) was carried out using Caco-2 and LoVo total 

RNA (sections 2.2.3 and 2.3.3). This procedure required 5’-capped mRNAs with 

at least the first two exons, given that the region of interest was the 5’-

Untanslated Region (5’- UTR) of exon 1 (Figure 3.1). Total RNA from cell 

lysates was dephosphorylated to prevent downstream reactions, whilst the 7-

methylguanosine cap in mRNAs conferred protection of the 5’ phosphate 

groups. Next, Tobacco acid pyrophosphatase was used to remove the 5’-cap on 

the mRNAs to expose the 5’-phosphate group, to which the GeneRacer RNA 

oligomer then ligated.  
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The different steps of the RLM-RACE procedure is shown in the figure. The 
RNA-processing steps isolate capped mRNAs which are reverse-transcribed 
after the ligation of an RNA oligomer at the 5’-end, which corresponds to the 
start of the transcript and therefore, the TSS. Two PCR reactions are needed to 
selectively amplify the gene of interest’s transcripts from the resulting cDNA 
pool. The resulting pool of PCR products is then cloned and sequenced. 
 
 
 

  

Figure 3.1: Outline of RLM-RACE procedure 
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Random hexamer primers were used for the reverse transcription 

reaction step (section 2.2.3) to provide a common cDNA pool for each cell line 

which could be used at the template for the subsequent PCR reactions. Two 

PCR reactions (Figure 3.1) were used to selectively amplify HPGD and 

SLCO2A1 because gene specificity was conferred only by the reverse primer. 

The forward primers were complementary to the Gene-Racer oligomer. 

Therefore, the first PCR reaction was carried out on the cDNA template, and the 

second, nested PCR used a 1/1000 dilution of the first PCR reaction products, 

after excess dNTPs and primers were removed using exonuclease I/Shrimp 

Alkaline Phosphatase (section 2.3.4). For both PCR reactions, a proofreading 

DNA polymerase (Pfx Platinum) was used to reduce the chance of mutations 

due to PCR error.  

The PCR products for HPGD and SLCO2A1 were column-purified 

(section 2.3.4), instead of agarose gel electrophoresis followed by gel extraction 

in order to capture a greater range of the amplified transcript sequences, and 

due to the relative inefficiency of extracting DNA from agarose gels. These PCR 

products were then cloned into the ZERO-Blunt TOPO vector (section 2.3.14). 

Following transformation into chemically competent E. coli cells (Section 2.4.1), 

colonies were picked, and the ligated HPGD or SLCO2A1 inserts amplified by 

PCR using M13 forward and reverse primers in order to ensure that both the 5’ 

oligomer sequence and the spliced junction between exon 1 and exon 2 of each 

gene were visible during the subsequent sequencing (section 2.3.7).  

These sequences were aligned with BLAST to the HPGD and SLCO2A1 

genomic sequences (GRCh38/hg38, 2013 assembly), and manually inspected 

to delineate splicing between exon 1 and exon 2 of either gene, the vector 

sequence at the ends of the reads, and the GeneRacer oligomer’s sequence 
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(Altschul et al., 1990; Kent et al., 2002). Given the correct alignments to the 

human genome, TSS was taken as the base immediately adjacent to the last 

base of the GeneRacer oligomer, as inferred in similar studies where amplified 

transcripts are aligned to the genome sequence, and any vector or restriction-

site containing oligomer sequence is excluded (Shiraki et al., 2003; Hashimoto 

et al., 2004; Tosetto et al., 2014) 

 

3.4  Results 

 Expression of HPGD and SLCO2A1 mRNA in six colorectal 
cancer cell lines and one lung adenocarcinoma cell line 

A panel of colorectal cell lines was assessed for HPGD and SLCO2A1 

expression in order to determine which cell lines express both HPGD and 

SLCO2A1 at appreciable levels to generate sufficient mRNA for the RLM-

RACE. The A549 lung cancer cell line was included as an additional control 

because it is known to express HPGD at relatively high levels, and no or very 

little SLCO2A1 (Uhlen et al., 2005; Tong et al., 2006a). Across the seven cell 

lines, Caco-2, HT-29, LoVo, and SW480 were found to express both HPGD and 

SLCO2A1 (Figure 3.2). HCT-116 appeared to have SLCO2A1 expression, but 

did not express HPGD at detectable levels (Figure 3.2). Caco-2 and LoVo both 

showed modest HPGD expression, relative to the other four colorectal cancer 

cell lines. As expected, the lung cancer cell line A549 was found to show a 

relatively high expression of HPGD, but with no detectable SLCO2A1 

expression.  

LoVo has been shown to express SLCO2A1 mRNA and protein at higher 

levels compared to HT-29, HT-116, SW480 and SW620 in the literature, which 
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is in agreement to this observation (Holla et al., 2008; Smartt et al., 2012a). 

Furthermore, a higher expression of SLCO2A1 mRNA by LoVo relative to Caco-

2 has been shown quantitatively in the literature, and lends support to RT-PCR 

results (Figure 3.2) (Kasai et al., 2016). The HCT-116’s expression of 

SLCO2A1, however, did not match the low expression reported in other studies 

(Holla et al., 2008; Smartt et al., 2012a). Therefore, based on the experimental 

results and the additional evidence from the literature, the Caco-2 and LoVo cell 

lines were thus selected for use in the RLM-RACE.  
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Figure 3.2: RT-PCR to visualise gene expression in the seven cell lines 
HPGD and SLCO2A1 expression was assessed by comparison to the level of 
the housekeeping gene GAPDH. HPGD expression was not detectable in 
SW620 and HCT116 cells, and SLCO2A1 expression was absent in SW620.  
Four colon cell lines (Caco-2, HT-29, LoVo, and SW480) expressed both genes. 
The GAPDH on the positive control, expressed by all seven cell lines, and no 
bands are visible on the negative water control. The PCR product sizes are 191 
bp for HPGD, 232 bp for SLCO2A1, and 310 bp for GAPDH 
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3.4.2 Determination of HPGD and SLCO2A1 TSSs in Caco-2 and 
LoVo cell lines using RLM-RACE 

After establishing that the Caco-2 and LoVo cells expressed both HPGD 

and SLCOA1 to at least a moderate level relative to the other cell lines, these 

were used in RLM-RACE. The first PCR, the amplification of the cDNA ends 

(Figure 3.1) yielded a number of product bands (Figure 3.3 and Figure 3.4). For 

SLCO2A1, in Caco-2 two predominant bands at approximately 190 bp and 350 

bp were visible (Figure 3.4), while in the LoVo cell line, the 350 bp band was 

predominant, as well as several weaker, larger bands. For HPGD, the main 

PCR product band for Caco-2 and LoVo was at 210 bp (Figure 3.4) while a 

number of larger but weaker bands were also present.  

In the subsequent nested PCR the number of bands decreased (Figure 

3.4 and Figure 3.5) as the more specific products were amplified more 

efficiently. For SLCO2A1, Caco-2 had one visible band at 310 bp, while for 

LoVo, additional bands were seen in addition to the predominant one at 310 bp 

(Figure 3.5). In HPGD, the number of weaker bands decreased for both cell 

lines, with 210 bp and 350 bp predominating in both cell lines (Figure 3.4). The 

presence of many bands was not unexpected, given that gene specificity was 

determined only by the reverse primer. The 250 bp (first PCR) and 210 bp 

(nested PCR) bands for HPGD were near the product size for the -36 or -34 

TSSs reported in Greenland et al, (2000). Similarly, for SLCO2A1, the 350 bp 

band would correspond to the PCR product based on the predicted TSS at -123 

(Lu and Schuster, 1998).   
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Figure 3.3: First PCR (amplification of cDNA ends) for SLCO2A1 
The first PCR in the RLM-RACE yielded a number of bands. For Caco-2 (lane 
1) and LoVo (lane 2) the band patterns are distinct, suggesting different 
transcripts and off-target products that were amplified in the PCR reaction. 
Bands at ~190 bp and ~350 bp predominate in Caco-2, while the strongest 
band appears at ~350 bp for Lovo. The agarose gel has been cropped (white 
vertical line) for increased clarity between the 100bp plus ladder, and the 
SLCO2A1 PCR product bands 
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Figure 3.4: First PCR (A) and nested PCR (B) for HPGD 
For Caco-2 the first PCR revealed a number of bands, of which those at~210 bp 
(green arrow) and ~350 bp (blue arrow) persisted in the nested PCR. Although 
the ~210 bp band was also the strongest in the LoVo cDNA, a greater number 
of bands was discernible on the Nested PCR, suggesting a greater number of 
transcripts. 
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Figure 3.5: Second PCR (nested PCR) for SLCO2A1 
Gradient PCRs were carried out and the products at the highest annealing 
temperature (65°C) were purified and cloned to sequence the PCR products. 
(A) Caco-2 showed a single predominant band at ~310 bp (green arrow), and 
no other discernible bands. (B) LoVo, on the other hand had a predominant 
band at the same ~310 bp position (green arrow), although brighter smearing or 
other bands were visible from 350 bp to 450 bp, and 700 bp to 900 bp, as well 
as 1200 bp. 
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The nested PCR products for HPGD and SLCO2A1 were subsequently 

cloned for sequencing. A total of 55 and 65 for Caco-2 and LoVo cells 

respectively for HPGD, and 55 and 56 clones for SLCO2A1 were obtained for 

analysis. These clones excluded the occasional detection of off-target cDNA 

sequences that persisted to be amplified in the nested PCR, or instances of 

GeneRacer oligomer concatamers. As shown in Figure 3.6, the TSS was taken 

as the first base in exon 1 immediately after the end of the GeneRacer oligomer 

sequence, and its position was taken relative to the translational start site ATG. 

Overall, the results suggested that the -65 position is the predominant 

TSS for HPGD in Caco-2 and LoVo cells, with the -37 or -36 positions showing 

the second-highest frequency, contrary to the observed consensus that is 

suggested in the spliced EST data (Figure 3.7 and Figure 3.8). For SLCO2A1 in 

contrast, Caco-2 and LoVo cells showed differing TSS profiles. Caco-2 

transcripts terminated at 5 bases upstream of the spliced EST consensus at -

127 (Figure 3.8), rather than the predicted -123 TSS (Lu and Schuster, 1998), 

while the LoVo cells showed a more distributed pattern with -159 being the most 

frequent TSS after -123.  

  



 
 

73 
 

 

 

Figure 3.6: Representative sequencing reads of SLCO2A1 nested PCR 
products 
Following the cloning and transformation reactions, colonies were picked and 
the inserted nested PCR products amplified using M13 forward and reverse 
primers on the flanking vector sequence. These PCR products were sequenced 
in both directions. (A) An example of a Caco-2 SLCO2A1 read that terminates 
at -127 is shown. (B) Schematic representation of the above sequence. 
GeneRacer oligomer sequence (green text), exon 1 (5’-UTR (light blue), 
translated region (green), with ATG start codon (yellow), exon 2 (dark green), 
vector sequence (grey). 
 

 

>Caco2_SLCO2A1-02B[M13F]  
CAGCCACAATCTGTGTCTGAGTTTAGCGGCCGCGATTCGCCCTTGGACACTGACATGGACTGAAG
GAGTAGAAATCTCAGTCTCCGCTCCGCGAATCTCCTCCGGCCACTGCCGCCGCGGTCGCCTCTCA
CCCGCCCGGCCGCTCCAGCCCGAGGCGCCCCGACCCCGCGCCACTCCGCGCCCGGCCAGCCGCCC
GCAGCCATGGGGCTCCTGCCCAAGCTCGGCGCGTCCCAGGGCAGCGACACCTCTACTAGCCGAGC
CGGCCGCTGTGCCCGCTCGGTCTTCGGCAACATTAAGGTGTTTGTGCTCTGCCAAGGCCTCCTGC
AGCTCTGCCAACTCCTGTACAGCGCCTACTTCAAGAGAAGGGCGAATTCGTTTAAACCTGCAGGA
CTAGTCCCTTTAGTGAGGGTTAATTCTGAGCTTGGCGTAATCATGGTCATAGTTGTTTCCTG 
 
>Caco2_SLCO2A1-02B[M13R]  
GCTTTCCTGGGTGATCGCTCTCGCAGGGACTAGTCCTGCAGGTTTAAACGAATTCGCCCTTCTCT
TGAAGTAGGCGCTGTACAGGAGTTGGCAGAGCTGCAGGAGGCCTTGGCAGAGCACAAACACCTTA
ATGTTGCCGAAGACCGAGCGGGCACAGCGGCCGGCTCGGCTAGTAGAGGTGTCGCTGCCCTGGGA
CGCGCCGAGCTTGGGCAGGAGCCCCATGGCTGCGGGCGGCTGGCCGGGCGCGGAGTGGCGCGGGG
TCGGGGCGCCTCGGGCTGGAGCGGCCGGGCGGGTGAGAGGCGACCGCGGCGGCAGTGGCCGGAGG
AGATTCGCGGAGCGGAGACTGAGATTTCTACTCCTTCAGTCCATGTCAGTGTCCAAGGGCGAATT
CGCGGCCGCTAAATTCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTAC 
# -127 

 

Translational start 

site ATG (+1) 

Exon 2 

GeneRacer 
Oligomer 

5’-untranslated 
region 

     

Vector 

sequence 
Vector 

sequence 

Transcriptional Start 

Site (-nn) 

Exon 1 

A 

B 



 
 

74 
 

 Spliced EST sequences terminating within the 5’ UTR of HPGD 
and SLCO2A1 

Expressed Sequence Tags (ESTs) are single-pass sequencing reads 

from cDNA that represents a segment of the mRNA sequence (Adams et al., 

1991; Boguski et al., 1993). EST data is available through tools such as the 

UCSC Genome Browser (Kent et al., 2002), which align the raw sequencing 

reads to the genome and remove flanking vector sequences. Spliced ESTs are 

a subset of ESTs that only map to the gene of interest’s exons, thereby 

representing mRNA sequence rather than sequence from genomic DNA or pre-

mRNA (Kent et al., 2002; Nagaraj et al., 2007).  

In spite of the caution with which EST data needs to be viewed, and the 

limitations inherent to the generation of these sequences, the spliced ESTs 

aligning to exon 1 and exon 2 of HPGD and SLCO2A1 can provide an indication 

for the position of the TSSs (Boguski et al., 1993; Nagaraj et al., 2007). The 

spliced EST data could show whether the Caco-2 and LoVo TSS for HPGD and 

SLCO2A1 were similar to the consensus, or to normal colon, if a sufficient 

subset of the spliced EST sequences originated from that organ.  

Spliced ESTs encompassing the 5’-UTR and splicing between exon 1 

and exon 2 of both HPGD and SLCO2A1 were compared alongside the RLM-

RACE results. The spliced EST data suggested that the most common TSS for 

HPGD was -37, and for SLCO2A1 -123 (Figure 3.7 and Figure 3.8). For HPGD 

this was similar to published work by Greenland et al, (2000), but contrasted 

with both Caco-2 and LoVo cell lines where although -36 or -37 were minor 

TSS’s, the predominant position for both cell lines was -65. The major EST TSS 

for SLCO2A1 was also different from the two colon cell lines. 
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Figure 3.7: Percentage of transcriptional start sites for HPGD from 
experimental data and spliced expressed Sequence tag data 

Following the RLM-Race a total of 55 clones for Caco-2 and 65 for LoVo 
were sequenced. In the Caco-2 cell line, the -65 position appears to be the 
predominant transcriptional start site in 45.5% (25/55) of clones. The -36 and -
37 sites are the second-most common, with 9.1% (5/55) of clones each. In 
addition, between 1 and 3 clones occur in other positions, with the largest 
detectable transcript for Caco-2 terminating at -348. In the LoVo cell line 55.4% 
(36/65) of clones occur at the -65 position, with 24.6% (16/65) at -36 and 9.2% 
(6/65) at -214. 1 or 2 clones are found at few other positions. The largest 
observed transcripts for LoVo terminated at -435 and -437. The -36, -37, -56, -
65, -211, -214 transcriptional start sites observed experimentally were also seen 
in the spliced EST data. In addition a number of novel transcriptional start sites 
were observed, predominantly for Caco-2 at -58, -70, -110, -215, -217, -218m -
219, -261, -266, -271 and -348. Likewise, the -435 and -437 positions were 
observed in Lovo. 25% of spliced ESTs terminating at -37. Spliced ESTs 
(black), Caco-2 (blue), Lovo (green). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8: Percentage of transcriptional start sites for SLCO2A1 from 
experimental data and spliced expressed sequence tag data 
The numbers transcriptional start site positions from 60 Spliced ESTs, 55 
sequenced Caco-2 clones and 56 sequenced LoVo clones are represented as 
percentages of each set. For clarity, the -1 position and all other positions at 
which any of the sequences terminated are shown on the graph. 60% of the 
spliced EST peaks occurred at the -123 position. In contrast the -127 position 
predominates in 87.2% (48/55) of Caco-2 clones, while LoVo shows a more 
distributed pattern with 33.9% (19/56) of TSS at -159 and 19.6% (11/56) at -
123. 58% of spliced ESTs terminated at -123. However no ESTs originated from 
the colon, and 60% are from lung samples. Spliced ESTs (black), Caco-2 
(blue), Lovo (green). 
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3.5 Discussion 

 The RT-PCR results, while not quantitative, appeared to generally agree 

with HPGD and SLCO2A1 expression seen previously in Caco-2 and LoVo cells 

(Uhlen et al., 2005). A moderate or high expression at the mRNA level would 

imply modest promoter activity, and therefore both cell lines were deemed 

suitable candidates for subsequent functional transcriptional analysis studies, 

such as promoter deletion series experiments, because decreases in promoter 

activity would likely be greater in magnitude and more likely to be detected. The 

Caco-2 and LoVo cell lines were thus chosen for the RLM-RACE. Using two cell 

lines also allowed for a comparison to be made in TSSs between the different 

cell lines.  

The comparison of the TSSs observed in the RLM-RACE to existing 

spliced EST data was prompted by the similarities and differences observed in 

the results for Caco-2 and LoVo’s main TSS, and those identified or predicted in 

previous publications. Both cell lines’ predominant HPGD TSS was at -65, 

contrary to the -36 and -34 positions which were identified in Greenland et al, 

2000. Similarly, for SLCO2A1, the predominant TSS for Caco-2 was found to be 

at -127, and for LoVo, -159 and across a range of positions, in contrast to the 

prediction made at -123 based on sequence motifs only (Lu and Schuster, 

1998). The use of algorithms was a limitation recognised by the authors, 

although despite recommending validating this prediction, they did not pursue 

this course in their future publications (Lu and Schuster, 1998; Chan et al., 

1999; Chan et al., 2002a; Chi et al., 2006).  

It is known that that the raw sequences from ESTs suffer from poor 

quality at the start and end of the read, as well as contamination with vector 

ends at the end of the read (Boguski et al., 1993). However, bioinformatics tools 
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mitigate these issues in a number of ways (Nagaraj et al., 2007). Sequence 

alignment algorithms identify the ESTs that align to a particular gene of interest, 

while ancillary programs filter out any contaminating vector sequences at the 

ends of the ESTs. Moreover, spliced ESTs are aligned to a gene’s exons, in 

addition to the above filtering steps in order to show alignments that have 

originated from spliced mRNA sequences which have greater than 96% 

homology (Boguski et al., 1993; Kent et al., 2002; Nagaraj et al., 2007). The 

ESTs analysed in this study were selected to be spliced, so eliminating many of 

these contamination issues, and so this was not the cause for the differences in 

TSS found.  

One of the main reasons for the differences in TSS between the HPGD 

EST and colon cell lines could be that the overall pattern is not representative of 

the colon, as the EST data represented an average across samples from 

different tissues, not all of which may be represented in similar proportions 

(Kent et al., 2002). Indeed, only 5% (11/212) of all spliced HPGD ESTs 

originated from the colon, and approximately 60% of the SLCO2A1 spliced 

ESTs originated from lung samples, and none were from the colon. Given the 

tissue specific variability in gene TSS choice, which may allow for finer control 

of gene and protein function, this was not a wholly unexpected result (Reyes 

and Huber, 2018). However these discrepancies could have resulted from 

differences in the cDNA preparation. Given the CG-rich nature of the HPGD and 

SLCO2A1 first exon, it was also possible that the RNA secondary structure 

could have impeded the reverse transcriptase’s progression, and resulted in 

fewer transcripts upstream of -37 (Romeo et al., 1997; Kent et al., 2002). For 

the cDNA generation step of the RLM-RACE, a reverse transcriptase with a 

higher optimal reaction temperature was used in order to account for the CG-
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rich nature of the HPGD and SLCO2A1 first exons and promoter, and an RNA 

oligomer had been ligated to the mRNAs, providing a clear demarcation of the 

5’-end (Volloch et al., 1994). Under more standard RT conditions, the reverse 

transcriptase could stall due to persisting RNA secondary structure in lower 

reaction temperatures (Schaefer, 1995). Therefore, the Spliced EST data, whilst 

providing an overall distribution of TSSs for HPGD and SLCO2A1, had to be 

viewed with caution. Therefore an experimental approach taken to determine 

the TSSs in the cell line systems to be used was considered prudent, given that 

a procedure such as RLM-RACE had been specifically developed to identify 5’- 

and 3’- cDNA ends (Schaefer, 1995).  

An interesting finding was the difference in SLCO2A1 TSSs between 

Caco-2 and LoVo, but not in HPGD. The Caco-2 cell line appeared to have one 

predominant TSS, while in the LoVo transcripts were found to originate in a 

range of positions. It may be the case that discrepancy arose from different 

regulatory mechanisms between these cell lines, or the fact that the SLCO2A1 

promoter has intermediate features that allowed for flexibility between the broad 

promoters (characterised by CpG rich content), and single peak promoter 

classes (characterised by presence of a TATA box) (Carninci et al., 2006). 

SLCO2A1’s exon 1, part of intron 1, and the proximal promoter lie within a CpG 

island, yet the gene does have a TATA box sequence (Lu and Schuster, 

1998).The difference in the colon cell lines TSSs may suggest that due to 

different accumulated chromosomal changes and gene mutations, these could 

have contributed to choice of TSS (Knutsen et al., 2010; Ahmed et al., 2013). It 

is possible that somatic changes may influence the mechanism of TSS 

selection.  
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The differences in the TSS between Caco-2 and LoVo, particularly for 

SLCO2A1, highlighted the caution needed when interpreting results from 

immortalised in vitro cell line model systems. What was observed in an 

immortalised cell line could not be directly extrapolated to the normal colon 

mucosa, or to primary cells within the colon adenocarcinoma. It may be true the 

some of the TSSs could be present in the normal epithelial cells, but this would 

need to be verified using primary cells to reflect the normal expression in the 

body (Roche, 2001). 

However, for the purpose of designing and interpreting downstream 

experiments, such as a promoter deletion series, the TSS information 

generated from the two colon cell lines was crucial. It allowed the setting of 

lower limits to the smallest constructs when generating a full deletion series, 

and indicated at what positions loss of promoter activity would result from the 

loss of TSS.  

In conclusion, the TSSs identified for HPGD and SLCO2A1 using RLM-

RACE were the first to be reported in the Caco-2 and LoVo cell lines. Reliance 

only on the in-silico spliced EST data, or the HPGD publications would have led 

to potentially erroneous conclusions, given that the transcription start site 

distribution and the limitations of EST data when contrasted to RLM-RACE 

(Greenland et al., 2000; Nandy et al., 2003; Kent et al., 2002). This data will 

allow the appropriate design and interpretation of further transcriptional studies, 

including promoter deletion constructs.  
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 Promoter deletion series to identify HPGD and 
SLCO2A1 regulatory regions 

 Introduction 

After determining the HPGD and SLCO2A1 transcriptional start sites using 

RLM-RACE, it was possible to design a promoter deletion series, in order to 

identify regions important for transcriptional regulation. Prior knowledge of the 

transcriptional start site locations was necessary in order to ensure that these 

could be included in the reporter constructs. Intervals associated with an 

increase or reduction in promoter activity on deletion are then likely to contain 

binding sites for transcriptional repressors and activators, respectively. These 

could, in turn, be studied in more detail to determine which transcriptional 

activators or repressors bind and regulate HPGD and SLCO2A1. This 

information could shed light on the mechanisms by which the expression of 

these two genes is lost in colorectal cancer, and hence suggest ways to 

reactivate their expression. As discussed earlier, reactivation of these two 

genes, by reducing the effects of PGE2 overproduction in colorectal cancer, 

could supplement or replace in place of or in combination with conventional 

NSAIDs that inhibit PG synthesis (Kune et al., 1988; Sano et al., 1995; 

Gustafson-Svard et al., 1996).  

To date, only two publications have characterised the transcriptional 

regulation of the HPGD promoter (Greenland et al., 2000; Nandy et al., 2003), 

and similar work has not been done on SLCO2A1. Greenland et al. (2000) were 

the first to carry out an HPGD promoter deletion series. They suggested that 

Ets and AP-1 transcription factors, and the progesterone receptor, were able 

drive HPGD promoter activity through a proximal and a distal region. The 

second study analysed these two regions further, utilising a combination of 
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binding site mutations on the promoter, and electrophoretic mobility shift assays 

(EMSA), to provide strong evidence of direct promoter control by AP-1 and Ets 

(Nandy et al., 2003). However, AP-1 factors are upregulated in colorectal 

cancer (Zhang et al., 2005), and so are unlikely to be a main driver of HPGD 

expression in colorectal epithelial cells, given the downregulation of HPGD 

observed in the neoplastic cells (Yan et al., 2004; Backlund et al., 2005). 

In both the above studies, the authors’ research aims were to characterise 

HPGD regulation in the uterus and the placenta, including whether 

mineralocorticoids or other steroid hormones affect its expression (Greenland et 

al., 2000) and its role in parturition (Nandy et al., 2003). Although relevant to the 

function of HPGD, these results may not be extrapolatable to colon and how 

HPGD is downregulated in colorectal cancer. Similarly, although Lu and 

Schuster (1998) showed that a proximal 3.5-kb SLCO2A1 promoter fragment 

was sufficient to drive a luciferase reporter construct, they did not characterise 

this further. The present studies were therefore undertaken in order to identify 

which regions of the HPGD and SLCO2A1 promoters were important for driving 

expression in the context of colorectal cancer. 

 Aims 

 

Characterise the activity of the HPGD and SLCO2A1 proximal 3-kb promoter 

regions. 

 

Identify regulatory regions within the HPGD and SLCO2A1 promoters for more 

detailed analysis. 
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 Methods 

 Design of HPGD and SLCO2A1 promoter luciferase reporter 
constructs 

In a promoter deletion series experiment, a gene’s promoter region is 

cloned upstream of a reporter gene (such as firefly luciferase or β-

galactosidase) in a promoterless plasmid. The promoter region in this initial “full-

length” construct is then progressively truncated to generate a panel of 

shortened constructs, each of which is transfected into cultured cells to assess 

the promoter activity, as indicated by an enzymatic reaction driven by the 

reporter gene product. A second reporter plasmid (usually encoding Renilla 

luciferase) driven by a constitutive promoter is used as a transfection control 

(Shifera and Hardin, 2010). 

 The 3-kb regions of the HPGD and SLCO2A1 promoters were isolated 

by restriction digestion from BAC DNA (section 2.3.9) and cloned into the 

pGL4.10[luc2] firefly luciferase reporter plasmid to generate the “full-length” 

constructs H-3082 and S-3198 respectively. These regions were chosen based 

on the presence of a CpG island in both each gene within this interval, and 

chromatin immunoprecipitation sequencing (ChIPseq) data suggesting that a 

proximal 3-kb region may be important for regulation of gene expression (Kent 

et al., 2002). 

Each construct was named by the first letter of the gene, followed by the 

position of its 5′-end relative to the exon 1 start codon. The HPGD construct 

required a two-step process and the use of an adaptor sequence in 

pGL4.10[luc2] to clone the −3082 to −206 region of the HPGD promoter, 

followed by PCR (with a proofreading DNA polymerase) to insert the −206 to −1 
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segment. All promoter deletion series constructs were sequence-verified 

(section 2.3.7) to exclude unwanted mutations. 

 

 Design of the HPGD and SLCO2A1 promoter deletion series  

The H-3082 and S-3198 constructs were used as the starting points to 

generate a further eight deletion constructs at approximately 300-bp intervals, 

through double restriction digestion, where possible, or else through the use of 

proofreading PCR to introduce restriction sites into the product prior to cloning. 

Also, a further four constructs were generated using PCR and restriction 

enzyme digestion at S-266, S-209 and S-140, to study the proximal part of the 

SLCO2A1 promoter with greater resolution. 

 

 Luciferase reporter assays  

The transfection efficiency of Caco-2 and LoVo cells was determined as 

described in section 2.5.4 and the optimum Lipofectamine 2000 concentrations 

were determined. The activities of the full-length HPGD and SLCO2A1 

constructs were also verified in these two cell lines prior to the construction of 

the promoter deletion series. 

 Transfections of Caco-2, LoVo, HT-29 and A549 cells were carried out 

as described in the methods sections 2.5.3 and 2.5.5. 50 ng/μl equimolar HPGD 

or SLCO2A1 deletion construct (with pUC19 DNA to equalise total DNA mass), 

and 0.84 ng/μl pRL-CMV Renilla luciferase transfection control were added to 

the cultured cells in 96-well plates. Two or three repeats of each transfection 

experiment was carried out, each with three replicate wells for each deletion 

construct.  
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 Results 

 Transfection efficiencies of Caco-2 and LoVo cells 

 The suitability of Caco-2 and LoVo cells for transfection with the HPGD 

and SLCO2A1 promoter deletion constructs was assessed by measuring the 

proportion of YFP-positive cells after transfection with a YFP-expressing 

plasmid. Low transfection efficiency would reduce the sensitivity of the deletion 

series experiments to detect real differences in promoter activity (Shifera and 

Hardin, 2010). A transfection efficiency of 10% was chosen as the minimum for 

the cell lines to be used in the dual luciferase assay. 

 LoVo cells showed transfection efficiencies ranging from 25% to 44%, 

with no appreciable difference between 24 and 48 hours, or the amount of 

Lipofectamine 2000 used (Figure 4.1). Caco-2 transfection ranged from 15% to 

25%. In both cell lines, transfection efficiency rose only slightly after increasing 

Lipofectamine 2000 to 5 μl in 100 μl. The greatest observed transfection 

efficiency for Caco-2 was 24.5%, and for LoVo at 44.4% with 5 μl Lipofectamine 

2000. Across the range of Lipofectamine 2000 concentrations, LoVo cells were 

transfected at approximately twice the efficiency of Caco-2 cells. 
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Figure 4.1: Transfection efficiency of Caco-2 and LoVo cells as the 
proportion of YFP-positive cells 
Caco-2 and LoVo cells were transfected with 10 ng/μl YFP-TUBA1B plasmid in 
100 μl of Opti-MEM medium containing 2 μl, 3 μl, 4 μl, or 5 μl of Lipofectamine 
2000. Two controls, one omitting plasmid DNA, and the other Lipofectamine 
2000 were also included. The bar graphs represent the average proportion of 
YFP-positive cells in six random 10 × objective fields of view between two 
duplicate wells. The error bars represent the standard deviation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: Maps of the H-3082 and S-3198 full-length firefly luciferase 
expression plasmids 
The HPGD promoter from −3082 to −1, and the SLCO2A1 promoter from −3198 
to −1 were ligated at the −1 position relative to the firefly luciferase gene (luc2) 
start codon, resulting in a 7.3-kb and 7.4-kb plasmid, respectively. The 
pGL4.10[luc2] backbone also contains a β-lactamase (AmpR) gene for plasmid 
selection during E. coli culture. All regions indicated on the plasmid are shown 
to scale. The plasmid maps were designed using PlasMapper (Dong et al., 
2004) 
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 Promoter deletion series of HPGD and SLCO2A1 

 The full-length HPGD and SLCO2A1 constructs H-3082 and S-3198 

were designed to address the limitations of those used in Greenland et al 

(2000), and, Lu and Schuster (1998). In these studies, the promoter fragments 

were ligated upstream of the luciferase reporter gene using only available 

restriction sites, which in both cases resulted in loss of a promoter fragment 

close to the −1 position, and the inclusion of vector sequences between the 3′ 

end of the promoter and the luciferase gene. 

As shown in the plasmid maps (Figure 4.2) and in Figures 4.3 and 4.4, 

the H-3082 and S-3198 constructs positioned the HPGD and SLCO2A1 −1 

position directly adjacent to the luciferase gene’s ATG start codon. Therefore, 

the −3082 to −1 promoter region from HPGD, and −3198 to −1 in SLCO2A1, 

were positioned as in their native genes, modelling the native promoters more 

accurately than the earlier studies (Greenland et al., 2000; Nandy et al., 2003; 

Lu and Schuster, 1998). 

Including the “full-length” H-3082 and S-3198, two series of nine 

promoter constructs each were initially generated both for HPGD (Figure 4.3) 

and SLCO2A1 (Figure 4.4). These two figures show the lengths of the 

promoters in the deletion series to scale, with the number representing the 

length of the construct from the −1 position (section 2.3.9).The sizes of the 

smallest constructs were chosen to avoid the loss of transcriptional start sites 

observed in the RLM-RACE in the Caco-2 and LoVo cell lines.  

 Transfection of the deletion series was first carried out in the Caco-2 and 

LoVo cell lines. This was later expanded to include the SW480 and HT-29 cell 

lines, which retain expression of HPGD and SLCO2A1 at the mRNA level. The 

A549 cell line was also transfected with both genes’ deletion series, in the 
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expectation that its high HPGD expression (observed both here by RT-PCR and 

in the literature) would result in stronger activity (Chi et al., 2009), and due to 

the reported activity of the SLCO2A1 promoter in A549 cells (Lu and Schuster, 

1998). Prior to transfection, equimolar dilutions of the plasmids were prepared, 

and assayed using spectrophotometry with confirmation by agarose gel 

electrophoresis. Figures 4.5, 4.6 and 4.7 show the linearized HPGD and 

SLCO2A1 deletion series constructs, in equimolar dilution with pUC19, prior to 

the transfection; the progressive truncation of the promoters is observed as a 

reduction of the linearized plasmid’s length. 
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Figure 4.3: The 3-kb HPGD promoter region deletion series constructs 
The full-length 3082-bp HPGD promoter construct was truncated at different 
positions to generate a total of 9 promoter constructs. The size of each 
promoter is shown to scale.  
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Figure 4.4: The 3-kb SLCO2A1 promoter region deletion series constructs 
The full-length 3198-bp SLCO2A1 promoter construct was truncated at different 
positions to generate the initial panel of 9 promoter constructs (S-3198 to S-
364). The S-266 to S-140 constructs were used to study the proximal 364 bp in 
more detail. Two constructs with an internal deletion were also made following 
the initial SLCO2A1 deletion series results. The length of each promoter is 
shown to scale.  
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Figure 4.5: HPGD promoter deletion constructs, in equimolar solution with 
pUC19 DNA 
The nine HPGD promoter deletion series constructs have been linearized by 
digesting with NcoI, and appear as the top bands (green arrows) that 
progressively decrease in size as the HPGD promoter is truncated. The weaker 
bands below 2,027 bp (blue arrow) represent uncut pUC19 plasmid. The faint 
band at ~3000 bp is pUC19 that was linearized during the purification of stock 
plasmid DNA. 
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Figure 4.6: SLCO2A1 promoter deletion constructs, in equimolar solution 
with pUC19 DNA 
The nine SLCO2A1 promoter deletion series constructs have been linearized by 
digesting with XhoI (green arrows), and appear as the top bands that 
progressively decrease in size as the promoter is truncated. The weaker bands 
below 2,027 bp (blue arrow) represent pUC19 linearized by digestion with NdeI.  
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Figure 4.7: Equimolar dilutions of SLCO2A1 constructs 
The equimolar dilutions for S-2887, S-2351 and S-1310 were repeated (green 
arrows). The smaller bands (blue arrows) represent linearized pUC19 
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All constructs in the HPGD and SLCO2A1 promoter deletion series 

demonstrated significantly higher activity than the promoterless pGL4.10[luc2] 

in the Caco-2, LoVo, HT-29 and SW480 cell lines, and (for HPGD) the A549 cell 

line. This was true even for the smallest of the constructs, H-319 and S-364, 

indicating that these two proximal regions were sufficient to drive expression of 

the luciferase gene in all of the cell lines.  

 For HPGD (Figure 4.8), the greatest luciferase activity was obtained in 

Caco-2 cells. Pairwise comparisons between successive truncations of the 

HPGD promoter revealed decrease in promoter activity between H-872 and H-

319, which was, however, statistically significant only in the Caco-2 cells. This 

implies the presence of transcriptional activator binding sites in that region. This 

region contained an AP-1 binding site (−829 to −820) identified by Greenland et 

al (2000) and Nandy et al (2003), but not further tested in their experiments. 

Given that AP-1 transcription factors were shown to be able to drive HPGD 

expression (Nandy et al., 2003), it could be that the loss of this AP-1 site 

accounts for the reduction of promoter activity seen in H-319 (Figure 4.8). 

 Other changes in HPGD promoter activity, though statistically significant, 

were not consistent among the cell lines. The loss of the −1570 to −1023 region 

led to an increase in promoter activity in Caco-2 and SW480 cells, but a 

decrease in A549 cells. Given that A549 is a lung cancer cell line, this 

difference may reflect tissue of origin. An increase in promoter activity between 

−2445 and −2149, and −2050 to −1570, was observed in Caco-2 and SW480, 

but not the other three cell lines. These two regions encompass the “distal 

element” identified by (Nandy et al., 2003), whose loss increases, rather than 

decreases promoter activity in Caco-2 and LoVo cells.  
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  Figure 4.8: HPGD promoter activity in Caco-2 (A), LoVo (B), HT-29 (C), 
SW480 (D) and A549 (E) cells 
The nine HPGD promoter deletion series constructs were transfected into 
four colorectal cancer cell lines and one lung adenocarcinoma cell line that 
had been found to express both HPGD and SLCO2A1 mRNA. The absolute 
ratio of firefly luciferase to Renilla luciferase was normalised to the full-
length H-3082 to allow comparison of changes in promoter activity across 
the four cell lines. These results represent three (Caco-2 and LoVo) and two 
(HT-29, SW480 and A549) independent experiments, with three replicates 
within each experiment. Statistics were carried out using the averages of 
each experiment’s replicates. Student’s t-test was used to determine 
significant changes in activity between adjacent deletion constructs (blue 
brackets), with p ≤ 0.05 taken as significant. All constructs also showed 
significantly greater expression when compared to the promoterless vector, 
using Student’s t-test. The error bars represent one standard deviation. 
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Unlike HPGD, no deletional analysis of the SLCO2A1 promoter has been 

previously described. Across all four colorectal cancer cell lines (Figure 4.9), the 

smallest of the deletion constructs, S-364, appeared to be responsible for most 

of the observed SLCO2A1 promoter activity. There initially appeared to be an 

increase in promoter activity when the 217-bp region between −2351 and −2164 

was lost, across the Caco-2, LoVo, HT-29 and SW480 cell lines (Figure 4.9). 

However, this apparent change was found to be due to an error in preparing the 

S-2164 construct. When the transfections were repeated to address this, the 

activity of the S-2164 construct was lower than previously observed, and no 

significant decrease in promoter activity was found between −2164 and −1877, 

as shown in Figure 4.10. The key finding, that the proximal 364-bp region of the 

SLCO2A1 promoter appeared to drive expression comparable to the full-length 

S-3198 construct, prompted further analysis of this region. 
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Figure 4.9: SLCO2A1 promoter activity in Caco-2 (A), LoVo (B), HT-29 (C), 
SW480 (D) and A549 (E) cells 
The nine SLCO2A1 promoter deletion series constructs were transfected into 
four colorectal cancer cell lines that were found to express both HPGD and 
SLCO2A1 mRNA. The absolute firefly luciferase to Renilla luciferase ratio was 
normalised to the full-length S-3198 to compare any changes in promoter activity 
across the five cell lines. These results represent three (Caco-2, LoVo and A549) 
and two (HT-29 and SW480) independent experiments, with three replicates 
within each experiment. Statistics were carried out using the averages of each 
experiment’s replicates. Student’s t-test was used to determine the statistical 
significance of differences in promoter activity between adjacent constructs (blue 
brackets). The error bars represent one standard deviation. 
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Figure 4.10: SLCO2A1 promoter constructs S-3198, S-2164 and S-1877 
activity in Caco-2, LoVo, HT-29, and SW480 cells 
These results represent two independent experiments for each cell line, with 
three replicates within each experiment. Statistics were carried out using the 
averages of each experiment’s replicates. Student’s t-test was used to 
determine the significance of differences in promoter activity between adjacent 
constructs, with p ≤ 0.05 (coloured brackets) taken as significant. One standard 
deviation is indicated by the error bars. 
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 Fine deletion series for the SLCO2A1 promoter (−364 to −140) 

The transcriptional start sites (TSS) identified by RLM-RACE in Caco-2 

and LoVo cells were used to define the minimum size of the new deletion 

constructs for the proximal 364-bp SLCO2A1 promoter region. Caco-2 had one 

predominant TSS at −127 bp, while LoVo displayed a range of TSS from −159 

to −108. The smallest construct was chosen to be at position −140. This means 

that for the LoVo cell line, a decrease in activity in the S-140 construct might be 

attributable to loss of the most downstream TSS. However, at least in Caco-2, 

and likely the SW480 cell lines, any loss of activity would indicate loss of 

transcription factor binding sites. 

In Caco-2, there was a progressive reduction in activity as the SLCO2A1 

promoter was truncated from −364 to −140 bp (Figure 4.11). A similar pattern 

was seen in SW480, in which reduction of promoter activity was statistically 

significant between successive constructs from S-364, except −364 and −266. 

In all three cell lines, there was a decrease in promoter activity from −266 to 

−209, and from −209 to −140, which was statistically significant for two of three 

cell ines. Although, as mentioned above, for the LoVo cell line, part of the 

reduction between −209 to −140 may be attributable to the loss of the −159 

TSS, the similar observation in Caco-2 suggests that it may nonetheless reflect 

loss of transcriptional activator binding sites. Overall, these results suggested 

that the −364 to −140 region of the SLCO2A1 promoter was essential for 

transcriptional activation, and is likely to contain transcription factor binding sites 

necessary for driving SLCO2A1 expression. 
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 Discussion 

The two promoter deletion series allowed characterization of the proximal 

3-kb regions of the HPGD and SLCO2A1 promoters in four colorectal cancer 

cell lines, and the A549 lung carcinoma cell line. The A549 line was included 

because of its known high expression of HPGD (Tong et al., 2006b; Uhlen et 

al., 2005), and evidence of SLCO2A1 promoter activity (Lu and Schuster, 

1998), despite its low levels of SLCO2A1 mRNA and protein expression (Zhu et 

al., 2015; Shirasaka et al., 2013; Uhlen et al., 2005). The luciferase constructs 

were designed to approximate the native genomic context, without omitting 

sequences abutting the ATG start codon, or introducing foreign vector 

sequence between the promoter and luciferase reporter gene. In this way, they 

address some of the design limitations seen in previous reporter constructs (Lu 

and Schuster, 1998; Greenland et al., 2000). The H-3082 and S-3198 

constructs and their derivatives might therefore prove to be useful, more up-to-

date tools for studying HPGD and SLCO2A1 regulation in a range of cell types. 

For example, a number of recent publications have continued to rely on the 

original Greenland et al (2000) HPGD constructs (Kim et al., 2014; Mehdawi et 

al., 2017; Smartt et al., 2012b), for which H-3082 and its derivatives could be a 

better alternative. 

An interesting finding from the HPGD deletion series was that in the 

colorectal cancer cell lines, loss of the −2152 to −1944 region identified by 

Greenland et al, (2000) did not lead to a large reduction in promoter activity, 

and indeed, actually led to an increase in Caco-2 and SW480 cells. This 

highlights the importance of using model systems appropriate to the biological 

question being addressed, and adequate controls. (In the Greenland et al, 
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(2000) study, only the four cell lines derived from the placenta, uterus or 

myometrial smooth muscle showed a decrease in promoter activity.) 

Likewise, the latter authors demonstrated a difference between a 

myometrial smooth muscle cell line (SKN) and primary cells from the same 

tissue type; the latter showed an increase in activity when the −2152 to −1944 

region is lost. This observation highlights the caution needed when using a cell 

line system to model a normal tissue, since cell lines undergo physical and 

epigenetic changes (such as DNA methylation) that may not reflect the source 

cell type (Zolk et al., 2013).  

Considering these various results, it appears that the “distal element” 

identified by Greenland et al. (2000) may, at least in some cell types, including 

Caco-2 and SW480, function to recruit transcriptional repressors rather than 

transcriptional activators. The AP-1 family of transcription factors suggested to 

drive HPGD expression in cell lines of uterine and placental tissue origin 

(Greenland et al., 2000; Nandy et al., 2003) may therefore not have a similar 

role in the colon. Other aspects of the earlier studies make interpretation 

difficult; the authors ligated the “distal element” upstream of their smallest 

construct, in effect deleting the intervening promoter sequence (Nandy et al., 

2003). Having done so, they did not subsequently test whether their artificial 

set-up’s responsiveness to these transcription factors was retained in the native 

full-length promoter construct. 

The AP-1 transcription factors, which include FOS, FOSB and JUN, 

generally act as transcriptional activators (Ashida et al., 2005; Trop-Steinberg 

and Azar, 2017). Some members of this family are overexpressed in colorectal 

cancer (Zhang et al., 2005), but their role in driving HPGD expression is 

probably limited, because HPGD is downregulated in colorectal cancer, despite 
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upregulation of c-Jun, Fra-1 or Fra-2 (Yan et al., 2004; Backlund et al., 2005; 

Kang et al., 2014). It may therefore be that other transcriptional repressors act 

on this region to reduce HPGD transcription. 

The analysis of the SLCO2A1 promoter was of particular interest because, 

unlike HPGD, it has not been characterised previously in the literature. The 

proximal −364 to −140 region of the SLCO2A1 promoter was found to be 

contribute more than 80% of the observed activity of the full-length 3198 bp, in 

contrast to the H-319 HPGD construct. This suggests that key transcription 

factor binding sites for driving the SLCO2A1 promoter are likely to be found 

within this proximal 224-bp region. This observation prompted the decision to 

focus further on SLCO2A1, and use a series of smaller deletion constructs to 

achieve greater resolution across this region. 

 The progressive decrease in promoter activity seen in Caco-2, HT-29 

and SW480 between S-364, S-266, S-209 and S-140 supports this promoter 

region’s importance, and suggests the sequential loss of multiple binding sites 

for transcription factors that induce gene expression, rather than the existence 

of a single dominant effector site. In the LoVo cell line, however, there was a 

small increase in activity between S-364 and S-266, which might suggest that in 

this cell line a repressor binds to this region. Overall, these results support the 

observation that in the cell lines employed here, the −364 to −140 region of the 

SLCO2A1 promoter appeared to be the key driver for promoter activation, and 

should therefore be the focus for further study to understand how SLCO2A1 is 

regulated at the transcriptional level. 

 One limitation of the present study is that the experimental approach has 

restricted analysis to the proximal 3 kb of the promoter. While promoter regions  

immediately upstream of the start site are essential for the binding of 
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transcription factors to drive expression, plasmid reporter systems cannot 

perfectly model the influence of enhancers or repressors that could be located 

tens of kilobases upstream (or downstream) of the promoter; these may interact 

with the promoter and its bound transcription factors through the 3-D 

organisation of the genomic DNA (Ptashne, 1988; Amano et al., 2009; Thurman 

et al., 2012; Olsen et al., 2013). Enhancer elements are typically identifiable as 

DNase I hypersensitive sites within in the genome (Sabo et al., 2004; Thurman 

et al., 2012). In the vicinity of SLCO2A1, such DNase I hypersensitive clusters 

can be seen approximately 30 kb and 60 kb from the transcriptional start sites. 

In addition to this limitation, a promoter deletion series cannot model the effects 

of DNA methylation, or of histone modifications that influence chromatin packing 

and the accessibility of the promoter sequence to transcription factors and the 

RNA polymerase II complex (Soboleva et al., 2014; Boudreau et al., 2017). For 

this reason, it cannot be assumed that the activity of a transfected promoter will 

always reflect the level of endogenous gene expression in the recipient cell line; 

the A549 cell line is an example of this, given the relatively strong promoter 

activity it displayed in the deletion series, contrasting with its very low levels of 

native SLCO2A1 mRNA and protein (Uhlen et al., 2005; Shirasaka et al., 2013). 

Despite these caveats, given that SLCO2A1 transcriptional regulation 

has not been characterised before, scrutinizing the promoter for transcriptional 

control regions was an essential first step in understanding the expression of 

this gene, including the mechanism by which it becomes downregulated in 

colorectal cancer. Very few published studies have attempted to link SLCO2A1 

regulation in colorectal cancer with known pathways (such as Wnt/β-catenin) 

(Smartt et al., 2012a) that are known to be perturbed in colorectal cancer, even 

though it has been shown that like HPGD, SLCO2A1 expression is reduced or 
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lost in adenocarcinomas relative to normal colonic mucosal epithelium (Smartt 

et al., 2012a; Smartt et al., 2012b; Takeda et al., 2015; Tootle, 2013; Holla et 

al., 2008). In this regard, when compared to HPGD, PTGS2 and other enzymes 

in the PGE2 synthesis and degradation pathway, SLCO2A1 has remained 

understudied in this context. There remains a need to link upstream signalling 

pathways with transcription factors that exert their effect directly on the 

SLCO2A1 promoter, in order to understand the mechanism of this 

dysregulation.  
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 Transcriptional Regulation of the proximal 364 bp 
SLCO2A1 promoter 

 Introduction 

A large component of the 3198 bp SLCO2A1 promoter’s activity in 

colorectal cancer cell lines was found to be driven by the -364 to -140 bp region 

of the gene (Chapter 4). As this 224 bp was likely to contain important 

transcription factor binding sites to drive transcription, it was investigated 

further. Eukaryotic transcription factor binding sites are on average 

approximately 10 bp in size, but can range between 5 to 22 bp (Stewart et al., 

2012). Therefore, this ~200bp region was expected to contain a large number of 

transcription factor binding sites, both for different transcription factors but also 

multiple sites for certain transcription factors. Searching for potential 

transcription factor binding sites within this region of the SLCO2A1 promoter 

was therefore deemed to be the next logical step. The approach where 

following the determination of a gene’s transcriptional start sites, a promoter 

deletion series is used to reveal which specific areas of a promoter should be 

subjected to further analysis for their role in transcriptional regulation, has 

proved successful previously (Sirois et al., 1993; Yang et al., 2008). For HPGD, 

Greenland et al (2000), and Nandy et al (2003) represented an example of this 

methodology.  

Two approaches were selected to help determine sites on the SLCO2A1 

promoter that could bind transcription factors. A targeted approach utilised 

publicly available data from chromatin immunoprecipitation and sequencing 

(ChIP-seq) experiments. This allows selection of transcription factors likely to 

act at the gene locus of interest, and whose binding sites can be found on the 

DNA sequence with a reasonably high similarity to the predicted or 
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experimentally determined consensus sequence (Messeguer et al., 2002; Matys 

et al., 2003). With this approach, prior knowledge could be used to then mutate 

the chosen transcription factor binding sites, and in the first instance, test for an 

increase or decrease in promoter activity. The obvious demerit is that this 

method can only test the action of the transcription factor binding sites that have 

previously been identified and characterised. Another limitation is that the 

output from such analysis shows the probable specificity of the transcription 

factor to a DNA sequence, but not its actual affinity to it. 

On the other hand, a hypothesis-free approach where DNA sequences in 

a region of interest are disrupted by introducing short DNA inserts at random, 

offers the ability to detect novel transcription factor binding sites which a 

targeted approach would not. Linker Scanning Mutagenesis is an established 

technique that, from its inception, continues to be used for this purpose 

(McKnight and Kingsbury, 1982; Montero-Conde et al., 2017). Mutations are 

introduced randomly in a region of interest within a gene promoter, with or 

without inserting additional DNA, to identify positons where these lead to a 

disruption in the transcriptional expression (or, protein function when applied to 

coding regions) (McKnight and Kingsbury, 1982; Dykxhoorn et al., 1997; 

Montero-Conde et al., 2017). Therefore, there was merit in considering both 

approaches to study SLCO2A1, given the complementary information they 

could yield. 

 Aims 

 

Identify transcription factor binding sites that could modulate the activity of 

SLCO2A1 within the -364 to -140 region of its promoter. 
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 Methods 

 Bioinformatic search for transcription factor binding sites in 
the SLCO2A1 promoter sequence 

Potential transcription factor binding sites within the -364 to -140 

positions of the SLCO2A1 promoter were identified following a bioinformatics 

search using the ALGGEN-PROMO (Messeguer et al., 2002), CIS-BP 

(Weirauch et al., 2014) and footprint-db (Sebastian and Contreras-Moreira, 

2014) databases. Potential transcription factor binding sites that were common 

across two or more databases were considered for further analysis (Mathelier et 

al., 2016). 

RT-PCR was used to assay for the expression of transcription factors in 

Caco-2, LoVo, HT-29 and SW480 cells, whose binding sites were found on the -

364 to -140 region of the SLCO2A1 promoter. Any binding sites for transcription 

factors not expressed by these cells could be thus excluded. 

  

 Site-Directed Mutagenesis 

Site-Directed mutagenesis was carried out using the S-364 deletion 

construct as the wild-type template, to introduce adjacent substitutions in the 

two most highly conserved bases within the transcription factors’ binding site 

consensus. This strategy was informed based on similar work carried in other 

publications that utilised this method to mutate predicted transcription factor 

binding sites (Saunders et al., 2016; Sabui et al., 2014; Abbas et al., 2014). The 

introduced mutations were confirmed by sequencing (section 2.3.7) the 364 bp 

SLCO2A1 promoter region cloned into the pGL4.10[luc2] plasmid backbone. 
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 Linker Scanning Mutagenesis 

Linker-scanning mutagenesis (section 2.3.11) was used to introduce 

random 15 bp insertions within the same -364 to -140 region of the SLCO2A1 

promoter to disrupt potential transcription factor binding sites (Stewart et al., 

2012; Wilkins et al., 1953; Xu et al., 1996). Initially, this required mutating the 

pGL4.10[luc] backbone’s native NotI restriction site to prevent it from interfering 

with the subsequent digestion steps. The key steps in this procedure are outline 

in Figure 5.1. The constructs were sequenced across the ligation sites and 

insert in order to confirm the presence of the 15 bp insertion within the 

SLCO2A1 promoter, and to exclude any generated reagents where the insertion 

occurred within the short length of plasmid backbone or firefly luciferase gene. 

 

 Dual Luciferase assay 

 Colorectal cancer cell line cells were transfected with the S-364 derived 

constructs from the site-directed mutagenesis and linker-scanning mutagenesis 

in order to assess the activity of the SLCO2A1 promoter through its induction of 

the firefly luciferase reporter gene relative to the wild-type S-364 (sections 2.5.3 

and 2.5.5)  
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Figure 5.1: General overview of the linker scanning mutagenesis 
procedure 
The transposon’s integration into the plasmid DNA is mediated by the MuA 
transposase. This can occur within the cloned promoter region of interest (red), 
or in the plasmid backbone (blue). NotI digestion was then used to excise the 
transposon and leave a 15 bp insertion. This mechanism results in a pool of 
plasmids with random insertions. Images adapted from Thermo Fisher Scientific 
Inc (2012) Mutation Generation System Kit Technical Manual F-701 v2_2012. 
(Thermo Fisher Scientific, 2017) 
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 Results 

 Bioinformatic identification of potential transcription factor 
binding sites 

 The CIS-BP database (Weirauch et al., 2014) predicts transcription factor 

binding sites based on Protein Binding Microarray data (Weirauch et al., 2014), 

and the ALGGEN-PROMO (Messeguer et al., 2002) and footprint-db (Sebastian 

and Contreras-Moreira, 2014) databases predict transcription factor binding 

sites using curated data, predominantly from ChIP experiments. As each of 

these databases uses different datasets and prediction algorithms, transcription 

factors binding sites that were common between two or more datasets were 

considered to be more likely to correctly identify functional elements in the 

SLCO2A1 promoter sequence. However, greater weight was given to 

concordance with or between overlapping binding sites from ALGGEN-PROMO 

and footprint-db, where the transcription factor binding site consensus 

sequences have been validated. 

CIS-BP uses three different algorithms to predict transcription factor 

binding sites (Weirauch et al., 2014). These are the archetypical log-odds 

position weight matrix (PWM) algorithm (Stormo, 1990), a binding energy-based 

algorithm (Zhao and Stormo, 2011), and an octamer-based algorithm specific to 

Protein Binding Microarray data (Berger et al., 2006). Individually the databases 

identified a large number of potential transcription factor binding sites, which 

was expected given the short consensus sequence size for transcription factors. 

Figure 5.2 shows the overlap of three transcription factors selected for further 

study, as a number of the databases and algorithms had a high level of 

agreement in the position of the binding sites 
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Figure 5.2: Predicted transcription factor binding sites in the −364 bp to 
−140 bp region of the SLCO2A1 promoter  
The different algorithms identified binding sites for transcription factors of the 
SP family (highlighted in yellow), EGR family (highlighted in light blue), and 
CDX2 (highlighted in pink). A GC-rich region between -265 and -228 
(highlighted in light grey) contained most of the EGR sites, and all of the SP 
sites, whilst a region identified between -157 and -150 (light grey) contained all 
the sites identified for CDX2.  
SP site for Cis-BP (log- odds) extended from -261 to -238. 
SP site for Cis-BP (energy) extended from -262 to -254. 
SP sites for ALGGEN-PROM extended from -261 to -252, and -238 to -229. 
SP sites for Footprint-db extended from -257 to -250, and -248 to -241. 
EGR sites for Cis-BP (log- odds) extended from -265 to -246, and -244 to -234. 
EGR sites for Cis-BP (energy) extended from -265 to -256, and -244 to -234. 
EGR sites for Cis-BP (octamer) extended from –277 to -270. 
EGR sites for Footprint-db extended from –259 to -252, and -250 to -243. 
CDX2 site for Cis-BP (energy) extended from -157 to -150. 
CDX2 site for Cis-BP (octamer) extended from -157 to -150. 
CDX2 site for Footprint-db extended from -155 to -151. 
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A single CDX2 binding site was identified by footprint-db and two of the 

CIS-BP algorithms (Figure 5.2). It was not identified by ALGGEN-PROMO, as it 

was absent from this database, however, the overlap between the sequences 

identified by the algorithms was high. The region between -265 bp and -228 bp 

was GC-rich and contained binding sites for the SP and the majority of the EGR 

family of transcription factors (Figure 5.2). Although some of the regions 

identified had good overlap between algorithms, other regions were identified 

only by a single method. There was also some overlap in the sites for SP and 

EGR, due to the similarity in their consensus sequences, which made 

differentiating the two, and subsequent selection of appropriate bases to mutate 

challenging (Mathelier et al., 2016; Van Poucke et al., 2009) 

 

 Expression of SP, EGR and CDX transcription factors by 
colorectal cancer cell lines 

RT-PCR was used to determine if members of these transcription factor 

families were natively expressed in the Caco-2, LoVo, HT-29 and SW480 cell 

lines. Expression of these transcription factors should, if they bind to the 

SLCO2A1 promoter, drive expression of luciferase constructs, and mutation at 

the consensus binding site would be expected to reduce promoter activity 

As shown in Figure 5.3, EGR1 and EGR4 appeared to be expressed 

across all four of the cell lines, though expression levels were variable between 

cell lines as judged by comparison to the GAPDH control. EGR3 appeared to be 

expressed only in the LoVo cell line. EGR2 yielded no visible bands, which in 

the absence of a known positive control, cannot be attributed to lack of 

expression by all four cell lines. However, overall, these results indicated that a 



 
 

123 
 

number of the EGR family transcription factors were expressed, at least at the 

mRNA level, by all four of the colon cancer cell lines. 

Expression of the SP family members was assessed in the same cell 

lines. All four colorectal cancer cell lines showed expression of the widely 

expressed SP1, SP2, SP3 and SP4, though expression was considerably 

weaker for SP2 (Figure 5.4). The remaining family members have a more tissue 

specific restricted expression pattern, and where detected were restricted to 

one (SP5), or two (SP9) of the colon cell lines. All of the SP8 amplicons were of 

the incorrect size, and were likely to be off target products. However, several 

members of the SP family transcription factors were expressed in each colon 

cell line indicating they could be possible activators for SLCO2A1 transcription. 

(Schuster et al., 1997; Lu et al., 1996; Bao et al., 2002; Kang et al., 2005). 

As shown in Figure 5.5, CDX2 was expressed in Caco-2, LoVo, and 

SW480 cells, but not in HT-29 cells. The MDA-MB231 breast cancer cell line, 

on the other hand, showed no CDX2 expression, which was consistent to the 

observed specificity of CDX2 to cells derived from the intestinal and colonic 

epithelium with very low or undetectable expression in other organs (Hryniuk et 

al., 2014; Dalerba et al., 2016; Qualtrough et al., 2002). Taken together, the RT-

PCR data indicated that the four cell lines expressed a number of the SP, EGR 

family members, and Caco-2, LoVo and SW480 expressed CDX2, 

consequently these factors could bind to the sites identified in the SLCO2A1 

promoter sequence, and may be responsible for the activity observed in the 

deletion series.  
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Figure 5.4: RT PCR of SP transcription factors and in Caco-2, LoVo, HT-29 
and SW480 cell lines  
The expected sizes for (green arrows) SP1 through to SP9 were 307, 446, 414, 
347, 721, 506, 300, 675, 667 bps respectively. The same batch of cell RNA was 
used for the SP, EGR, CDX2 and GAPDH RT-PCR reactions  
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Figure 5.5: RT-PCR of CDX2 in Caco-2, LoVo, HT-29 and SW480 cell lines  
CDX2 expression was observed in the colorectal cancer cell lines SW480, 
Caco-2 and LoVo cells, while a very weak band was seen on the HT-29 cell 
line. MDA-MB231, which is a breast cancer cell line, did not express CDX2. The 
same batch of cell RNA was used for the SP, EGR, CDX2 and GAPDH RT-
PCR reactions  
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 Generation of S-364-derived constructs with transcription 
factor binding site mutations 

Following on from the identification of potential transcription factor 

binding regions and the knowledge that appropriate transcription factors were 

indeed expressed in the cells of interest, mutations were inserted into selected 

binding sites. This would determine if removal of these binding sites could affect 

the promoter’s activity in driving Firefly luciferase expression, and so the 

functional importance of the sites.   

Footprint-db and the JASPAR database were used to identify the most 

highly conserved bases in the EGR, SP and CDX2 binding site consensus 

sequences for targeted mutagenesis (Mathelier et al., 2016). Figure 5.6 shows 

the mutations inserted within the consensus sequence, and their overall position 

in the promoter sequence. For the regions identified previously (Figure 5.2), a 

single CDX2 consensus site was mutated. For the EGR region, two consensus 

binding sites were mutated, both were in regions with high overlap between two 

different algorithms. A single SP consensus sequence was mutated within the 

region identified by ALGGEN-PROMO. Although other consensus sites were 

present in the SP region, they had a larger overlap with the EGR sites, so the 

site with least EGR overlap was selected.    
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Figure 5.6: Point mutations introduced in the predicted EGR, SP and CDX2 
binding sites  
The wild-type S-364 sequence shows the -364 bp to -1 SLCO2A1 promoter 
region, with the start of the vector’s luciferase gene highlighted in yellow. The 
underlined blue text shows the position of the two EGR regions that were 
selected for mutagenesis. The sequence highlighted in orange indicates the SP 
target region, and has some overlap with the EGR region. The purple 
underlined text shows the CDX2 binding site region. Site Directed Mutagenesis 
was used to mutate two highly conserved bases in the predicted transcription 
factor binding sites. The inserted bases are in red text.  
 

 
  

Wild-type S-364 
CCGGGCCCGCCACCTCCTTCCCTCCCTCTCCGCCTCCCGGCAGGCGGGATCTTCTCGGGGCAGTCAAGC
CTCGCGGGTCGCTGCGGCGTCACACCTGTCTGAGGGGGCGGCGGCGGCGGCGGCGGCGGGGCGGGGGCT
CGTAGCGCCTTTGACACCCGAGGAAAAGAGGGAGGAGGGAGAGCGCGTTTCATCATCGGCGGCGGCCAC
TTATAAAAACTTCTAGGCGCGCACTCGCTGGCTCAGTCTCCGCTCCGCGAATCTCCTCCGGCCACTGCC
GCCGCGGTCGCCTCTCACCCGCCCGGCCGCTCCAGCCCGAGGCGCCCCGACCCCGCGCCACTCCGCGCC
CGGCCAGCCGCCCGCAGCCATGGAAGATGCCAAAAA 
 

Mutations to transcription factor binding sites using Site-Directed Mutagenesis 
 

EGR 1st (-262 to -246) 
GGGGGCGGCGGCGGCGG => GGTTGCGGCGGCGGCGG 
 
EGR 2nd (-244 to -234) 
GGCGGCGGGG => GGCTTCGGGG 
 
SP (-238 to -229) 
GGGGCGGGGG => GGGGCTTGGG 
 
CDX (-157 to -150) 
TTATAAAA => TTGGAAAA 
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Figure 5.7: Digestion of the 364 bp SLCO2A1 promoter from the site-
directed mutagenesis products 
The above gel images show the digestion of the S-364-derived plasmids 
containing mutations to the potential transcription factor binding sites. NcoI and 
XhoI were used to excise the 364 bp SLCO2A1 promoter fragment (~400 bp, 
green arrows).The same reaction products were separated on a crystal violet 
gel, the 400 bp fragments extracted from the gel and ligated to pGL4.10[luc2] 
backbone digested by the same restriction enzymes. 
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The S-364 was taken as the “wild-type” control, and the template on 

which these mutations were introduced. To avoid any unintended mutations 

within the plasmid backbone, the SLCO2A1 promoter was excised using 

restriction enzymes Figure 5.7 and ligated to pGL4.10[luc2] that was not 

subjected to PCR through the site-directed mutagenesis reaction. These 

plasmids were subsequently diluted to equimolar concentrations Figure 4.9 and 

transfected into Caco-2, LoVo and SW480 cells. 

 

 Effects of Predicted Transcription Factor Binding Site 
Mutations on the activity of the proximal -364 bp SLCO2A1 
promoter 

 The S-364-derived constructs containing mutations to the two EGR, and 

single SP and CDX predicted transcription factor binding sites were transfected 

into Caco-2, LoVo and SW480 cells to assess the effect on promoter activity 

through firefly luciferase expression. As seen on Figure 5.8, all constructs 

showed higher luciferase activity relative to the promoterless control. No 

statistically significant difference was observed between the wild-type S-364 

and the S-364 constructs containing mutations in any of the three cell lines. 

However, in the Caco-2 and SW480 cell lines, mutation of the CDX2 binding 

site led to an approximately 50% decrease in average promoter activity relative 

to the control. The SP mutated construct also appeared to have a reduction in 

average promoter activity in Caco-2 and SW480 cell lines, though this was 

much less pronounced than seen for CDX2. The data suggests that CDX2 and 

also possibly an SP family member, may have a role in driving SLCO2A1 

expression.  
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Construct 
name 

S-364 (Wild-
Type) 

S-364 (mut 
EGR 1st) 

S-364 (mut 
EGR 2nd) 

S-364 (mut 
SP) 

S-364 (mut 
CDX) 

promoterless 

t-Test p- 
values 

N/A 0.73545059 0.72205135
9 

0.45519771
3 

0.426099966 0.026240813 

Construct 
name 

S-364 (Wild-
Type) 

S-364 (mut 
EGR 1st) 

S-364 (mut 
EGR 2nd) 

S-364 (mut 
SP) 

S-364 (mut 
CDX) 

promoterless 

t-Test p- 
values 

N/A 0.625415282 0.171648064 0.802012692 0.156199033 0.029944894 

t-Test p- 
values 

S-364 (Wild-
Type) 

S-364 (mut 
EGR 1st) 

S-364 (mut 
EGR 2nd) 

S-364 (mut 
SP) 

S-364 (mut 
CDX) 

promoterless 

Relative to 
S-364 (WT) 

N/A 0.4500679 0.710947 0.2643690 0.0564672 0.0094341 

A 

B 

C 
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Figure 5.8: Activity of the S-364 derived constructs containing 
transcription factor binding site mutations in Caco-2 (A), LoVo (B), and 
SW480 (C) cell lines 
Caco-2, LoVo and SW480 cell lines were transfected with S-3198, wild-type S-
364 and S-364 derivative constructs with mutations to the predicted two EGR, 
SP and CDX consensus binding sites, and the pRL-CMV Renilla luciferase 
transfection control. Promoter activity was measured as the ratio of firefly 
luciferase luminescence to Renilla luciferase luminescence. For each cell line, 
luminescence ratios and standard deviations were normalised to the average 
for S-3198. Activity is displayed as average with one standard deviation. The 
table below each graph shows p-values of two-tailed t-tests carried out relative 
to the wild-type S-364 to determine the statistical significance of any observed 
differences. Two experiments were carried out for each cell line, each with three 
replicates. The averages of each experiment’s replicates were used for 
statistical analysis. The HT-29 cell line was not included in the analysis as it did 
not express CDX2, and had previously been shown to have a much wider 
spread of data from transfection experiments (Figure 4.9), indicating it was less 
likely to generate data of statistical significance.  
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 Generation of random insertions in the −364 to −140region of 
the SLCO2A1 promoter using Linker-Scanning Mutagenesis 

A random mutagenesis approach was followed in order to identify 

regions in the sequence that may contain important transcription factor binding 

sites whose disruption affects the SLCO2A1 promoter activity. First, the existing 

NotI site, within the plasmid backbone, was mutated in order to prevent 

digestion of the plasmid during the subsequent reaction (Figure 5.1 and Figure 

5.9). The transposition reaction generated a pool of plasmids with random 

insertions. Digestion with Acc65I and MreI allowed for the isolation of the ~1600 

bp fragment containing the 364 bp SLCO2A1 promoter and the 1131 bp 

transposon insert (Figure 5.10). 

During the initial transposition reaction (Figure 5.1), a five base pair 

duplication of the plasmid sequence was created adjacent to the ligation site. 

Digestion with NotI removed the transposon sequence, leaving a 10 bp 

fragment, which together with the adjacent duplication, create the 15 bp 

insertion. After transforming the resulting plasmid pool, 240 of the resultant 

clones were screened by PCR and sequencing. Any constructs with the 15 bp 

inserts located in the ~50 bp vector sequence upstream of the -364 bp 

SLCO2A1 promoter, or within the ~60 bp of luciferase gene were excluded. A 

number of constructs were isolated more than once, leading to the use of five 

different insertion constructs for the transfection experiment. Equimolar dilutions 

of these constructs were prepared (Figure 5.11) for transfection into Caco-2 and 

LoVo cells. The 15 bp insertions were at positions -347, -310 -271, -209 and -

169, occurring at approximately every 40 bp as shown in Figure 5.12. 
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Figure 5.9: Mutation of the native NotI restriction site in the S-364 
construct’s pGL4.10[luc2] backbone  
The pGL4.10[luc2] plasmid’s native NotI site was mutated prior to carrying out 
the linker scanning mutagenesis reaction. S-364 was digested with NotI, 
blunted using Klenow DNA polymerase I fragment, and the blunt ends ligated 
prior to transformation into competent cells. Colonies were screened by 
digesting plasmid DNA with NotI. Colonies 1 to 6 (green arrow) contain the S-
364-NotI(x) which is uncut, while the linearized colony 7 (blue arrow) indicates 
that it is native S-364. Sequencing was used to confirm the four-base insertion 
at the NotI site. 
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Figure 5.10: Isolation of the 364-bp SLCO2A1 promoter containing 
transposon insertion, and excision of the transposon sequence to 
generate the 15-bp insertions  
Following the transposition reaction, S-364 was digested with Acc65I and MreI. 
As shown in the left image, the 1600 bp fragment containing the SLCO2A1 
promoter with the inserted transposon was gel purified and ligated to 
pGL4.10[luc2] backbone containing the NotI site mutation. In the right image, 
subsequent digestion with NotI removed the transposon sequence and ligation 
of the linearized plasmids yielded a pool of S-364 containing 15 bp insertions 
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Figure 5.11: Equimolar dilutions of the S-364 derived constructs 
containing 15-bp insertions  
Prior to transfection, the equimolar dilutions of the wild-type S-364 and the 
insertion constructs were run to confirm that their concentrations were 
effectively the same. (A) S-364 and pUC19 plasmids linearized with single-
cutting enzymes, where they appear at their expected sizes (pUC19: 2686 bp, 
S-364 (WT) 4605 bp, S-364 (insert): 4620 bp). (B) S-364 and pUC19 uncut 
plasmids.  
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Figure 5.12: Positions of the 15-bp insertions in the S-364 derived linker-
scanning mutagenesis constructs  
This diagram shows the positions of the five 15 bp insertions (green rectangles) 
within the proximal 364 bp of the SLCO2A1 promoter. The insertions are 
relatively evenly spaced between the -364 and -140 region, at approximately 
every 40 bp 
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 Effects of random 15 bp insertions on the activity of the 
proximal -364 bp SLCO2A1 promoter 

 Caco-2 and LoVo cells were transfected with the five SLCO2A1 promoter 

constructs containing 15 bp deletions (Figure 5.13). All of the S-364 derived 

constructs showed higher activity than the promoterless control. Although there 

was some variation in mean relative luminescence ratio this was less than a 

two-fold change, and given the spread of data, no significant difference was 

observed between the wild-type S-364 and the constructs containing the 15 bp 

insertions.  
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Construct name S-364 (-
347 insert) 

S-364 (-
310 insert) 

S-364 (-
271 insert) 

S-364 (-
209 insert) 

S-364 (-169 
insert) 

promoterless 

t-Test p- values 0.1481177 0.6138622 0.2242372 0.2461441 0.6804508 0.1055995 

Construct name S-364 (-
347 insert) 

S-364 (-
310 insert) 

S-364 (-
271 insert) 

S-364 (-
209 insert) 

S-364 (-169 
insert) 

promoterless 

t-Test p- values 0.5295593 0.3600031 0.6726378 0.635886 0.2437462 0.6467893 

A 

B 
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Figure 5.13: Activity of the S-364 derived constructs containing random 
insertions in the -364 to -140 region of the SLCO2A1 promoter in Caco-2 
(A) and LoVo (B) cells 
The Caco-2 and LoVo cell lines were transfected with wild-type S-364 and S-
364 derivative constructs with random 15 bp insertions in the SLCO2A1 
promoter sequence, and the pRL-CMV Renilla luciferase transfection control. 
Promoter activity was measured as the ratio of firefly luciferase luminescence to 
Renilla luciferase luminescence. For each cell line, luminescence ratios and 
standard deviations were normalised to the average for S-364. The table below 
each graph shows p-values of two-tailed t-tests carried out relative to the wild-
type S-364. Three independent experiments were carried out for each cell line, 
each with three replicates. 
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 Discussion 

Two approaches were used in order to identify transcription factor binding 

sites within the proximal promoter responsible for the change in SLCO2A1 

activity. Although the linker scanning mutagenesis approach has been used 

successfully previously, no sites were identified in this study. While 10 bp is the 

average length of eukaryotic promoter transcription factor binding sites (Stewart 

et al., 2012), this is also the period of DNA’s helical structure (Wilkins et al., 

1953). Therefore, a 15 bp insertion was expected to be potentially more 

disruptive because sequences on each side of the insertion would be rotated 

180°, and spatial orientation of the binding sites altered, in addition to the 

sequence itself. This would prevent the binding of transcription factors that bind 

cooperatively to closely-spaced sites (Xu et al., 1996). The lack of any positive 

findings here may be due to the small number of constructs analysed. 

Generation of a much larger number of reagents would be required to assess 

the region completely.  

The targeted approach with site directed mutagenesis was more 

successful. A consensus sequence for the CDX2 binding site was previously 

described as conserved between human, mouse, rat, cow and pig SLCO2A1 

homologues, however no functional evaluation was performed (Van Poucke et 

al., 2009). The experimental results presented here suggest that CDX2 may 

indeed have a role in regulating SLCO2A1 expression, and further replicates of 

the experiment to increase the statistical power may help demonstrate this with 

more certainty.  

CDX, compared to the SP or EGR transcription factors, may be more 

functionally relevant. CDX2 is a transcription factor specific to the small intestine 

and colon, where it is expressed in the epithelial cells. In the mouse it has been 
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found to be essential for colon development at the embryonic stage, and 

essential for the maintenance and renewal of the intestinal and colonic 

epithelium (Freund et al., 2015; Hryniuk et al., 2014). Loss of Cdx2 function in 

the mouse has also been shown to exacerbate the tumour formation in the 

small intestine and colon of Apc+/min mice (Hryniuk et al., 2014; Bae et al., 2015; 

Ee et al., 1995). Its loss in colorectal adenocarcinomas is associated with a 

poorer differentiation phenotype and prognosis (Dawson et al., 2013; Olsen et 

al., 2016), and increased invasiveness (Mallo et al., 1997; Bae et al., 2015; 

Coskun et al., 2014). 

Although CDX2 expression is lost in less than 10% of colorectal 

adenocarcinomas (Olsen et al., 2016), closer inspection has revealed that loss 

of expression occurs at the invasive front of the tumour, where it facilitates 

invasion, even if expression is maintained in the rest of the tumour (Coskun et 

al., 2014). Furthermore, CDX2 can stimulate expression of APC, AXIN2 and 

GSK3β, through binding to their respective promoters and enhancers (Olsen et 

al., 2013). This implies a mechanism to suppress the Wnt/β-catenin pathway in 

the presence of functional APC protein, and further suggests a second, indirect 

mechanism by which CDX2 could drive SLCO2A1 expression (Smartt et al., 

2012a). However, unlike SLCO2A1, CDX2 does not show an increasing 

expression gradient from the crypt to the colon lumen (Qualtrough et al., 2002), 

which suggests that its role may be to maintain rather than initiate differential 

SLCO2A1 expression. Interestingly CDX2 has been found to regulate the 

expression of another prostaglandin pathway component, PTGS2, where it 

reduces transcriptional activity (Kim et al., 2004). However, as CDX2 is not 

frequently reduced in early stage cancer samples, it is not likely to be a main 

factor in the decrease of either PTGS2 or SLCO2A1 in early stage disease.  
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There is limited information on the EGR family members for all but EGR1 

in the colon. EGR1 has been implicated in colorectal cancer development, 

however the evidence is not as compelling as that for CDX2. EGR1 is 

expressed in adenocarcinomas, with little to no expression in normal colonic 

epithelium, suggesting that it promotes tumour growth (Myung et al., 2014; 

Ongen et al., 2014). EGR1 is known to upregulate PTGS2 expression in 

colorectal cancer with a suggested role in potentiating PGE2 synthesis by 

inducing PTGES in the presence of PGE2α and PGE2 (Kim et al., 2004; 

Stamatakis et al., 2015). Its role as a transcriptional activator for SLCO2A1 

would therefore be in functional opposition, regarding their roles in PGE2 

production and removal. EGR1 can also act as a repressor via the same 

binding site (Gashler et al 1993), however as the two altered consensus binding 

sites showed no clear effect on transcriptional activity, this suggests they are 

not likely to be functional sites within the SLCO2A1 promoter.  

SP binding sites were found on the SLCO2A1 promoter in the original 

study that characterised the gene (Lu and Schuster, 1998). One of these sites 

was also conserved in the rodent, pig and cow Slco2a1, and was the site 

selected here for mutation (Van Poucke et al., 2009). Many of the SP 

transcription factors are generally considered to be ubiquitously expressed and 

function as transcriptional activators (Wilson et al., 2010; Hedrick et al., 2016). 

SLCO2A1 expression similarly occurs in a number of cell types and tissues, so 

SP transcription factors could have a role in driving baseline expression (Bao et 

al., 2002; Kang et al., 2005; Schuster et al., 1997). Given the similar consensus 

transcription factor binding site for the SP family, a number of them have a 

potential to control transcription in the cell lines used. They do not all act as 

activators, as SP5 is known to function as a transcriptional repressor that 
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downregulates genes driven by SP1 (Fujimura et al., 2007). While SP5 

expression can be stimulated by activation of the Wnt/β-catenin pathway, any 

effect or competition with endogenously expressed SP1 could potentially make 

it difficult to interpret its role in regulating target genes unless specific SP factors 

are upregulated or knocked down. However, establishing that the modest 

decrease in SLCO2A1 promoter activity through mutation of the single SP site 

can be reproduced, needs to be demonstrated first.  

The consensus binding site sequences for both EGR and SP transcription 

factors are GC rich, and there was overlap in the initial site identification. It is 

possible they may have a level of redundancy, and therefore mutating one site 

would be insufficient to appreciably alter expression. This is one limitation of the 

transfection experiments, and may have contributed to the lack of response 

seen with the EGR and SP binding site mutations. This could be assessed by 

generating constructs containing mutations to more than one of the different 

EGR and SP sites (Xu et al., 2016; Xu et al., 2012). This has been 

demonstrated in SP binding sites, where mutation of two out of four SP sites led 

to a large reduction in promoter activity compared to the individual mutations 

(Xu et al., 2012). Alternatively, these transcription factors could be transiently 

knocked down using RNAi to test the effect on SLCO2A1 mRNA expression 

and promoter activity. This would reveal whether a transcription factor does 

influence the expression level of the target gene, although the disadvantage 

would be the inability to discriminate between direct and indirect actions (for 

example, inducing an activator or repressor that then acts on the target gene). 

 To conclude, a CDX2 and an SP binding site were identified in the 

SLCO2A1 promoter that reduced transcriptional activity, albeit to less than 

statistical significance, but still merit further investigation.   
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 Actions of TGF-β and Hedgehog Pathways on 
SLCO2A1 Expression 

 Introduction 

The effects of mutating predicted transcription factor binding sites on 

SLCO2A1 promoter activity helped to identify potential factors acting at the 

gene locus (Chapter 5). Transcription factors represent the effectors at the 

confluence of several signalling pathways, however, regulation of SLCO2A1 

can also be investigated by identifying compounds that act closer to the start of 

these pathways.  

 The Wnt/β-catenin pathway is one of the first to be dysregulated in 

colorectal carcinogenesis (Munemitsu et al., 1995; Takayama et al., 1996; 

Rubinfeld et al., 1993; Fearon, 2011) and demonstrates where upstream events 

effect transcription factor recruitment to promoters and the subsequent 

expression of a wide range of genes (Mohammed et al., 2016). For example, 

APC mutation releases bound β-catenin which can translocate to the nucleus 

and allow interaction with transcription factors. β-catenin typically activates 

transcription by recruiting TCF4 to the promoters and displacing repressors like 

TCF3 (Morin et al., 1997; Wray et al., 2011). Both β-catenin and TCF4 can bind 

to the HPGD promoter, which contains a non-classical TCF binding site (Smartt 

et al., 2012b). Although the exact events at the SLCO2A1 promoter are not 

known, that modulation of β-catenin can alter activity at promoters, including 

HPGD and SLCO2A1, is clear. Similarly, changes further upstream would be 

expected to also alter gene transcription for these genes. 

 Exposure to NSAIDs can also upregulate HPGD and SLCO2A1, for 

example the COX-2 selective antagonist Apricoxib increases HPGD and 

SLCO2A1 expression (St John et al., 2012). The downstream mechanism for 
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this effect is most likely due to the disruption of the positive feedback of PGE2 

acting on the EP2 and EP4 receptors that typically acts to upregulate PTGS2 

and to repress expression of the degradation enzyme (Zhu et al., 2015; Steinert 

et al., 2009; Nishimura et al., 2013). The precise events occurring at the 

promoters have yet to be well defined. 

 Transforming Growth Factor-β (TGF-β) is a cytokine that can activate a 

series of downstream events in its signalling pathway (Figure 1.6). It is one of 

the tumour suppressor pathways that is also inactivated in colorectal cancer 

(MacKay et al., 1995; Samowitz and Slattery, 1997; Hoosein et al., 1987; Engle 

et al., 1999).  

 TGF-β affects the expression of multiple enzymes in the PGE2 metabolic 

pathway. It suppresses PGE2 signalling by downregulating the inducible 

PTGS2, and at the same time upregulating HPGD, therefore reducing PGE2 

synthesis and accelerating its degradation (Takai et al., 2013; Yan et al., 2004). 

TGF-β has also been shown to co-regulate PTGS2 and PGES in the kidney, 

which further emphasises it can exert opposite effects on the PGE2 synthesis 

and degradation parts of the prostaglandin pathway (Takai et al., 2013; Kang et 

al., 2015; Harding et al., 2006). As TGF-β can regulate at least three 

components of the PGE2 synthesis and degradation pathway, it is plausible that 

it could also stimulate SLCO2A1. Given that TGF-β expression displays a 

gradient from base of the colonic crypt towards the mucosal surface (Avery et 

al., 1993), which follows that observed for both HPGD (Smartt et al., 2012b) and 

SLCO2A1 (Smartt et al., 2012a), this provides additional biological relevance to 

the potential transcriptional control relationship between TGF-β and SLCO2A1. 

 While the literature can provide evidence to suggest that TGF-β or other 

agents may positively regulate SLCO2A1, publicly available data from 
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microarray and high-throughput sequencing experiments could reveal stronger 

associations between treatments or signalling pathways and their effect on 

SLCO2A1 expression (Kolesnikov et al., 2015). Unlike the inferences drawn 

from associated patterns of protein expression on tissue sections, microarray 

studies measure the effects of a test condition on gene transcription relative to 

an untreated control (Barrett et al., 2013). Therefore, this provides stronger 

evidence of transcriptional regulation, and given the large number of datasets 

that are available, it was likely that data on SLCO2A1 was captured across a 

number of studies as part of the panel of genes that were tested. 

 

 Aims 

Use bioinformatic data to identify genes, signalling factors and drugs that can 

modulate SLCO2A1 expression. 

 

Test whether the gene products or drugs exert an effect on SLCO2A1 mRNA 

expression, and SLCO2A1 promoter activity 
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 Methods 

 Bioinformatics Search to identify drugs or signalling pathways 

that affect SLCO2A1 expression 

 A bioinformatics search was carried out using the NCBI Gene Ontology 

Omnibus database (Barrett et al., 2013) and the EBI Expression Atlas 

(Petryszak et al., 2016) using SLCO2A1 as the search term to identify 

experimental conditions or treatments that increased or decreased SLCO2A1 

activity. This search was focused on human tissues or cell lines. DNA 

demethylation or deacetylation treatments were excluded because SLCO2A1 

possesses CpG islands, which in the expression constructs described in section 

4.4 above, do not reflect the endogenous epigenetic status. 

 

 Treatment of cultured cells with TGF-β2 and Smoothened 

Agonist (SAG) 

The colorectal cancer cell lines Caco-2 and LoVo were used in the 

treatments and RT-PCR experiments. The A549 cell line, which originated from 

the malignant transformation of the secretory Type II alveolar epithelial cells in 

the lung alveoli, was also included (Lieber et al., 1976). This cell line is known to 

express low levels of SLCO2A1, as was observed in Figure 3.2, so any 

increase in expression caused through the activation of signalling pathways 

would in theory be more readily detectable (Uhlen et al., 2015). 

 Caco-2, LoVo and A549 cells were cultured and treated with activated 

TGF-β2 and SAG as described in in sections 2.5.1 and 2.5.6 above. Images of 
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the cells were also taken under a light microscope at 24 hours and 48 hours.  

RNA was extracted from the cells for RT-PCR (sections 2.2.1, 2.2.2 and 2.3.2) 

PCR band intensity for SLCO2A1 and GAPDH was quantified using 

ImageLab 5.2.1 (section 2.3.8). The concentration ranges for TGF-β2 and 

SAGs were inferred from information in the literature where they were used in 

similar cell culture experiments (Bragina et al., 2010; Kang et al., 2015; Wu et 

al., 2014; Takai et al., 2013; Zhou et al., 2008). 

 

 TGF-β2 Treatment of A549 Cells Transfected with SLCO2A1 

deletion series 

 Cultured A549 cells were transfected with the first nine SLCO2A1 

promoter deletion series constructs S-3198 to S-364 (section 2.5.3). One set of 

transfected cells was treated with 25 ng/ml TGF-β2 for 48 hours, and the control 

set with 1 × PBS), after which promoter activity was measured using the dual 

luciferase assay (section 2.5.5). Foetal calf serum at the 10% dilution used in 

cell culture media is known to contain 1 – 2 ng/ml TGF-β2 (Oida and Weiner, 

2010). However, this TGF-β2 is predominantly the immature latent form that is 

unable to bind the TGF-β2 receptor complex (TGFBR1, TGFBR2, TGFBR3), so 

the baseline concentration of mature, active TGF-β2 in the serum-enriched 

medium was considered to be negligible for the purpose of the experiments 

(Oida and Weiner, 2010; Poniatowski et al., 2015). 
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 Results 

 Bioinformatics search 

The activation TGF-β pathway was found to increase SLCO2A1 

expression by a factor of nine for TGF-β1 and by a factor of eleven for TGF-β2 

in an ovarian fibroblast cell line treated with 5 ng/ml of active ligand 

(ArrayExpress ID: E-GEOD-40266 (Yeung et al., 2013) in Expression Atlas 

(Petryszak et al., 2016). The action of TGF-β2 appeared to be more 

pronounced, and given the lack of similar experiments on SLCO2A1 in the 

literature, TGF-β2 was chosen as the ligand to test. While this activation was 

not in a colon cell line, TGF-β’s possible role is supported by the facts that TGF-

β signalling can upregulate HPGD (Yan et al., 2004), and shows a similar 

expression gradient to both HPGD and SLCO2A1 in the colonic epithelium 

(Smartt et al., 2012a; Smartt et al., 2012b; Avery et al., 1993). Therefore, it 

would be reasonable to hypothesise that SLCO2A1 expression may be directly 

upregulated by the TGF-β pathway and TGF-β2. 

 Inhibition of the hedgehog signalling pathway was found to reduce 

SLCO2A1 expression in human umbilical vein endothelial cells (GEO 

accession: GDS4482 (Rivron et al., 2012). This was mediated by the drug 

cyclopamine, which binds to Smoothened to inhibit its function (Chen et al., 

2002). Hedgehog signalling has been implicated in colorectal cancer, its role to 

drive or repress tumorigenesis is unclear (Wu et al., 2017; Gerling et al., 2016), 

and little data exists on any role for Hedgehog signalling in PGE2 regulation. 

However, the possibility of SLCO2A1 expression in the colon being driven by 

the Hedgehog pathway was considered for further investigation. 
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 TGF-β2 induces morphological changes to A549 cells, but not 

Caco-2 or Lovo cells 

TGF-β2 induced a change in the A549 cell’s morphology, which 

appeared to be associated with TGF-β2 concentration (Figure 6.2). A549 cells 

are typically compact and polygonal epithelioid cells, with a prominent nucleus 

(Lieber et al., 1976). Exposure to TGF-β2 caused the A549 cells to elongate 

and adopt a spindle-like shape. This effect was more pronounced after 48 hours 

(Figure 6.3), and at the higher TGF-β2 concentrations, 12.5 ng/ml and 25 ng/ml 

used in the experiment. TGF-β signalling is known to be a trigger for epithelial-

to-mesenchymal transition (EMT) in a number of cancers, and it has been 

shown in the literature that A549 cells can be induced to undergo EMT through 

this mechanism (Liu, 2008; Albo et al., 1994; Tirino et al., 2013). In contrast, no 

such change in the appearance of LoVo (Figure 6.4) and Caco-2 cells (Figure 

6.5) was observed when these cell lines were treated with TGF-β2 under the 

same conditions.   
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TGF-β2 24 h 25ng/ml 

TGF-β2 24 h 3.125 ng/ml 

TGF-β2 24 h 1.5625 ng/ml TGF-β2 24 h 0 ng/ml 

TGF-β2 24 h 6.25 ng/ml 

TGF-β2 24 h 12.5 ng/ml 
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Figure 6.1: A549 cells treated with TGF-β2 for 24 hours 
After 24 hours of TGF-β2 treatment, the A549 do not appear to show a change 
in morphology relative to the untreated control, as viewed under a light 
microscope. Total magnification × 100 
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TGF-β2 48 h 0 ng/ml 

TGF-β2 48 h 3.125 ng/ml TGF-β2 48 h 6.25 ng/ml 

TGF-β2 48 h 12.5 ng/ml TGF-β2 48 h 25 ng/ml 

TGF-β2 48 h 1.5625 ng/ml 
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Figure 6.2: A549 cells treated with TGF-β2 for 48 hours 
Exposure of A549 cells to TGF-β2 for 48 hours led to a more pronounced 
elongated phenotype (green arrows) compared to the untreated controls. Total 
Magnification × 100 
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Figure 6.3: LoVo cells treated with TGF-β2 for 24 and 48 hours 
Exposure of LoVo cells to TGF-β2 caused no change in the cells’ morphology, 
even after 48 hours. Total Magnification × 100 
  

TGF-β2 24 h 25 ng/ml TGF-β2 24 h 0 ng/ml 

TGF-β2 48 h 0 ng/ml TGF-β2 48 h 25 ng/ml 
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Figure 6.4: Caco-2 cells treated with TGF-β2 for 24 and 48 hours 
No change in Caco-2 cell morphology was seen under light microscopy after 
TGF-β2 treatment, even after 48 hours. Total Magnification × 100 

TGF-β2 24 h 25 ng/ml TGF-β2 24 h 0 ng/ml 

TGF-β2 48 h 0 ng/ml TGF-β2 48 h 25 ng/ml 
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 TGF-β2 effect on SLCO2A1 expression 

 A549, LoVo and Caco-2 cells were treated with a range of concentrations 

of TGF-β2 for 24 hours and 48 hours. In A549 cells, an increase in the average 

SLCO2A1 to GAPDH amplicon band intensity ratio was seen at all TGF-β2 

concentrations (Figure 6.6), though the increase at 12.5 ng/ml and 25 ng/ml 

TGF-β2 appeared more pronounced at 48 hours (Figure 6.7). Although this 

trend was not found to differ significantly relative to the untreated control, or 

between the two time points, only the A549 cell line demonstrated this trend. In 

contrast, LoVo (Figure 6.8) and Caco-2 (Figure 6.9) did not show any 

appreciable change in SLCO2A1 expression across the TGF-β2 concentrations 

used, even after 48 hours of treatment. Likewise, there was little change from 

24 hours to 48 hours in these cell lines. 
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Figure 6.5: Representative agarose gels for A549 cells treated with TGF-β2 
for 24 hours 
The above gels represent one of the three SLCO2A1 (A) (green arrow) and 
GAPDH (B) (blue arrow) PCR reactions for the 24 hour treatment whose band 
intensities were quantified to give the SLCO2A1/GAPDH volume intensity ratio. 
The same exposure time was used for SLCO2A1 and GAPDH, and the same 
principle was used in all gel images for SAG, SLCO2A1 and GAPDH at the 24 
hour and 48 hour time points  
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t-test p-values relative to 0 ng/ml TGF-β2 
25 ng/ml 12.5 ng/ml 6.25 ng/ml 3.125 ng/ml 1.5625 ng/ml 

0.3564 0.1486 0.3208 0.5264 0.4432 

 

 

 

 

 

 

 

 

t-test p-values relative to 0 ng/ml TGF-β2 
25 ng/ml 12.5 ng/ml 6.25 ng/ml 3.125 ng/ml 1.5625 ng/ml 

0.1469 0.1366 0.1920 0.2379 0.5062 

 

t-test p-values for each concentration between 48 hours and 24 hours 
25 ng/ml 12.5 ng/ml 6.25 ng/ml 3.125 ng/ml 1.5625 ng/ml 0 ng/ml 

0.2966 0.4286 0.8156 0.8004 0.5113 0.6350 

 
 
 
 

A 

B 
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Figure 6.6: Ratio of SLCO2A1/GAPDH expression in A549 cells treated 
with TGF-β2 
The volume intensity ratio between SLCO2A1 and GAPDH PCR band intensity 
was used as an indicator of SLCO2A1 expression after 24 hours (A) and 48 
hours (B). The results represent the average of three independent experiments 
and one standard deviation. Statistical significance was measured using a two-
tailed Student’s t-test. The p-value for each TGF-β2 concentration relative to the 
untreated control is shown in the table beneath each graph. (C) The table 
shows the p-value for any difference between 24h and 48h of treatment at each 
TGF-β2 concentration.  
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t-test p-values relative to 0 ng/ml TGF-β2 
25 ng/ml 12.5 ng/ml 6.25 ng/ml 3.125 ng/ml 1.5625 ng/ml 
0.6458 0.5285 0.7147 0.8150 0.3723 

 

 

 

 

 

 

 

 

t-test p-values relative to 0 ng/ml TGF-β2 
25 ng/ml 12.5 ng/ml 6.25 ng/ml 3.125 ng/ml 1.5625 ng/ml 
0.5478 0.7364 0.7934 0.9481 0.3496 

 

t-test p-values between 48 hours and 24 hours 
25 ng/ml 12.5 ng/ml 6.25 ng/ml 3.125 ng/ml 1.5625 ng/ml 0 ng/ml 
0.9814 0.6138 0.3442 0.2583 0.2689 0.3667 

Figure 6.7: Ratio of SLCO2A1/GAPDH expression in LoVo cells treated 
with TGF-β2 
Graphs show the average with one standard deviation in relative expression at 
(A) 24 hours and (B) 48 hours of treatment.  
  

A 

B 
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t-test p-values relative to 0 ng/ml TGF-β2 
25 ng/ml 12.5 ng/ml 6.25 ng/ml 3.125 ng/ml 1.5625 ng/ml 
0.9358 0.6257 0.3483 0.5090 0.4474 

  

 

 

 

 

 

 

 

t-test p-values relative to 0 ng/ml TGF-β2 
25 ng/ml 12.5 ng/ml 6.25 ng/ml 3.125 ng/ml 1.5625 ng/ml 
0.4696 0.9959 0.6891 0.4701 0.6595 

 

t-test p-values between 48 hours and 24 hours 
25 ng/ml 12.5 ng/ml 6.25 ng/ml 3.125 ng/ml 1.5625 ng/ml 0 ng/ml 
0.5802 0.7729 0.3553 0.9144 0.5103 0.8434 

Figure 6.8: Ratio of SLCO2A1/GAPDH expression in Caco-2 cells treated 
with TGF-β2 
 Graphs show the average with one standard deviation in relative expression at 
(A) 24 hours and (B) 48 hours treatment.  
  

A 

B 
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 Effect of TGF-β2 on SLCO2A1 promoter deletion series  

In the RT-PCR experiments, endogenous SLCO2A1 expression showed 

an increase in A549 cells across the all of the TGF-β2 concentrations, unlike 

Caco-2 and LoVo. The promoter deletion constructs could identify regions 

within the 3198 bp of the SLCO2A1 proximal promoter which could be important 

in mediating the downstream effects of TGF-β signalling. 

As was also seen in the original deletion series transfections (section 

4.4.2, Figures 4.3 and 4.4) all of the promoter constructs showed significantly 

greater activity compared to the promoterless control. For the S-3198, and S-

1579 constructs, treatment with TGF-β2 for 48 hours appeared to increase the 

activity of the luciferase reporter constructs by approximately 30%, although 

these changes were not statistically significant (Figure 6.10). This level of 

change was however much less than the 400% to 600% increase in the 

endogenous SLCO2A1 mRNA expression (Figure 6.3).   
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Figure 6.9: Treatment of A549 cells transfected with the SLCO2A1 
promoter deletion series for TGF-β2 for 48 hours 
A549 cells were transfected with the nine SLCO2A1 promoter deletion 
constructs from S-3198 to S-3164. In each experiment, one set was treated with 
25 ng/ml TGF-β2, and the other with diluent solution lacking TGF-β2. A total of 
three experiments were carried out, each with three replicates for the treated 
and untreated groups. All luminescence ratios were normalised to the average 
of the untreated S-3198. The error bars represent the standard deviation. 
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 Effect of Hedgehog Pathway activation on SLCO2A1 

expression 

As inhibition of the hedgehog pathway had decreased SLCO2A1 

expression (Rivron et al 2012), it was expected that the Smoothened agonist 

(SAG), would lead to an increase in SLCO2A1 transcript levels. As shown in 

Figure 6.11, the A549 cellular morphology showed no change in the presence 

of SAG, even after 48 hours of treatment at the highest dose of 10 nM. The 

A549 cells retained their usual polygonal appearance, and did not undergo 

epithelial to mesenchymal transition as when treated with TGF-β2 (Figure 6.3). 

The volume intensity ratios of SLCO2A1 to GAPDH showed no overall 

change across the concentration range of SAG used (Figure 6.12) at 24 hours. 

At 48 hours, a slight increase of approximately 30% in SLCO2A1 expression 

was seen at 10 nM and 5 nM relative to the untreated A549 cells, although this 

change was  not statistically significant. Also, at 10 ng and 5 ng, expression 

increased by approximately 30% between 24 and 48 hours, although this 

change was not statistically significant. 
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Figure 6.10: A549 cells treated with smoothened agonist (SAG) for 24 and 
48 hours 
A549 cells were either untreated or exposed to 10 nM SAG for 24 and 48 hours.  
Total Magnification × 100 
  

24 h SAG: 0 nM 24 h SAG: 10 nM 

48h SAG: 0 nM 48h SAG: 10 nM 
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t-test p-values relative to 0 nM SAG 
10 nM 5 nM 2.5 nM 1.25 nM 0.625 nM 
0.6847 0.6154 0.7221 0.8291 0.4800 

 

 

 

 

 

 

 

 

t.0-test p-values relative to 0 nM SAG 
10 nM 5 nM 2.5 nM 1.25 nM 0.625 nM 
0.1989 0.2762 0.6603 0.7742 0.4689 

 

t-test p-values between 48 hours and 24 hours 
10 nM 5 nM 2.5 nM 1.25 nM 0.625 nM 0 nM 
0.1300 0.1619 0.4135 0.8434 0.4167 0.7992 

Figure 6.11: Volume intensity ratios of SLCO2A1 and GAPDH RT-PCR 
bands in A549 cells treated with SAG for 24 and 48 hours: 
The volume intensity ratio between SLCO2A1 and GAPDH PCR band intensity 
was used as an indicator of SLCO2A1 expression. Overall no statistically 
significant difference was seen in A549 cells treated with SAG relative to the 
untreated control. The averages represent four independent experiments. The 
error bars represent the standard deviation 
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B 
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 Discussion 

 The objective in these experiments was to assess whether the agents 

identified through bioinformatics analysis, TGF-β2 and SAG, could stimulate 

SLCO2A1 expression in the A549, Caco-2 and LoVo cell lines. TGF-β2 was 

able to increase average SLCO2A1 expression, though the variability of the 

data did not generate statistical significance. Alternative, more sensitive and 

accurate approaches could be used to detect and quantify changes in gene 

expression. Real-time PCR, for example can quantify the amount of PCR 

product through the course of the reaction (Arezi et al., 2003). Interestingly, 

TGF-β2 generated larger average transcriptional changes at the endogenous 

locus rather than the cloned 3 kb promoter construct. This may imply that the 

proximal SLCO2A1 promoter only made a small contribution to the downstream 

effects transcriptional effects.  

The TGF-β signalling pathway has been described as having a tumour 

suppression role in colorectal cancer (Markowitz et al., 1995; Samowitz and 

Slattery, 1997; Engle et al., 1999). Mutation or deletion of genes in the pathway 

occur in at least 70% of sporadic colorectal cancers (Fearon, 2011). Loss of 

homozygosity usually accounts for the loss of SMAD2 and SMAD4 alleles, while 

mutations in TGFBR2 are also relatively common. (Yan et al., 2004; Huang et 

al., 1994).  

The Caco-2 and LoVo colorectal cancer cell lines showed no change in 

SLCO2A1 expression following TGF-β2 treatment, though as mutations in the 

TGF-β2 pathway are common in colon cancer, this may be due to genetic 

alterations in these cell lines inactivating the functional pathway. Caco-2 

expresses wild-type TGFBR2, while LoVo carries a single and two base 

deletion in each allele (Ilyas et al., 1999). Yet, TGF-β1 had a functional effect on 
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LoVo, with a 10% reduction in growth rate, whereas no growth changes were 

seen in Caco-2 (Ilyas et al., 1999). Therefore, it is possible that TGF-β ligands 

could activate downstream SMAD2, SMAD3 and SMAD4 proteins via an 

alternate type V receptor (O'Grady et al., 1992; Ilyas et al., 1999). LoVo retains 

functional SMAD4, whilst Caco-2 carries a missense mutation in that gene 

(Woodford-Richens et al., 2001), which would explain the observations made by 

Ilyas et al (1999). Therefore, this may account for the lack of response observed 

in the Caco-2 cell line. Both Caco-2 and Lovo showed much higher expression 

of SLCO2A1 compared to the A549 cell line, consequently the lack of a visible 

effect on LoVo could be explained by the inability to detect a small increase in 

mRNA relative to the higher baseline SLCO2A1 expression.  

That TGF-β pathway operates to repress PGE2 signalling in the 

differentiated colon epithelial cells by upregulating HPGD (Yan et al., 2004), and 

repressing PTGS2 (Harding et al., 2006; Takai et al., 2013), and as suggested 

here upregulating SLCO2A1, could represent one of the mechanisms by which 

PGE2 signalling is normally supressed in the differentiated colonic epithelial. 

This supports the beneficial role of TGF-β in countering tumour progression. 

Although TGF-β signalling generally reduces growth of colorectal cancer cell 

lines (MacKay et al., 1995; Ilyas et al., 1999), its role as a tumour suppressor is 

however controversial. Evidence from cultures of primary colorectal cancer cells 

suggests that TGF-β signalling represses growth of early-stage colorectal 

cancer, while on the other hand, it accelerates growth, of more advanced 

disease (Huang et al., 1994).  

The induction of epithelial-to-mesenchymal transition has been 

previously described in A549 cells (Miettinen et al., 1994; Kasai et al., 2005; Liu, 

2008). This ability of TGF-β to trigger EMT (Tirino et al., 2013; Portella et al., 
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1998) is of particular concern because it increases cell motility and 

invasiveness, and thus promotes metastasis. A more recent study has also 

implicated the TGF-β pathway in promoting colorectal cancer survival at 

metastatic sites by local immunosuppression in the tumour microenvironment 

(Tauriello et al., 2018). Activation of the TGF-β pathway, chiefly by TGF-β1, has 

been correlated with poorer prognosis in colorectal cancer patients (Friedman et 

al., 1995), later-stage adenocarcinomas, and lymph node metastasis 

(Lampropoulos et al., 2012).  

 Therefore, any theoretical benefit of activating the TGF-β pathway as 

prophylactic or therapeutic measure against colorectal cancer by suppressing 

PGE2 signalling, is heavily offset by the dangers of promoting metastasis, and 

preferentially accelerating the growth of any cells within the tumour which in 

which the deregulated TGF-β pathway stimulates cell division and metastatic 

potential. Careful consideration of its potential use as a therapeutic agent would 

therefore depend on the nature of the individual tumour, the mutations it 

contains and the stage of disease. 

 Inhibition of the hedgehog pathway decreased expression of SLCO2A1 

in endothelial cells (Rivron et al., 2012), however it did not appear to influence 

transcriptional response in the low SLCO2A1 expressing A549 cell line. It is not 

known whether genes encoding the Hedgehog pathway’s components are 

mutated or lost in this cell line, in colorectal cancer, or colorectal cancer cell 

lines, which as with the lack of TGF-β response in Caco-2 and LoVo, may 

account for the absence of SLCO2A1 transcriptional upregulation (Ilyas et al., 

1999; Woodford-Richens et al., 2001). Plasmids expressing a downstream 

pathway component (such as SMAD2 or GLI1) could be used to bypass any 

unknown mutations that could exist in the natively expressed genes, upstream 
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mediators or surface receptors, in order to test the effect of activating a 

particular signalling pathway. 

 To conclude, whilst TGF-β was able to increase average SLCO2A1 

transcript levels in the low expressing A549 cell line, SAG had no measurable 

effect.  
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 Investigation into the co-expression of HPGD and 
SLCO2A1 in the colon 

 Introduction 

The presence of HPGD and SLCO2A1 in both the human and rodent 

colon has been demonstrated by immunohistochemistry (Yan et al., 2004; 

Lejeune et al., 2010; Smartt et al., 2012a; Smartt et al., 2012b). Both proteins 

are normally localised to the columnar epithelial cells on the luminal surface of 

the mucosa. Moreover, a gradient of expression of both genes has been 

observed, increasing from the base of the colonic crypts to the lumen, as the 

migrating cells transiently divide and terminally differentiate (Smartt et al., 

2012a; Smartt et al., 2012b). From a functional viewpoint, since SLCO2A1 and 

HPGD cooperate to reduce the levels of prostaglandins available for 

extracellular receptor activation, their patterns of expression might be expected 

to be similar. 

The germline loss of Hpgd has been shown to exacerbate colon 

tumorigenesis in mice, but only in the presence of a carcinogen (azoxymethane) 

or a predisposing germline mutation in an established tumour suppressor gene 

(ApcMin/+) (Myung et al., 2006). Both HPGD and SLCO2A1 are downregulated in 

colorectal cancer (Yan et al., 2004; Backlund et al., 2005; Myung et al., 2006; 

Holla et al., 2008), and at least for HPGD, this occurs at an early stage of the 

disease (Backlund et al., 2005; Myung et al., 2006). It is not yet known if 

SLCO2A1 dysregulation plays a mechanistic role in the development of polyps 

and adenomas. However, manipulation of the Wnt signalling pathway, by 

increasing β-catenin, reduces expression of both genes (Smartt et al., 2012a; 

Smartt et al., 2012b). Since Wnt pathway deregulation, with loss of functional 

APC and subsequent altered β-catenin expression, is one of the earliest events 
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in colorectal carcinogenesis (Powell et al., 1992; Munemitsu et al., 1995), it 

seems likely that SLCO2A1, as well as HPGD, could be reduced in early stage 

disease. 

In both human and mouse tissues, gene expression levels can be 

examined and compared both at the RNA and protein levels (Myung et al., 

2006; Holstege et al., 2010). Although protein detection is more straightforward 

experimentally, interpretation of results can be difficult, as it is highly reliant on 

good quality and specific detection reagents (Bordeaux et al., 2010; Algenas et 

al., 2014). Initial validation of reagents is therefore required, which is time-

consuming, and may not provide a definitive answer (Fitzgibbons et al., 2014). 

However, protein analysis is the only option for detection of specific protein 

modifications, such as phosphorylation, that can have functional consequences 

(Brumbaugh et al., 2017).  

Immunohistochemistry (IHC), in particular, can provide information on 

cell type and localisation of expression within tissues that may, for example, be 

required in order to understand cell-to-cell interactions in a microenvironment 

(Hofman and Taylor, 2013). IHC is, however, at best a semi-quantitative 

method, and requires expertise in assessment. RNA analysis can be easier to 

quantify, but does not give information on the actual location of cell type 

constituents (and only indirectly suggests their relative expression levels) 

(Hofman and Taylor, 2013). 

 

 Aims 

To investigate the patterns of HPGD and SLCO2A1 expression (including the 

extent to which they are correlated) within the colon. 
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 Methods 

Immunohistochemistry was carried out to assess the efficacy of various 

antibodies to detect HPGD and SLCO2A1 protein in human and mouse FFPE 

tissue (sections 2.1.1, 2.1.2, and 2.1.3). Three antibodies against HPGD (Novus 

Biologicals NBP1-87061, and NBP1-87062, and Cayman Chemicals 160615) 

were used, and three for SLCO2A1 (Abcam ab150788, Bioss Antibodies bs-

4710R, and Cayman Chemicals 11860) (Table 9). To better discriminate 

background from specific labelling, the antibody assessment included antibody 

titration, isotype IgG controls, and comparison with tissue from a second organ 

(kidney). (The kidney was used for additional assessment as mouse kidney has 

been shown to express both HPGD and SLCO2A1 (Bao et al., 2002; Nomura et 

al., 2005; Chi et al., 2008; Yao et al., 2008; Shiraya et al., 2010; Liu et al., 

2014)). 

 Further validation was performed by western blotting on lysates of cells 

transfected with a SLCO2A1 expression construct (sections 2.1.5, 2.1.6, 2.1.7 

and 2.1.8) 

 

 Results  

Antibodies were initially selected for their potential for use on both mouse 

and human tissue. This was judged by analysis of the sequence similarity 

between the human and mouse proteins at the target epitope sites (Figure 7.1 

and Figure 7.2), and evidence of their previous application. 

The HPGD antibodies were all raised against the human sequence, but 

their target epitopes did show a high levels of similarity to the mouse sequence 

(Figure 7.1). The Novus NBP1-87062 (Novus 62) epitope was 96.5% identical 

to the mouse protein, whilst the Cayman, which had the smallest epitope at 14 
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amino acids, and the Novus 61, had 93% and 81% identity respectively. 

Although there was a lower sequence identity for the latter antibody, it detected 

a non-overlapping epitope compared to the other two reagents, so offered the 

potential to provide additional evidence of labelling specificity. All three 

antibodies were therefore selected for tissue analysis. 

For the prostaglandin transporter, three antibodies were selected. The 

Abcam, Bioss and Cayman antibody epitopes had 84%, 66% and 64% identity 

with the mouse sequence (Figure 7.2). The epitope sequences of the Cayman 

and Bioss antibodies overlapped. All three were used in subsequent 

immunolabelling experiments.   
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Figure 7.1: Sequence alignment of human and mouse HPGD, and the 
antibody target epitopes 

Human HPGD (UniProt P15428), mouse HPGD (UniProt Q8VCC1), and 
the antibody epitopes were aligned using Clustal Omega (Goujon et al., 2010; 
Sievers et al., 2011). Amino acid positions where the mouse differed from the 
three human epitope sequences are highlighted in light red on the antibody 
target epitope sequences. Regions within the epitope sequence that were 
identical in both species are highlighted in yellow. The epitope of Novus NBP1-
87061 differs in 10 of 53 amino acid positions, Novus NBP1-87062 differs in 4 
of 116 positions, and Cayman 160615 by 1 of 14. 
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Figure 7.2: Sequence alignments of human and mouse SLCO2A1, and the 
antibody target epitopes 

Differences between the human and mouse are in red and matching 
residues in yellow. The epitope of the Abcam antibody differs in 13 of 83 amino 
acid positions, Bioss differs in 11 of 33 positions, and Cayman in 5 of 14 amino 
acids.  
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 Expression of HPGD in mouse tissue 

Using the Novus 61 antibody, HPGD expression appeared to be 

localised to the goblet cells, rather than the terminally differentiated colonic 

epithelial cells expected (Figure 7.4). The Novus NBP1-87062 (Novus 62) 

antibody failed to label any cells, while the Cayman antibody did label the most 

differentiated columnar epithelium, with staining present to a much lesser extent 

in other cells within the submucosa. Unfortunately, the corresponding isotype 

control bound non-specifically throughout the section, making interpretation of 

specific HPGD labelling difficult.  

In the kidney tissue used as a control, none of the antibodies generated 

any positive staining, which had previously been reported in the proximal 

convoluted tubules, the thick ascending limb of the loop of Henle, and the 

collecting duct (Nomura et al., 2005; Yao et al., 2008; Shiraya et al., 2010; Liu 

et al., 2014).  
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Figure 7.3: HPGD staining on normal colon sections 

(A) Novus NBP1-87061 (2 μg/ml), and (B) corresponding isotype control; (C) 
Cayman 160615 (20 μg/ml), and (D) corresponding isotype control. 
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 Expression of SLCO2A1 in mouse tissues 

The Abcam antibody to SLCO2A1 did label vascular endothelial cells 

within the colon tissue, as expected; however, the labelling in the epithelium 

was essentially absent, with a very faint brown wash on a minority of the 

terminally differentiated cells (Figure 7.4). Although the Bioss reagent did 

identify the differentiated epithelium, with individual cells in the mucosa 

especially strongly immunolabelled, there was substantial isotype control 

labelling, that questioned the specificity of the Bioss reagent. The Cayman 

antibody was the most specific, localising to the terminal epithelium. 

In the kidney, the faint Abcam antibody labelling was similar to the 

isotype control, indicating non-specific reactivity. The Bioss and Cayman 

antibodies both labelled collecting ducts (Figure 7.5) which was an expected 

localisation of the prostaglandin transporter (Bao et al 2002, Nomura et al 2005, 

Chi et al 2008). Overall the Cayman antibody appeared most specific, but 

further optimisation/validation would be of benefit to increase the signal relative 

to the non-specific background, before used this as an analytical reagent in 

mouse tissues.  

As all of these antibodies were raised against the human protein 

sequence, this factor may account at least in part for the variable specificity. It 

was anticipated that they might show better labelling specificity on human 

tissues, which were therefore examined next.  
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Figure 7.4: SLCO2A1 staining on normal mouse colon sections 

(A) Abcam, (2 μg/ml). Endothelial labelling indicated by arrow. (B) Cayman, (2 
μg/ml). Epithelial labelling indicated by arrow head.  
  

A 
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Figure 7.5: SLCO2A1 staining on normal mouse kidney sections 

(A) Bioss 1:100 (10 μg/ml). Labelling present in the collecting ducts, both within 
the cytoplasm and nucleus of the cells. The glomeruli were not labelled, 
Labelling elsewhere was due to the relatively strong background (B) Cayman 
1:200 (1 μg/ml). Labelling in a few collecting ducts. 
  

A 
 

B 
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 Expression of HPGD in human tissue 

HPGD expression was identified in the colonic epithelial cells (Figure 

7.6). The Novus 61 antibody showed the clearest labelling with least 

background. The columnar epithelial cells on the luminal edge showed a strong 

labelling pattern that was cytoplasmic with occasional positive nuclei. Isolated 

additional cells also stained positive for HPGD, predominantly visible in the 

muscularis propria layer, but also occurring in the submucosa and mucosa 

between the colonic crypts; these were thought to be immune cells, 

macrophages or lymphocytes. A similar staining pattern was observed with the 

Novus 62 antibody, but the background staining was more prevalent. The 

Cayman reagent showed the weakest staining and greatest background. 

Although the colonic epithelium was clearly stained, background persisted in the 

rest of the mucosal layer, reflected in the IgG isotype control also.  

In the kidney, the medullary collecting duct epithelium was weakly and 

non-uniformly labelled with the Novus 61, and was barely detectable with the 

Novus 62 and Cayman antibodies; this is however likely to be non-specific, as 

the isotype control also preferentially labelled these cells (Figure 7.7).  
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Figure 7.6: HPGD expression in the normal human colon 

(A) Novus NBP1-87061 1:50 (2 μg/ml). The colonic epithelial cells show strong 
staining, both in the cytoplasm and nuclei. A few isolated HPGD-positive cells 
also occurred within the mucosa, submucosa and muscularis layers. (B) HPGD 
Novus NBP1-87062 1:25 (2 μg/ml). The staining pattern was very similar to the 
87061 antibody, although weaker, and with noticeably stronger background 
staining. (C) Cayman 160615 1:200 (5.7 μg/ml). Although the colonic epithelium 
cells stain more intensely than the background, the rest of the section showed 
comparable background staining to the rabbit IgG control at the same 
concentration (F). (D) Rabbit IgG 1:1000 (2 μg/ml). (E) No primary antibody. (F) 
Rabbit IgG 1:351 (5.7 μg/ml)  
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Figure 7.7: HPGD expression in the normal human kidney medulla 

(A) Novus NBP1-87061 1:100 (1 μg/ml). (B) Novus NBP1-87062 1:50 (1 μg/ml). 
(C) Cayman 160615 1:100 (11.4 μg/ml). (D) Rabbit IgG. 1:1000 (2 μg/ml).  
  

A B 

C D 
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 Expression of SLCO2A1 in human tissue  

Overall, the SLCO2A1 antibodies appeared to show differences in 

preference for endothelial vs. epithelial labelling. The Abcam antibody weakly 

labelled the colonic epithelium, while in contrast, endothelial cells in capillaries 

and other blood vessels stained more strongly (Figure 7.8). The Cayman anti-

SLCO2A1 antibody showed comparable labelling intensity on both colonic 

epithelial cells and endothelial cells in the vasculature, and moderate levels of 

background. The Bioss antibody labelled both epithelial and endothelial cells, 

with the epithelial cells more strongly labelled. However, for all the antibodies 

there was a small degree of non-specific labelling throughout the tissue, as 

judged by the isotype control. 

The three SLCO2A1 antibodies also showed different labelling abilities 

for the cell types in the kidney (Figure 7.9). Strong labelling in cortical 

endothelium, with less intensity in the medulla, was detected with the Abcam 

reagent. The Bioss antibody appeared to more strongly label the collecting 

ducts in cortex and medulla, with weaker endothelial labelling, particularly of 

larger vessels in the medulla. The Cayman antibody appeared to label 

collecting ducts strongly in the medulla, with faint endothelial labelling present in 

the cortex. Additional cells, some of which appeared to be within the lumen of 

vessels in the glomerulus, were also labelled.   
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Figure 7.8: SLCO2A1 expression in the normal human colon 

(A) Abcam 1:50 (2 μg/ml). Colonic epithelial cells were stained weakly, while as 
with the kidney, endothelial cells were strongly stained. (B) Cayman 1:100 (2 
μg/ml). Colonic epithelium and endothelial cells were both stained. (C) Bioss 
1:400 (2.5 μg/ml). Strong staining for colonic epithelial cells, and very weak 
endothelial cell staining. (D) Rabbit IgG 1:1000 (2 μg/ml). (E) No primary 
antibody.  (F) Rabbit IgG 1:800 (2.5 μg/ml). 
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Figure 7.9: SLCO2A1 expression in the normal human kidney 

(A, B) Abcam 1:200 (0.5 μg/ml). The antibody labelled vascular endothelial cells 
(arrow). This was in the cortex, both inside and outside of the glomerulus (gl). 
Endothelial cells, which occur less frequently in the medulla, are also labelled 
(arrow). (C, D) Bioss 1:100 (10 μg/ml). Labelling of collecting duct epithelial 
cells within the cortex and medulla (star), with distal tubules (arrow head), and 
faint medullary endothelial cells (arrow). (E, F) Cayman 1:200 (1 μg/ml). The 
endothelial cells (arrow), collecting duct cells (star), and additional cells within 
the glomerulus (arrow head). (G, H) Rabbit IgG 1:1000 (2 μg/ml). (I, J) No 
primary antibody. 
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 Investigating antibody specificity using western blotting   

 The antibodies were further assessed for their specificity towards human 

protein, using western blotting. Previous analysis had been performed on the 

HPGD antibodies by western blotting of cells containing a HPGD expression 

construct. The Novus 61 was found to be most specific, as it detected a single 

band of the correct size. Additional bands were detected with the Novus 62 and 

Cayman reagents (personal communication, Lisa Allinson, University of Leeds).  

 Assessment of the SLCO2A1 antibodies on human lysates was 

performed by transiently over-expressing the prostaglandin transporter in A549 

cells, which have undetectable levels as judged by RT- PCR (Figure 3.2). The 

predicted molecular weight for the protein is 71 kDa, and although a number of 

bands were detected in all lysates, the dominant bands were not close to this 

size. No differences in banding were seen between the transfected lysate and 

control, showing that no specific SLCO2A1 bands were detected by any of the 

antibodies (Figure 7.10). The commercial antibody datasheets had presented 

data either from tissues or lysates of cell lines known to express SLCO2A1, and 

so may have erroneously interpreted the resulting banding patterns as correct. 

Based on this experience, no additional support for the specificity of any of 

these antibodies can be obtained from western blotting.  



 
 

194 
 

A.  C. 

B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D. 

Figure 7.10: Western blotting analysis of SLCO2A1 antibodies 

ntibodies used were (A) Bioss 1:500, (B) Cayman 1:200, (C) Abcam 1:400, (D) 
β-actin control. Lysates were generated from (1) Caco2 cells, (2) LOVO cells, 
(3) A549 transfected with PGT-pCDNA3, (4) A549 transfected with pCDNA3. 
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 Discussion  

None of the anti-HPGD antibodies were found to be suitable at present 

for analysis of mouse colon tissue, as the level of immunolabelling was either 

localised as expected but with additional non-specific background signal, or 

potentially reacting strongly to something other than HPGD altogether. 

Furthermore, the lack of HPGD labelling in the kidney was unexpected, as the 

Cayman antibody has been previously used in this tissue (Shiraya et al 2010, 

Liu et al 2014, Nomura et al 2005, Yao et al 2008). These published studies did 

describe some differences in the cell types and structures most strongly 

labelled, which may have been due to differences in experimental method, such 

as antigen retrieval. In addition, HPGD expression has been shown to vary 

according to age, with rat Hpgd highest at 2 weeks of age, and declining into 

adulthood (Liu et al 2014). This time-dependent expression pattern may also 

contribute to the different expression patterns seen. The absence of specific 

labelling in the kidney, and absence or non-specific labelling in the colon 

suggested that substantial further optimisation/validation would be required for 

these antibodies, and alternative antibodies might need to be assessed.  

One antibody appeared to strongly identify SLCO2A1. However, without 

a reagent to detect HPGD, at present no further investigations can be 

performed to determine whether HPGD and SLCO2A1 have an associated 

decrease in expression in adenomas from for example the ApcMin/+ mouse 

model. Protein sequence divergence within the epitopes could have contributed 

to the poorer specificity in mouse tissues. Another possibility is that the target 

epitope within the 3-dimensional structure of the protein was not exposed on the 

protein surface, where it would have been accessible to the antibody. Additional 

experiments could be performed to assess if the signal to noise ratio could be 
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further improved. This could be important, as this would allow better 

discrimination when assessing reduction in expression in tumour samples. 

Inclusion of further controls, including blocking peptides/proteins, and using 

tissue from Hpgd (Coggins et al., 2002), and Slco2a1 (Chang et al., 2010) 

knockout mice would be ideal for validation. 

Unsurprisingly, the antibodies for both HPGD and SLCO2A1 showed 

better specificity on human tissue. The differentiated colon epithelial cells were 

labelled by all antibodies, albeit with different intensities. The use of antibodies 

with non-overlapping epitopes does imply that this is the true localisation of 

these proteins (Hermansen et al., 2011). The localisation of HPGD in the 

human kidney has not been well established, and the weak labelling that was 

similar to the isotype control suggested that this may not be relied upon as an 

accurate reflection of HPGD expression. The SLCO2A1 antibodies did not give 

concordant kidney labelling patterns, and although endothelial labelling was 

seen with all reagents, this was not always the strongest localisation. Topper et 

al. (1998) also reported that the prostaglandin transporter localised to vessels; 

however, with hindsight, the use of the kidney as a control tissue was not 

entirely helpful, as it has had limited characterisation itself. Unfortunately, 

western blotting also proved inconclusive for assessment of specificity, and it 

appears unlikely that the antibodies were thoroughly validated for this purpose 

by their originators (Topper et al., 1998). 

 A usable anti-HPGD antibody, Novus 61, with clear, specific, low-

background labelling, was identified for use on the human colon. The Bioss 

antibody showed the best SLCO2A1 specificity. It would however be necessary 

to perform additional optimisation and validation to further enhance the labelling 

before using these reagents to assess expression changes.  
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Understanding the early events in cancer development is a key goal, as 

identifying and treating these initial stages is likely to be vital for improving 

patient outcome. Identifying patterns of co-regulation between related gene 

products or related pathways can provide insights into the mechanisms at work. 

In vitro analysis has demonstrated reciprocal control of PTGS2 and HPGD in a 

number of cell lines, including the A549 lung adenocarcinoma and HT-29 

colorectal cancer lines (Tong et al., 2006a; Tai et al., 2011). Also, a number of 

NSAIDs have been found to increase HPGD expression, independently of their 

inhibition of COX, possibly by reducing the rate of HPGD protein degradation 

(Chi et al., 2009). However, only analysis of actual patient tumour samples can 

help to establish the relevance of such observations in vivo. That the 

prostaglandin pathway has a role in the early stages of colon cancer has ample 

support, especially in regards to PTGS2. More recently, it was found that the 

efficacy of PTGS2 inhibition on early stages of the disease depended on high 

level of HPGD expression (Fink et al., 2014). With expression levels of HPGD 

acting as a stratifying biomarker for response, it is plausible that the expression 

levels of other components of the pathway, such as SLCO2A1, could also 

influence aspirin response. It would be of interest to investigation the relative 

importance of these additional components, with the prospect of personalising 

patient treatment. 

Several of the prostaglandin pathway proteins have been localized in the 

kidney, with PTGS1, HPGD and SLCO2A1 co-expressed in the collecting duct 

epithelia in rats (Nomura et al., 2005). This may indicate stringent control over 

local prostaglandin levels. While colonic epithelium also expresses the PGE2 

synthesis and degradation pathway enzymes, prostaglandin signalling has been 

thought to serve different functions in these two organs. In the kidney, PGE2 
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signalling regulates salt reabsorption, while in the colonic mucosa it has been 

suggested to control epithelial cell proliferation (Myung et al., 2006; Yao et al., 

2008; Smartt et al., 2012a; Smartt et al., 2012b). Recently, SLCO2A1 has been 

ascribed a further function in addition to prostaglandin transport, as an ATP-

conductive “maxi-Cl” channel, that influences membrane potential and fluid 

movements (Sabirov et al., 2017). SLCO2A1 may therefore perform an 

osmoregulatory function in the kidney as an ion channel, and perhaps in the 

colon also. The location of both HPGD and SLCO2A1 in the colon indicates that 

both are markers of terminal differentiation, but the SLCO2A1 may participate 

directly in water absorption control, as well as its prostaglandin-related function. 

Since high prostaglandin levels can induce diarrhoea, the prostaglandin 

pathway may itself be involved in osmoregulation (Rampton and Sladen, 1984; 

Rivière et al., 1991). However, only a minority of patients with SLCO2A1 

mutations have these symptoms (Zhang et al., 2013; Zhang et al., 2014; Kim et 

al., 2015), which suggests it is not the main mechanism controlling intestinal ion 

and water movement. As the balance between the different functions of 

SLCO2A1 is thought to be dependent on the levels of prostaglandin (Sabirov et 

al., 2017), this may vary considerably under different physiological conditions 

and between individuals.  
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 Discussion 

 Introduction 

 

This study represents one of the first attempts to analyse HPGD and 

SLCO2A1 transcriptional control together in the context of colorectal cancer. 

This is also the first study to characterise the proximal 3 kb SLCO2A1 promoter 

and the transcriptional start sites of this gene, using a colorectal cancer cell line 

model system. The results suggest that the small intestine- and colon-specific 

transcription factor CDX2 may have a role in driving SLCO2A1 expression in 

the colonic epithelium. In addition, the results suggest that TGF-β signalling 

could promote SLCO2A1 upregulation, although further work would be needed 

to confirm this.  

At the protein level, it did not prove possible to compare HPGD and 

SLCO2A1 expression in normal colon (either mouse or human) and colorectal 

adenocarcinomas using immunohistochemistry. This was because of poor 

specificity of the available antibodies. This experience highlighted the limited 

knowledge of HPGD and SLCO2A1 structure, only human HPGD having been 

characterised to date (Niesen et al., 2010). 

 

 Regulation and function of HPGD and SLCO2A1 

 

Published literature indicates that both HPGD and SLCO2A1 are 

downregulated (but not mutated or lost) in colorectal cancer. At least, HPGD 

does not acquire inactivating mutations and is not lost through chromosomal 

deletions (Yan et al., 2004). Although a similar study has not strictly verified this 
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for SLCO2A1 as well, neither 4q34.1 (HPGD) or 3q22.1-22.2 (SLCO2A1) is a 

site where recurrent breakpoints occur in the karyotypes of colorectal cancer 

cell lines (Knutsen et al., 2010). Consequently, the mechanism by which these 

genes are down-regulated at the transcriptional level appears more important to 

understand, particularly since such knowledge could inform how it may be 

possible to intervene therapeutically, with the aim of suppressing PGE2-driven 

tumour growth without relying only on NSAIDs and COX-2 selective inhibitors.  

 Much published work on the SLCO2A1 gene product, the prostaglandin 

transporter, has used cell lines (predominantly renal or fibroblastic in origin), or 

Xenopus laevis oocytes. (Chi et al., 2014; Chi et al., 2011; Chi and Schuster, 

2010; Chan et al., 1998). While these studies have illuminated the biochemical 

function of SLCO2A1 as a PGE2 transporter, the physiological conclusions 

drawn cannot necessarily be extrapolated to colorectal cancer, given the 

diverse range of functions that PGE2 fulfils in different organs and tissues (Shao 

et al., 2015; Tootle, 2013; Swan and Breyer, 2011). In addition, results from cell 

line systems need to be interpreted with a degree of caution, as demonstrated 

by the study of Zolk, et al, 2013, in which no CpG island methylation was 

observed in either the normal or tumour tissue samples, implying that the 

methylation observed in the cell lines was likely an artefact of cell culture (Zolk 

et al., 2013). 

 Despite these caveats concerning cell-line systems (demanding caution 

when extrapolating the results to the in vivo cell type, organ, or organism of 

interest), colorectal cancer cell lines were clearly a more appropriate model with 

which to study HPGD and SLCO2A1 expression and regulation in the context of 

colorectal cancer. The identification of transcriptional start sites (TSS) for HPGD 

and SLCO2A1 in the colorectal cancer cell line system, and the importance of 
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the proximal 364-bp region in driving SLCO2A1 expression, represent one of 

the first steps in characterising the regulation of these genes. A logical next step 

would be to verify the use of these HPGD and SLCO2A1 TSS in normal colon 

epithelial cells, and in adenocarcinoma samples. This would reveal any 

discrepancies between the cell line systems, and would provide information on 

how these genes are expressed in vivo. Data from the normal colon epithelial 

cells might serve as a reference for baseline HPGD and SLCO2A1 expression, 

given that despite the extensive public domain cDNA data, very little was found 

to exist on HPGD and SLCO2A1 in the colon (Boguski et al., 1993; Kent et al., 

2002). 

 In contrast to HPGD, few studies have examined the loss of SLCO2A1 in 

tumours and normal tissue (Zolk et al., 2013; Takeda et al., 2015) or the loss of 

both HPGD and SLCO2A1 expression in gastrointestinal adenocarcinomas 

relative to normal epithelium. This is a gap in knowledge, considering the 

concerted role that these two gene products play in terminating PGE2, signalling 

(Smartt et al., 2012a; Smartt et al., 2012b; Takeda et al., 2015). Addressing this 

had indeed been one of the original aims of the present work; for example it 

was planned to compare either wild-type and Apc+/Min mouse colon, or colon 

and colorectal adenocarcinoma tissue sections from patients, using 

immunohistochemistry. Given the issues encountered with the HPGD and 

SLCO2A1 antibodies (section 7.5 above), it may be that RNA-level analysis, 

using quantitative methods such as qPCR, would prove more informative in 

assessing the expression levels of these two genes. In addition, procedures 

have been established to isolate mucosal epithelial cells from both mouse 

(Booth et al., 1995) and human (Roche, 2001) colon, which would allow the 

characterization of HPGD and SLCO2A1 expression in the specific cell types of 
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interest, with less risk of confounding or reduced detection power due to the 

presence of other cell types (e.g. endothelial cells, which do express SLCO2A1 

as well). 

 The potential for Hpgd and Slco2a1 to be co-regulated has been 

suggested in the mouse, where deregulation of the Wnt signalling pathway 

resulting in increasing β-catenin expression coincided with a reduction in both 

Hpgd and Slco2a1 mRNA and protein. (Smartt et al., 2012a; Smartt et al., 

2012b). One other study has observed a reduction of both HPGD and 

SLCO2A1 in gastric adenocarcinomas relative to normal gastric mucosa 

(Takeda et al., 2015). However, these authors found an association between 

SLCO2A1, but not HPGD, expression in the tumour with reduced microvessel 

density and a more favourable response to adjuvant chemotherapy (Takeda et 

al., 2015). This was one of the first studies to directly implicate the loss of 

SLCO2A1 expression in promoting tumour growth (through prolonging PGE2 

signalling that stimulates VEGF secretion by the tumour cells). Furthermore, 

given that HPGD’s ability to metabolise PGE2 depends on its influx into the 

cytoplasm, SLCO2A1 has the capacity to reduce extracellular PGE2 access to 

the EP receptors. 

 However, a mouse Slco2a1 knockout combined with heterozygous 

germline Apc mutation seems to argue against this view, since mice lacking 

Slco2a1 survived longer than those with the Apc+/Δ716 allele and wild-type 

Slco2a1 (Nakanishi et al., 2017). This study is not directly comparable to one in 

which the effect of germline HPGD loss was studied, combined with the Apc+/Min 

allele or a chemical carcinogen ((Myung et al., 2006)). This is because the 

phenotype of the Apc+/Δ716 mouse is not the same as that of Apc+/Min(Myung et 

al., 2006). In the  former, polyps from the small intestine are more numerous 
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and appear to grow within the villi (retaining a layer of epithelium on their 

surface) (Oshima et al., 1995), which contrasts with the generalised dysplasia in 

the classical Apc+/Min model, considered to be closer to human gastrointestinal 

adenocarcinoma (Moser et al., 1990). This difference probably influenced the 

conclusions of Nakanishi et al., 2017, given that PGE2 and its metabolic 

pathway enzymes exert their effects on the intestinal and colonic epithelium, 

and the premalignant lesions that develop from it. Similarly, Nakanishi et al., 

2017 observed very little Slco2a1 expression in the epithelium, and did not 

consider the overexpression of β-catenin downregulating this gene, in the 

presence of the truncating Apc mutations (Smartt et al., 2012a). To explain their 

observations, Nakanishi et al., 2017 go on to propose that PGE2 may act via an 

intracellular mechanism when taken into the cell by SLCO2A1(Nakanishi et al., 

2017). Surprisingly, they do not refer to their own previous theory of SLCO2A1 

having the potential to export PGE2 (Kasai et al., 2016; Shirasaka et al., 2013; 

Shimada et al., 2015). However, patient data (Takeda et al., 2015), and work 

carried out using mouse small intestine mRNA and IHC both imply a positive 

correlation between loss of APC function and loss of SLCO2A1 expression 

(Smartt et al., 2012a); this is consistent with the tumour survival-promoting 

actions of PGE2, as discussed in sections 1.2.4 and 1.2.5 above. All in all, 

though, IHC studies on SLCO2A1 in relation to colorectal cancer, and other 

cancer types, are few compared to those examining the expression of HPGD, 

and further investigation is warranted. 

 Although a reduction in SLCO2A1 has been seen in colorectal cancer 

and several other malignancies, little is known about the mechanisms by which 

this downregulation takes place. In the human and mouse ileum, it has been 

shown that SLCO2A1 gene expression is downregulated following increased β-
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catenin activity, secondary to loss of APC function, (Smartt et al., 2012a). 

However, there is little evidence of other signalling pathways or transcription 

factors that could regulate SLCO2A1 expression more directly. 

 Results in this thesis suggest that the cytokine TGF-β2 and the 

transcription factor CDX2 may positively regulate SLCO2A1 expression. TGF-

β2 was found to increase SLCO2A1 mRNA, while mutation of the predicted 

CDX2 binding site reduced promoter activity by 50% (section 6.4.3). CDX2 may 

therefore bind directly to the SLCO2A1 promoter to drive transcription, and 

considering the comparable tissue specificity of both CDX2 and SLCO2A1 

protein to the colonic epithelial cells, this may also apply in vivo (Olsen et al., 

2016; Uhlen et al., 2015). However, further experiments are needed, both to 

assess CDX2 binding to the promoter and whether it exerts its effects directly 

on SLCO2A1. 

 CDX2 expression is known to be lost in colorectal cancer, and transient 

knockdown increases migration of colorectal cancer cell lines (Coskun et al., 

2014). Also, germline mutation of Cdx2 (but not Cdx1) exacerbates the 

polyposis phenotype in Apc+/min mice (Hryniuk et al., 2014). Loss of CDX2 

expression occurs only in a relatively small subset of sporadic colorectal 

adenocarcinomas, but this has been associated with poor differentiation grade 

and microsatellite instability due to mutations in the mismatch repair genes 

(Olsen et al., 2016; Dalerba et al., 2016). While it is not possible at present to 

say whether loss of CDX2 is an important mechanism by which SLCO2A1 is 

downregulated (in contrast to the Wnt/β-catenin signalling pathway (Kikuchi et 

al., 2012; Mehdawi et al., 2016; Smartt et al., 2012a), this would be worth 

investigating, given the evidence presented in this thesis. 
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 CDX2 binds predicted sites on the promoters of the genes for APC, 

AXIN2 and GSK3β and drives their transcription, thus repressing the Wnt/β-

catenin pathway (Olsen et al., 2013). APC, AXIN2 and GSK3β form a complex 

that phosphorylates and targets β-catenin for degradation by the proteasome, 

preventing its accumulation within the cell (Coskun et al., 2014; Chiurillo, 2015; 

Salomon et al., 1997; Aberle et al., 1997). Therefore, as shown in Figure 8.1, 

CDX2 may act on both SLCO2A1, and the APC complex to reduce β-catenin, 

representing a potential feed-forward mechanism that sustains SLCO2A1 

expression in the terminally differentiated colonic epithelial cells near the colon 

lumen.  
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Figure 8.1: Schematic representation of CDX2 interactions with SLCO2A1 

CDX2 could act in a feed-forward loop to induce SLCO2A1 expression, both by 
acting directly on the SLCO2A1 promoter to drive transcription, and by 
counteracting β-catenin’s repression through upregulating APC, AXIN2 and 
GSK3β, which form the complex that ubiquitinates β-catenin and targets it for 
degradation. β-catenin binds to the TCF family of transcription factors, which 
are transcriptional activators, so the repression of SLCO2A1 is likely mediated 
by an as of yet unidentified transcriptional repressor induced by β-catenin. 
PGE2, on the other hand, downregulates the APC complex via the activation of 
the EP2 and EP4 receptors, which leads to a reduction in SLCO2A1 
expression, and forms a positive feedback loop that prolongs PGE2 signalling. 
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 The suggestion that the PGE2 metabolic pathway, CDX2 and the Wnt 

signalling pathway (Figure 8.1) may interact has implications for the mechanism 

by which these pathways contribute to colorectal cancer. Deregulation of the 

Wnt signalling pathway is one of the earliest events in colorectal cancer 

development. Furthermore, a key mechanisms by which APC mutations can 

lead to adenoma development is by the disruption of the asymmetrical cell 

division that maintains the colonic crypt stem cell compartment (Bellis et al., 

2012; Boman and Fields, 2013). Wnt and β-catenin display a gradient of 

decreasing expression from the base of the crypt to the colon lumen, also 

reflected by a gradient of APC, HPGD and SLCO2A1 in the reverse direction 

(Boman and Fields, 2013; Smartt et al., 2012a; Smartt et al., 2012b). CDX2, 

though, does not show such a gradient of expression (Qualtrough et al., 2002), 

which suggests that its role may be more to do with maintaining baseline levels 

of SLCO2A1. The Wnt/β-catenin pathway may exert dominant control over 

SLCO2A1 expression, because when APC function is lost, CDX2 expression 

alone appears insufficient to prevent SLCO2A1 downregulation. 

 An additional interaction of prostaglandins with the Wnt pathway occurs 

when PGE2 phosphorylates and inactivates GSK3β by signalling via the EP2 

and EP4 receptors (Figure 8.1) (Fujino, 2016). EP2 receptor activation 

increases cAMP, which activates PKA to phosphorylate GSK3. EP4 achieves a 

similar effect through the PI3K pathway (Fujino et al., 2003). In this way, PGE2 

can suppress β-catenin degradation (Castellone et al., 2005). As well as being a 

route by which PGE2 promotes cell proliferation and survival, the Wnt pathway 

can in turn enhance PGE2 synthesis through the induction of PTGES (Fujino, 

2016). PGE2, too, can induce PTGES (Stamatakis et al., 2015), as well as 

(COX2) PTGS2 (Bradbury et al., 2003; Jabbour et al., 2001) expression through 
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the EP4 receptor, to set up another positive feedback loop leading to increased 

PGE2 production. Therefore, this may form one of the mechanisms by which 

PGE2 production is increased early in colorectal carcinogenesis following 

inactivation or loss of APC.  

 However, how activation of the Wnt pathway downregulates HPGD and 

SLCO2A1 is not clear, given that β-catenin typically promotes transcriptional 

activation when it complexes with TCF transcription factors (Smartt et al., 

2012a; Smartt et al., 2012b). Although the literature provides examples of 

HPGD’s regulation by signalling pathways (including Wnt/β-catenin), 

microRNAs (e.g. miR-21 (Lu et al., 2014; Li et al., 2017a)), or feedback from the 

EP2 receptor, that reduces its expression (Castellone et al., 2005), these 

studies have not elucidated the mechanism by which these signals are 

transduced to the HPGD promoter (Mehdawi et al., 2016; Smartt et al., 2012b). 

As mentioned above, since β-catenin typically drives transcription of target 

genes by binding to TCF in the nucleus, genes that are downregulated as a 

result of β-catenin activation may be repressed through the induction of 

transcriptional repressors, or by other indirect routes (MacDonald et al., 2009). 

 One downstream target of β-catenin, which can function as a 

transcriptional repressor of genes normally activated by SP1 (Fujimura et al., 

2007) is SP5 (Takahashi et al., 2005). Although the SLCO2A1 promoter was 

found to contain SP binding sites, and mutation of its consensus sequence did 

not appear to affect the promoter’s activity, it may be that the relative 

abundance of SP1 and SP5 could still contribute to SLCO2A1 expression. 

Moreover, SP5 shows greater target specificity compared to SP1, which would 

not affect the expression of other more ubiquitous genes whose expression is 

driven by SP1 (Huggins et al., 2017)  
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 TGF-β was considered to be another likely candidate regulator of 

SLCO2A1, firstly because data in the Expression Atlas (Yeung et al., 2013) 

indicate that TGF-β1 and TGF-β2 upregulated SLCO2A1 transcript levels. This 

pathway is also known to reduce PGE2 signalling by stimulating HPGD 

expression and downregulating COX-2 (Yan et al., 2004; Takai et al., 2013; 

Kang et al., 2015). In addition, mutations of the TGF-β2 receptor (TGFBR2), 

and the downstream SMAD proteins are relatively common early events in 

sporadic colorectal cancer (Yan et al., 2004). This raised the possibility that 

SLCO2A1 might also be regulated by this pathway.  

 Treating A549 cells with TGF-β2 was found to cause an increase in 

SLCO2A1 mRNA as well as CDX2; these cells expressed low levels of 

SLCO2A1 compared to the colorectal cancer cell lines. In contrast, in the two 

colorectal cell lines that were treated, no change was observed. This could 

indicate a genuine lack of response to TGF-β2, or that any increase in 

expression was too small to detect against the baseline levels of SLCO2A1 

expressed by Caco-2 and LoVo cells. The former of these could indicate 

inactivation of the TGFBR/SMAD pathway, and given the lack of data on these 

genes, in spite of large-scale analyses in the literature (Knutsen et al., 2010; 

Ahmed et al., 2013; Berg et al., 2017) and publicly available databases (Forbes 

et al., 2017), this would need to be verified for these cell lines. The latter 

alternative may imply that TGF-β signalling can stimulate SLCO2A1 expression, 

but may not be a major regulator. 
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 HPGD and SLCO2A1 as possible therapeutic targets 

 

 The possibility of using drugs to reactivate and upregulate HPGD 

expression. together with, or instead of NSAIDs or COX2-selective inhibitors to 

suppress PGE2 signalling for colorectal cancer prophylaxis, or as an adjunct to 

chemotherapy, has been put forward (Na et al., 2011; Kaliberova et al., 2009). 

To date, no compounds that upregulate SLCO2A1 expression have been 

identified. SLCO2A1 inhibitors have been identified, such as T26A (Chi et al., 

2011) or suramin (Kamo et al., 2017); by potentiating the action of PGE2, they 

have been suggested to have potential for improving the healing of diabetic skin 

ulcers (Liu et al., 2015), or as antihypertensives (Chi et al., 2015).  

 In contrast, as for HPGD, upregulation of SLCO2A1 could be beneficial 

instead of or alongside NSAIDS in colorectal cancer prophylaxis, or during 

treatment as an adjunct to chemotherapy. Furthermore, targeting HPGD and 

SCO2A1 might reduce the chance of resistance developing. Some COX-2 

inhibitors, such as diclofenac, have been found also to impair SLCO2A1’s 

transport function in vitro (Kamo et al., 2017), a further reason why combining 

upregulation of SLCO2A1 with COX inhibition may be more effective in reducing 

PGE2 signalling. In addition, given the wide range of functions that PGE2 has, 

drugs should ideally be targeted to the colonic epithelium, in order to avoid 

adverse effects from suppressing PGE2 activity across the entire body.  

 Given that TGF-β signalling can upregulate both HPGD (Yan et al., 2004) 

and SLCO2A1, whilst also downregulating PTGS2 (Takai et al., 2013; Kang et 

al., 2015), TGF-β pathway agonists could be another way to target multiple 

enzymes in the PGE2 metabolic pathway (Kapral et al., 2013). However, as the 

TGF-β receptors and the downstream SMAD transcription factors can be 
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mutated in colorectal cancer, the efficacy of such drugs would be limited to 

adenocarcinomas retaining a functional pathway. 

 The efficacy of such compounds has been tested in a colorectal cancer 

cell line model, although exactly how this drug (MW-03) upregulates HPGD 

remained unclear (Seira et al., 2017). The authors found that peroxisome 

proliferator-activated receptor-γ (PPARγ) may be involved in driving HPGD 

expression during MW-03 treatment, although further work would be needed to 

confirm whether these nuclear receptors bind directly to the HPGD promoter to 

exert these effects. Such studies highlight the need for a better understanding 

of HPGD transcriptional regulation. 

 It should be noted that although increased PGE2 contributes to the 

development of colorectal cancer, as well as other malignancies, and although 

loss of HPGD and SLCO2A1 expression can promote cancer development, 

these two genes are not, strictly, tumour suppressor genes. PHO patients who 

have complete germline loss of function of either gene have not shown an 

increased risk of cancer (Diggle et al., 2012; Uppal et al., 2008) unlike classical 

tumour suppressor genes involved in hereditary cancer syndromes, such as 

SMAD4 in juvenile polyposis syndrome, MSH2 and MLH1 in Lynch syndrome, 

APC in familial adenomatous polyposis (Galiatsatos and Foulkes, 2006; Fearon, 

2011; Oshima et al., 1995), BRCA1 and BRCA2 in breast and ovarian cancer 

(Cobain et al., 2016), and RB1 in retinoblastoma (Fabian et al., 2018; Knudson, 

1971).  

 Loss of HPGD and SLCO2A1 expression occurs early in the 

development of an adenocarcinoma (Yan et al., 2004; Smartt et al., 2012a; 

Smartt et al., 2012b), and PGE2 is known to contribute to tumour growth 

through inflammation and localised suppression of immune responses to the 
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tumour (Zelenay et al., 2015). Therefore, HPGD and SLCO2A1 downregulation, 

and the reciprocal COX-2 upregulation alone are not initiating events, even if 

PGE2 contributes to an established tumour’s growth and survival. Therefore, 

approaching PGE2 from its role in supporting cancer development, it appears 

sensible to reduce its activity through suppressing its production (NSAIDs), or 

potentially accelerating its degradation (HPGD) and reducing its access to the 

cell surface receptors (SLCO2A1). However, PGE2 has a wide range of 

functions, and there are situations where prolonging its action could be of 

therapeutic benefit through inhibition of HPGD and SLCO2A1 (Liu et al., 2015; 

Shao et al., 2015; Sun et al., 2017; Zhang et al., 2015). PGE2’s ability to drive 

cell proliferation, migration and angiogenesis (mechanisms that are subverted in 

carcinogenesis) is also useful in tissue regeneration. 

 In mice, inhibition of HPGD accelerates proliferation of hepatocytes and 

epithelial cells in the colon crypts of Lieberkühn (Zhang et al., 2015). This led to 

accelerated liver regeneration following partial surgical resection, and protection 

against dextran sodium sulphate-induced colitis (Zhang et al., 2015). HPGD 

inhibition has also been shown to increase cell migration in wound healing 

assays (Sun et al., 2017), and to facilitate recovery from bone marrow 

transplantation in mice (Desai et al., 2018). 

 When intravenously infused in humans, PGE2 induces systemic 

vasodilation (Eklund and Carlson, 1980), and prolonging its action by inhibiting 

SLCO2A1 reduces blood pressure in rodent models of hypertension (Chi et al., 

2015). Given the existing range of antihypertensive drugs, it is unlikely that 

SLCO2A1 inhibitors (such as T26A) would find application for this ability. The 

same authors have shown that topically applied SLCO2A1 inhibitor led to 

accelerated wound healing (Liu et al., 2015). A combination of PGE2 (or a 
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synthetic analogue) and SLCO2A1 inhibitor could theoretically be more effective 

in such an application, and would require smaller amounts of either drug to 

achieve the same effect. 

 When considering therapeutic targeting of HPGD or SLCO2A1, their 

substrate specificities, which are not restricted to PGE2, need to be taken into 

account. For example, lipoxin A4 and 15-epimeric lipoxins, which generally 

function to resolve inflammation, are synthesized by PTGS2, and PTGS2 

acetylation by aspirin alters its specificity towards lipoxin production (Serhan, 

2002). These lipoxins can likewise be metabolised by HPGD (Na et al., 2011). 

As a consequence, HPGD upregulation was found to contribute to prolonging 

inflammation in chronic tendinopathy, therefore, through degradation of these 

lipoxins, and therefore presenting a paradoxical situation in which HPGD 

inhibitors would be beneficial (Dakin et al., 2017). 

 Although this thesis has focused on the regulation of HPGD and 

SLCO2A1 in the context of cancer, the insights gained are likely to be relevant 

to understanding other pathologies such as the inflammatory disorders 

mentioned above. Certainly, the possibility of being able to modulate the 

expression of these genes is of interest, even if in these other pathological 

settings, as discussed above, the aim might be to suppress (at least locally) 

their expression rather than enhance it. Whether modulating a gene’s 

expression is a preferable approach to directly targeting the gene product is a 

general question, to which the answer is likely to depend on the disease 

context. Experience shows that sometimes the best pharmacological effect is 

not obtained by directly aiming at the last component of a pathway. For 

example, histamine receptor 2 (H2) antagonists (e.g. ranitidine), which act 

upstream of the proton pump inhibitors (omeprazole), may be as less effective 
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at reducing gastric acid secretion, but achieve lower rates of ulcer recurrence, 

perhaps because of rebound acid hypersecretion when proton pump inhibitors 

are stopped (Yeomans et al., 1998; Abraham, 2012; Bardhan et al., 1991) 

 The prominent role played by prostaglandins in many disease states has 

triggered a high level of interest in the genes that encode components of their 

metabolic pathway. The two genes studied in this thesis, HPGD and SLCO2A1, 

mediate termination of PG signalling. Naturally occurring human genetic 

disorders (Uppal et al. 2008; Diggle et al. 2012) have offered the insight that 

failure of these components has wide-ranging physiological effects. However, 

somatic dysregulation of HPGD is an important event accompanying colorectal 

carcinogenesis, prompting the studies described here to try to understand the 

regulation of these two genes. Together with evidence from the literature, the 

results suggest that there may be a complex interaction between the Wnt/β-

catenin pathway, the TGF-β pathway, PGE2 signalling and PGE2 metabolism 

regulating the expression of HPGD and SLCO2A1. The transcription factor 

CDX2 may be involved in SLCO2A1 expression in colonic epithelial cells. 

Although evidence is limited, HPGD and SLCO2A1, are very likely to be co-

regulated, considering their inverse relationship with β-catenin expression, and 

the stimulation of their expression by TGF-β (Smartt et al., 2012a; Smartt et al., 

2012b; Takeda et al., 2015). The negative effect of β-catenin on HPGD and 

SLCO2A1 expression is likely to be indirect, perhaps via the induction of 

transcriptional repressors that act directly on these genes. CDX2, however, may 

have a direct role in regulating SLCO2A1, and should be explored further to 

determine whether this transcription factor regulates other components of the 

PGE2 metabolic pathway (Freund et al., 2015; Hryniuk et al., 2014). 
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 Future Work 

  

 Many aspects of the present work would benefit from extending the 

analysis to other sources of biological material. The HPGD and SLCO2A1 

transcriptional start sites defined here, should be verified in normal colonic 

epithelium and fresh tumour material. This would allow exploration of whether 

all, or particular transcripts are lost when these two genes are downregulated. 

The epigenetic regulation of HPGD and SLCO2A1 in vivo is also worthy of 

further study, given evidence that HPGD may be downregulated via promoter 

methylation (Backlund et al., 2008), and that histone deacetylation can 

upregulate SLCO2A1 expression (Holla et al., 2008). All studies of this type 

really would need to be validated using an in vivo model (Backlund et al., 2008), 

given the striking differences that can be observed between cell line models and 

actual tissue sections (Takeda et al., 2015). Overall, greater emphasis needs to 

be placed on SLCO2A1, about which much less is known genetically, 

biochemically and physiologically.   

 CDX2 and its possible direct action on SLCO2A1 warrants further 

investigation as well. Its specificity to the colonic epithelium and its interaction 

with the Wnt pathway suggest that it may have a role in regulating other genes 

involved in the controlled division and differentiation of colonic epithelial cells 

(Freund et al., 2015; Olsen et al., 2016). Initial experiments might focus on 

verifying that CDX2 binds to the SLCO2A1 promoter in native chromatin, and on 

testing whether overexpression and knock-down of CDX2 have the predicted 

effects on SLCO2A1 expression (as well as that of HPGD, COX2 and PTGES). 

Further studies would need to be carried out to confirm whether this interaction 

has physiological relevance in vivo. Positive findings would have to be verified 
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using ex vivo colonic epithelial cells, both from mouse (Mahé et al., 2013), and 

human colon (Roche, 2001), not just cell lines. Further in vivo confirmation 

could be performed using transgenic models to show whether CDX2 can indeed 

drive SLCO2A1 expression. 

 Although this thesis concentrated on transcriptional regulation, mRNA 

and protein turnover are also key mechanisms that control the activity of 

proteins in cells (Houseley and Tollervey, 2009). Regulation of β-catenin activity 

is a classic example of this; phosphorylation by APC/AXIN2/GSK3β and the 

consequent balance between proteasomal degradation and β-catenin 

persistence and translocation from cytoplasm to the nucleus are key 

(Mohammed et al., 2016; MacDonald et al., 2009). The turnover of HPGD and 

SLCO2A1 proteins could be equally important to their observed loss of 

expression in colorectal cancer. 

 In this context, HPGD is believed to have a half-life of approximately 50 

minutes in cultured cells (Xun et al., 1991). Therefore, identifying signalling 

pathways and drugs that could stabilise HPGD mRNA and/or suppress HPGD 

protein degradation, while perhaps more challenging than upregulating its 

activity, is another area that could be explored (Lu et al., 2014; Huang et al., 

2015; Li et al., 2017a). The same would also obviously apply to SLCO2A1. 

 As mentioned above, SLCO2A1 itself remains rather under-

characterized. The tertiary structure of SLCO2A1, unlike HPGD (Niesen et al., 

2010), remains to be experimentally determined; only a very small fragment is 

published on the Protein Data Bank (Berman et al., 2000), PDB ID 3MRR 

(Reiser et al., 2014). Historically, X-ray crystallography has been the method of 

choice to determine protein three-dimensional structures (Glaenzer et al., 

2018). Unfortunately, most of the enzymes in the PGE2 metabolic pathway, 
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including SLCO2A1, are transmembrane proteins, and are consequently difficult 

to solubilize and crystallize (Carpenter et al., 2008). Only the structures of the 

soluble human PGES (Jegerschöld et al., 2008; Sjögren et al., 2013) and 

HPGD (Niesen et al., 2010) proteins have been determined to date, and of the 

membrane-bound enzymes, only the structure of the ovine PTGS1 has been 

characterised (Sidhu et al., 2010; Cingolani et al., 2017). Elucidating the crystal 

structure of SLCO2A1 would therefore represent an important piece of future 

work, which would inform the mechanism by which it exchanges anions for the 

uptake of PGE2, how pathogenic mutations alter this structure and impede its 

function in PHO, and where drug inhibitors (such as T26A) bind on the protein, 

and hence how they exert their action.  

A number of hypotheses concerning PGE2 transport by SLCO2A1 have 

been proposed, envisaging either unidirectional transport, as observed by the 

authors who first characterised SLCO2A1 (Nomura et al., 2004; Chi et al., 2011; 

Schuster et al., 2015), and bidirectional PGE2 transport, depending on the 

balance of lactate or other anion concentrations between the cytoplasm and 

extracellular space (Shirasaka et al., 2013; Kasai et al., 2016). Genetic 

evidence from mouse knockout (Nakanishi et al., 2017; Nakamura et al., 2018) 

and from PHO patients (Zhang et al., 2012; Li et al., 2017b) tends to support the 

original PGE2 import model, because subjects with SLCO2A1 mutations lose 

more PGE2 in urine than either PHO patients with HPGD mutation, or normal 

subjects. This implies a general inability to clear PGE2 from the extracellular 

fluid and blood, into the cytoplasm where it can be metabolised by HPGD. 

Therefore, if SLCO2A1 does also function to export PGE2 out of the cell, this 

function is likely to be a minor one. 
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 Structural analysis of SLCO2A1 would provide the foundations for 

determining many of the biochemical parameters governing the anions that 

SLCO2A1 can transport in exchange for PGE2 (Nakanishi and Tamai, 2017), 

(For example, co-precipitation in the presence of bound ligand would allow for 

conformational changes to be modelled to better understand how PGE2 and 

large anions are moved across the cell membrane.). Such knowledge would 

also aid fine-tuning of drug structure to improve specificity or efficacy (Chi et al., 

2011).  

 The dynamics of SLCO2A1 in the cell membrane, including whether it  

multimerizes or associates with other proteins, remain unknown. In contrast, 

human HPGD (Niesen et al., 2010) and ovine PTGS1 (Cingolani et al., 2017) 

are known to exist natively as homodimers, while PGES forms a homotrimer 

(Sjögren et al., 2013). A recent study using a mouse cell model system has 

suggested that SLCO2A1 could form part of a chloride channel complex 

(Sabirov et al., 2017). However, its other components were not identified. All 

such studies are hampered by the lack of structural data on SLCO2A1. 

 Another deficiency highlighted in this thesis, which might be mitigated if 

structural data were available, is the lack of good immunological reagents. 

Knowledge of SLCO2A1’s native structure would allow accessible epitopes to 

be predicted, for production of synthetic immunogens or recombinant fusion 

proteins (Yamashita and Okada, 2005). Structural considerations are most likely 

to be relevant when immunodetecting in situ in tissues (since in western 

blotting, the proteins are fully denatured). Success is difficult to ensure, 

however, since the usual empirical methods such as heat-induced epitope 

retrieval are poorly understood, despite their effectiveness in increasing the 

antigenicity and reducing the background in FFPE tissue sections (Shi et al., 
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2011). Antibodies against human SLCO2A1 have been described (Topper et 

al., 1998; Kang et al., 2005; Breuiller-Fouche et al., 2010; Nakanishi et al., 

2015; Kasai et al., 2016; Sabirov et al., 2017). However, no effort has been 

made to assess their relative specificities for SLCO2A1. Furthermore, there are 

no available antibodies specific for murine Slco2a1, which limits the scope for 

exploiting the available HPGD and SLCO2A1 germline knockouts (Chang et al., 

2010). 

 These germline knockout mouse strains for HPGD (Myung et al., 2006) 

and SLCO2A1 (Nakanishi et al., 2017; Chang et al., 2010) serve as models for 

the human disease PHO, and have illuminated the physiology of the PGE2 

degradative pathway. However, organ-specific conditional Hpgd and Slco2a1 

knockout mice might be more useful for studying colon cancer. To achieve this, 

the use of Cre recombinase driven by carbonic anhydrase 1 (Car1), which is 

expressed by the differentiated cells closer to the colon lumen (Tetteh et al., 

2016), to delete floxed HPGD or SLCO2A1 in the presence of a germline APC 

mutant allele, or chemical carcinogen might be an approach worth considering.  

 Other similar conditional knockout approaches could be applied to the 

study of other malignancies, in which HPGD and SLCO2A1 are known to be 

downregulated. For HPGD, this includes gastric (Kang et al., 2014; Li et al., 

2017a; Takeda et al., 2015; Hu et al., 2015), breast (Wolf et al., 2006; He et al., 

2014; Lehtinen et al., 2012), lung (St John et al., 2012), prostate (Lodygin et al., 

2005; Vainio et al., 2011), head and neck squamous cell carcinoma (Zolk et al., 

2013), hepatocellular carcinoma (Yang et al., 2014) and cholangiocarcinoma 

(Lu et al., 2014). Similarly, SLCO2A1 is also lost in lung cancer (Zhu et al., 

2015). Conditional knockout systems could also be used to study the wider 
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roles of PGE2 signalling in situations where the prolongation of its action would 

be desirable, such as in applications of tissue regeneration (Zhang et al., 2015). 

 Returning to the question of PGE2 signalling in facilitating colonic 

adenoma and adenocarcinoma growth, a conditional knockout approach could 

also be used to scrutinize the synthesis components of the PGE2 pathway. Lgr5 

is a marker for stem cells at the base of the colonic crypts, believed to be the 

site of cancer-initiating events such as loss of APC expression (Barker et al., 

2007; Mahé et al., 2013). Germline knockout of Ptgs2 reduces polyp number 

and size in mice carrying mutant Apc (Oshima et al., 1996), but these animals 

suffer developmental abnormalities in the kidneys and ovaries. It would 

therefore be interesting to use conditional knockout of Ptgs2 in both the crypt 

stem cells (Lgr5-Cre (Barker et al., 2008)) and in the differentiated cells (Car1-

Cre (Tetteh et al., 2016)) to simulate aberrant Ptgs2 upregulation. 

 A better understanding of HPGD and SLCO2A1 regulation, and their 

interactions with other signalling pathways might also help explain the complex 

phenotypes seen in PHO patients, about which there are several unanswered 

questions. PHO patients with SLCO2A1 germline mutations are overwhelmingly 

male (Zhang et al., 2013; Seifert et al., 2012; Hou et al., 2017), in contrast to 

those with HPGD mutations, where cases were overall equally prevalent in both 

sexes (Diggle et al., 2010; Uppal et al., 2008). Also, germline SLCO2A1 

mutations can present with chronic multiple small intestinal ulcers, and 

gastrointestinal haemorrhage in affected patients, a syndrome distinct from 

PHO in which the typical signs (such as pachydermia, arthralgia, finger 

clubbing) do not manifest (Umeno et al., 2015; Uchida et al., 2016; Umeno et 

al., 2018). This lack of systemic symptoms may reflect an inability to rapidly 

terminate PGE2 signalling at the cell surface, perhaps resulting from a 
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disturbance of the complex competitive balance between SLCO2A1, EP 

receptors, and MRP4 transporter (Chi et al., 2014; Schuster et al., 2015). 

 There is also no explanation for the fact that unlike PHO subjects, more 

than a third of the SLCO2A1-mutated patients with multiple gastrointestinal 

ulceration are women. 

 

 Conclusions 

 

This work has characterised the transcriptional start sites of HPGD and 

SLCO2A1, and provided evidence suggesting that the TGF-β pathway may 

regulate SLCO2A1, as well as HPGD (Yan et al., 2004). Baseline SLCO2A1 

expression may also be regulated by CDX2, a transcription factor expressed in 

the intestinal and colonic epithelium (Qualtrough et al., 2002), which also 

interacts with the Wnt signalling pathway by driving expression of APC to 

suppress β-catenin activity. Although most published work to date has focused 

on the roles of PTGS2 and HPGD in increasing local PGE2 concentrations and 

facilitating carcinogenesis in the colon, SLCO2A1 warrants closer scrutiny for its 

own role in terminating PGE2 signalling. Understanding the regulation of both 

HPGD and SLCO2A1 offers the potential for pharmacologically reactivating 

their expression in colorectal and other malignancies, where such an approach 

could be used alongside conventional NSAIDs to reduce PGE2 signalling. 
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Appendix 

Index PCR Name Forward Primer 
Reverse Primer 

Primer Sequences 

1 
HPGD cDNA HPGDsplice1 CACGTGAACGGCAAAGTG 

HPGDsplice2 ACATCGCACTGGATGAACAG 

2 
SLCO2A1 PGTsplice11 CCTCTCCACCTTCCTCAACA 

PGTsplice10 GGAGCATCCCATGAAGAACA 

3 
ACTB GeneRacer Nested 
PCR 

Control Primer_A GCTCACCATGGATGATGATATCGC 
Control Primer_B.1 GACCTGGCCGTCAGGCAGCTCG 

4 
SLCO2A1 GeneRacer 
Nested PCR 

GeneRacer-5_NESTED GGACACTGACATGGACTGAAGGAG
TA 

SLCO2A1_GSP TCAAGCTGGAAATGAGACCCGATG 

5 
Screening cloned RLM-
RACE nested PCR 
products 

M13F GTAAAACGACGGCCAG 

M13R CAGGAAACAGCTATGAC 

6 
colony PCR for HPGD 
GeneRacer clones 
(forward) 

M13F GTAAAACGACGGCCAG 

HPGD_exon01_F GTGAACGGCAAAGTGG 

7 
colony PCR for HPGD 
GeneRacer clones 
(reverse) 

HPGD_exon01_F GTGAACGGCAAAGTGG 

M13R CAGGAAACAGCTATGAC 

8 
BAC confirming HPGD 
presence 

HPGD_intron1-5 GCGTGCCCACTTTGCCACTTCCAA
A 

HPGD_exon-
2_GSP_new1 

TGCTCATCCAGGGCAGCTTTACAC
TGT 

9 
BAC confirming 
SLCO2A1 presence 

SLCO2A1_intron1-5_1 CTCACGGGCCCATCACTCTTCCCC 

SLCO2A1_GSP_new1 
GCCCAAAGCGCTTCTCAATGGTGG
T 

10 
HPGD -206 to -1 fragment 
for second cloning step 
for H-3082 

HPGD_NruI_-40bp_F AGGCTTTGAGCCGGTCTG 

HPGD_NcoI_at-ATG_R GTTCACGTCCATGGTGCA 

11 
BAC checking HPGD 
promoter (distal) 

HPGD_-3167_F GATGTGATGCCCAGGAGTTT 
HPGD_-3093_R AGTTGACATGGAATAACTGTGC 

12 
BAC checking HPGD 
promoter (middle) 

HPGD_-2015_F GCTTCCTGTTCTTCCAGTTGT 
HPGD_-1549_R CTTCAGCTCCTCTAATGGCA 

13 
BAC checking HPGD 
promoter (proximal) 

HPGD_-943_F CGCTGACAACCTGAGAAAAAG 
HPGD_-491_R TCTCGTAATCAGTGGGGTTG 

14 
BAC checking SLCO2A1 
promoter (distal 

SLCO2A1_-3324_F TCACCCTTGGTTAGAAGCCT 
SLCO2A1_-2986_R CTCTATGGTCTCAGGGTGGG 

15 
BAC checking SLCO2A1 
promoter (middle) 

SLCO2A1_-2196_F GAACTCCACCCAGTAAAGGTC 
SLCO2A1_-1444_R GAATTCCAGGTCCCATCTGT 

16 
BAC checking SLCO2A1 
promoter (proximal) 

SLCO2A1_-709_F AGTCCTCAACACAAACAGAGC 
SLCO2A1_-207_R CGGGTGTCAAAGGCGCTAC 

17 
screening Acc65I-AvrII-
10bp-NruI-XhoI adaptor in 
pGL4.10[luc2] 

pGL4_MCR_F GAGCTCGCTAGCCTCG 

pGL4_luc2+329_R TTGTAGATGTCGTTAGCTGG 

18 
screening for Acc65I-
AvrII-10bp-NruI-XhoI 
adaptor in pGL4.10[luc2] 

pGL4_adaptor_F CCCTAGGAGTTAGGCGAT 

pGL4_luc2+329_R TTGTAGATGTCGTTAGCTGG 
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19 
SLCO2A1 insert 3' check SLCO2A1_-188_F GAGAGCGCGTTTCATCATCG 

pGL4_luc2+132_R TGTCCACCTCGATATGTGCG 

20 
SLCO2A1 insert 5' check PGL4_AmpR+831_F GAGCTCGCTAGCCTCG 

SLCO2A1_-2986_R TTGTAGATGTCGTTAGCTGG 

21 
HPGD insert 3' check HPGD_-943_F CGCTGACAACCTGAGAAAAAG 

pGL4_luc2+132_R TGTCCACCTCGATATGTGCG 

22 
HPGD insert 5' check PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 

HPGD_-3093_R AGTTGACATGGAATAACTGTGC 

23 
HPGD -206 to -1 fragment 
by PCR 

HPGD_NruI_-40bp_F AGGCTTTGAGCCGGTCTG 
HPGD_NcoI_at-ATG_R GTTCACGTCCATGGTGCA 

24 
SLCO2A1 deletion series 
colony PCR 

PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 
SLCO2A1_-2074_R TGGAGAGCCAACCAAAATGAC 

25 
SLCO2A1 deletion series 
colony PCR 

PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 
SLCO2A1_-2074_R TGGAGAGCCAACCAAAATGAC 

26 
Introducing NcoI site for 
S-805 

SLCO2A1_-813_F CAGTTTACCATGGCTCAGGTC 
pGL4_luc2+132_R TGTCCACCTCGATATGTGCG 

27 
Introducing NcoI site for 
S-1310 

SLCO2A1_-1318_F GCCGTGTCCATGGAACTTG 
pGL4_luc2+132_R TGTCCACCTCGATATGTGCG 

28 
Introducing Acc65I site for 
H-2445 

HPGD_-2459_F TGCTGTTTGCTATCCTAGGAG  
HPGD_-1549_R CTTCAGCTCCTCTAATGGCA 

29 
Colony PCR S-1310, S-
805 

SLCO2A1_-709_F AGTCCTCAACACAAACAGAGC 
pGL4_luc2+132_R TGTCCACCTCGATATGTGCG 

30 
Colony PCR S-1579 PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 

SLCO2A1_-1444_R GAATTCCAGGTCCCATCTGT 

31 
Colony PCR S-364, S-226 PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 

SLCO2A1_-207_R CGGGTGTCAAAGGCGCTAC 

32 
Colony PCR for H-2149, 
H-2050, H-1570 

PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 
HPGD_-1549_R CTTCAGCTCCTCTAATGGCA 

33 
Colony PCR for H-1023, 
H-872 

PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 
HPGD_-491_R TCTCGTAATCAGTGGGGTTG 

34 
Colony PCR for H-319, H-
206, H-34, H-7 

PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 
pGL4_luc2+132_R TGTCCACCTCGATATGTGCG 

35 
Colony PCR for H-2984 PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 

HPGD_-3093_R AGTTGACATGGAATAACTGTGC 

36 
Colony PCR for H-2445, 
new primer 

PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 
HPGD_-2891_R CGTATCCGTAAACCAGCCTC 

37 
screening SLCO2A1 
internal deletions colonies 

>SLCO2A1_-2517_F TGGGTTACTCCATGTGTAGGTG 
>SLCO2A1_-1823_R GGTCACAGACACCTTAGGGC 

38 
SP1 expression from cell 
line cDNA 

SP1_F CAGGACCCCCTTGAGCTTGTC 
SP1_R CCTGTTCCCCCTGACTGACT 

39 
SP2 expression from cell 
line cDNA 

SP2_F CCAAGCGCTTATTGGTGAAGG 
SP2_R ATAGGAGGCGCTCAGTTGTG 

40 SP3_F GGCAGCTCAGTGGTGATTCT 
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SP3 expression from cell 
line cDNA SP3_R TGGCAAGGTGGTCACTTCTC 

41 
SP4 expression from cell 
line cDNA 

SP4_F TGCTCAGATTGCTCCTGTGG 
SP4_R CTCTTCGAAGCCTCTTGCCA 

42 
SP5 expression from cell 
line cDNA 

SP5_F CTTTCTCCAGGACCGCACC 
SP5_R GATCTGGCTCTGGTACTGCG 

43 
SP6 expression from cell 
line cDNA 

SP6_F TCCTAAAAGCTTCTGAGGCCG 
SP6_R TGCAGGAGCTTGGAAAAGGG 

44 
SP7 expression from cell 
line cDNA 

SP7_F CCTGAGTGGAACAGGAGTGG 
SP7_R AGTTGTTGAGTCCCGCAGAG 

45 
SP8 expression from cell 
line cDNA 

SP8_F CAGCCAAACTTGTCCCCTCC 
SP8_R CGAGGGCTTAAACCACGACT 

46 
SP9 expression from cell 
line cDNA 

SP9_F TCTATACTCGGGGAAGAGCCG 
SP9_R AGCTGAAGTCGGGGTTGTAG 

47 
EGR1 expression from 
cell line cDNA 

EGR1_F GGATCCTTTCCTCACTCGCC 
EGR1_R GAGTGGTTTGGCTGGGGTAA 

48 
EGR2 expression from 
cell line cDNA 

EGR2_F AGCGTAGCTCTTAGGGGGAG 
EGR2_R TTCTAGGTGCAGAGACGGGA 

49 
EGR3 expression from 
cell line cDNA 

EGR3_F CTTGCCTGGAAGCTGCGTTA 
EGR3_R TCGAAGGCGAACTTTCCCAA 

50 
EGR4 expression from 
cell line cDNA 

EGR4_F TAGCGAGTTTTCCGAACCCG 
EGR4_R GATGCCCGACATGAGGTTGA 

51 
CDX1 expression from 
cell line cDNA 

CDX1_F CCTCTGGAAACAGCACGAGA 
CDX1_R GGGAATGTGAGACTCCAGTGA 

52 
CDX2 expression from 
cell line cDNA 

CDX2_F AAGGACGTGAGCATGTACCC 
CDX2_R GTCCTGGTTTTCACTTGGCT 

53 
CDX4 expression from 
cell line cDNA 

CDX4_F CACCGGCTTTCTCGCACTAT 
CDX4_R TTTGTCCTGGTTTTCCCCGTC 

54 
Introducing NcoI site for 
S-209 

SLCO2A1_NcoI_-209_F TGACACCCATGGAAAAGAGGG  
pGL4_luc2+132_R TGTCCACCTCGATATGTGCG 

55 
Introducing NcoI site for 
S-87 

SLCO2A1_NcoI_-87_F CCACTGCCGCCATGGTC  
pGL4_luc2+132_R TGTCCACCTCGATATGTGCG 

56 
S-364 smaller constructs 
colony PCR 

PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 
pGL4_luc2+132_R TGTCCACCTCGATATGTGCG 

57 
S-364 smaller constructs 
colony PCR 

PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 
SLCO2A1_NcoI_-87_F CCACTGCCGCCATGGTC  

58 
S-364 smaller constructs 
colony PCR 

SLCO2A1_NcoI_-87_F CCACTGCCGCCATGGTC  
pGL4_luc2+132_R TGTCCACCTCGATATGTGCG 

59 
New GAPDH primers GAPDH_new_F GGATTTGGTCGTATTGGGCG 

GAPDH_new_R GCAAATGAGCCCCAGCCTTC 

60 
site-directed mutagenesis 
- first EGR site in S-364 S266_TFmut_EGR_F 

CACCTGTCTGAGGTTGCGGCGGC
GGCGG 

S266_TFmut_EGR_R 
CCGCCGCCGCCGCAACCTCAGAC
AGGTG 

61 S266_TFmut_EGR_seco
nd_F CGGCGGCGGCTTCGGGGCGGGG 
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site-directed mutagenesis 
- second EGR site in S-
364 

S266_TFmut_EGR_seco
nd_R CCCCGCCCCGAAGCCGCCGCCG 

62 
site-directed mutagenesis 
- SP site in S-364 

S266_TFmut_SP_firs
t_F 

CGGCGGCGGGGCTTGGGCTCGTA
GCG 

S266_TFmut_SP_first_R 
CGCTACGAGCCCAAGCCCCGCCG
CCG 

63 
site-directed mutagenesis 
- CDX site in S-364 S140_TFmut_CDX _F 

TCGGCGGCGGCCACTTGGAAAAAC
TTCTAGGCGC 

S140_TFmut_CDX _R  
GCGCCTAGAAGTTTTTCCAAGTGG
CCGCCGCCGA 

64 
site-directed mutagenesis 
- positive control 
pWhitestript (lacZ) 

primer 1 proprietary primer 

primer 2 proprietary primer 

65 
screening linker scanning 
mutagenesis insert clones 
(forward) 

PGL4_AmpR+767_F TACTTTCACCAGCGTTTCGG 

NotI Miniprimer TGCGGCCGCA 

66 
screening linker scanning 
mutagenesis insert clones 
(reverse) 

NotI Miniprimer TGCGGCCGCA 

pGL4_luc2+132_R TGTCCACCTCGATATGTGCG 

67 
PCR for SLCO2A1 on 
Smoothened Agonist-
treated A549 cells cDNA 

SLCO2A1_cDNA_3/4_F CCAGCACTGGGAACAAGAGC 

SLCO2A1_cDNA_5_R CCCGAAAGCCGGTCCAAATA 

Table 1:PCR Reactions and Primers 
The PCR reactions, primers and primer sequences are listed. Rows shaded in 
blue indicate reactions using the Pfx DNA polymerase instead of the 
conventional Taq polymerase. The Index field links the primers to the reaction 
conditions shown in Table 2. 
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Index Initial 
Denaturation 

Denaturation Annealing  Extension Final 
Extension 

Total 
Cycles 

Product size 

1 95°C 5 min 95°C 30s 64°C 30s 72°C 30s 72°C 5 min 35 191 bp 

2 95°C 5 min 95°C 30s 60°C 20s 72°C 30s 72°C 2 min 39 232 bp 

3 94°C 5 min 94°C 30s 64°C 20s 72°C 30s 72°C 2 min 38 748 bp, (1323 
gDNA) 

4 95°C 5 min 95°C 30s 64°C 20s 72°C 30s 72°C 2 min 35 276 

5 95°C 3 min 95°C 30s 55°C 20s 72°C 30s 72°C 1 or 2 
min 35 variable 

6 95°C 3 min 95°C 30s 52°C 20s 72°C 1 min 72°C 2 min 35 variable 

7 95°C 3 min 95°C 30s 58°C 20s 72°C 1 min 72°C 2 min 35 variable 

8 95°C 3 min 95°C 15s 60°C 15s 72°C 15s 72°C 1 min 35 253 bp 

9 95°C 3 min 95°C 15s 60°C 15s 72°C 15s 72°C 1 min 35 124 bp 

10 94°C 5 min 94°C 15s 58°C 15s 68°C 15s 68°C 1 min 35 258 bp 

11 95°C 3 min 95°C 30s 58°C 20s 72°C 40s 72°C 2 min 35 583 bp 

12 95°C 3 min 95°C 30s 58°C 20s 72°C 40s 72°C 2 min 35 467 bp 

13 95°C 3 min 95°C 30s 58°C 20s 72°C 40s 72°C 2 min 35 453 bp 

14 95°C 3 min 95°C 30s 58°C 20s 72°C 40s 72°C 2 min 35 339 bp 

15 95°C 3 min 95°C 30s 58°C 20s 72°C 40s 72°C 2 min 35 618 bp 

16 95°C 3 min 95°C 30s 58°C 20s 72°C 40s 72°C 2 min 35 503 bp 
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17 95°C 3 min 95°C 30s 55°C 20s 72°C 40s 72°C 2 min 35 408 bp 

18 95°C 3 min 95°C 30s 55°C 20s 72°C 40s 72°C 2 min 35 420 bp 

19 95°C 3 min 95°C 30s 60°C 20s 72°C 30s 72°C 1 min 35 333 bp 

20 95°C 3 min 95°C 30s 56-
66°C 20s 72°C 40s 72°C 1 min 35 600 bp 

21 95°C 3 min 95°C 30s 58°C 20s 72°C 1 min 72°C 2 min 35 

958bp (-3082 to 
-1) 1094bp (-
3082 to -1) 
261bp (-3082 to 
-1) 397bp (-
3082 to -1) 

22 95°C 3 min 95°C 30s 58°C 20s 72°C 30s   72°C 2 min 35 869 bp 

23 94°C 5 min 94°C 15s 58°C 20s 68°C 20s 68°C 2 min 35 258 bp 

24 94°C 3 min 94°C 30s 55-
65°C 20s 68°C 1 min 

30s   68°C 2 min 35 

1574 bp (-
3198), 1234 (-
2887), 698 (-
2351), 511 (-
2164) 

25 94°C 3 min 94°C 30s 55-
65°C 20s 68°C 1 min 

30s   68°C 2 min 35 854 (-1877) 

26 94°C 5 min 94°C 30s 58°C 30s 68°C 1 min 
30s   68°C 2 min 35 964 bp 

27 94°C 5 min 94°C 30s 58°C 30s 68°C 1 min 
30s   68°C 2 min 35 1469 bp 

28 94°C 5 min 94°C 30s 57°C 30s 68°C 1 min 68°C 2 min 35 911 bp 

29 95°C 3 min 95°C 30s 59°C 20s 72°C 1 min   72°C 2 min 35 841 bp 

30 95°C 3 min 95°C 30s 59°C 20s 72°C 1 min  
30s 72°C 2 min 35 556 

31 95°C 3 min 95°C 30s 59°C 20s 72°C 1 min  
30s 72°C 2 min 35 

1411 bp (-
1310), 936 (-
805), 578 bp (-
364), 480 bp (-
226) 

32 95°C 3 min 95°C 30s 59°C 20s 72°C 72°C 2 min 35 
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1 min  
30s 

972 bp (-2419), 
1268 bp (-
2445), 772 bp (-
2050), 319 bp (-
1570) 

33 95°C 3 min 95°C 30s 59°C 20s 72°C 1 min 72°C 2 min 35 902 bp (-1023), 
751 bp (-872), 

34 95°C 3 min 95°C 30s 59°C 20s 72°C 1 min 72°C 2 min 35 

839 bp (-319), 
726 bp (-206), 
554 bp (-34), 
527 bp (-7) 

35 95°C 3 min 95°C 30s 57°C 20s 72°C 1 min 72°C 2 min 35 771 bp 

36 95°C 3 min 95°C 30s 59°C 20s 72°C 40s 72°C 2 min 35 484 bp 

37 95°C 3 min 95°C 30s 61°C 20s 72°C 40s 72°C 2 min 35 695 bp 

38 95°C 3 min 95°C 30s 60°C 20s 72°C 1 min 72°C 2 min 35 307 bp 

39 95°C 3 min 95°C 30s 60°C 20s 72°C 1 min 72°C 2 min 35 446 bp 

40 95°C 3 min 95°C 30s 60°C 20s 72°C 1 min 72°C 2 min 35 414 bp 

41 95°C 3 min 95°C 30s 60°C 20s 72°C 1 min 72°C 2 min 35 347 bp 

42 95°C 3 min 95°C 30s 60°C 20s 72°C 1 min 72°C 2 min 35 721 bp 

43 95°C 3 min 95°C 30s 60°C 20s 72°C 1 min 72°C 2 min 35 506 bp 

44 95°C 3 min 95°C 30s 60°C 20s 72°C 1 min 72°C 2 min 35 300 bp 

45 95°C 3 min 95°C 30s 60°C 20s 72°C 1 min 72°C 2 min 35 675 bp 

46 95°C 3 min 95°C 30s 60°C 20s 72°C 1 min 72°C 2 min 35 667 bp 

47 95°C 3 min 95°C 30s 60°C 20s 72°C 30s 72°C 2 min 35 319 bp 

48 95°C 3 min 95°C 30s 60°C 20s 72°C 30s 72°C 2 min 35 463 bp 

49 95°C 3 min 95°C 30s 60°C 20s 72°C 30s 72°C 2 min 35 351 bp 

50 95°C 3 min 95°C 30s 60°C 20s 72°C 30s 72°C 2 min 35 313 bp 
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51 95°C 3 min 95°C 30s 60°C 40s 72°C 30s 72°C 2 min 35 607 bp 

52 95°C 3 min 95°C 30s 60°C 40s 72°C 30s 72°C 2 min 35 530 bp 

53 95°C 3 min 95°C 30s 60°C 40s 72°C 30s 72°C 2 min 35 379 bp 

54 94°C 5 min 94°C 30s 60°C 20s 68°C 30s 68°C 2 min 35 366 bp 

55 94°C 5 min 94°C 30s 60°C 20s 68°C 30s 68°C 2 min 35 247 bp 

56 95°C 3 min 95°C 30s 59°C 20s 72°C 40s 72°C 2 min 35 810bp (-209), 
688bp (-87) 

57 95°C 3 min 95°C 30s 59°C 20s 72°C 30s 72°C 2 min 35 ~600bp 

58 95°C 3 min 95°C 30s 59°C 20s 72°C 30s 72°C 2 min 35 ~600bp 

59 95°C 3 min 95°C 30s 60°C 20s 72°C 30s 72°C 2 min 25 310bp 

60 95°C 30s 95°C 30s 55°C 1 
min 68°C 5 min  x x 17 

N/A amplify 
whole S-364 
plasmid 

61 95°C 30s 95°C 30s 55°C 1 
min 68°C 5 min  x x 17 

N/A amplify 
whole S-364 
plasmid 

62 95°C 30s 95°C 30s 55°C 1 
min 68°C 5 min  x x 17 

N/A amplify 
whole S-364 
plasmid 

63 95°C 30s 95°C 30s 55°C 1 
min 68°C 5 min  x x 17 

N/A amplify 
whole S-364 
plasmid 

64 95°C 30s 95°C 30s 55°C 1 
min 68°C 5 min  x x 17 

N/A amplify 
whole +ve 
control 

65 95°C 3 min 95°C 30s 55°C 20s 72°C 1 min 
30s   72°C 2 min 35 430bp - 794bp 

66 95°C 3 min 95°C 30s 55°C 20s 72°C 1 min 
30s   72°C 2 min 35 163bp - 527bp 

67 95°C 3 min 95°C 30s 60°C 20s 72°C 20s x x 35.0 278 bp 
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Table 2: PCR reaction conditions and products 
The thermocycler temperatures, times and cycle numbers are shown in the 
table above. The size of the reaction product or products is also given. The 
index field corresponds to the primers listed in Table 1. Rows shaded in blue 
use the Pfx proofreading DNA polymerase in place of Taq polymerase. 
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Step Temperature settings Temperature 
/ (°C) 

Time  

1 initial 
denaturation 

Ramp to target 
temperature, 1°C/second 

96.0 1 minute 

2 denaturation Ramp to target 
temperature, 1°C/second 

96.0 10 seconds 

3 annealing Ramp to target 
temperature, 1°C/second 

50.0 5 seconds 

4 extension Ramp to target 
temperature, 1°C/second 

60.0 4 minutes 

5 loop 24 times 
6 final extension Ramp to target 

temperature, 1°C/second 
60.0 4 minutes 

7 incubate Ramp to target 
temperature, 1°C/second 

4 ∞ 

Table 3: Dye Termination (Sanger) Thermocycler program 
The sequencing reactions were run using the above program on an MH 
Research DNA Engine Dyad Peltier Thermocycler, (Bio-Rad, CA, USA) 
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Reagent 1 × /μl Final concentration 
Autoclaved deionized water 35.00  
10X Pfx Amplification Buffer 5.00 1 × buffer solution 
50mM MgCl2  1.00 1 mM 
10mM dNTP 1.50 300 μM 
10µM GeneRacer™ 5′ Primer,  4.50 0.9 μM 
10μM Gene-Specific Primer 1.50 0.3 μM 
Platinum®Pfx DNA 
Polymera 

0.50  

Master mix total volume 49.00  
DNA template 1.00  

Table 4: Setup of the first PCR reaction for the 5’-amplifications of cDNA 
ends 
Reagents were added in the order shown. 3 times the amount of GeneRacer 
primer is used given that the GeneRacer oligomer is ligated to the 5’-end of 
mRNAs, and only a subset of them will be from HPGD or SLCO2A1 in the 
PCRs following there reverse transcription reaction 
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Temperature Time Cycles 

 94°C 2 minutes 1 

94°C 30 seconds 
5 

72°C 2 minutes 

94°C 30 seconds 5 

70°C 2 minutes   

94°C 30 seconds 

25 65°C 30 seconds 

68°C 2 minutes 

68°C 10 minutes 1 

Table 5:Thermocycler Program for the 5’-amplification of cDNA ends in 
the first PCR reaction used for SLCO2A1 

 
Temperature Time Cycles 

94°C 2 minutes 1 

94°C 30 seconds 

10 67°C - 62°C 

[-0.5°C/cycle] 30 seconds 

94°C 30 seconds 

25 62°C 30 seconds 

68°C 2 minutes 

68°C 10 minutes 1 

Table 6:Thermocycler Program for the 5’-amplification of cDNA ends in 
the first touchdown PCR reaction used for HPGD on the second run of the 
protocol 
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Construct Restriction 
Endonucleases 

H-3082 AvrII, Bsp68I 

H-2983 AvrII, NdeI 

H-2149 AvrII, BsaI 

H2050 AvrII, ZraI 

H-1570 AvrII, SphI 

H-1023 AvrII, BglII 

H-872 AvrII, NheI 

H-319 AvrII, XmnI 

  

S-3198 NcoI 

S-2887 HindIII-HF, PflF1 

S-2351 HindIII-HF, AflII 

S-2164 HindIII-HF, AvrII 

S-1877 HindIII-HF, StuI 

S-1579 HindIII-HF, AclI 

S-364 HindIII-HF, XmaI 

S-266 HindIII-HF, EcoNI 

S-140 SfiI, BssHII  

  

S-3198 (del:-2351 to -2164) AflII, AvrII 

S-3198 (del:-2164 to -1877) AvrII, StuI 

Table 7:Restriction enzymes used for generating the HPGD and SLCO2A1 
promoter deletion series 
The above table list the constructs generated by double restriction 
endonuclease digestion 
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reagent For each well (100μl) of medium 

and adherent cells 

Opti-MEM 25.00 μl 

pRL-CMV (0.35ng/μl) 1.00 μl 

  

Opti-MEM 25.00 μl 

Lipofectamine 2000 1.00 μl 

  

Equimolar deletion series plasmids 

(50ng/μl)  

1.00 μl 

Table 8:Cell line transfection set up using Lipofectamine 2000, on a 96-
well plate format 
Cell line transfection set up using Lipofectamine 2000, on a 96-well plate 
format. A “master mix” of Opti-MEM and the transfection control Renilla plasmid 
was prepared. This was aliquoted in 0.5ml tubes, to which the equimolar 
dilutions of the promoter deletion series plasmids were added (50 ng/μl). 
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Antibody Manufacturer Product 

code 

Stock 

concentratio

n 

Dilutions used 

Rabbit-anti-
Human 
HPGD 
polyclonal 
antibody 

Novus 
Biologicals 
(Cambridge, 
UK (EU office)) 

NBP1-
87061 

0.1 mg/ml 1:400 (0.25μg/ml) 
1:200 (0.5μg/ml) 
1:100 (1.0μg/ml) 

Rabbit-anti-
Human 
HPGD 
polyclonal 
antibody 

Novus 
Biologicals, 
(Cambridge, 
UK (EU office)) 

NBP1-
87062 

0.1 mg/ml 1:200 (0.5μg/ml) 
1:100 (1.0μg/ml) 
1:50   (2.0μg/ml) 

Rabbit-anti-
Human 
HPGD 
polyclonal 
antibody 

Cayman 
Chemicals, 
(Ann Arbor, 
Michigan, 
USA) 

160615 0.5 mg/ml 1:800 (0.625μg/ml) 
1:400 (1.25μg/ml) 
1:200 (2.5μg/ml) 
1:100 (5.0μg/ml) 

Rabbit-anti-
Human 
SLCO2A1 
polyclonal 
antibody 

Abcam, 
(Cambridge, 
UK) 

ab1507
88 

0.100 mg/ml 1:1600 
(0.0625μg/ml) 
1:800 (0.125μg/ml) 
1:400 (0.25μg/ml) 
1:200 (0.5μg/ml) 
1:100 (1.0μg/ml) 
1:50 (2.0μg/ml) 
1:25 (4.0μg/ml) 

Rabbit-anti-
Human/Mous
e/Rat 
SLCO2A1 
polyclonal 
antibody 

Bioss 
Antibodies Inc. 
(Massachusett
s, USA) 

bs-
4710R 

1.0 mg/ml 1:400 (2.5μg/ml) 
1:200 (5.0μg/ml) 
1:100 (10.0μg/ml) 
1:25 (40.0μg/ml) 

Rabbit-anti-
Human 
SLCO2A1 
polyclonal 
antibody 

Cayman 
Chemicals, 
(Ann Arbor, 
Michigan, 
USA) 

11860 0.5 mg/ml 1:800 (0.625μg/ml) 
1:400 (1.25μg/ml) 
1:200 (2.5μg/ml) 
1:100 (5.0μg/ml) 

Rabbit IgG   2.0 mg/ml  1:1000 (2.0μg/ml) 

Table 9: Antibodies used for Immunohistochemistry 
 


