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Abstract: The promotion of cloud computing makes the virtual machine (VM) increasingly a target 

of malware attacks in cybersecurity such as those by kernel rootkits. Memory forensic, which 

observes the malicious tracks from the memory aspect, is a useful way for malware detection. In this 

paper, we propose a novel TKRD method to automatically detect kernel rootkits in VMs from private 

cloud, by combining VM memory forensic analysis with bio-inspired machine learning technology. 

Malicious features are extracted from the memory dumps of the VM through memory forensic 

analysis method. Based on these features, various machine learning classifiers are trained including 

Decision tree, Rule based classifiers, Bayesian and Support vector machines (SVM). The experiment 

results show that the Random Forest classifier has the best performance which can effectively detect 

unknown kernel rootkits with an Accuracy of 0.986 and an AUC value (the area under the receiver 

operating characteristic curve) of 0.998. 

Keywords: virtual machine; private cloud; kernel rootkit detection; memory forensic; machine 

learning 

 

1. Introduction  

With the popularization of cloud computing [1], cybersecurity has become a major concern [2,3]. 

According to the model of service, cloud computing can be divided into public, private and hybrid cloud. 

The private cloud is deployed for certain organizations with higher requirements in terms of performance 
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and security. Virtual machine (VM), as the main form providing service to users in the cloud environment, 

has increasingly become the target of cyber-attacks, leveraging malwares to comprise the VM system and 

leading to significant damages to the virtual and even physical platforms. 

There are many kinds of malwares such as virus, worm, Trojan and backdoor. As one of the 

most dangerous malwares, kernel rootkit [4], also called Driver Trojan, obtains the system 

administrator privilege while hiding its existence in the OS kernel. Kernel rootkits modify the critical 

kernel data structures, making it much more difficult for detection than any other kinds of malwares. 

Traditional anti-virus solutions are based on the signatures of the already known malwares whilst 

installed in the same system with the malware. They can only detect known malwares and can be 

easily spotted and evaded by the smart malwares.  

Automatic detection of known and unknown kernel rootkits on VMs is becoming an urgent 

issue. As the kernel rootkit is hard to detect in the user mode, we observe its tracks from the memory 

side. As a kind of digital investigation for detecting cybercrimes [5], memory forensic can effectively 

extract malicious features from the memory dumps of the monitored computer. It is especially 

suitable for kernel rootkits detection. In virtualization environment, the memory dump acquisition of 

the VMs can be conducted out of the monitored VM at the higher hypervisor level in a trusted way, 

so the memory acquisition operation cannot be discovered or subverted by malwares. Machine 

learning technology has proved effective at automatically detecting known and unknown malware in 

many researches [6–8]. We combine the machine learning technology with memory forensic analysis 

to form a novel kernel rootkit detection method TKRD for the VMs in private cloud.  

The main contribution of this paper can be highlighted as follows: 

 A novel TKRD method to automatically detect kernel rootkits in VMs of private cloud was 

proposed; 

 The memory dumps of the VM were acquired from the controller node of the OpenStack 

platform in a trusted way; 

 Memory forensic analysis along with the Volatility framework was leveraged to extract 

malicious features;  

 Bio-inspired machine learning classifiers were trained for automatic malware detection; 

 The experiment results showed that our methodology can effectively detect the known and 

unknown kernel rootkits for VMs. 

The rest of the paper is organized as follows. Related works are introduced in Section 2. Section 3 

presents the memory acquisition and machine learning methods used in our research. The experimental 

settings and results are discussed in Section 4, followed by some concluding remarks summarized in 

Section 5. 

2. Related works 

2.1. Rootkit 

Rootkits are malwares allowing permanent or consistent, undetectable presence in a computer 

system [9]. Rootkits can hide specific system resources to achieve the goal of hiding the intrusion 

into the compromised computer. They are categorized into five classes: user mode rootkits, kernel 

mode rootkits, bootkits, hypervisor level rootkits and firmware rootkits. User mode rootkits run on 

Ring 3 of the x86 processor with the least privilege. Kernel mode rootkits execute in privileged mode 
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on Ring 0, making it very hard to detect. Bootkits are a variant of kernel mode rootkits, which can 

infect boot code such as Master Boot Record (MBR), Volume Boot Record (VBR), or boot sector. 

Hypervisor level rootkits exploit hardware virtualization features running in Ring -1 which hosts the 

VM operating system (OS). Firmware rootkits exist in the firmware of hardware such BIOS. As the 

integrity of firmware is not checked so frequently, it is an ideal place for firmware rootkits to hide. In 

this paper we focus on the kernel mode rootkits. 

Rootkits leverage many techniques to subvert the OS. The flow of the program can be modified 

by installing hooks. For example, by manipulating function pointers in System Service Descriptor 

Table (SSDT), the transform from user mode API to system Native API is compromised. More 

advanced rootkits such as FU and Shadow Walker can launch Direct Kernel Object Manipulation 

(DKOM) attacks, which directly modify the core data structure of OS kernel in memory. Malicious 

library injection and code injection are also common means for rootkits to subvert the system. 

2.2. Memory forensic for rootkit detection 

Memory forensic belongs to the rank of digital forensics which collect and present digital 

evidence for cybercrime investigation. There are many researches on leveraging memory forensic to 

uncover the malicious behaviors in the memory.  

Case et al. [10] presented a new kernel rootkit detection technique suitable for Mac OS X 

system. They used the most popular memory forensic framework Volatility to analyze the features of 

malwares. For each new rootkit detection technique, a Volatility plugin was developed. Evaluation of 

the plugins were done to illustrate their effectiveness. 

For detecting malwares in Android, Yang et al. [11] proposed a general tool named 

“AMExtractor” for volatile memory acquisition for Android devices. Using memory forensic tools, 

the memory dumps acquired were further analyzed. Rootkits were successfully detected by memory 

forensic framework Volatility.  

For malware detection in virtualization environment, Kumara et al. [12] leveraged memory 

forensic tool such as Volatility, Rekall to analyze the memory state of the VMs, which can address 

the semantic gap problem existing in Virtual Machine Introspection (VMI). LibVMI can also address 

the semantic gap problem, and eliminate memory dump acquire time, achieving a high efficiency of 

memory dump acquisition and analysis.  

Using memory forensic technology, Hua et al. [13] designed and implemented a VMM(virtual 

machine monitor)-based hidden process detection system to investigate rootkits by identifying the lack of 

the critical process and the target hidden process from the aspect of memory forensics. They addressed 

the limitation that the tradition host-based detection tools could be deceived or subverted by malwares.  

Tien et al. [14] introduced a memory data monitoring method against the running malware 

outside the VM, various features were observed from the memory. At last, they suggested combining 

memory forensic with heuristic method to promote the detection rate for malwares. From the above 

researches, memory forensic is an effective way to detect complex malwares, especially rootkits. 

2.3. Machine learning method for malware detection 

Machine learning technology has proved effective in automatically detecting known and unknown 

malwares in many researches. Cohen et al. [15] proposed a method for trusted detection of ransomware 
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in private cloud. Memory forensic framework Volatility was used to extract meta-features from the 

volatile memory dumps of the VM. These meta-features were used to train machine learning classifiers. 

The experiment results showed that the method can effectively detect unknown ransomware. 

In order to automatically detect malware in cloud VMs, NirNissim et al. [16] conducted a 

research on memory forensic for cloud VM. System-call sequences were extracted from the memory 

dumps as features for malware detection. Various machine learning algorithms were leveraged to 

detect malwares in the cloud. They focused on the ransomware and RAT malware in IIS and Email 

server. The experiment results showed that the methodology can detect unknown ransomware and 

RAT in an average 97.9% true positive rate (TPR) and 0% false positive rate (FPR). 

Kumara et al. [17] proposed an automated multi-level detection system for Rootkits and other 

malwares for VMs at hypervisor level. The detection system was composed of Online Malware 

Detector (OMD) and Offline Malware Classifier (OFMC). The OMD detected known malwares 

based on the local malware signature database. The OFMC classified the unknown malwares by 

adopting machine learning technique. The meta-data for classifier training was extracted by virtual 

machine introspection tools from the running VMs at the hypervisor level. The experiments achieved 

100% Accuracy and zero FPR. Himanshu et al. [18] proposed an automated and real-time monitoring 

and forecasting system for rootkits and other malwares for the Windows virtualization architecture. It 

firstly extracted kernel data structures with VMI tool LibVMI. Then a prediction tool was developed 

using machine learning techniques. However, the authors did not tell which data structure to extract 

and how to train the machine learning classifier. 

Mosli et al. [19] proposed an automated malware detection method using artifacts in forensic 

memory images. The features extracted from the memory images were registry activity, imported 

libraries, and API function calls. Different machine learning techniques were implemented to 

compare performances of malware detection. The highest Accuracy was reached by a SVM model 

with the feature of registry activity. Ajay Kumara et al. [20] proposed an advanced VMM-based 

machine learning techniques at the hypervisor. Machine learning techniques were used to analyze the 

executables that were mined and extracted using MFA (memory forensic analysis)-based techniques 

and ascertained the malicious executables. The evaluation results achieved 99.55% Accuracy and 0.4% 

FPR on the 10-fold cross-validation to detect unknown malware on the generated dataset. Bai et 

al. [21] improved malware detection using multi-view ensemble learning. Because malwares were 

hard to disguise itself in every feature view, so they designed two schemes to incorporate three 

single-view features to fully exploit complementary information to discover malwares which 

achieved a false alarm rate of 0%. 

In our work, we combine machine learning technology with memory forensic to detect kernel 

rootkits in VMs. Firstly, VM memory dumps are acquired in a trusted way at the hypervisor level. 

Then memory forensic analysis framework Volatility is used to extract malicious features from the 

memory dumps. Finally, based on these features, machine learning classifiers are trained. We will 

describe the dataset acquisition and machine learning classifier training in detail in the next section. 

3. The proposed methodology 

In this section, the methods used in our research are presented. In subsection 3.1, we introduce 

the way to obtain the volatile memory dumps from the monitored VM. In subsection 3.2, the 

methods of feature extraction and representation are introduced. In subsection 3.3, we describe 
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machine learning algorithms used to train classifiers. The flowchart of the methods is shown in 

Figure 1. 

 

Figure 1. The flow chart of the malware detection.  

3.1. Memory dump acquisition from OpenStack platform 

OpenStack [22] is a popular cloud operating system, which manages the whole cloud computing 

environment. Users utilize OpenStack to deploy their public, private and hybrid cloud environment. 

In our research, we leverage OpenStack to deploy a private cloud experiment environment. 

OpenStack manages various resources throughout datacenter and provides dashboard or API to users 

to simplify the routine operations. The topological structure of the virtualization management 

infrastructure is shown in Figure 2. 

The network node provides network service for the whole platform. The controller node is 

responsible for managing other nodes, providing identity service, image service and dashboard 

service. The storage node includes block storage service and object storage service. The virtual 

machine instances are created on the compute nodes, which provide computing service. By default, 

the kernel-based VM (KVM) hypervisor is supported by OpenStack. So we choose KVM as our 

hypervisor. Windows 7 Ultimate (x86) has been installed on the VM. 

We use the dashboard on the controller node to create VM instances on the compute node. The 

dashboard supplies snapshot acquisition function. During the VM running process, we get its 

snapshots including volatile memory dumps and other information. We only extract the volatile 

memory dump documents for data analysis. Because the memory dumps are obtained out of the 

monitored VM, the malware running in the VM cannot evade or interfere with the memory obtaining 

process. Otherwise, the memory acquisition mechanism may be destroyed or evaded by the smart 

malwares, if it is located in the same VM with the malware. So it is a trusted way to gain the memory 

dumps of the VM. 
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Figure 2. The topological structure of OpenStack platform. 

3.2. Data collection 

To collect training and testing dataset, ~100 kernel rootkit samples belonging to the family of 

NTRootkit, FURootkit etc. and their variants have been downloaded from the malware repository. 

The rootkit samples run on the VM one at a time. As the malware is dynamic, the state of the 

memory will be constantly changing. During the running time of each sample, we capture its 

memory states at appropriate intervals, for example every 10 minutes. Because there are long running 

samples and short running samples, the interval for memory capture are varied. For the short running 

samples the intervals are shorter to avoid the issue that they bypass the detection. The intervals of 

memory capture can be short or long depending on the requirement of the system. To this end, this 

sampling interval can be adaptively set as a tradeoff of efficiency and efficacy. For each sample, 100 

memory dumps have been captured. The total number of captured memory dumps is 10000. 

Malicious features of each dump have been extracted, forming a record in the dataset. To get the 

benign memory samples, we captured memory state of the fresh installed Windows OS and some 

commonly used applications such as office, PDF, Winzip, Google browser etc.. During the running 

process of each application, the memory dumps have been obtained in the same way as the malicious. 

The total number of the benign memory dumps is 2300. An automatic tool for memory dump 

acquisition and feature extraction has been developed based on Python script. 

3.3. Feature extraction and representation 

After obtaining the memory dumps, features need to be extracted from them for abnormal 

behavior detection. Memory forensic framework Volatility [23] is used to extract features for 

memory forensic analysis. 

3.3.1. The Volatility framework 

As a widely used memory forensic platform, Volatility is a completely open collection of tools, 

implemented in Python under GNU Public License. Memory forensics for Windows, Linux and 
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MAC operating systems are supported by Volatility. In our research, Volatility 2.6 is leveraged to 

extract digital artifacts from volatile memory samples of Windows 7. Various plugins are supplied by 

Volatility to extract information from memory dumps. In our research, the following plugins are 

utilized to extract features, shown in Table 1. 

Table 1. Volatility plugins used for rootkit detection. 

Volatility plugin Description 

modules Print loaded modules 

modscan Pool scanner for kernel modules 

threads Investigate _ETHREAD and _KTHREADs 

OrphanThread Investigate orphan threads  

driverscan Pool scanner for driver objects 

driverirp Pool scanner for driver objects 

devicetree Show device tree 

ssdt Display SSDT entries 

callbacks Print system-wide notification routines 

timers Print kernel timers and associated module DPCs 

3.3.2. Feature extraction 

According to the way rootkit attacks, the features to be extracted are as follows [24]: hidden 

kernel modules, orphan threads, driver objects, device tree, the SSDT function, call backs and timers. 

Hidden kernel modules: The rootkit loads into the kernel as a kernel module. In order to hide its 

existence, rootkit hides its module. A metadata structure KLDR_DATA_TABLE_ENTRY is 

generated when a kernel module is loaded into the kernel. All of the metadata structures form a 

doubly linked list. The rootkit can hide its presence by unlinking the corresponding entry from the 

list, as shown in Figure 3. 

In Volatility, the modules plugin walks through the double linked list to enumerate the kernel 

modules. If the metadata structure is unlinked, the module becomes stealthy for the modules plugin. 

Although the metadata entry is unlinked from the list, it is still in the memory, which is tagged with 

MmLd. The modscan plugin uses pool-scanning approach to find the metadata entry by the tag of 

Mmld. Through comparing the scanning results of these two plugins, the unlinked stealthy modules 

can be found. 

Orphan threads: Orphan threads do not belong to any modules, which is an abnormal 

phenomenon in memory. For the purpose of hiding their presence, some rootkits unload the module 

when the executing thread is created. It can evade the detection of suspicious modules, but will 

create Orphan thread which is an obvious artifact for rootkit detection. We use threads and 

OrphThread plugins to find out orphan threads. 

Driver objects: When a kernel module is loaded, a corresponding structure _DRIVER_OBJECT 

is initialized. The driver object contains information about the kernel module. Even when the tag 

MmLd of the metadata structure KLDR_DATA_TABLE_ENTRY is corrupted, the driverscan plugin 

can still detect the module. So through the comparison between the results of modules and driverscan 

plugins, we can discover the hidden module whose metadata structure has been destroyed. 

Every driver object contains a major function table that handles different requests from the OS 
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user mode. Rootkit can hook these functions. To discover the hooks, driverirp plugin is needed to 

display the 28 values in the MajorFunction array. Of course, further analysis is needed to decide the 

existence of the hooks. 

 

Figure 3. The doubly linked list of module entry. 

Devicetree: In Windows OS, one device object is permitted to attach to the stack of another 

device. So they can handle the same I/O request, achieving transparent system archiving and 

encryption. This also provides rootkits with opportunities to intercept the legitimate I/O Request 

Packets (IRPs). The devicetree plugin can be used to audit the device tree to inspect whether there 

are malware drivers attaching to the legitimate device.  

SSDT: SSDT containing pointers to kernel mode functions is a big target for rootkits. Many rootkits 

get to execute malicious modules by modifying or hooking the SSDT. So it is necessary to audit the 

SSDT. There are several ways to attack the SSDT functions. Some rootkits overwrite the pointers in 

SSDT. Normally, SSDT only points to two tables: native API table and shadow SSDT table, 

corresponding to the module of ntoskrnl.exe and win32k.sys respectively. The ssdt plugin can detect the 

modified pointers pointing to other malicious modules. More cunning rootkits use inline hook technique, 

instead of pointing out of the NT modules or win32k.sys. In this case, further static analysis is needed. 

Callbacks: The callback plugin can show all the callbacks installed on the system, including 

information about the callback type, the start address of the callback function, the corresponding 

module of the callback function and some other information. If a rootkit has hidden its module, the 

corresponding module information will show unknown, which is an obvious abnormal artifact. Take 

one step back, some rootkits don’t hide their modules, but use a hard-coded name which also 

indicates a compromise. 

Timers: Timer is another feature indicating a rootkit. Each timer is associated with a module. 

The timers plugin can list all timer objects created in the memory, including the module that the 

timer belongs to. So if the module shows unknown, the timer is suspicious.  

The above is all the features used to detect rootkits in our research. Different rootkits may have 
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different features. In Table 2, we list the features and the plugins extracting them. We develop a 

Python-based tool to automatically extract these features from the memory dumps. 

Table 2. The features extracted and plugins used. 

Feature  Description Data type Plugin 

Hidden modules Whether hidden modules exist Boolean modules 

modscan 

Orphan thread Whether orphan threads exit Boolean thread 

OrphanThreads 

Driver object Whether abnormal driver object exits Boolean driverscan  

modules 

Hooks in the IRP 

table 

Whether hooks exit in the major 

function table 

Boolean driverirp 

Malicious attachment Whether there is malware driver 

attaching to the legitimate device 

Boolean devicetree 

SSDT hooking Whether there are hooks on SSDT  Boolean ssdt 

Abnormal Callbacks Whether there is malicious callback 

in the system 

Boolean callbacks 

Abnormal timers Whether there is malicious timer in 

the system 

Boolean timers 

3.3.3. Feature representation 

In order to improve the classification, we use a vector v  to represent the features. The element 

of the vector consists of two parts: the Boolean value and the weight value. The Boolean value 

indicates whether a certain feature appears in the memory dump. In our research, there are totally 

eight features. If the feature shows up in the memory dump, the Boolean value of this feature is true 

represented by 1, otherwise it is false represented by 0. 

The weight of the feature is gauged by Mutual Information (MI) which measures the statistical 

dependence of the feature on the class of the sample, as shown in (1). 

( , )
( ; ) ( , ) log                                       (1)

( ) ( )y Y x X

p x y
I X Y p x y

p x p y 

 
  

 
  

where X represents the frequency of occurrence of a feature in a memory dump and Y is the class of 

the sample indicating whether or not the sample is a rootkit (i.e. rootkit or benign). p( x )  and p( y )  

are the marginal probability of X and Y. p( x,y )  is the joint probability of X and Y. The MI 

calculated for each feature is used as a weight value, which reduces the noise from less relevant 

features. The vector is expressed as (2): 
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1 1 2 2 1 1(( , ),( , ), , ( , ), ( , ))                                   (2)n n n nv f w f w f w f w   

where 
nf  is the Boolean value of the nth feature, and 

nw  is the weight value computed with (1). 

With the feature vector of the memory dumps, machine learning based classifiers can be trained 

to detect the variants of the malwares and the new emerging ones. 

3.4. Machine learning algorithms 

The machine learning algorithms used to train our classifiers include those based on human 

perception and bio-inspired models, such as Decision trees, Rule based classifiers, Bayesian and 

SVM. 

Based on tree structures to make decisions, decision tree is a simple but widely used 

classification technology. Generally, a decision tree contains one root node, several internal nodes 

and leaf nodes. Each leaf node is assigned with a class label corresponding to the decision result. The 

internal node corresponds to an attribute test condition, which is used to distinguish records with 

different characteristics and divide the sample set into different sub-nodes. The purpose of decision 

tree learning is to produce a decision tree with strong generalization ability. After building the 

decision tree, tree-pruning can be carried out to reduce its scale. Therefore, the over fitting problem 

can be solved and the generalization ability is improved. 

Rule based classifiers uses a set of if…then… rules to classify records. A rule is as follows:

1 2 Lf f f    . The part on the right side of the symbol  is called rule body, which indicates 

the premise of the rule. The left part is called rule head representing the result of the rule. The quality 

of classification rules can be gauged with Coverage and Accuracy. Rule sets generated by rule-based 

classifiers have two important properties: Mutually Exclusive Rule and Exhaustive Rule which are 

combined to ensure that every record is covered by one and only one rule. 

Bayesian is a method of modeling probabilistic relations between attribute sets and class 

variables. It combines prior probability of a class with new evidence collected from data. There are 

two implementations of Bayesian classifier: naive Bayes and Bayesian belief network (BBN). Naive 

Bayesian classifier assumes conditional independence between attributes when estimating 

conditional probability of classes. BBN is applicable to problems of classification with certain 

correlations between attributes.  

SVM is a dual-classification model whose purpose is to find a hyperplane to segment the 

samples. The principle of segmentation is to maximize the interval, which eventually converts to a 

convex quadratic programming problem. In the sample space, the partition of hyperplane can be 

described with the following linear equations: 0Tw x b  , in which w is the normal vector which 

determines the direction of hyperplane, and b is the displacement determining the distance between 

the hyperplane and origin. It finally comes down to a cubic programming problem, which can be 

solved with a general quadratic programming algorithm. SMO (Sequential Minimal Optimization) is 

an efficient algorithm, which can effectively solve the dual problem derived from SVM. 
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4. Experiments and evaluation 

MalShare [25] and VirusShare [26] are websites of malware repository. In our experiment, 

around 100 Windows kernel rootkit samples have been collected from them, including FURootkit, 

NtRootkit etc., as well as their variants for 32bit Windows 7 OS. VirusTotal [27] is an online 

malware analysis system, through which the type of the collected samples can be confirmed. 

VirusTotal can also display the variant malwares family.  

Weka [28] is a suite of machine learning software written in Java, containing a collection of 

tools and algorithms for data analysis and predictive modeling. In our research, Weka 3.9 was used 

for classifier training. The default file format supported by Weka is Attribute Relation File Format 

(ARFF). It also supports csv format in which we stored our data. 

To train the classification models, various algorithms supplied by Weka are used, which are 

divided into four categories: Decision tree, Rule based classifiers, Bayesian and SVM. In each 

category, the following algorithms are selected: RandomForest, J84 algorithms for Decision tree; 

JRip, PART algorithms for Rule based classifiers; BayesNet, NaiveBayes for Bayesian classifiers; 

SMO for SVM. The default configurations of these algorithms are utilized. The machine learning 

models and corresponding algorithms are shown in Table 3. 

Table 3. The machine learning models and corresponding algorithms. 

Machine learning models Algorithms 

Decision tree RandomForest, J84 

Rule based classifiers JRip, PART 

Bayesian BayesNet, NaiveBayes 

SVM SMO  

To evaluate the effectiveness of the classifiers trained by the algorithms proposed, we need to 

answer the following questions: 

i. Which classifier we selected has the best performance? 

ii. Whether or not the scale of the dataset influences the performance of the classifier? 

iii. Can the trained classifiers effectively detect new rootkits? 

4.1. Experimental Settings 

Based on these questions, the following experiments are designed: 

Experiment #1: Ten-fold cross-validation is used to train the chosen classifiers. The extracted 

features of all the collected samples are used to train the classifiers. There are 12300 records in the 

dataset, including 10000 malicious and 2300 benign samples. All the classifiers are trained with the 

default parameters available in Weka. The purpose of this experiment is to verify the best classifier 

for rootkit detection with the dataset provided. 

Experiment #2: We selected 3000 malicious records and 450 benign records from the dataset 

of experiment#1 to train the classifiers to verify the influence of dataset scale on the effect of the 

classifiers. 

Experiment #3: To verify whether our trained classifier can detect unknown malware 
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effectively, we collected some new samples to form a testing dataset, including 500 new malicious 

samples and 300 benign ones to prove that the classifier can detect new emerging malwares. 

4.2. Evaluation Criteria 

To evaluate the performance of each classifier, we use TPR, FPR, the AUC value (the area 

under the receiver operating characteristic curve), F-measure and Accuracy as the evaluation criteria. 

The formulas are shown below, where TP and FP respectively represent the numbers of the correctly 

classified malwares and benign software, and FN and TN are the numbers of malwares and benign 

software misidentified. The definitions for these metrics are given as follows.  

                                                                              (3)
TP

TPR
TP FN




 

                                                                              (4) 
FP

FPR
FP TN




 

                                                                           (5)  
TP

recall
TP FN




 

                                                                     (6)
TP

Precision
TN FP




 

=2                                                 (7)
Precision recall

F - measure
Precision recall





 

                                                     (8) 
TP TN

Accuracy
TP FP TP TN




  
 

4.3. Experimental results  

From the result of experiment #1 shown in Table 4, it can be seen that the Random Forest 

classifier has the best performance with TRP of 0.996, FRP of 0.079 and AUC of 0.997. The Bayes 

classifier has the lowest capability for malware detection: the TPR of the NaiveBayes is 0.838，and 

the FPR and the AUC are 0.630 and 0.922. The JRIP and PART classifier have better performance 

than SMO . 

Table 4. The results of experiment #1. 

Classifier TPR FPR AUC F-measure Accuracy 

Random Forest 0.966 0.079 0.997 0.966 0.966 

J48 0.955 0.096 0.990 0.956 0.956 

JRip 0.965 0.079 0.967 0.965 0.965 

PART 0.963 0.079 0.996 0.964 0.964 

BayesNet 0.847 0.630 0.922 0.815 0.827 

NaiveBayes 0.838 0.729 0.950 0.785 0.824 

SMO 0.925 0.016 0.954 0.930 0.947 
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Table 5. The results of experiment #2. 

Classifier TPR FPR AUC F-Measure Accuracy 

Random Forest 0.946 0.096 0.983 0.946 0.946 

J48 0.931 0.100 0.967 0.932 0.934 

JRip 0.903 0.154 0.951 0.904 0.906 

PART 0.953 0.071 0.980 0.953 0.954 

BayesNet 0.776 0.630 0.912 0.801 0.813 

NaiveBayes 0.819 0.603 0.938 0.775 0.825 

SMO 0.935 0.019 0.958 0.938 0.950 

Table 5 is the result of experiment #2. Comparing Table 5 with Table 4, the performance of 

classifiers declines as a whole. For example, the TPR of the Random Forest classifier decreases from 

0.966 to 0.946, and FRP increases from 0.079 to 0.096. It indicates that the quantity of the training 

samples does affect the classifier performance. The classifier trained with mass data would have a 

better performance. 

To verify the unknown malware detection ability of the classifier, we collected 500 new 

malware samples and 300 benign to form a new testing dataset. The classifiers trained in 

experiment#1 were tested to classify the new samples. From the result of the experiment shown in 

Table 6, the detection performances are good for most classifiers. It indicates that the classifier can 

detect unknown malware effectively. The Random Forest classifier has the best performance which 

can detect unknown kernel rootkits with an Accuracy of 0.986 and an AUC value of 0.998. 

Table 6. The results of experiment #3. 

Classifier TPR FPR AUC F-measure Accuracy 

Random Forest 0.984 0.076 0.998 0.986 0.986 

J48 0.961 0.084 0.991 0.962 0.965 

JRip 0.967 0.094 0.974 0.971 0.971 

PART 0.969 0.064 0.987 0.966 0.965 

BayesNet 0.856 0.329 0.932 0.891 0.894 

NaiveBayes 0.839 0.583 0.958 0.795 0.864 

SMO 0.965 0.010 0.978 0.958 0.968 

 

The comparison of TPR, FPR, AUC, F-Measure and Accuracy achieved by all the classifiers in 

the three experiments is shown in Figures 4–8. 

Figures 4 and 5 show the TPR and FPR of the classifiers in the three experiments, respectively. 

Random Forest has the highest TPR on the whole, which reaches as high as 0.984 in experiment #3. 

The average value of the TPR of Random Forest in the three experiment is 0.965. The average TPR 

value of J84, JRip, PART, BayesNet, NaiveBayes and SMO are respectively 0.949, 0.945, 0.962, 

0.826, 0.832, 0.942. The classifier of Random Forest has the highest average value of TPR. For FPR, 

Random forest, J47, PART and SMO seem to produce much lower FPR than BayesNet and 

NaiveBayes, where SMO has the least FPR among all these approaches. 
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Figure 4. The TPR of the three experiments. 

 

Figure 5. The FPR of the three experiments. 

Figures 6–8 are respectively the AUC, F-Measure, and Accuracy of the classifiers in the three 

experiments. As seen, the highest average values of AUC, F-Measure, Accuracy are achieved by the 

Random Forest classifier, which are 0.992, 0.966 and 0.966. As a result, the Random Forest classifier 

is the most excellent classifier in our experiment for kernel rootkits detection for VMs. 

 

Figure 6. The AUC of the three experiments. 
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Figure 7. The F-Measure of the three experiments. 

 

Figure 8. The Accuracy of the three experiments. 

4.4. Comparison with other related works 

The comparison with other related works is summarized in Table 7. For each approach, several 

classifiers are compared, where the classifier to produce the best results among each group is 

underlined in the table. 

Nissim et al. [16] presented a methodology for trusted detection of unknown malwares for VMs. 

Experiment #4 in Nissim et al. [16] was aiming at detecting new emerged unknown malwares which 

is most relevant with our work. Classifiers of Decision Tree, Random Forest, Naïve Bayes, Bayesian 

network and SVM were trained. The best performance was achieved by Random Forest with the 

TPR of 0.979, FPR of 0 and AUC of 1.The dataset contained 4000 samples, half of which were 

benign and the others were malicious. They used 80% of the data for training and 20% for testing.  

Cohen et al. [15] conducted trusted analysis of memory dumps for VMs using Volatility 

framework, and classifiers of Random Forest, BayesNet, AdaBoostM1 etc. were trained. Experiment 

2 in Cohen et al. [15] focused on detecting the unknown infected states which is most relevant with 

our research. The best performance was reached by Random Forest with the TPR of 0.958, FPR of 0 

and AUC of 1. The training dataset consisted of 400 malicious instances and 400 benign ones, the 

testing dataset consisted of 100 malicious instances and 100 benign ones.  

Bai et al. [21] proposed a malware detection method using ensemble method. Scheme II in Bai 

et al. [21] leveraged multi features to train base classifiers which is most interrelated with our work. 

Classifiers of Random Forest, J48 and BayesNet were trained on dataset D2. Its best performance 

was reached by Random Forest with the TPR of 0.988, FRP of 0.001 and AUC of 0.998. The training 

dataset consisted of 5202 malicious instances and 3918 benign instances, and the testing dataset was 

composed of 109245 malicious instances and 3953 benign instances. 
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The best performance of our proposed work reached as TPR of 0.984, FPR of 0.076 and AUC 

of 0.998 by Random Forest, which achieved a relatively satisfactory result for VM kernel rootkits 

detection. 

Table 7. The Comparison with other related works. 

Related work Classifiers  TPR FPR AUC 

Nissim et al. RF,DT,NB,BN,SVM 0.979 0 1 

Cohen et al. RF,BN,AM,LB J48,NB,SMO, 

Bagging,LR 

0.958 0 1 

Bai et al. RF,J48,BN 0.988 0.001 0.998 

Proposed work RF,J48,PART,JRip,NB, BN,SMO 0.984 0.076 0.998 

Random Forest (RF), Decision Trees (DT), Naïve Bayes (NB), Bayesian network (BN), Support Vector Machine (SVM), 

AdaBoostM1(AM), LogitBoost(LB), Logistic Regression (LR), Partial Decision Tree (PART), where the best classifier 

within each group is underlined and bold for attention. 

5. Conclusions 

Aiming at solving the cybersecurity problem of virtual machine in private cloud computing 

environment, a TKRD method is proposed to detect known and unknown kernel rootkits based on 

machine learning method. We leveraged memory forensic technology to obtain the malicious tracks 

in the VM memory. Machine learning technology is used to analyze the malicious behavior of the 

kernel rootkits and detect malware attacks in the VMs. Experimental results show that our TKRD 

method can effectively detect kernel rootkits with a best Accuracy of 0.986 and AUC of 0.998. 

The major innovation of our work is summarized as following. First, a trusted way for memory 

dump acquisition was proposed, where the memory dumps of the VM were collected on the compute 

nodes at the controller node of the cloud OS OpenStack. For the short and long time running rootkits, 

the memory capture interval can be adjusted, which can be adaptively set as a tradeoff of efficiency 

and efficacy. As far as we know, it is the first time that such a method is proposed in VM memory 

forensics. Second, comprehensive features representing the abnormal behaviors of the kernel rootkits 

were extracted from the memory dumps, from which we could identify the kernel rootkits effectively. 

At last, in order to find the classifier with the best performance, various machine learning models 

were evaluated with the best one i.e. the random forest classifier recommended.  

In future work, deep learning methods [29] such as S-SAE [30] can be used to train malware 

classifiers. It can not only reduce complexity but also improve the efficacy of feature extraction and 

the accuracy of data classification. Other classifiers such as SVM-GRBF and CNNs [31] as an 

extended ANN [32] will be investigated to find the optimal classifying way for malware detection. In 

addition, we will also explore combined strategies for malware detection as it has shown great 

potential in Kumara et al. [17], and this will be extended for improved detection of rootkits in future. 
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