
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2008

H-DPOP: Using Hard Constraints for Search
Space Pruning in DCOP
Akshat KUMAR
Singapore Management University, akshatkumarR@smu.edu.sg

Adrian PETCU
Ecole Polytechnique Federale de Lausanne

Boi FALTINGS
Ecole Polytechnique Federale de Lausanne

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Artificial Intelligence and Robotics Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
KUMAR, Akshat; PETCU, Adrian; and FALTINGS, Boi. H-DPOP: Using Hard Constraints for Search Space Pruning in DCOP.
(2008). Proceedings of the 23rd AAAI Conference on Artificial Intelligence: 13-17 July 2008, Chicago, Illinois. 325-330. Research
Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2215

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/20075904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2215&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

H-DPOP: Using Hard Constraints for Search Space Pruning in DCOP

Akshat Kumar ∗

akshat@cs.umass.edu
University of Massachusetts

Amherst, MA 01002

Adrian Petcu † and Boi Faltings
{adrian.petcu, boi.falting}@epfl.ch

Ecole Polytechnique Federale de Lausanne
Lausane, Switzerland

Abstract

In distributed constraint optimization problems, dynamic
programming methods have been recently proposed (e.g.
DPOP). In dynamic programming many valuations are
grouped together in fewer messages, which produce much
less networking overhead than search. Nevertheless, these
messages are exponential in size. The basic DPOP always
communicates all possible assignments, even when some of
them may be inconsistent due to hard constraints. Many real
problems contain hard constraints that significantly reduce
the space of feasible assignments. This paper introduces H-
DPOP, a hybrid algorithm that is based on DPOP, which uses
Constraint Decision Diagrams (CDD) to rule out infeasible
assignments, and thus compactly represent UTIL messages.
Experimental results show that H-DPOP requires several or-
ders of magnitude less memory than DPOP, especially for
dense and tightly-constrained problems.

Introduction
Constraint satisfaction and optimization are powerful
paradigms that can model a wide range of tasks like schedul-
ing, planning, optimal process control, etc. Traditionally,
such problems were gathered into a single place, and a cen-
tralized algorithm was applied to find a solution. However,
problems are sometimes naturally distributed, soDistributed
Constraint Satisfaction(DisCSP) was formalized (Yokoo et
al. 1998). Here, the problem is divided between a set of
agents, which have to communicate among themselves to
solve it. Many practical problems require theoptimization
of some performance criteria like cost, so theDistributed
Constraint Optimization Problems(DCOP) has been intro-
duced (Modi et al. 2005).

Several search algorithms (Yokoo et al. 1992; Meisels
and Zivan 2003; Modi et al. 2005) have been proposed
for DCOP. As in centralized CSP, distributed search algo-
rithms have the advantage that they can operate with low
memory requirements, and that they can prune the search
space using various consistency techniques, as well as the

∗Kumarwas supported by the Air Force Office of Scientific Re-
search under Grant No. FA9550-05-1-0254.

†Petcu was supported by the Swiss National Science Founda-
tion under contract 200020-111862.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

branch-and-bound principle. All these algorithms are also
asynchronous, which can sometimes offer the advantage of
better dealing with message delays or message loss, or any-
time behavior. Nevertheless, they all suffer from large net-
working overheads caused by sending an exponential num-
ber of small packets, and large algorithmic overheads due to
the obligation of attaching full context information to each
message because of asynchrony (Petcu and Faltings 2005;
Faltings 2006).

Alternatively, (Petcu and Faltings 2005) propose DPOP, a
dynamic programming algorithm for DCOP. DPOP adapts
the bucket elimination principle (Dechter 2003) to a dis-
tributed setting, and works on a DFS traversal of the con-
straint graph. In DPOP, many assignments and their corre-
sponding costs/utilities are grouped together in larger mes-
sages, which avoids the overhead of many small mes-
sages. In a problem withn variables, DPOP uses exactly
2(n − 1) messages, which makes it much more scalable
than search in real distributed environments (Faltings 2006;
Petcu and Faltings 2005). However, some messages in the
bottom-up dynamic programming step may be large, as the
largest message is space exponential in the treewidth of the
problem, and dynamic programming always propagates all
assignments. This may be wasteful, as the messages may
contain assignments that are actually inconsistent, and thus
do not participate in the optimal solution.

In this paper, we consider how to leverage the hard con-
straints that may exist in the problem in a dynamic program-
ming framework, so that only feasible partial assignments
are computed, transmitted and stored. To this end, we en-
code combinations of assignments usingconstrained deci-
sion diagrams(CDDs) (Cheng and Yap 2005). CDDs elim-
inate all inconsistent assignments and only include costs or
utilities for value combinations that are consistent. The re-
sulting algorithm H-DPOP thus combines the pruning capa-
bilities of search algorithms, and low communication over-
heads of dynamic programming algorithms.

Background

This section provides a brief description of DPOP and Con-
straint decision diagrams.

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

325

Preliminaries
A constraint network is described by a set of variables with
finite domains and a set of functions defined over these vari-
ables. Variables or sets of variables are denoted by up-
percase letters (X, Y , S) and the values of variables are
denoted by lowercase letters (x,y, z). An assignment
(X1 = x1, . . . , Xn = xn) is denoted byx = (x1, . . . , xn).
For a set of variablesS, DS represents the cartesian product
of the domains of variables inS. If X = X1, . . . , Xn and
S ⊆ X, xS denotes the projection ofx = (x1, . . . , xn) over
S. Functions are represented by letterse, f, g etc. and the
scope (set of arguments) of a functionf by scope(f). Our
terminology is partly based on (Dechter 2003; Kask et al.
2005).

Definition 1 (DCOP) A discretedistributed constraint opti-
mization problem(DCOP) is a tuple< X, D, F, ⊗ >
where: X = {X1, . . . , Xn} is a set of variables.D =
{DX1

, . . . , DXn
} is a set of finite domains. F =

{f1, . . . , fr} is a set of real valued functions over subsets
of X. ⊗ is a combination operator(⊗ ∈ {

∏
,
∑
}). In a

DCOP, each variable and constraint is owned by an agent.
The goal is to find a complete instantiationX ∗ for the vari-
ablesXi that maximizes the sum of utilities of individual
relations

∑r

i=1 fi .

Hard Constraints(e.g. capacity constraints, all-diff con-
straints, sum constraints, inequality, etc) are represented as
bi-valued functions with allowed tuples being assigned0,
and disallowed tuples being assigned−∞. This formula-
tion allows any utility maximization algorithm to avoid in-
feasible assignments and find the optimal solution. How-
ever, using this approach naively in an algorithm like DPOP
does not take advantage of the search space pruning power
of hard constraints. We propose a new algorithmH-DPOP
which exploits hard constraints efficiently for search space
reduction.

The next section provides some background on DPOP and
its different phases.

DPOP: Dynamic Programming OPtimization
Definition 2 The primal graph of a constraint network is
an undirected graph that has variables as the vertices and
an edge connects any two variables that appear in the scope
of the same constraint function.

We consider a distributed primal graph where each vari-
able and constraint is owned by an agent.

Definition 3 (DFS tree) A DFS arrangement of a graph G
is a rooted tree with the same nodes and edges as G and the
property that adjacent nodes from the original graph fall in
the same branch of the tree.

DPOP works on the DFS traversal of the primal graph
for the given constraint network. DFS trees have already
been investigated as a means to boost search (Freuder 1985;
Dechter 2003). Due to the relative independence of nodes
lying in different branches of the DFS tree, it is possible
to perform search in parallel on independent branches, and
then combine the results. We use in the following several

Algorithm 1: Phase 2 of DPOP
Phase 2: Util Message propagation

1 UPP
Xi
← ComputeUtil(Xi ∪ P (Xi), PP (Xi))

2 Receive allUi util messages fromChildren(Xi)
3 UJoin

Xi
← Join(UPP

Xi
, Util1, . . . , U|Children(Xi)|)

4 UXi
← Project(Xi, U

Join
Xi

)
5 sendUXi

to P (Xi)
Phase 2 finishes

notations, and we exemplify on the DFS from Figure 1(a):
P (Xi) is the parent of the nodeXi (e.g. P (X4) = X3),
C(Xi) areXi’s children (C(X3) = {X4, X5}), PP (Xi)
are the pseudo parents ofXi (PP (X4) = {X1, X2}) and
Sepi is the separator ofXi (Sep3 = {X2, X1}).

DPOP has three phases:
Phase 1- a DFS traversalof the graph is generated us-

ing any distributed algorithm. The outcome of this proto-
col is that all nodes consistently label each other as par-
ent/child or pseudoparent/pseudochild, and edges are iden-
tified as tree/back edges. The DFS tree thus obtained serves
as a communication structure for the other 2 phases of the
algorithm.

Phase 2- UTIL propagation: The agents (starting from
the leaves) sendUTIL messages to their parents.

Definition 4 (UTIL message) The UTIL message sent by
agentXi to agentXj is a multidimensional matrix, with one
dimension for each variable present inSepi. dim(UTIL

j
i)

is the set of individual variables in the message. Note that
alwaysXj ∈ dim(UTIL

j
i).

Algorithm 1 shows this phase. Leaves start first by com-
puting UTIL messages consisting of their relations with par-
ent/pseudo parents (line 1). Each leaf agent projects its
variable out, and sends the resulting message to its parent.
Subsequently, all nodes compute the utility of their relations
with parent/pseudo parents (line 1). Then they wait for all
messages from their children (lines 2) and join them with
the utility computed in line 1 (line 3). After this step they
project themselves out from the join (line 4) and send the re-
sulting message to their parent (line 5). The operationsjoin
andproject are defined in definition 5, 6.

Phase 3- VALUE propagationtop-down, initiated by the
root, when phase 2 has finished. Each node determines its
optimal value based on the computation from phase 2 and
the VALUE message it has received from its parent. Then,
it sends this value to its children throughVALUE messages
(this step is similar to DPOP).

Definition 5 (Join) Given a set of functionsh1, . . . , hk de-
fined over the setsS1, . . . , Sk, the Join operator (

∑
j hj)

is defined overU =
⋃

j Sj such that for everyu ∈ DU :
(
∑

j hj)(u) =
∑

j hj(uSj
).

The above definition describes the join ofk UTIL mes-
sages. The setsSi correspond to respectivedim(UTILi).
Dimensions ofUTILJoined are given by the union set
U . The functionhj(uSj

) corresponds to the functionutilj

326

which gives the utility for assignmentuSj
in the message

UTILj .

Definition 6 (Projection) Given is a function h with the
scope being a subset of variables S. For any variableX ∈ S,
we define the Projection operator(hmax

X) overU = S −X.
For everyU = u and the extended tuple(u, x) wherex is
an assignment toX: (hmax

X)(u) = maxxh(u, x)

The functionh gives the utility for any assignmentr in
a util messageU with S = dim(U). The variable to be
projected isX. The util message after projection has dimen-
sions asU .

The next section introduces constraint decision diagrams
(CDDs).

Constraint Decision Diagrams (CDDs)
A Constraint Decision Diagram (Cheng and Yap 2005)
G =< Γ, G > encodes the consistent assignments for a set
of constraintsΓ in a rooted direct acyclic graphG = (V,E)
by means of constraint propagation. A node inG is called
a CDD node. The terminal nodes are eithertrue or false
implying consistent or inconsistent assignment. By default
a CDD represents consistent assignments omitting thetrue
terminal.

Every nonterminal node has a number of successors
U ⊆ V . A non terminal nodev is a non empty set
{(c1, u1), . . . , (cn, um)}. Each branch(cj , uj) consists of
a constraintcj(x1, . . . , xk) and a successoruj of v. Figure
1(c) shows a CDD representation of the UTIL message sent
from X4 to X3 in the DFS from Figure 1(a). The CDD has
a level for each variable inSep4 = {X1, X2, X3}. The root
node shows thatX1 can take any value{a,b,c,d}. Sub-
sequently, the second level corresponds to variableX2, and
the possible values ofX2 that are available depend on the
assignment ofX1. For example, ifX1 = a (the left-most
branch connecting the root node to its left-most child), then
X2 can only take values from{b,c,d} (X2 = a is forbid-
den by the inequality constraintX1 6= X2). Going another
level down toX3, we notice that the space of possible values
is even more restricted, as it depends on the assignments of
X1 andX2. For example, ifX1 = a andX2 = b, X3 can
only take values from{c,d}. Notice that the CDD repre-
sents just4×3×2 = 24 assignments, as opposed to43 = 64
for the hypercube representation used by DPOP, thus, quite
a significant space saving.

It is easy to see that the CDD is actually a compact repre-
sentation of a solution space, and similar to AND/OR search
spaces (Mateescu and Dechter 2006).

H-DPOP - Pruning the Search Space Using
Hard Constraints

The H-DPOP algorithm leverages the pruning power of hard
constraints by using CDDs to effectively reduce the message
size. As in DPOP, H-DPOP has three phases as well: the
DFS arrangement of the problem graph, bottom up UTIL
propagation and top down VALUE propagation. The DFS
and VALUE phases are identical to the ones of DPOP. The
UTIL phase is described below.

(a) DFS tree (b) Hypercube (c) CDD Message

Figure 1: (a) DFS tree;X1 − X4 are connnected by in-
equality constraints; (b)UTIL3

4 message fromX4 to X3

has43 = 64 assignments; (c) CDD equivalent ofUTIL3
4

has 24 assignments.

Algorithm 2: MakeCDD(X,Γ,u)
X:variable setΓ:constraint setu:partial assignment
Returns: The root node of the CDD forX

1 if X = φ then
2 Return terminaltrue

3 choose aXk ∈ X
4 EdgesXk

← φ, DC
Xk
← φ

5 forall d ∈ DXk
do

6 r ← (u, d)
7 if ¬Consistent(Γ, r) then
8 Skip to nextd ∈ DXk

9 uG ←MakeCDD(X\Xk, Γ, r)
10 EdgesXk

← EdgesXk
∪ {< d, uG >}

11 DC
Xk
← DC

Xk
∪ {d}

12 if DC
Xk

= φ then
13 Return terminalfalse

14 vG ← mkNode(Xk, EdgesXk
, DC

Xk
)

15 ReturnvG

The UTIL message in DPOP, a multidimensional hyper-
cube, is replaced by aCDDMessage in H-DPOP. This
phase is described in Algorithm 1 but with a differentJoin
andProject operations. We define the CDDmessage struc-
ture followed byJoin andProject operations on it.

Definition 7 (CDDMessage)A CDDMessageMj
i sent by

agentXi to agentXj is a tuple< −→u ,G > where−→u is a
vector of real valued utilities,G is a CDD defined over vari-
ables inSepi, anddim(Mj

i) = Sepi. The set of constraints
for G is Γ = {fi|scope(fi) ⊆ Sepi}.

The utility vector−→u is indexed by the DFS numbering of
the paths (the assignment from root till the leaf) of the graph
G in CDD G. The functionsfi ∈ F are defined in definition
1. They include both the soft and hard constraints, the latter
being used for pruning via consistency check.

Algorithm 2 shows the construction of a CDD for the CD-
DMessage at a leafXi. The variable setX is initialized with
Sepi. The constraints setΓ is defined in definition 7. The
partial assignmentu is initially empty.

327

(a) Hypercube Join (b) CDDMessage join

Figure 2: Join of two hypercubes and CDDMessages. Hy-
percubes are joined by simply adding the values in the cor-
responding cells. CDDMessages are joined by iterating
through all possible compatible paths, and adding the val-
ues in the corresponding cells of the Util arrays.

Algorithm 3: Join(M1, . . . ,Mn)
M1, . . . ,Mn: The CDDMessages to be joined
Returns: The joined CDDMessageMjoined

1 U ← ∪idim(Mi)
2 Γ← ∪ieMi

∪ {fi|scope(fi) ⊆ U}
3 vG ←MakeCDD(U, Γ, φ)
4 Mjoined ←< −→v ,G >

forall assignmentr ∈ G do
5 util(r)← (

∑
i utili)(r)

6 setutil(r) at appropriate place in−→v

7 ReturnMjoined

If the set of variables is empty, the terminaltrue is re-
turned (line 2), else we choose an un-instantiated variable
Xk (line 3). The setEdgesXk

stores the branches of the
CDD node,DC

Xk
is the set ofconsistentdomain values for

Xk, both initially empty. We then iterate through the domain
of Xk and subsequently prune inconsistent values (line 7).
After this we find a CDD nodeuG for the subproblem (line
9). This node becomes a child of the CDD node forXk

and edges and consistent domain values are updated (line
10,11). If after iterating through the complete domain ofXk

there are no consistent values we return a terminalfalse
(line 13). Otherwise we invoke a proceduremkNode which
makes a new CDD node given the variable, its children and
consistent domain values. This method is similar to (Cheng
and Yap 2005). It makes a new CDD node such that the
resulting CDD is reduced i.e. of minimal size.

The functionConsistent (line 7) is of special importance
for pruning. It checks every partial assignmentr for consis-
tency against a set of constraintΓ. Any inconsistent assign-
ment is pruned.

We also define a boolean functioneM for the CDDMes-
sageM. It takes as input any assignmentr to a set of vari-
ablesS, and returnstrue if rdim(M)∩S is consistent w.r.t to
the CDD inM, otherwisefalse.

Figure 2 and algorithm 3 describes theJoin operation on

Algorithm 4: Project(X,Mk)
Projection of variableX from CDDMessageMk

Returns: The resulting messageMproject

1 U ← dim(Mk)−X
2 Γ← eMk

3 vG ←MakeCDD(U, Γ, φ)
4 Mproject ←< −→v ,G >

forall assignmentr ∈ G do
5 util(r)← utilmax

X (r)
6 setutil(r) at appropriate place in−→v

7 ReturnMproject

n CDDMessages.util(r) denotes the utility for the assign-
mentr in the UTIL message in context. The constraint set
Γ for the resulting CDDMessage is augmented by theeMi

function for the combining messages (line 2). This step en-
sures that every assignment in the joined message is consis-
tent w.r.t the source messages. The utility vector−→v is com-
puted by joining the respective utilities in the source mes-
sages (lines 5,6, also see definition 5 for the join operation).

Algorithm 4 describes the projection of a variableX from
a CDDMessageMk. The constraint setΓ includes theeMk

function to make the resulting CDD consistent w.r.t. the
original CDD ofMk. The utility vector of the resulting
Mproject is set by the project operation (see definition 6).
The index ofutil(r) in the vector−→v is found out by the
DFS numbering of assignmentr in the CDDG (line 6).

The next section describes various experiments illustrat-
ing the pruning power of hard constraints in H-DPOP.

Experiments
This section discusses the performance of H-DPOP w.r.t
DPOP on message size. The experiments were performed
on the FRODO platform (publicly available, (Petcu 2006)).
For the size comparisons we use the logical size of the hy-
percubes in DPOP and the CDDMessage in H-DPOP. The
size of the hypercube is the number of entries in the hyper-
cube, the size of the CDDMessage is the number of entries in
the utility vector combined with the logical size of the CDD
graph (each entry in the CDD Node corresponds to 1 unit in
the space measurement, links to children are also counted as
1 unit).

Graph Coloring
We performed experiments on randomly generated dis-
tributed graph coloring problems. In our setup each node in
the graph is assigned an agent (or a variable in DCOP terms).
The constraints among agents define the cost of having a
particular color combination. The cost of two neighboring
agents choosing the same color is kept very high (10000) to
disallow such combinations. This is thehard constraint in
the problem. Thedomainof each agent is the set of available
colors. The mutual task of all the agents is to find an optimal
coloring assignment to their respective nodes.

For generating the graphs we keep number of agents fixed
to 10 and vary the constraint density to see its effect on the
pruning power of hard constraints.

328

 1

 10

 100

 1000

 10000

 100000

 1e+006

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

 M
es

sa
ge

 S
iz

e
(lo

g
sc

al
e)

Constraint density

H-DPOP
DPOP

Figure 3: Graph Coloring: H-DPOP Vs DPOP performance

Figure 3 shows the maximum message size in DPOP
and H-DPOP for problems with a range of constraint
densities(0.2-0.89). The chromatic numberχ for problems
within densities 0.2-0.5 was 4, within densities 0.5-0.9 was
6. For each constraint density we generated 50 random prob-
lems and the results shown are the the averages.

For thelow densityregion (0.2-0.4) DPOP performs bet-
ter than H-DPOP. At low density the size of the hypercube is
small. Hard constraints at low density do not provide suffi-
cient pruning as the search space is also small. So the prun-
ing done by the CDDs is over-accounted by the size of the
CDD graph in the CDDMessage. For themedium density
region (0.4-0.7) H-DPOP is much superior to DPOP. This is
due to the pruning by hard constraints.

Thehigh densityregion (0.7-0.9) provides interesting re-
sults for H-DPOP. In DPOP, as expected, the maximum mes-
sage size increases with the density. However we see an op-
posite trend in H-DPOP. The reason is that at high constraint
density the extent of pruning achievable by hard constraints
is also very high. So although the problem becomes more
complex with high connectivity, the increased pruning using
hard constraints overcome this increase in complexity.

N-Queens problem using graph coloring: In random
graph coloring agents interact in an unstructured man-
ner. We further experimented with graph coloring instances
which exhibit structured interactions. For an×n chessboard
a queen graph containsn2 nodes, each corresponding to a
square of the board. Two nodes are connected by an edge if
the corresponding squares are in the same row, column, or
diagonal. The queen problem is to place n sets of n queens
on the board so that no two queens of the same set attack
each other. This problem is solvable by using graph color-
ing if the coloring number of the graph is at leastn. The test
instances are available at Stanford Graphbase (Knuth 1993).

For a 5-colorable5 × 5 queen graph (width 19, density
0.53) DPOP was unable to execute (Maximum message size
19073486328125). H-DPOP successfully executed in 15
secs with a maximum message size9465 because of high
pruning provided by CDDs. However for board sizes6×6 (7
colorable with width 31, density 0.46) and above H-DPOP
was also unable to execute due to increased width and do-
main size. We relaxed the queen graph constraints so that
the inclusion of any edge in the graph is done with an edge
inclusion probabilityp.

 1000

 10000

 100000

 1e+006

 1e+007

 0.05 0.1 0.15 0.2 0.25

M
es

sa
ge

 s
iz

e
(lo

g
sc

al
e)

Edge inclusion probability

Total DPOP
Max DPOP

Total H-DPOP
Max H-DPOP

Figure 4:6× 6 N-Queens problem using graph coloring

Figure 4 shows the message size statistics for DPOP and
H-DPOP on queen graph. H-DPOP is again much superior
to DPOP in message size and for higher problem complexity
(determined by edge inclusion probability) the message size
nearly becomes constant due to increased pruning.

Winner Determination in Combinatorial Auctions

Combinatorial Auctions (CA) provide an efficient means to
allocate resources to multiple agents. The agents are dis-
tributed (geographically or logically) and have information
aboutonly thoseagents with whom their bids overlap. The
task of agents is to find a solution (assign winning or losing
to bids) which maximizes the revenue.

Thevariablesin our setting are thebidspresented by the
agents. Each agent is responsible for the bid it presents. The
domainis the set{wining, losing}. Hard constraints are
formulated among bids sharing one or more goods disallow-
ing them to be assignedwinningin the optimal solution. The
gain provided by a winning bid is modeled as the unary con-
straint on the variable.

We generated random problems using CATS (Combina-
torial Auctions Test Suite, (Leyton-Brown, Pearson, and
Shoham 2000) using thePathsand theArbitrary distribu-
tions. For the paths distribution, we vary the number of bids
for a fixed number of goods (100). In thepathsdistribu-
tion, the goods are the edges in the network of cities. Agents
place bids on a path from one city to another based on their
utilities. We fixed the number of cities to 100 with initial
connection 2 (link density). Since the city network structure
is fixed, as the number of bids increase we expect a higher
number of bids to overlap with each other and increase the
problem complexity. For theArbitrary distribution we use
all the default CATS parameters. The number of goods is 50
and the number of bids varies from 25 to 50 increasing the
problem complexity. Each data point is the average of 20
instances.

Figure 5(a) shows the maximum and total message size
comparison of DPOP with H-DPOP on thepathsdistribu-
tion. DPOP as expected increases in the message complex-
ity with the number of bids. The savings in the message size
provided by H-DPOP are more than an order of magnitude
and increase with the number of bids. H-DPOP is able to
solve problems with very high width (35, bids=70) exploit-
ing increased pruning by hard constraints, where memory

329

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

M
es

sa
ge

 S
iz

e
(lo

g
sc

al
e)

Bids (Agents)

Max H-DPOP
Total H-DPOP

Max DPOP
Total DPOP

(a) Paths Distribution

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 25 27 29 31 33 35 37 39 41 43 45 47 49

M
es

sa
ge

 S
iz

e
(lo

g
sc

al
e)

Bids (Agents)

Max H-DPOP
Total H-DPOP

Max DPOP
Total DPOP

(b) Arbitrary Distribution

Figure 5: Combinatorial Auctions: H-DPOP Vs DPOP comparison

requirements for DPOP are prohibitively expensive. We see
a similar trend for thearbitrary distribution (figure 5(b)).

As far as execution time is concerned, for a relatively
small number of bids (below 45) DPOP performs better than
H-DPOP. The construction of CDDs is computationally ex-
pensive. But H-DPOP is not significantly slower (both of
them finish within a few seconds for these problem sizes).
However as the number of bids increases, memory require-
ments as well as execution time increase much faster for
DPOP. Beyond bids=58, DPOP fails to execute altogether,
while H-DPOP still scales well. The maximum time H-
DPOP took for any instance was 205s for bids=70 for the
paths distribution.

Conclusions and Future Work
Distributed constraint optimization has seen steady progress
over the past few years (Faltings 2006). Dynamic program-
ming algorithms are attractive because the number of mes-
sages grows only linearly with problem size, but have the
drawback that messages can become excessively large. Of-
ten, much of the information they carry is redundant be-
cause the corresponding value combinations are not consis-
tent with the hard constraints of the problem.

We have shown how to maintain a more efficient repre-
sentation of dynamic programming messages in the form of
decision diagrams. In problems that are strongly constrained
by hard constraints, they allow to dramatically reduce the
size of the messages, making it possible to solve problems
like combinatorial auctions by a distributed algorithm. We
believe that there are numerous other applications where de-
centralized optimization is useful, and this technique can
make it practical.

References
Cheng, K. C. K., and Yap, R. H. C. 2005. Constrained decision
diagrams. InProceedings of the National Conference on Artificial
Intelligence, AAAI-05, 366–371.

Dechter, R. 2003.Constraint Processing. Morgan Kaufmann.

Faltings, B. 2006.Distributed Constraint Programming. Foun-
dations of Artificial Intelligence. Elsevier. 699–729.

Freuder, E. C. 1985. A sufficient condition for backtrack-bounded
search.Journal of the ACM32(14):755–761.

Kask, K.; Dechter, R.; Larrosa, J.; and Dechter, A. 2005. Unify-
ing cluster-tree decompositions for automated reasoning in graph-
ical models.Artificial Intelligence.

Knuth, D. E. 1993. The stanford graphbase: a platform for com-
binatorial algorithms. InProceedings of the fourth annual ACM-
SIAM Symposium on Discrete algorithms, 41 – 43.

Leyton-Brown, K.; Pearson, M.; and Shoham, Y. 2000. Towards a
universal test suite for combinatorial auction algorithms. InPro-
ceedings of ACM Conference on Electronic Commerce, EC-00,
235–245.

Mateescu, R., and Dechter, R. 2006. Compiling Con-
straint Networks into AND/OR Multi-Valued Decision Diagrams
(AOMDDs). In Proceedings of the Twelfth International Con-
ference on Principles and Practice of Constraint Programming
(CP’06).

Meisels, A., and Zivan, R. 2003. Asynchronous forward-
checking on DisCSPs. InProceedings of the Distributed Con-
straint Reasoning Workshop, IJCAI 2003, Acapulco, Mexico.

Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2005.
ADOPT: Asynchronous distributed constraint optimization with
quality guarantees.AI Journal161:149–180.

Petcu, A., and Faltings, B. 2005. DPOP: A scalable method for
multiagent constraint optimization. InProceedings of the 19th
International Joint Conference on Artificial Intelligence, IJCAI-
05, 266–271.

Petcu, A. 2006. FRODO: A FRamework for Open and Distributed
constraint Optimization. Technical Report No. 2006/001, Swiss
Federal Institute of Technology (EPFL), Lausanne, Switzerland.
http://liawww.epfl.ch/frodo/.

Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1992. Distributed constraint satisfaction for formalizing dis-
tributed problem solving. InInternational Conference on Dis-
tributed Computing Systems, 614–621.

Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K. 1998. The
distributed constraint satisfaction problem - formalization and al-
gorithms. IEEE Transactions on Knowledge and Data Engineer-
ing 10(5):673–685.

330

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2008

	H-DPOP: Using Hard Constraints for Search Space Pruning in DCOP
	Akshat KUMAR
	Adrian PETCU
	Boi FALTINGS
	Citation

	H-DPOP: Using Hard Constraints for Search Space Pruning in DCOP

