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Abstract 

Objectives: To investigate the added value of assessing transcripts for the long cAMP 

phosphodiesterase-4D (PDE4D) isoforms, PDE4D5 and PDE4D9, regarding the 

prognostic power of the ‘CAPRA & PDE4D7’ combination risk model to predict 

longitudinal post-surgical biological outcomes in prostate cancer. 

Patients & Methods: RNA was extracted from both biopsy punches of resected 

tumours (606 patients; RP cohort) and diagnostic needle biopsies (168 patients; DB 

cohort). RT-qPCR was performed in order to determine PDE4D5, PDE4D7 and PDE4D9 

transcript scores in both study cohorts. By RNA sequencing, we determined the 

TMPRSS2-ERG fusion status of each tumour sample in the RP cohort. Kaplan-Meier 

survival analyses were then applied to correlate the PDE4D5, PDE4D7 and PDE4D9 

scores with post-surgical patient outcomes. Logistic regression was then used to 

combine the clinical CAPRA score with PDE4D5, PDE4D7 and PDE4D9 scores in order 

to build a ‘CAPRA & PDE4D5/7/9’ regression model. ROC and decision curve analysis 

was used to estimate the net benefit of the ‘CAPRA & PDE4D5/7/9’ risk model. 

Results: Kaplan-Meier survival analysis, on the RP cohort, revealed a significant 

association of the PDE4D7 score with post-surgical biochemical recurrence (BCR) in the 

presence of the TMPRSS2-ERG gene rearrangement (logrank p<0.0001), compared to 

the absence of this gene fusion event (logrank p=0.08). In contrast, the PDE4D5 score 

was only significantly associated with BCR in TMPRSS2-ERG fusion negative tumours 

(logrank p<0.0001 vs. logrank p=0.4 for TMPRSS2-ERG+ tumours). This was similar for 

the PDE4D9 score, although less pronounced compared to that of the PDE4D5 score 

(TMPRSS2ERG- logrank p<0.0001 vs. TMPRSS2ERG+ logrank p<0.005). In order to 

predict BCR after primary treatment, we undertook ROC analysis of the logistic 
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regression combination model of the CAPRA score with the PDE4D5, PDE4D7 and 

PDE4D9 scores. For the DB cohort, this demonstrated significant differences in the AUC 

between the CAPRA & PDE4D5/7/9 regression model vs. the CAPRA & PDE4D7 risk 

model (AUC 0.87 vs. 0.82; p=0.049) vs. the CAPRA score alone (AUC 0.87 vs. 0.77; 

p=0.005). The CAPRA & PDE4D5/7/9 risk model stratified 19.2% patients of the DB 

cohort to either ‘no risk of biochemical relapse’ (NPV 100%) or the ‘start of any 

secondary treatment (NPV 100%)’, over a follow-up period of up to 15 years. Decision 

curve analysis presented a clear, net benefit for the use of the novel CAPRA & 

PDE4D5/7/9 risk model compared to the clinical CAPRA score alone or the CAPRA & 

PDE4D7 model across all decision thresholds. 

Conclusion: Association of the long PDE4D5, PDE4D7 and PDE4D9 transcript scores 

to prostate cancer patient outcome, after primary intervention, varies in opposite 

directions depending on the TMPRSS2-ERG genomic fusion background of the tumour. 

Adding transcript scores for the long PDE4D isoforms, PDE4D5 and PDE4D9, to our 

previously presented combination risk model of the combined ‘CAPRA & PDE4D7’ 

score, in order to generate the CAPRA & PDE4D5/7/9 score, significantly improves the 

prognostic power of the model in predicting post-surgical biological outcomes in prostate 

cancer patients. 

 

Keywords: phosphodiesterase, prostate cancer, risk stratification, prognosis, prostate 

biopsies, active surveillance, molecular biomarker 
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Introduction 

Prostate cancer is the most common non-hematology tumour diagnosed in men in 

western countries [1, 2]. The natural history of prostate tumours is heterogeneous with, 

in general, indolent characteristics. However, it includes some forms of the disease that 

can develop into deadly cancers. Disease specific mortality is, in particular, small for 

low-risk cancers [3, 4]. This has led to a paradigm change in the management of men 

with low-risk profiles, as there is a considerable chance that definitive treatment is not 

beneficial for these patients, but comes with the burden of adverse effects of the primary 

treatment. Nevertheless, some patients with clinically low-risk characteristics progress 

after initial intervention [5-7], while others, with more advanced pathological features, will 

experience stable disease during periods of follow-up [8, 9]. This continues to pose the 

challenge of selecting the most optimal management strategy for each individual patient. 

While various national guidelines recommend considering conservative management 

(i.e., active surveillance – AS) of low-risk patients, it remains crucial to select the most 

suitable patients for this regime, as discontinuation from AS, and switching to active 

treatment, due to signs of progressive disease, is common in these patient cohorts [10, 

11]. Consequently, more advanced protocols for inclusion/exclusion of men to 

conservative management, monitoring strategies, while in AS, and measures to switch 

to definitive treatment, are required for optimal prostate cancer patient care [12].  

Signalling through the ubiquitous second messenger, cyclic AMP (cAMP) critically 

impacts on the functioning of all cell types in the body. Such actions are mediated 

through specific effector proteins, namely protein kinase A (PKA) and Exchange Protein 

Activated by cAMP (Epac) [13, 14].  These species are sequestered to distinct signalling 

complexes within cells, conferring a spatial aspect that leads to compartmentalization of 
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signalling. The sole means of degrading cAMP, so as to terminate cAMP signalling, is 

through the action of cAMP phosphodiesterases (PDEs).  In this, the 20+ isoforms 

encoded by the four gene PDE4 family (PDE4A/4B/4C/4D) play a critical role in the 

compartmentalised degradation of cAMP, as their isoform-specific N-terminal regions 

contain motifs that allow for their targeting to distinct signalling complexes [16]. PDE4D5, 

PDE4D7 and PDE4D9 are a so-called long isoform as each contains both the UCR1 

and UCR2 regulatory domains that allow for regulation by various protein kinases, 

including PKA and MK2 as well as determining the functional outcome of catalytic unit 

phosphorylation by ERK [16]. Functionally, these enzymes contribute to the cellular 

desensitization system towards cAMP and provide nodes that enable cross-talk between 

signalling pathways involving ERK, p38MAPK and AMPK [16].   

Previously, we described the positive association of PDE4D7 expression and the 

prostate specific gene arrangement between the androgen regulated transmembrane 

protease TMPRSS2 and the ETS transcription factor family member ERG [17]. A study 

in 2005 demonstrated that the chromosome 21 genomic fusion event TMPRSS2-ERG, 

between the transmembrane protease serine 2 TMPRSS2 and members of the ETS 

(erythroblast transformation-specific) transcription factor family ERG, is common in 

prostate cancer [18]. The overexpression of ERG, in a majority of prostate cancers, is 

driven by this fusion event, which switches ERG to fall under the control of the 

androgen-driven promotor of the TMPRSS2 gene. In a recent, whole genome 

sequencing study, the TMPRSS2-ERG fusion was identified as an early event in the 

development of prostate cancer [28]. However, while numerous studies have been 

performed, since its discovery, the role of the TMPRSS2-ERG fusion, in prostate cancer 

development and progression, is not yet fully understood [19]. 
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Interestingly, we did not find the same positive association for other prostate 

cancer-expressed long PDE4D isoform transcripts, namely PDE4D5 and PDE4D9. In 

addition, we reported that the expression of PDE4D7 is inversely correlated to risk of 

biochemical relapse after prostate cancer surgery and, independently, adds to clinical 

variables and risk scores like either CAPRA or CAPRA-S [20, 21]. The CAPRA (Cancer 

of the Prostate Risk Assessment) and CAPRA-S scores are risk models that combine 

either pre-surgical (CAPRA) or post-surgical (CAPRA-S) score data relating to routinely 

available clinical variables (PSA, Gleason score, etc.). These models were shown to 

have superior power to predict post-surgical patient outcome, either before (CAPRA) or 

after (CAPRA-S) prostate operation, compared to using the respective input variables 

alone [24].   

Here, we set out to investigate whether we could identify any difference in 

prediction of post-surgical progression risk by PDE4D7 expression in positive vs. 

negative TMPRSS2-ERG fusion prostate tumours and, whether, either PDE4D5 or 

PDE4D9 transcript analysis might similarly contribute to the progression risk, as has 

been shown for PDE4D7 transcript analysis. 
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Patients and methods 

Patient cohorts and samples 

RP (radical prostatectomy) patient cohort (n=606): Patients consecutively managed at a 

single, large-volume prostate cancer center were included in the study (Martini Klinik, 

Hamburg, Germany). Two small biopsy punches (~1x2 mm), of a representative 

resected tumour area, of patients operated on between 2000-2004, were collected from 

the tumours index lesion. RP* (radical prostatectomy*) patient cohort (n=130): detailed 

characteristics of this cohort and analysis of the respective gene expression data has 

been described previously [22].  

DB (diagnostic biopsy) patient cohort (n=168): From the tumour positive diagnostic 

biopsy, with the highest Gleason grade per patient, a single biopsy punch (~1x2 mm) 

was collected. Patients reflected those diagnosed with prostate cancer, and having 

undergone RP between 1994-2011 at the Prostate Center (University Hospital Münster, 

Germany). The local Institutional Review Boards approved the collection of patient 

tissue for clinical research, with appropriate patient consent (for cohort design see 

Supplementary Figure 1). Characteristics of this cohort have been published previously 

[19]. 

Laboratory methods 

To account for potential tumour heterogeneity, the two tissue punches of the RP cohort 

were combined before nucleic acid extraction. A potential difference in tumour cellularity 

of the tissue punches was addressed by normalization of the qPCR results of the 

PDE4D transcript to four reference genes, which were selected based on stable gene 

expression across multiple tumour sample types [20]. All used molecular laboratory 
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methods including oligonucleotide primers and probes for RT-qPCR (reverse-

transcriptase-quantitative PCR), RNA extraction, and quality control and procedures to 

include/discard samples from the statistical analysis as described before by us [20].  

RNA sequencing 

RNA Sample Processing: 100 ng of total RNA was used as input to remove ribosomal 

RNA, using Ribo-Zero Gold (Human/Mouse/Rat) rRNA Removal Kit (Illumina Inc.), 

according to the manufacturer’s instructions. For library construction, we used the total 

of the depleted RNA as input into the Scriptseq V2 RNA-Seq Library Preparation Kit 

(Epicentre/Illumina Inc.). Prepared RNAseq libraries were sequenced using NextSeq 

500 sequencing system (sequencing was done by paired-end at 2 x 75 bp read length 

providing approx. 80 million total reads per sample). 

RNAseq Data Processing: The RNAseq raw data was pre-processed using Illumina 

bcl2fastq software incorporating filtering by phred scores, thereby reducing low quality 

reads. Since FFPE degenerates the bases, the sequencing results have been filtered 

using a scoring algorithm to select reads representing the high-quality fraction. The final 

score was calculated for a set of reads in a sample as follows. Firstly, the set of reads 

was aligned against a human reference genome. Then the alignment result, for each 

read (i.e. the number of bases mapping correctly to the reference genome), was 

counted per read. The total number of successfully mapped bases was then summed 

over all reads of the set. This sum was divided by the total number of bases of the set. 

The resulting relative number is called the EQ score. A score filter selects the subset of 

reads that contributes to the EQ Score by virtue of a good alignment result (all or most 

of the bases map correctly to the genome). The derived subset of high-quality reads was 

then selected for further processing. If reads are mapped by fragmenting them, which 
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may be required when aligning RNA, the measure was calculated based on the 

fragments alignment quality and the fragments selected accordingly. 

Read quality filtering: To retain only high quality reads, the following filtering steps were 

applied: reads were discarded when >50% of the bases had a phred score below 11; 

bases at the read ends were removed if the phred score fell below 11; sequencing reads 

<63 bases and reads with unknown (N) base calls were discarded and sequencing read 

pairs were kept only if both reads passed the above described quality filter.  

Gene expression calculation: To ensure comparability of expression values between 

samples all read counts were normalized by the transcripts per million method (TPM) as 

implemented in the RSEM algorithm [23].  

Data analysis and statistics 

After quality control of the RNAseq, and the qPCR data, 536 patient samples for the RP 

cohort and 151 patient samples for the DB cohort were defined eligible for statistical 

analysis.  

Generation of normalized PDE4D transcript expression was performed by 

subtracting the RT-qPCR Cq of the respective PDE4D transcript from the averaged RT-

qPCR Cq of the reference genes. Normalized PDE4D5, PDE4D7, and PDE4D9 

expression was transformed to the PDE4D5, PDE4D7, and PDE4D9 scores [20]. Note, 

that we did not use the ΔΔCt method which is used to compare the n-fold expression 

difference of a gene of interest between two patient cohorts (e.g., treated vs. control) as 

we aimed to present a score for potential future diagnostic use without the need of a 

control group. In correlation analysis for various available biological and treatment 

related outcomes (Table 1) the PDE4D transcript scores were either used as a 
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continuous, or as a categorical variable, defined as: a) PDE4D5/7/9 score (1≤2); b) 

PDE4D5/7/9 score (>2 and ≤3); c) PDE4D5/7/9 score (>3 and ≤4); d) PDE4D5/7/9 score 

(>4 and ≤5). The CAPRA risk score and corresponding low (1), intermediate (2), high-

risk (3) categories were calculated as described earlier [24]. Uni- and multivariate Cox 

regression and Kaplan Meier analyses were applied to correlate biochemical recurrence 

(BCR) progression free survival, or secondary treatment (salvage radiation and or 

androgen deprivation) free survival (STFS) to the PDE4D7 score in the RP cohorts 

(n=536), and Taylor et al. [22]; n=130) and the DB cohort (n=151). To determine the 

TMPRSS2-ERG status of patient samples in Exon Array cohorts, we used relative ERG 

expression values and applied Partitioning Around Medoids (PAM, R-package ‘cluster’, 

k = 2) to assign the patient samples to the ERG positive or negative group based on 

expression. Decision curve analyses was performed as described [25]. For statistical 

analysis the software package MedCalc (MedCalc Software BVBA, Ostend, Belgium) 

was used. The data analysis strategy is outlined in Supplementary Figure 2. 
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Results  

Association of PDE4D transcript scores to longitudinal clinical outcomes depends 

on the TMPRSS2-ERG fusion status 

Firstly, we set out to do Kaplan-Meier survival analysis of the PDE4D7 score categories 

in TMPRSS2-ERG rearrangement positive vs. gene fusion negative patient samples. In 

total, we included 536 patient samples with data on TMPRSS2-ERG status, of which we 

defined 280 (52.2%) as fusion positive, while 256 samples (47.8%) were defined to be 

absent of this prostate-specific gene fusion event. We selected biochemical recurrence 

(BCR) as a surrogate endpoint for post-surgical disease progression, due to the 

significant number of events for this outcome in our studied patient cohorts (Table 1). 

We observed a clear difference in BCR progression, free survival analysis 

between the fusion positive vs. negative tumours with a highly significant logrank p 

(<0.0001) for the PDE4D7 categories in the presence of the rearranged TMPRSS2-ERG 

gene fusion (Figure 1A). The patient group with the highest level of PDE4D7 expression 

(i.e., PDE4D7 scores 4-5) showed lowest risk of disease progression after surgery in the 

TMPRSS2-ERG fusion positive cancers. In contrast, in prostate tumours without an 

ERG gene fusion event, the discrimination in Kaplan-Meier survival between the defined 

four different PDE4D7 categories was non-significant (logrank p = 0.08; Figure 1B). 

Interestingly, when looking at BCR progression-free survival analysis of the PDE4D5 

score we found the opposite situation compared to what we observed for the PDE4D7 

score. Only in gene fusion free tumours did the PDE4D5 score categories significantly 

(logrank p<0.0001) predict biochemical relapse (Figures 1C & 1D). We observed a 

similar result to this for the PDE4D9 score categories with a logrank p<0.0001 in survival 

analysis in TMPRSS2-ERG negative tumours. However, in contrast to the analysis of 
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PDE4D5 scores, the survival analysis of PDE4D9 score categories in gene fusion 

positive cancers resulted in a significant association with biochemical recurrence, 

although with a somewhat weaker p compared to the TMPRSS2-ERG negative tumours 

(logrank p=0.005 vs. logrank p<0.0001, respectively; Figure 1E & 1F).  

Next, we investigated to what extent the score categories for the three different 

prostate cancer-expressed PDE4D transcripts were determined to be mutually exclusive 

in individual patient samples or, whether, the same score category (e.g., [1-2] or [4-5]) 

was seen across the same samples for the three long form PDE4D splice variants we 

analysed here. For this we plotted a heatmap that included all 536 patient samples, with 

an initial split between TMPRSS2-ERG gene fusion negative (Figures 2A & 2B) vs. 

fusion positive (Figure 2C) samples. While the samples within the TMPRSS2-ERG 

negative samples were ordered according to their PDE4D5 or PDE4D9 score category 

(Figures 2A & 2B, respectively) the samples that were positive for the gene fusion were 

found to order according to their PDE4D7 score category from low to high (Figure 2C). 

The heatmaps replicated the results of the Kaplan-Meier survival analysis, with more 

events in the lower PDE4D isoform score categories (Figures 2A-2C). However, as can 

be appreciated, the PDE4D transcript score categories are, to some extent, non-

overlapping within a patient sample. When focusing on the lowest score category (i.e., 

all scores for PDE4D5 / 4D7 / 4D9 between score 1 and score 2) we identified 31 

samples with at least one of the three PDE4D transcripts with a score category between 

score 1 and score 2 (Figure 2D). For three samples (marked in bold red) we measured 

the lowest score category for all three of these long form PDE4D transcripts while, for 

two samples (marked in bold blue), at least two PDE4D transcripts belonged to the 

lowest score category. For the other 26 samples only one PDE4D splice variant was 
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expressed at very low levels (i.e., score between 1 and 2), while the two other isoforms 

showed higher expression levels in these samples. The risk, of either developing 

metastases or dying from prostate cancer (6 and 5 out of the 31 patients, respectively), 

increases strongly with reduced expression levels of multiple prostate-expressed long 

PDE4D isoforms (Figure 2D). Also, the time scale after surgery, to an event like BCR, 

was generally shorter (<2 years) for those patients having at least two low PDE4D 

transcript scores (between either score 1-2 and/or score 2-3). Vice versa, the higher the 

expression level of at least one of the three PDE4D splice variants, the less likely was 

the chance of the patient in experiencing BCR after surgery. However, in instances 

where such an event occurred, it was typically on a longer time scale (2-5 years and, in 

some cases, >5 years after primary treatment).  

Taken together, these data indicate that, next to PDE4D7 transcript analyses, 

analysis of transcript levels of the long PDE4D5 and PDE4D9 isoforms, may also have 

significant prognostic value in prostate cancer. Therefore, we hypothesized that the 

addition of the PDE4D5 and PDE4D9 scores, to that of the PDE4D7 score, might 

increase the power to predict post-surgical risk of disease progression, either over 

various clinical variables or over the, previously reported, prognostic PDE4D7 model 

[18, 19].  

Logistic regression model of clinical variables and prostate cancer expressed 

long PDE4D transcripts 

To test this concept, we developed a prognostic model to include the clinical CAPRA 

score [24] together with the transcript scores for the PDE4D5, PDE4D7 and PDE4D9 

long isoforms. For model development we used the RP (n=536) and RP* cohorts 

(n=130). We performed logistic regression analysis to predict post-surgical biochemical 
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relapse in the RP and RP* cohorts in order to estimate the weights for the CAPRA score 

as well as for the PDE4D transcripts. The coefficients were calculated by logistic 

regression. Next, we adjusted the initial coefficients, after logistic regression analysis, of 

the four model inputs on the RP* cohort by calculating an average of the coefficients for 

the RP and RP* cohorts, thus taking the heterogeneity of different patient groups into 

account. The final CAPRA & PDE4D5/7/9 model (co1*PDE4D5 score + co2*PDE4D7 

score + co3*PDE4D9 score + co4*CAPRA score; Supplementary Table 1) was tested 

for its prognostic power to predict BCR, as well as start of secondary treatment after 

surgery (i.e., radiation, or hormone deprivation), in the independent DB patient cohort. 

For any other outcome, such as either metastases or death, we used the RP and RP* 

cohorts (note: these clinical endpoints were not used during model development). 

Kaplan-Meier survival analysis of the CAPRA & PDE4D5/7/9 model 

In Kaplan-Meier survival analysis the CAPRA & PDE4D5/7/9 model stratified 29 men 

(19.2%) of the total cohort (n=151) within the lowest score class (between scores 1-2) 

into a patient group with no risk over the follow-up period of 60 to 200 months of PSA 

relapse, nor any risk of starting secondary treatments (Figures 3A & 3B).  

By slightly increasing the cut-off of this model score category from (scores 1-2) to 

(scores 1-2.1), the number of men in this group with no risk of post-surgical disease 

progression increased from 29 to 36 subjects (23.8%; data not shown). In contrast, the 

patient with the highest categories of CAPRA & PDE4D5/7/9 scores of (score 3-4 and 

(score 4-5) experience a risk of biochemical progression within 5 years after surgery of 

63.9% and 83.3%, respectively. Similarly, the risk of undergoing secondary treatment 

was estimated from the survival analysis, within a period of 5 years post-surgery, as 

44.1% and 75% for these two patient groups, respectively (Figures 3A & 3B). 
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ROC curve analysis of the CAPRA & PDE4D5/7/9 model 

For the DB cohort (as above), we iused BCR and start of secondary therapy as clinical 

outcomes. Thus, we compared the CAPRA & PDE4D5/7/9 model with the, previously 

presented, CAPRA & PDE4D7 model [21]. For both we tested clinical endpoints, 

identifying an increase in the AUC (Area Under the Curve) of 10% and 6%, respectively, 

compared to the CAPRA score alone, and 5% and 4%, respectively, for the CAPRA & 

PDE4D7 model (Figures 3C & 3D).  

To further explore this, we tested outcomes other than biochemical relapse. As 

we developed the combination model of the CAPRA and the PDE4D transcript scores, 

using BCR as an endpoint in the two radical prostatectomy cohorts (RP and RP*), we 

did not test the model on that endpoint in these cohorts. Instead we used other 

outcomes for evaluation, namely the progression to metastases after surgery or death 

from prostate cancer after primary (i.e., RP), or secondary, treatments (i.e., SRT – 

salvage radiation therapy; SADT – salvage androgen deprivation therapy), to investigate 

any potential added value of combining PDE4D5 and PDE4D9 transcript scores with our 

previous CAPRA & PDE4D7 model. Table 2 provides an overview of the increase in 

AUC’s (areas under the curves) of up to 12%, and up to 12%, comparing the use of 

either the CAPRA score, the CAPRA & PDE4D7 score model, or the CAPRA & 

PDE4D5/7/9 score model. These data indicate that the use of additional prostate 

relevant long form PDE4D transcripts can increase the prognostic power of our 

previously published combination model of the CAPRA and PDE4D7 score. 

Decision curve analysis of the CAPRA & PDE4D5/7/9 model 

Decision curve analysis is a net benefit analysis that compares the true-positive to the 

weighted false-positive rates across different risk thresholds that a clinician / patient 
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might want to accept [26]. We explored the net benefit of avoiding primary treatment, 

based on the predicted risk of a PSA relapse after surgery for the CAPRA score by 

comparing the utility of the CAPRA & PDE4D7 model versus the CAPRA & PDE4D5/7/9 

combination model. Such an analysis demonstrated that both or our models showed 

better net benefit compared to the “treat all” strategy, while the CAPRA & PDE4D5/7/9 

combination model provided the best net benefit across all modeled decision thresholds 

(Figure 4A). Similarly, the net reduction analysis in primary treatment revealed a 

substantial difference in treatment reduction between using the CAPRA score alone and 

the CAPRA & PDE4D5/7/9 combination model, across all decision thresholds (Figure 

4B). Thus, the addition of PDE4D5 and PDE4D9 scores to the CAPRA & PDE4D7 

model clearly improves the net benefit in decision curve analysis. Importantly, it provides 

a potential means of more effectively reducing the number of interventions per 100 

patients compared to either the CAPRA model alone or the CAPRA & PDE4D7 

combination model.     

Thus, here we demonstrate that our previously formulated CAPRA & PDE4D7 

risk model can be further improved by adding scores for the long PDE4D5 and PDE4D9 

transcripts into the model. The rationale for this added prognostic benefit of PDE4D5 

and PDE4D9 is supported by the differences in prediction power between TMPRSS2-

ERG positive vs. gene fusion negative patient tumours. Thus, by complementing 

PDE4D7 with the two other prostate cancer-relevant PDE4D transcripts, namely  

PDE4D5 and PDE4D9, we have formulated a more effective prognostic model that has 

potential for assessing the risk of disease progression before primary intervention in 

prostate cancer. 
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Discussion  

We have previously proposed that a predictive model of the clinical risk algorithm 

CAPRA, in combination with the prostate cancer biomarker PDE4D7, provides value to 

prostate cancer risk stratification [20, 21]. Although we were able to demonstrate that 

PDE4D7 transcript analysis adds independent value to the clinical CAPRA model, and 

significantly improves the prognostic power to predict post-surgical disease progression, 

we set out here to see if there was a way to increase further the value of this CAPRA & 

PDE4D7 combination model. In our previous work we identified expression differences 

of various long PDE4D isoforms in primary tumour material that were different for the 

prostate cancer specific TMRPSS2-ERG gene rearrangement [27]. However, due to 

limited number of patients and progression events we were not able to investigate 

whether this phenomenon might also translate into differences of risk prediction subject 

to the presence or absence of the genomic variation.  

Here, however, we have been able to dissect the impact of three different PDE4D 

transcripts, namely those for the PDE4D5, PDE4D7 and PDE4D9 long isoforms, on the 

risk of post-surgical disease progression, depending on the genomic background of the 

patient’s tumour. Interestingly, PDE4D7 was found to be associated significantly with 

post-treatment disease recurrence in a TMRPSS2-ERG fusion positive background, 

while being of reduced prognostic value in patients without this particular gene fusion 

event. In contrast PDE4D5 and PDE4D9 transcript levels proved to be highly prognostic 

in a non-fusion genomic background, while PDE4D9 was less so. and PDE4D5 was not. 

significantly associated with disease progression when the TMRPSS2-ERG genomic 

fusion event was present.  



18 
 

Lately, multiple genomics studies have identified the PDE4D gene as a putative 

genomic driver/suppressor gene of (prostate) cancer [28-30]. Indeed, one of these 

studies even identified differences in the evolution of TMPRSS2-ERG+ vs. TMPRSS2-

ERG- prostate cancers, based on whole genome sequencing of 112 primary and 

metastatic prostate tumours [30]. While, in ERG+ rearranged tumours, the earliest 

homozygous deletions appeared in region chr5:55-59 Mb in ERG- cancers, losses at 

chr5:60-100 Mb, covering the well-known affected gene CHD1, were reported. 

Intriguingly, exon 1, as well as exons 1-3, which specifically encode the isoform-specific 

N-terminal portions of PDE4D5 and PDE4D7, respectively, are located between the 

region chr5:59-60 Mb. The differences in genomic rearrangement, as described for 

chromosome 5, in the different TMPRSS2-ERG fusion background may explain, to 

some extent, the variability in PDE4D long transcript expression, as described by us 

earlier [27].  In this study we have exploited and extended this to allow for the PDE4D 

long isoform-specific prognosis of post-surgical risk of disease progression.  

Active surveillance (AS) has become an accepted treatment alternative and is 

recommended by the national guidelines for men with low- and very-low risk prostate 

cancer [31]. The guiding principle of AS is to delay, not to avoid, the primary treatment. 

The switch from AS to active intervention should be taken while the treatment intent is 

still curative. Consequently, men in AS have to follow strict monitoring schedules as 

discontinuation, and switch to active treatment, takes place at the earliest sign of 

disease progression, such as a rise in PSA, a biopsy Gleason score or clinical stage 

migration. Recently, the 10-year outcomes of the ProtecT trial were published [32]. The 

aim of this randomized controlled trial, which was started in the early 2000, and involving 

multiple clinical sites across the UK, was to evaluate the effectiveness, cost-
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effectiveness and acceptability of treatments (i.e., active monitoring vs. active 

intervention) for men with localised prostate cancer. Disease-specific mortality was low 

in all treatment arms of the trial. Moreover, the authors could not conclude, at median 

follow-up of 10 years, a significant difference in prostate cancer mortality, irrespective of 

the treatment assigned [32]. Taking the low mortality risk of men in the active monitoring 

arm of the ProtecT trial into consideration, it is questionable as to what extent the 

observed changes in clinical presentation of the disease, in an AS setting, correlates 

with true biological disease progression.  

Currently, new technology such as either multi-parametric MRI or genomics, is 

being considered for stratification of men to AS or for monitoring of men in AS [33, 34]. 

While the longitudinal cost of AS has been estimated to reach the same order of 

magnitude as for various primary interventions [35] together with the cost of repeated 

biopsies, in particular [36], any newly implemented technical tool might only be cost-

effective if its use will lead to less men discontinuing AS and facilitating decisions that 

allow for a switch to definitive treatment and/or significantly reduced surveillance 

schedules (or even avoided in some patients).  

We propose that the combination of a clinical metric, such as the CAPRA score, 

together with genomic biomarkers such as those presented here, namely evaluation of 

PDE4D5/7/9 long form transcripts, offer a potentially highly effective means for 

predicting the future risk of a patient to experience disease progression. Such an 

approach then may provide future support for selecting patients to be included into 

modified AS regimens that require, compared to current regimens, a very much reduced 

requirement for follow-up studies over pre-defined time periods after the start of AS.  
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Conclusions  

We demonstrate that the prognostic power of analysing the pre-surgical CAPRA score 

together with the prostate cancer biomarker PDE4D7 (CAPRA & PDE4D7) can be 

significantly improved by adding in analyses of transcript level scores for long PDE4D 

isoforms PDE4D5 and PDE4D9, providing a novel risk model (CAPRA & PDE4D5/7/9). 

The AUC of the base model of the CAPRA score alone was increased by 10%, from 

0.77 to 0.87, when combined with all three prostate cancer relevant long PDE4D 

transcripts into a single risk prediction algorithm. The resulting risk score is positively 

correlated with increasing risk of post-surgical disease progression. The patient group 

with lowest risk score category, as defined here, represents the lowest possible 

progression risk within the validation cohort with no events occurring during the 

examined period of follow-up. In contrast, the patient group within the highest risk score 

category experiences a close to 100% probability of experiencing disease progression 

after primary therapy. 

 

Limitations 

The retrospective nature of this study provides a potential limitation in the interpretation 

of the results towards a prospective setting. Furthermore, all study patients were 

undergoing surgery as a primary treatment. Patient outcomes in terms of the 

investigated disease progression endpoints might have been influenced by the applied 

treatment which limits the interpretation towards and active surveillance setting.  
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Table 1. Patient demographics of the patient surgery (RP) and biopsy (DB) cohorts 
  Parameter RP cohort (n=536) B) DB cohort (n=151) 
Demographic & 
Clinical  
Range (median; IQR) 

Age range (at RP) 41.3-74.5 (62.5; 7.5) 47.4-77.4 (64.9; 8.5) 
Preoperative PSA range 0.18-120 (7.1; 6.2) 2.0-49.1 (8.1; 5.7) 
Percent tumour in biopsy range 0.2-80.0 (10.6; 20.2) N/A 
Prostate Volume range 9-244 (41.0; 21.0) 13.6-148.0 (38.5; 19.2) 
PSA density range 0.01-4.0 (0.17; 0.16) 0.03-1.6 (0.2; 0.17) 

CAPRA Risk Category 
Number of patients 
(percentage) 

Low Risk (CARPA 0-2) 199 (37.1%) 38 (25.2%) 
Intermediate Risk (CAPRA 3-5) 273 (50.9%) 82(54.3%) 
High Risk (CAPRA>5) 44 (8.2%) 31 (20.5%) 
N/A 20 (3.7%) - 

Pre-Surgery 
Pathology 
Number of patients 
(percentage) 

Biopsy Gleason 3+3 (GG1) 282 (52.6%) 77 (51.0%) 
Biopsy Gleason 3+4 (GG2) 172 (32.1%) 38 (25.2%) 
Biopsy Gleason 4+3 (GG3) 46 (8.6%) 20 (13.2%) 
Biopsy Gleason >=4+4 (>=GG4) 36 (6.7%) 16 (10.6%) 
cT1 348 (64.9%) 

97 (64.2%) 
cT2 175 (32.6%) 
cT3 13 (2.3%) 54 (35.8%) 
N/A 1 (0.2%) - 

Post-Surgery 
Pathology 
Number of patients 
(percentage) 

Pathology Gleason 3+3 (GG1) 176 (32.8%) 46 (30.5%) 
Pathology Gleason 3+4 (GG2) 268 (50.0%) 52 (34.4%) 
Pathology Gleason 4+3 (GG3) 69 (12.9%) 31 (20.5%) 
Pathology Gleason >=4+4 (>=GG4) 23 (4.3%) 22 (14.6%) 
pT2 312 (58.2%) 88 (58.3%) 
pT3 224 (41.8%) 63 (41.7%) 
pT4 0 (0%) 0 (0%) 
Positive Surgical Margins 197 (36.8%) 33 (21.9%) 
Extra-Capsular Extension (=T3a) 139 (25.9%) 37/151 (24.5%) 
Seminal Vesicle Invasion 87 (16.2%) N/A 
Lymph Node Invasion 17 (3.2%) 10 (6.6%) 

Follow-up (months) Mean 105.1 73.7 
Median 120.2 73.6 

Outcome - Number 
events/total patient 
number (percentage) 

BCR within 5 years 169/480 (35.2%) 45/151 (29.8%) 
BCR within 10 years 210/402 (52.2%) - 
CR within 5 years 46/472 (9.7%) 4/151 (2.6%) 
CR within 10 years 61/337 (18.1%) - 

Salvage Treatment - 
Number events/total 
patient number 
(percentage) 

SRT within 5 years 130/475 (27.4%) 12/151 (7.9%) 
SRT within 10 years 164/381 (43.0%) - 
SADT within 5 years 75/467 (16.1%) 16/151 (10.6%) 
SADT within 10 years 110/350 (31.4%) - 

Survival - Number 
events/total patient 
number (percentage) 

PCSS within 5 years 13/453 (2.9%) 1/151 (0.7%) 
PCSS within 10 years 25/304 (8.2%) - 
OS within 5 years 25/465 (5.4%) 1/151 (0.7%) 
OS within 10 years 51/331 (15.4%) - 
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Figure 1A: Kaplan-Meier survival analysis of the PDE4D7 score in TMPRSS2-ERG 
gene fusion positive tumours in the RP patient cohort 
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Figure 1B: Kaplan-Meier survival analysis of the PDE4D7 score in TMPRSS2-ERG 
gene fusion negative tumours in the RP patient cohort 
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Figure 1C: Kaplan-Meier survival analysis of the PDE4D5 score in TMPRSS2-ERG 
gene fusion positive tumours in the RP patient cohort 
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Figure 1D: Kaplan-Meier survival analysis of the PDE4D5 score in TMPRSS2-ERG 
gene fusion negative tumours in the RP patient cohort 
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Figure 1E: Kaplan-Meier survival analysis of the PDE4D9 score in TMPRSS2-ERG 
gene fusion positive tumours in the RP patient cohort 
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Figure 1F: Kaplan-Meier survival analysis of the PDE4D9 score in TMPRSS2-ERG 
gene fusion negative tumours in the RP patient cohort 
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Figure 2A: Heatmap of TMPRSS2-ERG negative tumour samples of the RP cohort 
(n=256); samples are ordered according to their PDE4D5 score from low to high 

 



36 
 

Figure 2B: Heatmap of TMPRSS2-ERG negative tumour samples of the RP cohort 
(n=256); samples are ordered according to their PDE4D9 score from low to high 
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Figure 2C: Heatmap of TMPRSS2-ERG positive tumour samples of the RP cohort 
(n=280); samples are ordered according to their PDE4D7 score from low to high 
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Figure 2D: RP cohort patient samples (n=31) with the lowest PDE4D5, PDE4D7, and 
PDE4D9 scores  
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Figure 3A: Kaplan-Meier analysis of the biochemical recurrence (BCR) free survival in 
the diagnostic biopsy patient (DB) of the categorized CAPRA & PDE4D5/7/9 
combination score 
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Figure 3B: Kaplan-Meier analysis of the post-surgical of secondary treatment free 
survival (STFS) time in the diagnostic biopsy patient (DB) cohort of the categorized 
CAPRA + PDE4D5/7/9 combination score 
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Figure 3C: Comparative ROC curve analysis of 5-year biochemical recurrence (BCR) 
after surgery in the diagnostic biopsy patient (DB) cohort of the CAPRA model vs. the 
CAPRA & PDE4D7 vs. the CAPRA + PDE4D5/7/9 combination model 
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Figure 3D: Comparative ROC curve analysis of 5-year secondary treatment free 
survival (STFS) after surgery in the diagnostic biopsy patient (DB) cohort of the CAPRA 
model vs. the CAPRA & PDE4D7 vs. the CAPRA + PDE4D5/7/9 combination model 
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Table 2: Overview of the AUC’s for the CAPRA score, the CAPRA & PDE4D7, and the 
CAPRA & PDE4D5/7/9 regression models to predict multiple endpoints in various 
patient cohorts 

 

Patient 
Cohort 

Tested Clinical Endpoint (post 
treatment) # events 

CAPRA&PDE4D5/7
/9 Score 

CAPRA&PDE4D7 
Score CAPRA Score 

AUC 

RP* (n=130) metastases (post-surgery) 8 (6.2%) 0.86 0.82 0.74 

DB (n=151) 5-yr PSA recurrence (post-
surgery) 45 (19.8%) 0.87 0.82 0.77 

DB (n=151) 5-yr start of secondary 
treatment (post-surgery) 27 (17.9%) 0.82 0.78 0.76 

RP (n=220) 10-yr prostate cancer death 
(post-surgery) (pGleason >6) 21 (11.1%) 0.78 0.78 0.74 

RP (n=86) 10-yr prostate cancer death 
(post-SRT) 18 (20.9%) 0.78 0.76 0.7 

RP (n=61) 10-yr prostate cancer death 
(post-SADT) 17 (27.9%) 0.74 0.72 0.67 
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Figure 4A: Decision curve analysis in diagnostic biopsy patient (DB) of the net benefit of 
four different treatment decision strategies for men at risk to experience disease 
recurrence within 5 years after surgery 
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Figure 4B: Decision curve analysis in diagnostic biopsy patient (DB) of the net reduction 
of two different treatment decision strategies for men at risk to experience disease 
recurrence within 5 years after surgery 
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Figure and Table Legends 
 

Table 1. Aggregated summary of the characteristics of the studied patient cohorts. (A) 

Demographics of the radical prostatectomy (RP) patient cohort including the 536 

patients eligible for statistical data analysis. For patient age, preoperative PSA, 

percentage of tumour in biopsy, prostate volume and PSA density the min and max 

values in the cohort are shown; median and IQR (interquartile range) are shown in 

parentheses. Pre- and post-surgical pathology is given (Note: extracapsular extension 

was derived from pathology stage information). The outcome category illustrates the 

cumulative 5- and 10-year biochemical recurrence (BCR) and clinical recurrence to 

metastases (CR) post-surgical primary treatment. The treatment category lists the 

cumulative 5- and 10-year start to SRT (salvage radiation therapy) or SADT (salvage 

androgen deprivation therapy) after surgery. Mortality is shown as prostate cancer 

specific survival (PCSS) as well as overall survival (OS); (N/A=not available). (B) 

Demographics of the diagnostic biopsy (DB) patient cohort. In total diagnostic needle 

biopsy tissue of 151 were eligible for statistical data analysis. The demographics and 

clinical data of this cohort is presented equivalent to the RP cohort; (N/A=not available).  

Figure 1. Kaplan Meier survival analysis of the time to PSA relapse (endpoint: BCR – 

biochemical recurrence) in the RP patient cohort (n=536) for the PDE4D5, PDE4D7, and 

PDE4D9 scores. (A) Kaplan-Meier analysis of the biochemical recurrence free survival 

of the PDE4D7 score in TMPRSS2-ERG positive tumours (n=280). (B) Kaplan-Meier 

analysis of the biochemical recurrence free survival of the PDE4D7 score in TMPRSS2-

ERG negative tumours (n=256). (C) Kaplan-Meier analysis of the biochemical 

recurrence free survival of the PDE4D5 score in TMPRSS2-ERG positive tumours 

(n=280). (D) Kaplan-Meier analysis of the biochemical recurrence free survival of the 
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PDE4D5 score in TMPRSS2-ERG negative tumours (n=256). (E) Kaplan-Meier analysis 

of the biochemical recurrence free survival of the PDE4D9 score in TMPRSS2-ERG 

positive tumours (n=280). (F) Kaplan-Meier analysis of the biochemical recurrence free 

survival of the PDE4D9 score in TMPRSS2-ERG negative tumours (n=256). Censored 

patients are indicated by vertical bars. PDE4D5, PDE4D7, and PDE4D9 score 

categories were defined as: PDE4D5/7/9 (1-2): PDE4D5/7/9 scores (1 to <2); 

PDE4D5/7/9 (2-3): PDE4D5/7/9 scores (2 to <3); PDE4D5/7/9 (3-4): PDE4D5/7/9 scores 

(3 to <4); PDE4D5/7/9 (4-5): PDE4D5/7/9 scores (4 to <=5).  

Figure 2. (A) Heatmap of TMPRSS2-ERG negative tumour samples of the RP cohort 

(n=256); samples are ordered according to their PDE4D5 score from low to high. (B) 

Heatmap of TMPRSS2-ERG negative tumour samples of the RP cohort (n=256); 

samples are ordered according to their PDE4D9 score from low to high. (C) Heatmap of 

TMPRSS2-ERG positive tumour samples of the RP cohort (n=280); samples are 

ordered according to their PDE4D7 score from low to high. The legends of the graphs 

and color coding are defined as: ‘Sample ID’: ID’s of the 256 TMPRSS2-ERG negative 

tumour samples of the RP cohort. ‘TMPRSS2-ERG status’: presence (dark green) or 

absence (light green) of the gene fusion event in a given sample. ‘BCR class’: every 

patient is coded for the presence (dark yellow) or absence (light yellow) of a BCR 

(biochemical recurrence) event during the >120 months median follow-up. ‘Metastasis 

class’:  every patient is coded for the presence (dark orange) or absence (light orange) 

of a metastases event during the >120 months median follow-up). ‘PCa death class’: 

every patient is coded for the presence (dark red) or absence (light red) of a prostate 

cancer specific death event during the >120 months median follow-up. PDE4D5, 

PDE4D7, and PDE4D9 score categories were defined as: PDE4D5/7/9 (1-2): 
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PDE4D5/7/9 scores (1 to <2; dark blue); PDE4D5/7/9 (2-3): PDE4D5/7/9 scores (2 to 

<3; light blue); PDE4D5/7/9 (3-4): PDE4D5/7/9 scores (3 to <4; light pink); PDE4D5/7/9 

(4-5): PDE4D5/7/9 scores (4 to <=5; dark pink). (D) RP cohort patient samples (n=31) 

with the lowest PDE4D5, PDE4D7, and PDE4D9 scores. The legends of the graph and 

color coding is defined as above with the change of a color coding for BCR, Metastasis, 

and PCa Death class according to a time interval to the event; light yellow: no event 

during >120 months median follow-up; light blue: <2 years to the event during >120 

months median follow-up; light grey: 2-5 years to the event during >120 months median 

follow-up; light green: >5 years to the event during >120 months median follow-up. 

Figure 3. (A) Kaplan-Meier analysis of the biochemical recurrence (BCR) free survival in 

the diagnostic biopsy patient (DB) of the categorized CAPRA & PDE4D5/7/9 

combination score. (B) Kaplan-Meier analysis of the post-surgical of secondary 

treatment free survival (STFS) time in the diagnostic biopsy patient (DB) cohort of the 

categorized CAPRA & PDE4D5/7/9 combination score. The CAPRA & PDE4D5/7/9 

combination model was developed by logistic regression using data of the RP and RP* 

patient cohort and used as such for testing in the DB patient cohort. The model score 

was transformed into a CAPRA & PDE4D5/7/9 score distribution between 1-5 equivalent 

to how the individual PDE4D transcript scores were generated [18]. Censored patients 

are indicated by vertical bars. PDE4D5/7/9 score categories were defined as: 

PDE4D5/7/9 (1-2): PDE4D5/7/9 scores (1 to <2); PDE4D5/7/9 (2-3): PDE4D5/7/9 scores 

(2 to <3); PDE4D5/7/9 (3-4): PDE4D5/7/9 scores (3 to <4); PDE4D5/7/9 (4-5): 

PDE4D5/7/9 scores (4 to <=5). (C) ROC curve analysis of 5-year biochemical 

recurrence in the DB cohort (n=151) of the CAPRA score (orange curve; AUC=0.77) vs. 

the CAPRA & PDE4D7 (green curve; AUC=0.82) vs. the CAPRA & PDE4D5/7/9 (blue 
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curve; AUC=0.87) logistic regression models. (D) ROC curve analysis of 5-year post-

surgical secondary treatment free survival in the DB cohort (n=151) of the CAPRA score 

(orange curve; AUC=0.76) vs. the CAPRA & PDE4D7 (green curve; AUC=0.78) vs. the 

CAPRA & PDE4D5/7/9 (blue curve; AUC=0.82) logistic regression models. 

Table 2. Overview of the AUC’s for the CAPRA score, the CAPRA & PDE4D7, and the 

CAPRA & PDE4D5/7/9 regression models to predict multiple endpoints in various 

patient cohorts. The patient cohort that was used for the respective endpoint is indicated 

including the number of patients with respective follow-up periods. The tested clinical 

endpoints are given including the number and percentage of the respectively tested 

events. Note: The CAPRA score is calculated based on [22]; however, as the 

information on the number of positive biopsy cores was missing for the RP* cohort the 

CAPRA score for this cohort was calculated using patient age, pre-operative PSA, 

biopsy Gleason score, and clinical stage only. The influence of the missing information 

on the biopsy cores was very limited as tested on the RP as well as the DB cohort (data 

not shown). 

Figure 4. (A) Decision curve analysis in the diagnostic biopsy (DB) patient cohort of the 

net benefit of five different treatment decision strategies (treat all, treat none, treat based 

on the CAPRA score, treat based on the CAPRA & PDE4D7 score, treat based on the 

CAPRA & PDE4D5/7/9 score) for men at risk of disease recurrence within 5 years after 

surgery. In total 45 of the 151 investigated patients failed the initial primary treatment of 

surgery by PSA recurrence (29.8%) within 5 years after intervention. Treatment 

strategies were tested for their net benefit across indicated threshold probabilities (0.05 

step size) to trigger prostate surgery based on the probability of future disease 

recurrence. The CAPRA scores, the CAPRA & PDE4D7 scores, and the CAPRA & 
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PDE4D5/7/9 scores were converted into 5-year BCR probabilities with logistic 

regression on the BP cohort (n=151 men with completed 5-year follow-up) before 

estimating net benefit. (B) Net reduction analyses demonstrating in how many patients a 

resection can be avoided based on the predicted risk of BCR derived from the CAPRA 

score and the CAPRA & PDE4D7 and CAPRA & PDE4D5/7/9 scores, respectively.  
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