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Abstract: Objective: To assess brain structural connectivity in relation to cognitive abilities in healthy
ageing, and the mediating effects of white matter hyper-intensity (WMH) volume. Methods: MRI data
were analysed in 558 members of the Lothian Birth Cohort 1936. Brains were segmented into 85
regions and combined with tractography to generate structural connectomes. WMH volume was quan-
tified. Relationships between whole-brain connectivity, assessed using graph theory metrics, and four
major domains of cognitive ability (visuospatial reasoning, verbal memory, information processing
speed and crystallized ability) were investigated, as was the mediating effects of WMH volume on
these relationships. Results: Visuospatial reasoning was associated with network strength, mean short-
est path length, and global efficiency. Memory was not associated with any network connectivity met-
ric. Information processing speed and crystallized ability were associated with all network measures.
Some relationships were lost when adjusted for mean network FA. WMH volume mediated 11%-15%
of the relationships between most network measures and information processing speed, even after
adjusting for mean network FA. Conclusion: Brain structural connectivity relates to visuospatial reason-
ing, information processing speed and crystallized ability, but not memory, in this relatively healthy age-
homogeneous cohort of 73 year olds. When adjusted for mean FA across the network, most relationships
are lost, except with information processing speed suggesting that the underlying topological network struc-
ture is related to this cognitive domain. Moreover, the connectome-processing speed relationship is partly
mediated by WMH volume in this cohort. Hum Brain Mapp 39:622—632, 2018.  © 2017 The Authors Human Brain
Mapping Published by Wiley Periodicals, Inc.
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INTRODUCTION

Cognitive abilities, such as memory and information
processing speed, deteriorate with age [Deary et al., 2009]
and there are unexplained individual differences in these
ageing-related changes. Disrupted brain white matter com-
munication pathways could be one underlying mechanism
for such declines. Measures of age-related white matter
damage such as white matter hyperintensities (WMH) can
be derived from magnetic resonance imaging (MRI).
WMH relate to cerebral small vessel disease (SVD),
increase the risk of stroke [Debette and Markus, 2010] and
contribute to dementia [Gorelick et al., 2011]. However,
data are lacking on the association between the brain’s
connectivity patterns and cognitive abilities in generally
healthy non-demented older participants, and on the
degree to which WMH might affect the brain’s connec-
tomic structure.

Connectomics [Rubinov and Sporns, 2010; Sporns,
2013] uses graph theory [Bullmore et al, 2009] to
describe the brain as a network of anatomical links
(edges) between brain cortical regions (nodes). Metrics of
this topology, which broadly fall into two categories of
integration and segregation, include path length and
clustering. Shorter path lengths enhance network effi-
ciency, while high clustering coefficients indicate a
node’s neighbour is also well-connected to the rest of
the network.

Prior work has investigated the mediating influence of
connectomic structure on the cognition~SVD relationship
[Reijmer et al.,, 2016; Tuladhar et al., 2015] in subjects
with known SVD. In the current paper, however, we
adopt a subtlety different approach by investigating
cross-sectional relationships between four domains of
cognitive ability and structural connectivity graph theory
metrics derived from brain diffusion MRI in a large
group of age-homogeneous subjects in their early seven-
ties, the Lothian Birth Cohort 1936 (LBC1936). Cohort
members are relatively healthy, live in the community,
and do not have overt brain disease with clinical symp-
toms. Such studies are important as these data might
provide a better understanding of what is normal for a
given age in healthy ageing. Specifically, we investigate
the hypothesis that there are links between brain struc-
tural connectivity and cognition in the normal ageing
brain, and these relationships are mediated by the effects
of WMH through the disruption of white matter path-
ways. Furthermore, we control for mean network FA to
allow relationships between network topology (rather
than analyses being driven by water diffusion metrics per
se) and cognitive ability to be investigated.

METHODS
Subjects

The LBC1936 comprises 1,091 community-dwelling indi-
viduals who agreed to participate in a longitudinal study
of cognitive ageing starting at mean age about 70 years
[Deary et al., 2007]. At age 11 years, almost all of them
took part in the Scottish Mental Survey of 1947, which
employed the Moray House Test No. 12 (MHT) [Scottish
Council for Research in Education, 1933], a test of general
cognitive ability. At recruitment in older age (at age ~70
years), between 2004 and 2007, subjects agreed to cognitive
testing and other medical, physical and psychosocial
assessments. During the second wave of this study, three
years after initial recruitment, 738 participants agreed to
have a comprehensive MRI examination, including diffu-
sion MRI, to assess brain white matter structure at 73
years of age [Wardlaw et al., 2011]. Inclusion criteria for
this study were as follows: no contraindications to MRI, a
score >24 on the MMSE [Folstein et al., 1975], no diagnosis
of neurodegenerative disorders, and complete structural
and diffusion MRI, childhood intelligence test scores and
cognitive data. No subjects were excluded on the basis of a
history of cardiovascular disease, stroke, high cholesterol,
hypertension, diabetes or blood circulation problems. Writ-
ten informed consent was obtained from all subjects. The
LBC1936 study was approved by the Multi-Centre Research
Ethics Committee for Scotland (MREC/01/0/56), the Scot-
land A Research Ethics Committee (07/MREQ00/58) and the
Lothian Research Ethics Committee (LREC/2003/2/29).

Cognitive Assessments

In addition to MHT scores of intelligence at age 11, the
LBC1936 members completed a battery of cognitive tests
at age 73 which were grouped into four domains (on the
basis of a previous confirmatory factor analysis [Ritchie
et al., 2015]) as follows:

Visuospatial reasoning was indicated by the Matrix Rea-
soning and Block Design subtests from the Wechsler Adult
Intelligence Scale, 3rd UK Edition (WAIS-III-UK) [Wechs-
ler, 1998a] and the Spatial Span (forwards and backwards)
subtest from the Wechsler Memory Scale, 3rd UK Edition
(WMS-III-UK) [Wechsler, 1998b].

Verbal memory was indicated by the Logical Memory
(immediate and delayed) and Verbal Paired Associates
subtests from the WMS-III-UK, and the Digit Span Back-
ward subtest from the WAIS-III-UK.

Information processing speed was indicated by the Digit-
Symbol Substitution and Symbol Search subtests of the
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WAIS-III-UK and a test of Choice Reaction Time on a ded-
icated instrument [Deary et al., 2001] and a psychophysical
test of Inspection Time [Deary et al., 2004].

Crystallized ability was indicated by the National Adult
Reading Test (NART) [Nelson and Wilson, 1982], the
Wechsler Test of Adult Reading (WTAR) [Wechsler, 2001],
and a test of phonemic Verbal Fluency [Lezak, 2004].

In the analyses below, each of the four domains was
conceptualized as a latent factor, reflecting each of the rel-
evant cognitive tests.

Clinical Data

Participants were asked a series of medical questions to
determine whether participants had a history of cardiovas-
cular disease or high cholesterol, and whether they were
being treated for hypertension, diabetes or blood circula-
tion problems. Measures of blood pressure, cholesterol
and HbA1lc were available.

MRI Acquisition

All MRI data were acquired using a GE Signa Horizon
HDxt 1.5 T clinical scanner (General Electric, Milwaukee,
WI) using a self-shielding gradient set with maximum gra-
dient strength of 33 mT/m and an 8-channel phased-array
head coil. Full details of the imaging protocol are available
[Wardlaw et al.,, 2011]. Briefly, subjects provided high-
resolution structural (T;-, Tp-, Ty*- and fluid attenuated
inversion recovery (FLAIR)-weighted scans) and diffusion
MRI data in the same session. The diffusion MRI examina-
tion consisted of 7 T,-weighted (b=0 s mm2) and sets of
diffusion-weighted (b=1000 s mm ?) single-shot spin-
echo echo-planar (EP) volumes acquired with diffusion
gradients applied in 64 non-collinear directions [Jones
et al., 2002]. Volumes were acquired in the axial plane
with a field-of-view of 256 X 256 mm, contiguous slice
locations, and image matrix and slice thickness designed
to give 2 mm isotropic voxels. A 3D T;-weighted inversion
recovery-prepared fast spoiled gradient-echo (FSPGR) vol-
ume was also acquired in the coronal plane with 160 con-
tiguous slices and 1.3 mm® voxel dimensions.

Image Processing

Each 3D T;-weighted FSPGR volume was parcellated
into 85 cortical (34 per hemisphere) and sub-cortical (eight
per hemisphere) regions-of-interest (ROI), plus the brain
stem, using the Desikan-Killiany atlas and default settings
in FreeSurfer v5.3 (http://surfernmr.mgh.harvard.edu).
The results of the segmentation procedure were visually
checked for gross errors and then used to construct grey
and white matter masks for use in network construction
and to constrain the tractography output. Using tools pro-
vided by the FDT package in FSL (http://fsl.fmrib.ox.ac.
uk/fsl), the diffusion MRI data were pre-processed to

reduce systematic imaging distortions and bulk subject
motion artefacts by affine registration of all subsequent EP
volumes to the first To-weighted EP volume [Jenkinson
and Smith, 2001]. Skull stripping and brain extraction
were performed on the registered T,-weighted EP volumes
and applied to the fractional anisotropy (FA) volume cal-
culated by DTIFIT in each subject [Basser and Pierpaoli,
1996]. The neuroanatomical ROIs determined by FreeSur-
fer were then aligned from 3D T;-weighted volume to dif-
fusion space using a cross-modal nonlinear registration
method. As a first step, linear registration was used to ini-
tialize the alignment of each brain-extracted FA volume to
the corresponding FreeSurfer extracted 3D T;-weighted
brain volume using a mutual information cost function
and an affine transform with 12 degrees of freedom [Jen-
kinson and Smith, 2001]. Following this initialization, a
non-linear deformation field based method (FNIRT) was
used to refine local alignment [Andersson et al., 2007].
FreeSurfer segmentations and anatomical labels were then
aligned to diffusion space using nearest neighbour
interpolation.

Tractography

Whole-brain probabilistic tractography was performed
using FSL’s BedpostX/ProbTrackX algorithm [Behrens
et al., 2007]. Probability density functions, which describe
the uncertainty in the principal directions of diffusion,
were computed with a two-fibre model per voxel [Behrens
et al, 2007]. Streamlines were then constructed by sam-
pling from these distributions during tracking using 100
Markov Chain Monte Carlo iterations with a fixed step
size of 0.5 mm between successive points. Tracking was
initiated from all white matter voxels and streamlines
were constructed in two collinear directions until termi-
nated by the following stopping criteria designed to mini-
mize the amount of anatomically implausible streamlines:
(i) exceeding a curvature threshold of 70 degrees; (ii)
entering a voxel with FA below 0.1; (iii) entering an extra-
cerebral voxel; (iv) exceeding 200 mm in length; and (v)
exceeding a distance ratio metric of 10. The distance ratio
metric [Bullitt et al., 2003], excludes implausibly tortuous
streamlines. For instance, a streamline with a total path
length 10 times longer than the distance between end
points was considered to be invalid. The values of the cur-
vature, anisotropy and distance ratio metric constraints
were set empirically and informed by visual assessment of
the resulting streamlines.

Network Construction

FA-weighted networks were constructed by recording
the mean FA value along streamlines connecting all ROI
(network node) pairs. The endpoint of a streamline was
considered to be the first grey matter ROI encountered
when tracking from the seed location. Self-connections
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Covariates:
Age, sex, blood pressure, history of stroke, diabetes, weekly alcohol consumption,
current smoker, body mass index, mean edge weight
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Figure I.
Example of the structural equation modelling.

were removed, and if no streamlines were found between
a pair of nodes, the corresponding matrix entry was set to
zero. Across the cohort, only connections which occurred
in at least two-thirds of subjects were retained [de Reus
and van den Heuvel, 2013]. Finally, for each FA-weighted
connectivity matrix, five global network measures, plus
mean edge weight (mean FA for the network), were com-
puted using the brain connectivity toolbox (https://sites.
google.com/site/bctnet). The five graph metrics were net-
work density (the fraction of present connections to possi-
ble connections), strength (the average sum of weights per
node), mean shortest path (the average shortest path
length in the network generated from connection-length
connectivity matrices defined as the inverse of the
connection-weight (FA) matrices), global efficiency (the
average of the inverse shortest path length) and clustering
coefficient (fraction of triangles around a node). Mean
shortest path length has an inverse relationship with the
other network measures.

Image Review and Analysis

All MRI scans were reviewed by a consultant neuroradi-
ologist blind to all other data. Imaging features were
defined per STRIVE guidelines [Wardlaw et al, 2013].
Intracranial, brain tissue and WMH volumes were mea-
sured using Analyze 11.0 (http://analyzedirect.com) and
in-house software “MCMxxxVI” (available from http://
sourceforge.net/projects/bric1936/?source=directory) from

the structural T,-, T>*- and FLAIR-weighted scans. These
methods, which were developed locally, have been vali-
dated [Valdés Hernandez et al., 2015; Wardlaw et al.,
2011]. We used quantitative WMH volume (a continuous
measure) in our analysis for increased statistical power
rather than an ordinal score obtained from a WMH visual
rating tool. All segmented volumes were visually inspected
for accuracy and to avoid erroneous classification; no sub-
jects were lost to error in the image processing steps. For
each subject, WMH volume was normalized by intracranial
volume to correct for head size.

Statistical Analysis

Structural equation modelling was used to examine the
association between network measures and current cogni-
tive domains, and to test whether WMH volume mediated
[Hayes and Scharkow, 2013; Iacobucci et al., 2007; Imai
et al., 2010] associations between cognition and network
connectivity. Mediation exists when a predictor (here, each
of the network connectivity metrics) affects the outcome of
interest (here, each of four major domains of cognitive
ability: visuospatial abilities, memory, processing speed
and crystallized abilities) indirectly through at least one
intervening variable (here, WMH volume) [Preacher and
Hayes, 2004]. A schematic of the models estimated here is
shown in Figure 1 using the example of the latent cogni-
tive domain of information processing speed as the out-
come and clustering coefficient as the main predictor.
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Here, as with the other connectome predictor variables
(bar density) in the other models, the exemplar of cluster-
ing coefficient was residualised by mean edge weight
(average network FA) to allow network topological effects
to be ascertained free from white matter microstructural
integrity metrics. The primary estimates of interest in this
study are the degree of change in the direct path between
network connectivity measures and cognitive ability,
labelled ¢ in the bivariate models and ¢’ in the full media-
tion models, and the indirect path from connectivity mea-
sures to cognitive ability through WMH volume: the
product of paths a and b. We used the individual cogni-
tive ability test scores as manifest (measured) variables to
estimate latent variables within the models for each cogni-
tive domain. Latent variables were identified by fixing one
of the factor loadings to unity. Covariates included in the
models were age, sex, blood pressure, diabetes, smoking
status, history of stroke, body mass index and weekly alco-
hol consumption. Mean edge weight was also included as
a covariate to adjust for any relationship between white
matter integrity and the cognitive outcome of interest.
Models were estimated using maximum likelihood estima-
tion. Model fit was evaluated based on root mean squared
error of approximation (RMSEA), the comparative fit index
(CFI) and the Tucker-Lewis index (TLI); good fit was con-
sidered as <0.06, >0.90 and >0.90, respectively [Hu and
Bentler, 1999]. Bootstrapping (k= 1,000 samples) was used
to test for the significance of indirect paths [Preacher and
Hayes, 2008; Shrout and Bolger, 2002]. Standardised beta
coefficients (B) are reported. All analyses were conducted
in R v3.3.0 (http://www.r-project.org) (R Core Team,
2013), and the Lavaan library [Rosseel, 2012] was used to
conduct the modelling.

RESULTS
Subjects

Five hundred and fifty-eight subjects met the inclusion
criteria and had contemporaneous cognitive data, along
with complete processed structural and diffusion MRIL
Demographic data for the study group are shown in Table
I. Mean age at MRI scanning was 72.6 (SD 0.68) years.
Almost half (48.7%) the cohort were hypertensive, 9.1%
reported having diabetes, 7.9% were current smokers and
7% had a history of stroke. White matter pathways and
regions of WMH from a representative subject are illus-
trated in Figure 2.

Structural Network Connectivity
and Other Variables

The network measures were highly correlated with each
other (f +0.45-0.99; Table II). Network density (f = 0.09;
Table II) but not the other connectivity measures was sig-
nificantly associated with age. Conversely, network

TABLE I. Subject characteristics

Demographics
N 558
Female (%) 259 (46.4%)
Age, years (SD) 72.6 (0.68)
Vascular risk factors

Hypertension (%) 272 (48.7%)

Average systolic blood pressure, mm Hg (SD) 147 (17.8)
Average diastolic blood pressure, mm Hg (SD) 80 (9.4)

Diabetes (%) 51 (9.1%)
Current smokers (%) 44 (7.9%)

Ever smoked (%)
High cholesterol (%)

247 (44.3%)
226 (40.5%)

BMI, kg/m? (SD) 28 (4.4)

History of stroke (%) 39 (7%)
Cognitive

MMSE (SD) [maximum score 30] 29 (1.4)
Visuospatial reasoning

Matrix reasoning (SD) 13.36 (4.85)

Block design (SD) 34.20 (10.1)

Spatial span (SD) 7.38 (1.35)

Verbal memory
Logical memory (SD)
Verbal paired associates (SD)
Digit span backward (SD)
Information processing speed
Digit-symbol substitution (SD)
Symbol search (SD)
Choice reaction time (SD)
Inspection time (SD)
Crystallized ability
NART (SD)
WTAR (SD)
Verbal fluency (SD)
Brain imaging volumes

74.47 (18.06)
27.27 (9.6)
7.91 (2.34)

56.27 (11.67)
24.67 (6.02)
0.65 (0.08)

111.17 (11.48)

34.36 (8.23)
41.1 (7.07)
43.25 (12.76)

Brain tissue volume, ml (SD) 991.6 (90.0)
Intracranial volume, ml (SD) 1439.5 (133.9)
WMH volume, ml (range) 7.9 (0.4-85.6)
Network connectivity measures

Density (SD) 26.22 (1.25)
Strength (SD) 8.34 (0.72)
Mean shortest path (SD) 4.84 (0.33)
Global efficiency (SD) 0.24 (0.01)
Clustering coefficient (SD) 0.25 (0.02)
Mean edge weight (SD) 0.38 (0.02)

Abbreviations: BMI, body mass index; MMSE, mini mental state
examination; NART, National Adult Reading Test; WMH, white
matter hyperintensities; WTAR, Wechsler Test of Adult Reading.
Values are mean (standard deviation), median (Q1-Q3 and/or
range), or number (%).

density was not related to WMH volume whereas very
strong associations with the other network metrics were
noted (all P values <0.0001; Table II). The directionality of
network relationships with WMH volume was as expected
with higher WMH volumes associated with reduced
strength, global efficiency, clustering coefficient and mean
edge weight, and increased mean shortest path length.
None of the network metrics were related to blood pres-
sure, cholesterol or HbAlc.
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Figure 2.
Example of white matter pathways and WMH (white regions) for a representative subject.
[Color figure can be viewed at wileyonlinelibrary.com]

Structural Network Connectivity and
Cognitive Abilities

Before mediation, simple bivariate analyses showed the
following associations between connectome metrics and
cognitive outcomes (Table III). Visuospatial reasoning was
associated with network strength, mean shortest path
length and global efficiency (f*0.11 in each case) with a
trend toward an association with clustering coefficient.
Memory was not associated with any network metric.
Information processing speed (f range *0.15-0.22) and
crystallized ability (f range *0.10-0.14) were significantly
associated with all network measures.

When the bivariate analysis was rerun with the connec-
tome metrics residualised by mean edge weight to control
for mean network FA, the visuospatial-connectome rela-
tionships were lost. The information processing
speed-connectome relationships were maintained (ff range
+0.10 to 0.17), with the exception of clustering coefficient.
The crystallized ability—connectome relationships were
lost, except network strength (ff = 0.10).

Mediation by WMH Volume

Mediation models were run on the connectome to cogni-
tive ability relationships that showed significant
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TABLE Il. Correlation matrix of connectome measures and simple bivariate relationships between the main predic-
tor variables (connectome and main covariates)

Mean edge
weight (mean

Mean shortest Global Clustering FA across the
Density Strength path efficiency coefficient network)
B p B P B P B P B P B P

Density 1 0.83 <0.0001 —0.64 <0.0001 0.61  <0.0001 0.61  <0.0001 0.45 <0.0001
Strength 1 —0.94 <0.0001 095 <0.0001 094 <0.0001 0.88 <0.0001
Mean shortest path 1 -0.99 <0.0001 —097 <0.0001 -0.94 <0.0001
Global efficiency 1 0.98  <0.0001 0.97  <0.0001
Clustering coefficient 1 0.97  <0.0001
Mean edge weight 1
Main covariates
WMH volume —0.07 0101 -0.28 <0.0001 031 <0.0001 —-0.34 <0.0001 -030 <0.0001 —0.38 <0.0001
Age 0.09  0.037 0.03 0542 0.00  0.958 —-0.01 0.854 0.00 0.9%  —0.03 0.457

FA, fractional anisotropy; WMH, white matter hyperintensities.
Standardised betas (f5) are reported.
Significant associations (P < 0.05) are indicated in bold type.

associations in the bivariate analyses. All model fit indices
were excellent.

In the domain of information processing speed, control-
ling for WMH volume and the other covariates did not
affect the relationships with the connectome metrics (f
range *+0.15 to 0.22; Table III, column Direct effect c’).
Moreover, the paths through WHM volume for each met-
ric were significant (Table III, column Indirect effect ab),
resulting in partial mediations ranging from 11% to 15%.

In the domain of crystallized ability, controlling for
WMH volume and the other covariates did not affect the
relationship with density (f = 0.15) nor strength (f =0.13).
However, here the paths through WMH volume were not
significant.

DISCUSSION

Brain network connectivity measures were related to
visuospatial reasoning, information processing speed and
crystallized cognitive ability, but not memory, in a large
sample of community-dwelling 73-year olds. The strongest
association was between the connectome measures and
information processing speed. However, many of the rela-
tionships were lost when the connectome measures were
investigated free from the effect of mean FA. This suggests
that network FA, rather than network topology, is a key
driver in most connectome—cognitive ability relationships
reported here. The exception to this finding is information
processing speed, where the relationship with all network
metrics (bar clustering coefficient) withstood adjustment
for network FA and other covariates.

The relationship between information processing speed
and network metrics was partly mediated by WMH

volume where 11%-15% of the relationship was accounted
for. Although this degree of mediation is relatively small it
remains within the range of that seen in other studies
measuring the variance in human cognition accounted for
by brain imaging variables [Ritchie et al., 2015]. The lim-
ited strength of the mediation might reflect increased
water in the interstitial tissues rather than WMH volume
as a proxy for advancing demyelination and tract discon-
nection and dysfunction. Information processing speed
was related to the brain network such that poorer levels of
segregation (indicated by clustering coefficient) as a
marker for subnetwork modularity, and integration (indi-
cated by path length) as a marker for the connectedness of
the brain, were associated with worse performance on
speed tasks. The seemingly opposing properties of func-
tional segregation within — and anatomical integration
across — the human brain [Sporns, 2014] are fundamental
to complex, efficient networks. Network efficiency may
partly be due to the connectedness of the brain, while
WMH appear related to the way the connections interact
(rather than a reduction in absolute number of connections
per se), and is most strongly associated with the ability to
process information efficiently.

In prior analyses of the same cohort [Kuznetsova et al.,
2016; Penke et al., 2010], we found information processing
speed was associated with connectivity across the brain,
indexed by tract-average water molecule diffusion mea-
sured using voxel-based and quantitative tractography
methods. Cortical (dis)connection as it pertains to informa-
tion processing was interpreted as a global process affect-
ing major tracts simultaneously. Whereas earlier work
[Penke et al.,, 2010] used major white matter tracts, this
study estimates connectivity between 85 brain regions and
provides further evidence of diffuse brain-wide (or “whole
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TABLE Ill. Structural equation models of network connectivity measures and domains of cognitive abilities medi-
ated by WMH volume (as per example model in Fig. 1)

Bivariate relationship between cognitive

domains and connectome metrics

Full mediation model. Cognitive domain ~ Connectome
residualised by mean edge weight + WMH

Total effect ¢

volume + covariates

Cognitive domain

~ Connectome

Cognitive domain residualised by

~ Connectome mean edge weight Direct effect ¢’ Indirect effect ab

p P p P p P p P % mediation
Visuospatial reasoning
Density 0.08 0.114 - — — — —
Strength 0.11 0.026 0.03 0.555 — — — —
Mean shortest path —0.11 0.022 —0.03 0.592 — — — —
Global efficiency 0.11 0.024 0.02 0.759 — — — —
Clustering coefficient 0.10 0.054 —0.05 0.345 — — — —
Verbal memory
Density 0.08 0.102 - — — — —
Strength 0.08 0.134 0.06 0.223 — — — —
Mean shortest path —0.08 0.105 —-0.03 0.434 — — — —
Global efficiency 0.07 0.176 0.08 0.095 — — — —
Clustering coefficient 0.06 0.228 0.05 0.324 — — — —
Information processing speed
Density 0.22 <0.0001 - 0.22 0.002 —0.03 0.044 12%
Strength 0.21 <0.0001 0.17 <0.0001 0.20 0.002 —0.02 0.033 11%
Mean shortest path —0.18 <0.0001 —0.11 0.027 —0.15 0.011 0.03 0.034 15%
Global efficiency 0.17 <0.0001 0.10 0.013 0.17 0.006 —0.02 0.027 14%
Clustering coefficient 0.15 0.001 0.02 0.611 — — — —
Crystallized ability
Density 0.14 0.001 - 0.15 0.023 —0.01 0.233 NS
Strength 0.14 0.001 0.10 0.015 0.13 0.024 —0.01 0.229 NS
Mean shortest path —0.11 0.012 —0.05 0.285 — — — —
Global efficiency 0.11 0.007 0.08 0.051 — — — —
Clustering coefficient 0.10 0.020 0.02 0.623 — — — —

Density not adjusted as FA-weighted connection weights are ignored in its calculation.
— No direct relationship, and so mediation analysis was not performed.

NS indicates a non-significant indirect effect.
Significant associations (P < 0.05) are indicated in bold type.
WMH = white matter hyperintensities.

Standardised beta coefficients (f) are reported with an associated P value. The coefficient ¢ captures the relationship between the con-
nectivity and cognitive metrics before mediation (also known as the total effect), and is distinguished from ¢’ which captures the direct
effect of the relationship after controlling for WMH volume. The primary estimates of interest are the degree of change in the direct
path between network connectivity measures and cognitive ability, labelled ¢ in the bivariate models and ¢’ in the full mediation mod-
els, and the indirect path from connectivity measures to cognitive ability being the product of paths a and b. Each of the four cognitive

domains are latent variables, calculated within the models.

network”) dysfunction independent of mean network FA
as an anatomical substrate for reduced processing speed in
healthy older age.

The network metrics, except density, were strongly and
significantly related to WMH volume such that greater
volumes were associated with poorer structural connectiv-
ity. Raised blood pressure, cholesterol and diabetes (con-
sidered as risk factors related to brain disease) were not
associated with network connectivity.

Recently, an association between global network effi-
ciency and cognitive performance in 436 patients (mean

age 65.2 years SD 8.8) with clinical SVD was reported
[Tuladhar et al., 2015]. A greater volume of WMH, number
of lacunes and microbleeds correlated with reduced net-
work density, strength, and global and local efficiency
(correlation coefficients ranging from —0.19 to —0.62).
Moreover, path analysis showed that network (in)effi-
ciency might drive the association between SVD and cog-
nitive ability. Another study [Lawrence et al., 2014] found
that 115 patients of mean age 70.2 years (SD 9.7) with
symptomatic SVD had reduced network efficiency versus
age-matched healthy controls, and that global network
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efficiency related to worse performance on tests of process-
ing speed, executive functioning and gait velocity, but not
memory. These studies used hospital-based populations
with wide age ranges. Our cohort members are relatively
healthy, living in the community and do not have wide
age variation, yet findings appear broadly consistent.

One study [Tuladhar et al., 2015] found SVD severity
related to lower density (and network efficiency) in 436
subjects with SVD. Network density is the fraction of pre-
sent connections to possible connections. It is unclear why
density has a weaker and non-significant relationship to
WMH volume in our data, although connection weights
are excluded from the calculation of density meaning the
topology is represented without “adjustment” for water
molecule diffusion anisotropy which broadly represents
the integrity of the connections rather than the number of
connections per se. The other metrics are, in effect, FA-
weighted which could explain the high correlation among
these measures.

Study strengths include the use of four measures of cog-
nitive abilities derived from an extensive battery of tests
administered by experienced staff, multiple measures of
network connectivity (both FA-weighted and not), a volu-
metric measure of WMH, a large sample size all scanned
on the same research scanner with an identical acquisition
protocol and analysis pipeline, and a powerful modelling
technique that also adjusted for mean network FA. How-
ever, our study is cross-sectional and while mediation
analysis is helpful in using correlational data to test
hypotheses about causal pathways, a longitudinal study
design where WMH volume at time point A predicts
poorer connectivity at a later time point B would be
worthwhile. Longitudinal connectomic data are not cur-
rently available in the present study. The direction of the
relationships was as expected with, for example, mean
shortest path length showing directional relationships
opposite to that of the other connectome metrics. We
included age as a covariate in these analyses because
although this is a birth cohort with all subjects born in
1936, up to a one year difference exists between youngest
and oldest and it is important to account for this variation.
Finally it should be noted that we investigate the connec-
tome-cognition relationship at a single time point and the
influence of accumulated WMH volume on that relation-
ship, notwithstanding the fact that we do not know biolog-
ically what precedes what, or indeed if changes are
coupled. It is therefore possible that alternative models,
for example, one in which WMH is the independent vari-
able and brain connectivity is the mediator, are also
relevant.

A limitation of this study is links between brain struc-
ture and cognition were assessed at a global level without
an investigation of how WMH might affect individual
major network connections. One approach to this problem
might be to assess structure/function relationships using
central networks [Reijmer et al., 2016]. For example, in 72

older patients with mild cognitive impairment, higher lev-
els of WMH were associated with reduced executive func-
tion, and this relationship was mediated by FA in central
but not non-central networks [Reijmer et al., 2016]. Further
analyses using this methodology may provide a fruitful
avenue for future research in this cohort.

Another limitation is that the degree to which our latent
measure of processing speed comprises psychomotor
speed and other non-motor speeded cognitive processes is
not a question that can be directly interrogated with these
data. However, the fact that the Inspection Time test
(which explicitly removes any elements of psychomotor
speed) loaded on the processing speed factor with compa-
rable magnitude to the other processing speed measures
suggests that our latent measure does not principally
index psychomotor speed.

As with other connectome studies, a limitation here is
that the directionality of brain connectivity cannot be dis-
cerned [Sporns, 2013]. Moreover, the spatial scale of trac-
tography and connectomics is several orders of magnitude
larger than the underlying architecture of interest, namely
axons (MRI voxels are roughly 1 or 2 mm?® versus microns
for axonal dimensions), such that the network metrics are
only estimates of the ‘true’ neural pathways [Toga et al.,
2012]. Though we employed a standard atlas and process-
ing pipeline to enable replication and facilitate cross-study
comparison, the number and choice of nodes needs to be
considered carefully as this can affect the connectivity out-
put [Zalesky et al., 2010] and there is no universally
accepted cortical parcellation scheme [Hagmann et al.,
2010]. Finally, our results pertain to healthy older subjects
and are not generalisable to a younger general population
or to diseased or demented subjects.

In conclusion, we have demonstrated a relationship
between global connectome metrics (with and without
adjustment for mean network FA) and information proc-
essing speed, particularly relative to other cognitive
domains, in this large healthy ageing cohort. These rela-
tionships were partly mediated by WMH, and although
modest, are in the range seen in other studies measuring
the variance in human cognition accounted for by brain
imaging variables in older age.
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