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ABSTRACT

The GATA family of transcription factors is implicated in numerous
developmental and physiological processes in metazoans. In
Drosophila melanogaster, five different GATA factor genes
(pannier, serpent, grain, GATAd and GATAe) have been reported
as essential in the development and identity of multiple tissues,
including the midgut, heart and brain. Here, we present a novel role for
GATAe in the function and homeostasis of the Drosophila renal
(Malpighian) tubule. We demonstrate that reduced levels of GATAe
gene expression in tubule principal cells induce uncontrolled cell
proliferation, resulting in tumorous growth with associated altered
expression of apoptotic and carcinogenic key genes. Furthermore, we
uncover the involvement of GATAe in the maintenance of stellate cells
and migration of renal and nephritic stem cells into the tubule. Our
findings of GATAe as a potential master regulator in the events of
growth control and cell survival required for the maintenance of the
Drosophila renal tubule could provide new insights into the molecular
pathways involved in the formation and maintenance of a functional
tissue and kidney disease.
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INTRODUCTION
The formation and development of an organ is a complex process
involving several programmed events, including changes in cell
shape and adhesion, proliferation and differentiation (Hatton-Ellis
etal., 2007; Wan et al., 2000; Ainsworth et al., 2000). Understanding
the genetic pathways involved is crucial, as defects in any of these
aforementioned processes can lead to malformations and lethality
(Jung et al., 2005; Denholm, 2013; Ainsworth et al., 2000). These
events can be readily studied in Drosophila melanogaster Malpighian
tubules (MTs), a powerful model system for investigating
mechanisms of cell differentiation, proliferation and development,
as well as a model of kidney disease (Millet-Boureima et al., 2018;
Dow and Romero, 2010).

Insect MTs perform functions equivalent to vertebrate kidney and
liver, and share similar characteristics in terms of classes of genes
expressed and cellular origins. Development of the MTs occurs
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during embryogenesis and they are completely functional by the
first instar larval stage. The development and physiology of the fly
renal tubule have been extensively investigated and reviewed in
previous publications (Beyenbach et al., 2010; Denholm, 2013;
Skaer, 1996; Dow, 2012; Beaven and Denholm, 2018; Bunt et al.,
2010). Each tubule is composed of different segments (ureter, main,
initial and transitional segments) that are functionally and
genetically distinct (Chintapalli et al., 2012), and has two main
epithelial cell types: the principal cell (PC) and the stellate cell (SC)
(Dow, 2012; Denholm et al., 2003). In addition, the renal and
nephritic stem cells (RNSCs, also known as tiny cells) may be
observed in the ureters and lower tubules. It has been shown that
these cells, which migrate from the midgut (MG) during
metamorphosis, are able to act as stem cells in the MTs, and have
a distinct gene expression profile from both the SC or PC
(Takashima et al., 2013; Li et al., 2014, 2015; Singh et al., 2007,
Sozen et al., 1997).

The GATA family of transcription factors (TFs) contain one or
two zinc-finger domains that bind to the consensus DNA sequence
A/T GATA A/G and is known to play crucial roles in the
development and physiology of vertebrates, invertebrates, plants
and fungi (Lentjes et al., 2016; Merika and Orkin, 1993). Aside
from their developmental roles, vertebrate GATA factors are
associated to diverse types of cancers, including intestinal tumors,
leukemia, and breast cancer (Zheng and Blobel, 2010; Pihlajoki
et al., 2016; Hellebrekers et al., 2009; Shaoxian et al., 2017).
In humans, at least two GATA factors are expressed in the kidney
(GATA3 and GATADS). Epigenetic alterations of these genes are
associated with decreased survival in renal cell carcinomas (Peters
et al., 2014a,b), and GATA3 itself is downregulated in this type of
cancer (Yang et al., 2013). Moreover, GATA3 is required for the
proper development of the human kidney, and haploinsufficiency of
this gene induces hypoparathyroidism, sensorineural deafness and
renal anomaly (HDR) syndrome (Van Esch et al., 2000; Ferraris
etal., 2009). The GATA family is evolutionarily well known in both
vertebrates and invertebrates, and although they perform similar
functions across phyla, there are differences in the pattern of
expression between all of them (Lentjes et al., 2016).

This study focused on the Drosophila TF GATAe, which is highly
enriched in embryonic, larval and adult MTs (Wang et al., 2004;
Okumura et al., 2005). Previous studies have demonstrated that
GATAe is required for terminal differentiation of the embryonic MG
(Okumura et al., 2005; Murakami et al., 2005; de Madrid and
Casanova, 2018). In the adult MG, GATAe performs different
functions depending on the cell type. First, it is necessary for the
maintenance, differentiation and migration of the intestinal stem cells
(Okumura et al., 2016; Zhai et al., 2017; Takashima et al., 2013;
Dutta et al., 2015). In addition, GATAe is actively required to repress
MG enterocyte shedding after bacterial infection (Zhai et al., 2018).
More recently, GATAe has been shown to be involved in
transcriptional regulatory changes associated with lifespan

1

DEVELOPMENT


mailto:g.martinez-corrales.1@research.gla.ac.uk
http://orcid.org/0000-0002-3923-5902
http://orcid.org/0000-0002-9595-5146
http://orcid.org/0000-0002-6192-6558
http://orcid.org/0000-0002-6192-6558

RESEARCH ARTICLE

Development (2019) 146, dev178087. doi:10.1242/dev.178087

extension consequent to dietary restriction (Dobson et al., 2018).
However, although GATAe expression in the MG has been well
characterized, little is known about its possible MT functions, despite
the abundance of GATAe in the MTs at all developmental stages.

Here, we demonstrate crucial roles for GATAe in determining and
maintaining tubule morphology and functional capabilities by
restrictively silencing GATAe expression to PC, SC and RNSC sub-
populations in the tubule. Specific GATAe knockdown in PCs
induced uncontrolled cell proliferation and tumorous growth
throughout the MTs, impairing tubule function and significantly
decreasing stress tolerance and lifespan. Silencing GATAe
expression in SCs also affected cell survival, ultimately impacting
on hormonal control of tubule osmoregulatory functions. Finally,
GATAe is also required in RNSCs to ensure proper migration to the
MT ureter. Taken together, these observations demonstrate novel
requirements for GATAe, not only for the determination and
maintenance of individual MT cell populations but as a crucial TF
for tubule function and organismal viability.

RESULTS

GATAe is expressed in all cell types in the adult MTs

To characterize GATAe function in MTs, we employed the GAL4/
UAS binary expression system (Brand and Perrimon, 1993; Duffy,
2002) to restrictively silence gene expression in the different MT cell
populations. We first investigated the pattern of expression of GATAe
larval and adult MTs, as FlyAtlas2 data indicated that GATAe is
highly enriched in the larval and adult MTs (Leader et al., 2018). It
has been shown that GATAe-Gal4 correlates the pattern of expression
of GATAe in the adult MG (Zhai et al., 2018) and the embryonic MTs
(Kvon et al., 2014). Using two different GAT4e-Gal4 lines driving a
GFP reporter, we found GATAe expression in larval stage 3 (L3) PCs
but not in SCs (Fig. 1A), and that GATAe is present in all three types
of cells (PCs, SCs and RNSCs, Fig. 1B,C) in the adult MTs.

We then silenced GATAe expression via RNAi using GATAe-
Gal4. A flexible feature of the GAL4/UAS system is that the
phenotypes induced are temperature sensitive (Duffy, 2002). At
29°C, GATAe>GATAe RNAI induced 100% lethality shortly after
embryogenesis, phenocopying a GATAe null mutant (Okumura
et al.,, 2016). Furthermore, qPCR experiments determined that

GATAe>GATAe RNAI embryos exhibited significantly decreased
expression levels of GATAe mRNA (~40%) compared with the
control (Fig. S1A). At 26°C, GATAe>GATAe RNAI flies overcame
embryonic lethality but died during metamorphosis. In addition, at
this temperature, GATAe>GATAe RNAI pupae exhibited a smaller
size compared with the controls (Fig. S1B). Only when
GATAe>GATAe RNAL flies were allowed to develop at 18°C, did
they survive until the adult stage, but none of them survived more
than 7 days after adult eclosion.

We observed that the morphology and length of the GATAe>GATAe
RNAI adult MGs (at 18°C) is drastically shorter compared with the
parental controls (Fig. S1C,D), which correlates with previous studies
that demonstrated the vital roles of GATAe for the terminal
differentiation of the embryonic MG (Murakami et al., 2005; de
Madrid and Casanova, 2018), and for its adult maintenance (Zhai
etal.,2017,2018; Okumura et al., 2016). Curiously, we found that the
morphology of GATAe>GATAe RNAI adult MTs was also affected
(Fig. 1D), an observation that has not been previously reported.

GATAe regulates PC morphology and is required for tubule
function
We examined the effects of silencing GATAe in the MTs using
the PC-specific Gal4 line CapaR-Gal4 (Terhzaz et al., 2015), and
noticed that the CapaR>GATAe RNAi adult flies exhibited an
inflated abdomen phenotype (Fig. 2A). We performed wet-dry
weight measurements and confirmed that the increase in weight of
CapaR>GATAe RNAI flies was indeed a consequence of increased
water retention, presumably a consequence of impairment of fluid
transport in the MTs (Fig. S1F). In addition, CapaR>GATAe RNAi
flies exhibited significantly shorter lifespan compared with the
controls (Fig. 2B). We then investigated whether the tubule-specific
role of GATAe in fluid homeostasis could modulate desiccation and
starvation stress responses, and survival of the whole organism.
Indeed, their tolerance to both starvation and desiccation stresses
were significantly reduced compared with the controls (Fig. S1E).
CapaR>GATAe RNAi MTs are shorter (less than half the length
of wild-type parental MTs, Fig. S2B), thicker and with irregular
shape compared with controls (Fig. 2D and Fig. S2C). Additionally,
these MTs exhibited a significantly reduced number of cells (PCs

Fig. 1. The localization of GATAe in renal
(Malpighian) tubules of Drosophila.
(A,B) Expression of GATAe-driven GFP

in (A) L3 and (B) adult MTs stained for Ct
(red) and GFP (green), and with DAPI
(blue). White arrowheads in A indicate a
GFP~ SC. Yellow and white arrowheads in
B indicate GFP* PCs and SCs,
respectively. (C) Adult GATAe>GFP MTs
stained for DCAD (red) and GFP (green),
and with DAPI (blue). Yellow and white
arrowheads indicate GFP* PCs and
RNSCs, respectively. (D) Adult
GATAe>GATAe RNAi and GATAe RNAI/+
MTs stained for Discs Large (Dlg, labeling
septate junctions, red), CIC-a (SCs, green)
and DAPI (blue). Scale bars: 50 um.
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Fig. 2. Reduced GATAe levels in PCs affect water
homeostasis, lifespan and tubule cell morphology.
(A) CapaR>GATAe RNAI adult flies have bloated
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abdomens compared with controls. (B) Lifespans of
CapaR>GATAe RNAi flies compared with both parental
controls. Median survival times (days) are:
CapaR>GATAe RNAI, 49; CapaR/+, 89; GATAe
RNAI/+, 84. ***P<0.0001, n>100 flies.

(C,D) Immunocytochemistry of control (C) and GATAe
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and SCs combined, Fig. S2A). This striking morphological
phenotype was observed using three different UAS-GATAe RNAi
lines (described in the Materials and Methods) crossed with PC-
specific Gal4 drivers (ctB-Gal4 and CapaR-Gal4, Fig. S2A and C),
and two different GATAe-Gal4 lines (Fig. 1D). Furthermore,
CapaR>GATAe RNAIi anterior MG regions did not show any
detectable morphological defects (Fig. S3), indicating that the
phenotype observed in their MT architecture is a consequence of
GATAe knockdown specifically to the tubule PCs.

Cell-autonomous role of GATAe in principal cells

To determine a potential developmental role for GATAe, we silenced
GATAe expression in the PCs from embryonic stage 9 using ctB-
Gal4 (Saxena et al., 2014). No defects in morphology or migration
of embryonic MTs were observed (Fig. 3B,B’). Interestingly, we
obtained similar results using a null mutant line for GATAe
(GATAe™/GATAe™) (Okumura et al., 2016), reinforcing that GATAe
is not required for the embryonic development of the MTs (Fig.
S2D). In order to delineate precisely the developmental window for
GATAe function, we employed a conditional system using the
temperature-sensitive Gal80 (Gal80") construct (Pilauri et al.,
2005), combined with the CapaR-Gal4 driver. CapaR">GATAe
RNAI flies were maintained at 18°C (where Gal4 expression is
suppressed by Gal80'*) until any of the larval stages (L1, L2 or L3
stage), and then switched to 29°C (where Gal4 is activated) until
adult eclosion. The phenotype observed in these MTs phenocopied
CapaR>GATAe RNAi MTs (Fig. 3D), indicating a crucial
requirement for GATAe expression after the L3 stage. By contrast,
CapaR"*>GATAe RNAI flies raised at 29°C until L3 stage and then
switched to 18°C until adult eclosion show similar MTs compared
with controls (Fig. 3C). In addition, CapaR>GATAe RNAI flies

20 40
Days

\ ¢ 2

@ s 100 knockdown (D) using CapaR-Gal4. Merged images
show the overlay of DIg (white), CIC-a (green), phalloidin
(F-actin, red) and DAPI (cyan). White boxes outline the
regions shown at higher magnification on the right
showing the shape of a SC. Scale bars: 50 ym and 5 pm

(higher magnifications).

exhibited normal MTs until L3 stage (Fig. S4A), after which stage
MTs display strong morphological defects (Fig. S4B). These results
demonstrate that GATAe is required from L3 stage onwards, and
most probably during the pupal stage.

We then investigated whether reduced levels of GATAe in adult
PCs could induce a tubule-specific phenotype over time in adult
flies. As expected, CapaR®™>GATAe RNA: flies raised at 18°C until
the adult stage did not present any detectable structural alterations in
their MTs (Fig. SSA). These flies were then switched to 29°C and
MT morphology was examined at 7-day intervals over 28 days. Cell
shape defects and disruption of the MT architecture were observed
from 14 days after switching to 29°C (Fig. S5A), including
abnormal proliferation of RNSCs, as revealed by the expression
ofthe marker Hindsight (Bohére et al., 2018) (Hnt, Fig. SSB). These
results indicate that, while GATAe does not appear to be necessary
during embryogenesis, its expression in PCs is essential for
maintaining proper cellular morphology and integrity of the MTs
during the adult stage.

We next determined the potential cell-autonomous roles of
GATAe. A widely used technique to study clonal analysis is the
mosaic analysis with a repressible cell marker (MARCM) (Lee and
Luo, 1999) technique. However, MARCM relies on mitotic
recombination and, although it has been used to study RNSC
behavior (Bohere et al., 2018; Singh et al., 2007; Zeng et al., 2010),
this technique cannot be used in the PCs as these are a post-mitotic
cell population. To overcome this issue and analyze the effects of
clonal downregulation of GATAe in the PCs, we used the Urate
Oxidase Gal4; UAS-mCDS8:GFP fly line, which drives expression
of membrane-bound GFP in a subset number of PCs in the tubule
main segment (UrO-GFP) (Terhzaz et al., 2010), in conjunction
with the GATAe RNAI. Remarkably, UrO-GFP>GATAe RNAi MTs
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GATAe RNAI/+ ctB>GATAe RNAI

Stage 16

29°C-L3-18°C —_ |18°C-L3-29°C

display an expansion of tubule diameter exclusively surrounding the
GFP* cells (Fig. 4C,D), suggesting that GATAe is required cell
specifically. In addition, we observed several bi-nucleated cells
(Fig. S5C), suggesting an alteration in cell division.

Reduced levels of GATAe induce overproliferation of RNSCs
We also noticed that CapaR>GATAe RNAi MTs contain
significantly more cells with smaller nuclei not only in the ureters
but also in the tubule main segment compared with the controls (see
Fig. 5H for quantifications). Interestingly, these cells are positive for
Armadillo (Arm), D-Cadherin (DCAD) and Hnt (Fig. 5D,G), which
are known markers for RNSCs (Bohére et al., 2018; Singh et al.,
2012). In addition, these cells were also positive for Delta (DI")
(Fig. S5D), another known marker for RNSCs and intestinal stem
cells (Li et al., 2014).

It is acknowledged that RNSCs of adult wild-type tubules are
described as quiescent and rarely undergo division (Li et al., 2015;

GFP

UrO-GFP/+

=
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x
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Fig. 3. GATAe is not required for embryonic development of
the MTs. (A-B’) Embryos of stages 14 and 16 stained for Ct (red)
and DCAD (green). Insets are optical projections of the circled
areas. (C) Main segment of adult CapaR's>GATAe RNAI fly that
has been raised at 29°C until L3 stage and then switched to
18°C. (D) Main segment of adult CapaR's>GATAe RNA: fly that
has been raised at 18°C until L3 stage and then switched to
29°C. Scale bars: 50 pm.

Zeng et al., 2010). However, using the cell division-specific marker
phospho-histone H3 (PH3) (Micchelli and Perrimon, 2006), we
confirmed that a number of potential RNSCs observed in adult
CapaR>GATAe RNAi MTs were positive for PH3, indicating
that these are proliferative cells (Fig. S5D). Furthermore,
CapaR>GATAe RNAi MTs also contained cells that are DCAD™,
Arm~ and D17, and possess smaller nuclei than PCs, which might be
immature renal blasts (RBs, white arrows in Fig. 5G and Fig. S5D;
previously described in by Singh et al., 2007). This suggests that
these proliferative population of cells may undergo a partial
differentiation process.

GATAe modulates cancer-related gene expression

Several cancers are caused by the failure to control proliferation and
differentiation of stem cell populations (Reya et al., 2001; Parvy
et al., 2018). Given the apparent increase in RNSCs and RBs in
CapaR>GATAe RNAi MTs, we investigated the level of expression

Fig. 4. Silencing GATAe in PCs using
UrO-GFP. Comparison between control
(A,B) and GATAe knockdown (C,D)
adult female MTs stained with DIg (red),
GFP (green) and DAPI (blue). B and D
are magnifications of the boxed regions
in A and B, respectively. Scale bars:
100 ym in A and C; 20 ym in B and D.
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GATAe RNAIi/+ CapaR>GATAe RNAi

Fig. 5. GATAe knockdown induces
proliferation of RNSCs. (A-F)
Comparison of control (A-C) and
CapaR>GATAe RNAI (D-F) adult MTs
stained for Arm (red) and with DAPI
(blue). B,E,F are magnifications of the
boxed regionsin Aand D; Cis a
magnification of a region of the main
segment that is not present in A.

(G) Magnification of CapaR>GATAe
RNAI adult main segment stained for
DCAD (green) and Hnt (red), and with
DAPI (blue). This region is filled with
undifferentiated RNSCs, which are

E ﬂ
Gt H e “ »

Hnt'cells

Arm* cells

DCAD* and Hnt*, and RBs, which are
DCAD™ and Hnt~ (white arrowhead).
(H) Hnt* (left) and Arm™ (right) cell
number quantifications of
CapaR>GATAe RNAIi and control
regions of lower tubules (representative
50 ym? regions are shown in yellow
squares of B and E). CapaR>GATAe

%
: RNAI lower tubules exhibit a significant

©® GATAe RNAI/+

B CapaR>GATAe RNAi

increase in the number of Arm* cells and
Hnt* cells compared with controls. Data
for Hnt* cells are: GATAe RNAI/+,

n= 13

Il CapaR>GATAe RNAi
Il GATAe RNAi/+
[ CapaRl+

relative mRNA levels

9.07+0.62, n=14; CapaR>GATAe RNA|,
14.4+0.84, n=15 (meanzs.e.m.). Data
for Arm* cells are: GATAe RNAI/+,
5.71+0.56, n=13; CapaR>GATAe RNAI,
16.64+1.54, n=13 (meants.e.m.).
***P<0.001, Student’s t-test, two-tailed.
Scale bars: 50 ym for A and D; 20 ym for
B,C,E-G. (I) Relative mRNA levels of
different key genes involved in cancer
and apoptosis. *P<0.05, Student’s t-test,
two-tailed.
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of genes involved in cell proliferation and tumorigenesis: Ras
Oncogene at 85D (Ras85D) and warts (wts) (Ren et al., 2010); and
downstream apoptosis-related effectors: death-associated Inhibitor
of Apoptosis 1 (Diapl), Buffy and death executioner bcl2 (Debcl)
(Terhzaz et al., 2010; Goyal et al., 2000). GATAe knockdown MTs
exhibit a significant upregulation of Diapl and the Ras85D
expression (2.5- and 3-fold increase, respectively). By contrast,
downregulation of Debcl and wts (0.7- and 0.6-fold decrease,
respectively) were observed (Fig. 5I). However, no significant
difference in Buffy expression levels was measured in tubules with
reduced GATAe levels. Additionally, these MTs also exhibited a
strong upregulation of Adenosylhomocysteinase like 1 (AhcyLl)
(~5-fold increase, Fig. 5I), a gene involved with methionine
metabolism and recently shown to be involved in the control of
Drosophila lifespan (Parkhitko et al., 2016).

We also found that the morphological phenotypes observed in
CapaR>GATAe RNAi MTs are strikingly similar to previously
reported defects induced by constitutive activation of Ras signaling
(Zeng et al., 2010). Given that CapaR>GATAe RNAi MTs induced
upregulation of Ras85D, we investigated whether activating Ras
signaling in the PCs would induce similar morphological
abnormalities. Interestingly, inducing a constitutively activated
form of Ras85D (Wu et al., 2010) in the PCs (CapaR>Ras""?)
resulted in highly similar tubule defects to CapaR>GATAe RNAi
flies (Fig. S6A). However, silencing both GATAe and Ras signaling

[by the induction of Ras85D RNAi (Slack et al., 2015) or the
dominant-negative form of Ras85D, Ras™'” (Lee et al., 1996)] did
not rescue the tubule phenotype of GATAe knockdown (Fig. S6B),
suggesting that other signaling pathways might be involved in the
control of MT morphology. Altogether, these results indicate that
GATAe directly or indirectly regulates the expression of several
tumor-related genes in the MTs.

GATAe is required for stellate cell maintenance

To determine whether GATAe is necessary in the other secretory
cells present in tubule main and initial segments, we silenced
GATAe expression in SCs using a SC-specific GAL4 driver
(CIC-a-Gal4; Cabrero et al., 2014). This resulted in a significant
reduction in the number of SCs (~11 cells in CIC-a>GATAe
RNAi compared with ~23 cells in control tubules, Fig. 6C).
Surprisingly, these cells appeared localized to the initial segment of
the MTs (Fig. 6B). We next investigated whether this reduction
of SCs could impact on fluid secretion in isolated MTs (Dow et al.,
1994). Data in Fig. 6D show that, although the basal secretion rates
for CIC-a>GATAe RNAi MTs were not altered, fluid secretion
rates were significantly reduced compared with the controls
when MTs were stimulated with the diuretic neurohormone Kinin
acting only in SCs (Terhzaz et al., 1999). These data demonstrate
that the osmoregulatory MTs function is compromised in GATAe
knockdown SCs.
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CIC-al+ CIC-a>GATAe RNAi

Fig. 6. Silencing GATAe in SCs induces
reduced number of SCs and lower fluid
secretion rates. (A,B) Immunocytochemistry of
adult (A) control and (B) CIC-a>GATAe RNAI
GATAe MTs stained for CIC-a (green) and DAPI
(blue). Scale bars: 200 ym. (C) SC number
quantifications of adult female MTs (mean
ts.e.m.) are: CIC-al+, 23.86+4.6, n=42; GATAe
RNAI/+, 23.24+3, n=25; CIC-a>GATAe RNAI,
11.04+3.8, n=45. *P<0.05. (D) Fluid secretion
rates (nl min~") of GATAe knockdown
Malpighian tubules. Drosophila kinin (10~ M)

was added at 30 min (arrow). *P<0.05,
Student’s t-test, two-tailed.
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Curiously, this depletion of the SC population in CIC-a>GATAe
RNAi MTs is apparently not a developmental defect; cell counts of
SCsin CIC-a>GATAe RNAi MTs of L3 stage (Fig. S7E), although
slightly reduced compared with controls, were significantly higher
when compared with the number of SCs in the adult stage
(Fig. 6C). Furthermore, SCs in CIC-a>GATAe RNAi L3 MTs
stage were located in a regular pattern along the tubule (Fig. S7E),
and do not mimic the phenotype of abnormal intercalation of SCs
in the embryonic tubule (Campbell et al., 2010; Gautam and
Tapadia, 2010; Denholm et al., 2003). Notably, the controls
showed a low but still significant reduction of CIC-a* cells in the
L3 stage when compared with the adult stage. CIC-a antibody also
stains the cells in the enlarged initial segment known as bar cells in
the adult stage (Fig. 6A). However, these cells do not seem to
express ClC-a in the L3 stage (Fig. S7B,D). Thus, these data
demonstrate that GATAe is required in the SCs for their survival
and MT function at the adult stage, but it is not necessary for SC
integration during embryogenesis.

Migration of the RNSCs to the MTs requires GATAe

Previous work has shown that the RNSCs migrate from the posterior
MG and invade the ureters of MTs during metamorphosis, and that
GATAe is required for the migration of these cells from the hindgut
proliferation zone to the anterior MG (Takashima et al., 2013).
Therefore, we employed the esg-Gal4 driver, which is known to be
expressed in all the RNSCs before and during their migration to the
MTs (Takashima et al., 2013), combined with the Gal80" construct
recombined with GFP (esg-GFP") to assess whether GATAe is
required for the migration of the RNSCs to the MTs. MTs from esg-
GFP®>GATAe RNAI flies raised at 18°C and then transferred at
29°C at L3 stage were examined post-eclosion. Even though these
MTs displayed a complete loss in the RNSC population (Fig. 7A’,
D), no further morphological defects were seen in this organ. When
esg-GFP*>GATAe RNAI flies were transferred from 18°C to 29°C
24 h or 48 h after puparium formation (APF) where the RNSCs are
partially present in the ureter (Takashima et al., 2013), they

displayed a normal localization of RNSCs in their MTs (Fig. 7B’),
but were significantly reduced in number compared with the
controls (Fig. 7D). Furthermore, esg-GFP*>GATAe RNAI switched
at 29°C 1 day post-eclosion did not result in any significant
alteration of the pattern of RNSCs up to 20 days at the permissive
temperature (Fig. 7C’). Strikingly, cell quantifications confirmed
that the number of RNSCs in the ureters and lower tubules is only
significantly reduced when GATAe is silenced in this cell type
during metamorphosis (Fig. 7D). Thus, these data indicate that
GATAe is required for the migration or survival of this population of
RNSCs during metamorphosis, but not for their maintenance in the
adult stage.

DISCUSSION

In this study, novel functions for GATAe in Drosophila MTs have
been identified. First, GATAe is crucial in the PCs from
metamorphosis to maintain the correct architecture and cell
proliferation in the adult tubule. Second, GATAe is required in the
SCs for their survival, with loss of GATAe resulting in a reduction in
SC population and MT secretory function, presumably owing to a
reduction in the overall SC population. Finally, GATAe is necessary
for the early migration of the RNSCs from the MG to the MTs
during metamorphosis.

GATAe is required from the pupal stage in principal cells

GATAe loss in the PCs promotes morphological defects and
uncontrolled proliferation and migration of RNSCs to more distal
regions of the MTs. This organ persists from embryonic development
throughout metamorphosis. However, during metamorphosis they
still undergo tissue remodeling, initially shrinking by half their length
and then elongating before eclosion (Denholm, 2013; Wessing and
Eichelberg, 1979). Several factors have been shown to modulate
changes in MT structure and function during this period, like the
tumor suppressors salvador and Scribbled, which have been
implicated in the regulation of the RNSCs (Zeng et al., 2010).
In line with the hypothesis of metamorphosis as a critical juncture in

6

DEVELOPMENT


http://dev.biologists.org/lookup/doi/10.1242/dev.178087.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.178087.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.178087.supplemental

RESEARCH ARTICLE

Development (2019) 146, dev178087. doi:10.1242/dev.178087

18°C - L3 - 29°C 18°C - P24- 29°C 18°C-A-29°C

i,.
2
iy
)
2
w

Fig. 7. GATAe knockdown in RNSCs induces migration
defects. Immunocytochemistry of adult ureters in which
GATAe was silenced using the esg-GFP' driver. (A,A’)
Flies were raised at 18°C until L3 stage, and then switched
to 29°C. (B,B’) Flies were raised at 18°C until 24 h APF and
then transferred to 29°C. (C,C’) Esg-GFP'*>GATAe RNAI
flies that were raised at 18°C until adult eclosion and then
switched to 29°C for 20 days. Scale bars: 100 um. (D)
Quantifications of RNSCs (Esg*) in 7-day-old adult ureters
of esg-GFP's>GATAe RNA: flies that have been transferred
from 18°C to 29°C at L3 stage (green), 24 h APF (orange),
48 h APF (purple) or 1 day after adult eclosion (blue). Data
for cells are (meants.e.m.): ctrl 29°C, 310.9+£14.6, n=14;
18-A-29°C, 283.7+21.8, n=10; 18°C-L3-29°C, 3.54+3.5,
n=11; 18°C-24 h APF-29°C, 109.5+14.1, n=10; and 18°C-
48 h APF-29°C, 129.6+21.7, n=12. ***P<0.0001 versus
the control (ctrl 29°C, which refers to 7-day-old female
esg-GFP's flies raised at 29°C at all times; Student’s t-test,
two-tailed); ns=not significant (P>0.05).
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the determination of the MT development, our data show that GATAe
expression is required only from the pupal stage with no apparent
requirement before this stage. In addition, the morphological defects
of GATAe knockdown tubules phenocopied MTs with constitutive
activation of Ras signaling either clonally (Zeng et al., 2010) or in the
PCs (shown in this study). Upregulation of Ras85D gene expression
in GATAe knockdown tubules indicates that GATAe could coordinate
growth by regulating Ras pathway signaling. However, our data also
suggest that GATAe could do so through alternative pathways, which
deserve further investigation.

We demonstrated that GATAe requirement in the PCs is tissue-
autonomous, as expression of GATAe RNAI driven by UrO-Gal4:
GFP was enough to induce tumorous growth in the regions in and
surrounding the GFP' areas, indicating that GATAe can act
autonomously and non-autonomously. Interestingly, these tubules
did not show any obvious over-proliferation or presence of RNSCs,
suggesting that tumorous growth is induced independently of any
pathway that may produce RNSC overproliferation. Our data also
show that GATAe appears necessary for regulation of factors such as
Debcl or Diapl, which are known to regulate cell proliferation and
homeostasis in a variety of tissues, including the MTs (Bohere et al.,
2018; Ren et al., 2010; Terhzaz et al., 2010). A previous study has
shown that Diapl is expressed in the RNSCs to ensure their
survival, a process that is regulated by the Hippo pathway and
shavenbaby (ovo — FlyBase) (Boheére et al., 2018). We hypothesize
that signals from the PCs could be required for the control of this cell

population by regulating Diap1, and that GATAe could be involved
in this signaling from the PCs to the RNSCs. Finally, GATAe
regulates adult maintenance of the MTs.

The implication of GATAe in the maintenance of SC and
RNSC population
The SC population undergoes mesenchymal-to-epithelial transition
and integrates into the MTs during stage 13 of embryonic
development; by stage 15, they are completely intercalated in
specific regions of both anterior and posterior tubules (Denholm
et al., 2003; Sozen et al., 1997). This process is dependent on
multiple factors, such as hibris and serpent (orthologs of human
nephrin and GATA1, respectively; Artero et al., 2006), the activity
of the tiptop and teashirt (Denholm et al., 2013), and ecdysone
signaling (Gautam and Tapadia, 2010). In addition, we show that
the SCs also require GATAe for their survival through
metamorphosis, as the number and localization of SCs are
significantly decreased in tubules with reduced GATAe levels.
Curiously, the shape of the remaining SCs is not altered when
compared with wild-type tubules. These findings suggest that
GATAe performs a different function from feashirt, which
determines the proper shape and physiology of the SCs during
pupariation (Denholm et al., 2013).

The RNSC population migrates from the MG to the MTs during
metamorphosis, and several factors are required for its migration
and survival, such as Racl or shavenbaby, or members of the Hippo
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pathway (Bohere et al., 2018; Takashima et al., 2013; Zeng et al.,
2010). We show here that GATAe has a potential role in RNSC
migration, as depletion of GATAe in this cell population induced a
migration defect, leading to a few or no RNSCs in adult MTs.
Strikingly, a similar phenotype was observed employing a
dominant-negative form of Racl (Takashima et al., 2013). This,
together with our findings indicating no alteration in the RNSC
population when G4ATAe was silenced from the adult stage, strongly
suggest that GATAe could be required for RNSC migration rather
than adult survival. The role of GA7Ae in the RNSCs contrasts with
its function in the adult MG intestinal stem cells as GATAe is
necessary for their maintenance (Okumura et al., 2016). This
provides more evidence of the different functions of this TF,
depending on its cellular context. However, unlike RNSCs,
intestinal stem cells exhibit high division rates (Ohlstein and
Spradling, 2007; Okumura et al., 2016), masking a possible subtle
role for GATAe in regulating RNSC mitosis or proliferation.
Therefore, it would be compelling for future investigations to
explore whether GATAe could also be involved in regulating
standard division rates and stemness of RNSCs.

The evolutionary conservation of GATA factors in relation to
cancer

Our data indicate that knockdown of GATAe in PCs results in
abnormal expression of different cancer and apoptosis-related genes
in the adult Drosophila MTs. Our findings are in line with data from
human GATA factors, which showed that GATA factors can act
both as tumor suppressors or as oncogenes (Rodriguez-Bravo et al.,
2017; Hellebrekers et al., 2009; Zheng and Blobel, 2010; Peters
et al., 2014b).

We demonstrated that GATAe performs entirely different
functions in each tubule cell-type, a behavior that has been
previously reported for GATAe in the adult MG (as mentioned in
the introduction). These divergent functions of one gene dependent
on its cellular context also take place with human GATA factors;
outside its hematopoietic functions, GATA3 has been linked to
diverse types of human cancers. For example, GATA3 is a
recognized indicator of breast cancer, and it has been shown that
its expression is sufficient to stop tumor dissemination in breast
cancers (Kouros-Mehr et al., 2008). However, GATA3 can also
induce carcinogenesis in lymphoid precursor cells and converts
double-positive thymocytes into a premalignant state (Nawijn et al.,
2001; van Hamburg et al., 2008).

Further potential evolutionary conserved interactions in the
GATA family can be concluded from our study. Our data
demonstrate that low levels of GATAe reduce the expression of the
proapoptotic gene Debcl, which is associated with the proliferation
defects observed. Interestingly, interactions between GATA factors
and members of the bcl-2 family have been reported. In vertebrates,
GATAL also interacts with Bel-x to ensure the survival of erythroid
cells (Gregory et al., 1999). In addition, GATA4 directly binds to
another member of the Bel family, Bcl2 (Kobayashi et al., 2006;
Aries et al., 2004; Kobayashi et al., 2010), to induce cell survival
due to drug-induced toxicity in the heart. We hypothesize that, in
Drosophila, an interaction between GATA factors (GATAe) and bcl-
2 members (Debcl) also occurs for MT homeostasis. Further
experimentation would be required to elucidate the precise
relationship between GATAe and Debcl in Drosophila.

Our findings demonstrate that MTs require expression of specific
genes in all the three different cell types to ensure their correct
architecture, maintenance and function in the adult stage. Our
results reveal that GATAe plays a vital role in maintaining the adult

homeostasis of the MTs, possibly acting as a tumor suppressor gene.
They also show that the diverse roles of GATAe are highly
dependent on the cellular context, in a similar way to its human
counterparts. A model of the functions of GATAe in the three
different cell types of the MTs is presented in Fig. 8. This model
integrates the diverse roles of GATAe in all three MT cell types (PCs,
SCs and RNSCs), although further investigation is required to
identify those specific signaling pathways that interact with GATAe
in these particular cellular contexts. To summarize, our findings
provide a context for how abnormal cellular states may occur in
different cell types of the same tissue and establish further
homologies between insect and human GATA factors. Altogether,
they provide evidence for the mechanisms of tissue homeostasis and
tumor suppression that can be conserved throughout evolution.

MATERIALS AND METHODS

Fly stocks

Flies were maintained on a standard medium at 22°C, 55% humidity with a
12:12 h light:dark photoperiod. Unless otherwise specified, wild-type
Canton-S (CS) flies crossed with both parental transgenic lines were used as
controls. GATAe-Gal4 lines were obtained from Vienna Drosophila RNAi
Centre [VDRC, #209818 and #205372 (Zhai et al., 2018; Kvon et al., 2014)]
and both GATAe-Gal4 lines exhibited identical pattern of expression in MG
and MTs. GATAe RNAI lines were obtained from VDRC (#10420, #10418;
Takashima et al., 2013; Okumura et al., 2016), and the Bloomington
Drosophila Stock Centre (BDSC, #33748; Okumura et al., 2016; Dutta
etal., 2015; Dobson et al., 2018). All experiments using GATAe RNAI lines
were performed using the construct #10420, except in Fig. S2, in which
#33748 was employed. Lines used were: CapaR-Gal4, described by Terhzaz
et al. (2012), CapaR-Gal4; Tub-Gal80™(CapaR®) and UAS-mCDS8.GFP;
UrO-Gal4, described by Terhzaz et al. (2010); CIC-a-Gal4 (VDRC,
#31124); and ctB-Gal4, a gift from Dr Barry Denholm (University of
Edinburgh, UK; Saxena et al., 2014). Esg-Gal4.UAS:GFP/Cyo;
TubGal80™/TM6B (Esg-GFP') (Micchelli and Perrimon, 2006) was a
gift from Dr Julia Cordero (University of Glasgow, UK), and the mutant line
GATAe /TM3,Ser (Okumura et al., 2016) was a gift from Prof. Takashi
Adachi-Yamada (Gakushuin University, Tokyo, Japan).

Fixation and immunostaining
For embryo collection, adult females were allowed to lay eggs on grape juice
agar plates for 9-24 h at 29°C. Embryos were collected and dechorionated in
a fresh solution of 50:50 bleach and double-distilled H,O for exactly 2 min
and then washed thoroughly with double-distilled H,O. Using a fine brush,
the embryos were subsequently transferred to 2 ml of heptane and 2.25 ml of
4% formaldehyde in PBS (Thermo Fisher #12549079) was added. Embryos
were left for 20 min on a shaker to allow fixation. The lower aqueous phase
was then gently removed, and 2 ml of a fresh solution of methanol (100%)
was added, and the sample gently shaken for 20 s. Devitellinized embryos,
which appeared in the methanol phase, were collected and placed in
methanol (100%) before being processed for immunocytochemistry.
Larval, pupal and adult (5-day-old adult female flies unless otherwise
specified) tubules were dissected in PBS and fixed with 4%
paraformaldehyde for 20 min at room temperature. The following primary
antibodies and dilutions were used: mouse anti-Ct (DSHB, 1/100), mouse
anti-Dlg (DSHB, 1/500), mouse anti-DI (DSHB, 1/50), mouse anti-Arm
(DSHB, 1/100), rat anti-DCAD, (DSHB, 1:200), rabbit anti-C1C-a (Cabrero
et al., 2014; 1/100), rabbit anti-GFP (Life Technologies, 1/1000) and rabbit
anti-PH3 (Cell Signaling Technologies, Ser/0, 1/1000). Incubations with
the primary antibodies were performed overnight at 4°C. The following
secondary antibodies were used: Alexa Fluor 546-conjugated goat anti-
mouse (Thermo Fisher Scientific, 1/1000) and Alexa Fluor 488/633-
conjugated goat anti-rabbit (Thermo Fisher Scientific, 1/1000). Other
markers used included: DAPI (Sigma-Aldrich, 1 pg/ml) and rhodamine-
coupled phalloidin (Thermo Fisher Scientific, 1/100). All samples were
mounted in Vectashield (Vector Laboratories). Confocal images were
captured using a Zeiss LSM 880 AxioObserver microscope (Zeiss,
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Fig. 8. Proposed model for the function of GATAe in the MTs. (A) Regulatory interactions of GATAe in the three different cell types of the MTs: PCs (gray), SCs
(green) and RNSCs (yellow). T-bar indicates possible inhibition of gene expression. Dotted arrows indicate interaction through unknown pathways. In SCs,
GATAe is required for their survival. In PCs, GATAe is required for the proper architecture of the MTs possibly through Ras signaling and other unknown pathways.
GATAe is also necessary in the PCs to ensure normal proliferation of RNSCs through the activity of Diap7 and Debcl. In addition, GATAe is required in RNSCs for
their migration to the ureters during metamorphosis. (B) GATAe knockdown in the PCs impacts tubule growth, possibly through Ras signaling and other unknown
pathways, and induces RNSCs proliferation. (C) Silencing GATAe in SCs is associated with a reduction of SC number. (D) GATAe is required in prospective
RNSCs at L3 stage for their migration to the ureters. Reduced levels of GATAe in this larval stage induces a complete abolition of RNSCs in the adult ureters and

lower tubule.

Oberkochen, Germany) and processed with Zeiss ZEN software and Adobe
[llustrator CSS5.1.

Quantitative RT-PCR

qRT-PCR amplifications were performed from adult female Malpighian
tubules and embryos (12-14 h after egg laying). cDNA was synthesized
from 500 ng total RNA using SuperScript II RT (Thermo Fisher Scientific),
following the manufacturer’s instructions. qRT-PCR was performed on an
ABI StepOnePlus Detection System (Applied Biosystems) using Brilliant
1II Ultra-Fast SYBR Green QPCR Master Mix (Agilent), with the following
primers: GATAe forward, 5-ACCGCTGTCGATGAAGAAGG-3' and
reverse, 5'-GGACTGGAATTCTGCTGGCT-3"; Diapl forward, 5'-CGT-
GGTGCGATAAGAGGTGA-3’ and reverse, 5'-TTGAATAGCTGGGTC-
GCGTT-3'; Ras85D forward, 5'-GCAAGAGAGGTGGCCAAACA-3" and
reverse, 5'-TCGGCTTGTTCATTTTGCGG-3'; wts forward, 5'-AGCCG-
ACAATAACTGGGTGG-3" and reverse, 5'-CGAGTGATTGCCGTTCT-
CCT-3’; RpL32 forward, 5’-TGACCATCCGCCCAGCATAC-3’ and
reverse, 5'-ATCTCGCCGCAGTAAACG-3’, Debcl forward, 5'-TTTTTC-

GCTCCAGCATCACC-3’ and reverse, 5'-CGTCAATCCCAAGAACG-3';
Aheyll  forward, 5'-GGCGAGACGGAAGAGGACT-3" and reverse,
5'-AGAGAGCTGATAGAGACGGTG-3'; Buffy forward, 5'-GCCACAC-
TACATTCCGCATCAC-3’ and reverse, 5'-ATTCATCGCCCAGCACTTC-
3’. Data were normalized against the rp/32 standard and expressed as fold
change compared with controls+s.e.m. (n=3).

Lifespan and stress assays

For lifespan assays, adult female flies were kept on standard medium in
groups of 30, transferred to fresh food every 2 days and were counted daily
until no living flies remained. For starvation assays, 7-day-old female flies
were anaesthetized on ice and placed in groups of 20 in 30 ml cotton-capped
glass vials containing 1% aqueous agarose only. Vials were checked for dead
flies every 4 h until no living flies remained. For desiccation experiments, the
same protocol was followed, except that the vials were empty (no food or
water), and the open end of the tube was sealed with parafilm (Bemis). Vials
were checked every 2 h until no living flies remained. All experiments were
run in triplicate with at least 30 flies in each run of specified genotype. All

9

DEVELOPMENT



RESEARCH ARTICLE

Development (2019) 146, dev178087. doi:10.1242/dev.178087

vials were placed in an incubator at 22°C, 55% humidity with a 12:12 light:
dark photoperiod. Survival data has been expressed as % survivalts.e.m.

Gravimetric estimates of body water

Body weight measurements of CapaR>GATAe RNAI flies were performed
as described previously (Cabrero et al., 2014). Briefly, the weight of total
body water was calculated by subtracting dry weight from wet weight.
Experiments were run in triplicate with at least 30 flies of each genotype
(n>90 flies for the three genotypes).

Malpighian tubule secretion assays

Secretion assays were performed as described previously (Dow et al., 1994).
Basal and neuropeptide-stimulated secretion rates were measured every
10 min. After 30 min of baseline readings, the peptide Drosophila kinin was
added at a concentration of 10~7 M, and secretion rates were measured every
10 min for 30 more min. At least seven tubules were used for each condition.
Data were plotted as means.e.m.

Data analysis

For mRNA level quantification or fluid secretion analysis, a two-tailed
Student’s #-test, taking P=0.05 as the critical value (for each independent
group) were used. For wet- and dry-weight measurements, two-way
ANOVA was used to compare each condition. P values were adjusted
using the Sidak multiple comparisons test. For survival curves obtained in
lifespan, starvation and desiccation assays, significance was assessed by the
log-rank (Mantel-Cox) test. For cell counting experiments, significance was
assessed comparing each column using a two-tailed Student’s r-test,
incorporating Welch’s correction. All statistical analysis was performed
using GraphPad Prism 7.0 software (GraphPad Software).
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