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Abstract

In recent years we have witnessed substantial ad-
vances in the mathematical modelling of the biome-
chanical processes underlying the dynamics of the
cardiac soft-tissue. Gao et al. (2017) demonstrated
that the parameters underlying the biomechanical
model have diagnostic value for prognosticating the
risk of myocardial infarction. However, the computa-
tional costs of parameter estimation are prohibitive
when the goal lies in building real-time clinical de-
cision support systems. This is due to the need to
repeatedly solve the mathematical equations numer-
ically using finite element discretization during an
iterative optimization routine. The present article
presents a method for accelerating the inference of the
constitutive parameters by using statistical emulation
with Gaussian processes. We demonstrate how the
computational costs can be reduced by about three
orders of magnitude, with hardly any loss in accu-
racy, and we assess various alternative techniques in
a comparative evaluation study based on simulated
data obtained by solving the left-ventricular model
with the finite element method, and real MRI data
for a human volunteer.
Keywords Left ventricular mechanics, Holzapfel-
Ogden strain energy function, constitutive parame-
ters, finite element discretization, simulation, emula-
tion, Gaussian processes, parameter estimation, opti-
mization.

1 Introduction

Mathematical modelling in cardiac physiology, re-
viewed for instance in Loret and Simoes (2016), is a
topical research area that promises to substantially
advance early diagnosis of ventricular dysfunction

and risk of myocardial infarction. In recent years,
there have been substantial advances in the devel-
opment of realistic multiscale mathematical models,
linking the properties of individual cells and fibres to
the soft-tissue mechanical processes in the heart; see
e.g. Holzapfel and Ogden (2018) for details. However,
a considerable challenge is to infer the biophysical pa-
rameters that determine the mechanical properties of
the tissues and fibres non-invasively from magnetic
resonance images (MRI). In principle, this is achieved
by comparing strains extracted from the MRI scans
with those predicted from the mathematical model,
quantifying the mismatch with an objective function,
and applying multivariate optimization algorithms to
find the parameters that minimize this function. In a
recent proof-of-concept study (Gao et al., 2017) based
on the constitutive model of passive myocardium pro-
posed in Holzapfel and Ogden (2009), we success-
fully applied this approach to a population of 11 pa-
tients suffering from myocardial infarction (MI, com-
monly known as heart attack) and 27 healthy con-
trols. Building a Gaussian process classifier in a six-
dimensional biophysical parameter space, we achieved
an out-of-sample sensitivity of 75% and specificity of
95% (Gao et al., 2017). The results demonstrate the
diagnostic value of these parameters for clinical de-
cision making. Unfortunately, the method does not
immediately lead to a decision support tool for the
clinical practice. The reason is that the soft-tissue
mechanical equations have no closed-form solution
and require a numerical procedure based on finite-
element discretization (Rao, 2018), typically using
programs like ABAQUS or Ansys, which even on
a high-performance parallel computer cluster takes
several minutes of CPU time. This procedure has
to be repeated hundreds or thousands of times dur-
ing the numerical optimization of the objective func-
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tion, leading to computer run times of several days or
weeks.

To deal with the high computational complexity
and make progress towards a clinical decision sup-
port system that can make predictions in real time,
recent research efforts have focused on statistical em-
ulation (e.g. Kennedy and O’Hagan (2001); Conti
et al. (2009); Conti and O’Hagan (2010)), which has
recently been explored in the closely related contexts
of cardiovascular fluid dynamics (Melis et al., 2017),
the pulmonary circulatory system (Noè et al., 2017)
and ventricular mechanics (Achille et al., 2018). The
idea is to approximate the computationally expen-
sive mathematical model (the simulator) with a com-
putationally cheap statistical surrogate model (the
emulator) by a combination of massive paralleliza-
tion and nonlinear regression, so as to exploit com-
putational resources before the patient arrives at the
clinic. Starting from a space-filling design in parame-
ter space, the underlying partial differential equations
are solved numerically with finite element discretiza-
tion on a parallel computer cluster, and methods from
nonparametric Bayesian statistics based on Gaussian
processes (Rasmussen and Williams, 2006) are ap-
plied for multivariate smooth interpolation. When
new data become available, e.g. in the form of MRI
scans, the resulting proxy objective function can be
minimized at low computational costs, without the
need for any further computationally expensive sim-
ulations from the original mathematical model.

The present article follows up on a recent proof-
of-concept study that explored the application of
univariate-output Gaussian processes (GPs) in the
context of emulating left-ventricular cardiac dynam-
ics (Davies et al., 2019). We extend this work with
a more realistic emulator that allows for spatial cor-
relations between strains at different positions in the
LV wall, using multivariate output GPs, an extended
comparative analysis with different emulations strate-
gies, and a quantification of the efficiency versus accu-
racy trade-off in comparison with standard numerical
procedures for the original mathematical model. Our
article is structured as follows. Section 2 provides an
overview of the biomechanical model of the left ven-
tricle (LV) dynamics. Section 3 gives an overview
of the statistical methodology used, focusing on a
comparison between the concepts of simulation and
emulation. Section 4 compares different emulation
strategies. Section 5 describes how we have applied
the different emulation frameworks to the inference
of the constitutive parameters of the LV. Section 6
describes the data used in our study. The results of
our comparative performance assessment and the ap-
plication to cine MRI data is presented in Section 7.
Section 8 concludes with a discussion and an outlook
on future work.

Figure 1: LV wall boundary segmentation
from in vivo MR images of a healthy volun-
teer at early-diastole when the MV just opens.
Red: epicardial boundary, blue: endocardial bound-
ary. The first two rows are short-axis cine images
from the base to apex, and figures in the last row are
long-axis cine images.

2 Biomechanical Model of Left
Ventricular Dynamics

The starting point of biomechanically modelling LV
dynamics is the reconstruction of the LV geometry
at early-diastole, as shown in Figures 1–2 and de-
scribed in more detail in Section 6.2. Experimen-
tal studies have demonstrated that myocytes orga-
nize in a highly layered architecture, rotating contin-
uously from endocardial to epricardial surfaces (Fig-
ure 2(b)). To describe the myofibre architecture, a
local material coordinate system fibre (f)-sheet (s)-
normal (n) (LeGrice et al., 1995) is defined as shown
in Figure 2(c). In brief, myofibres (f) are assumed to
rotate from -60◦ in the endocardial surface to 60◦ in
the epicardial surface, shown in Figure 2(b). These
myocytes (usually 4–6) form a sheet plane, which is
orthogonal to f , a unit vector within the sheet plane
is then defined, s, for the sheet direction and rotates
from -45◦ to 45◦ from endocardium to epicardium.
Accordingly, n is the sheet normal. A rule-based
fibre-generation method is used to define the f -s-n
system. Refer to Gao et al. (2014b) for more details
on LV model construction from in vivo MR imaging.

Constitutive modelling of passive myocardium has
progressed from isotropic linear material to nonlin-
ear and fibre-reinforced laws by considering the in-
trinsic structural information. In this study, we use
the incompressible invariant-based constitutive law

2



Figure 2: The biomechanical LV model recon-
structed from in vivo MR images at early-
diastole from a healthy volunteer. (a) the LV
mesh with 25,933 nodes and 133,042 tetrahedron el-
ements, r is the transmural direction, l is the longi-
tudinal direction from the apex towards the centre of
the LV base, and c is the circumferential direction;
(b) a schematic illustration of myofibre (myocyte) ro-
tation from endocardium to epicardium; (c) a local
f − s− n material coordinate system.

(Holzapfel and Ogden, 2009), namely the HO law,

Ψ =
a

2b
{exp[b(I1 − 3)]− 1}

+
∑

i∈{f,s}

ai
2bi
{exp[bi(I4i − 1)2]− 1}

+
afs
2bfs

[exp(bfsI
2
8 fs)− 1],

(1)

in which q = (a, b, af, bf, as, bs, afs, bfs) are unknown
material parameters, I1, I4i, and I8fs are the invari-
ants,

I1 = trace(C), I4f = f0 · (Cf0),

I4s = s0 · (Cs0), I8fs = f0 · (Cs0), (2)

in which f0 and s0 are the myofibre and sheet orienta-
tions in the reference configuration, which are known
before the simulations. C = F>F, and F is the de-
formation gradient

F = I +
∂u

∂X
, (3)

where I is the identity matrix, u is the displacement
vector, and X is the position in the reference config-
uration.

We further decompose the deformation gradient F
into volumetric (Fvol) and isochoric (F̄) parts, that is

F = F̄Fvol , Fvol = J
1
3 I , F̄ = J−

1
3 F

where J = det(F), and the modified right Cauchy-
Green tensor is

C̄ = J−
2
3 C.

In the same way, the modified strain invariants
(shown with over bar) now are defined using C̄ in-
stead of C. Thus the strain energy function in (1)
can be rewritten in terms of modified strain invari-
ants in the form

Ψ =
a

2b
{exp[b(Ī1 − 3)]− 1}

+
∑

i∈{f,s}

ai
2bi
{exp[bi(Ī4i − 1)2]− 1}

+
afs
2bfs

[exp(bfsĪ
2
8 fs)− 1] +

1

2
K(J − 1)2

(4)

where the term 1
2K(J − 1)2 accounts for the incom-

pressibility of the material, and K is a constant bulk
modulus (106 Pa). The second Piola-Kirchoff stress
tensor (S) can be derived from Equation (4) as

S = 2
∂Ψ

∂C
= K(J − 1)JC−1 (5)

+ a exp[b(Ī1 − 3)] (J−
2
3 I− 1

3
Ī1C

−1)

+ 2af(Ī4f − 1) exp[bf(Ī4f − 1)2] (f̄0 ⊗ f̄0 −
1

3
Ī4fC

−1)

+ 2as(Ī4s − 1) exp[bs(Ī4s − 1)2] (s̄0 ⊗ s̄0 −
1

3
Ī4sC

−1)

+ afsĪ8fs exp[bfsĪ
2
8fs] (s̄0 ⊗ f̄0 + f̄0 ⊗ s̄0 −

1

3
Ī8fsC

−1),

and the Cauchy stress is

σ =
1

J
FSF>.

The boundary value problem for the LV dynamics
to be solved in the current configuration is

∇ · σ + b = 0 in Ω

σ · n = t in ΓN

u = u0 in ΓD

(6)

where b is the body force density per unit volume, n
is the normal direction of ∂Ω, t is the traction force,
ΓN and ΓD are the Neumann and Dirichlet bound-
aries. This problem is solved using the finite element
approach implemented in a general-purpose finite el-
ements package ABAQUS1, which is used to simulate
the biomechanical LV models during diastolic filling.
A linearly ramped end-diastolic pressure is applied to
the endocardial surface. A simulation (133,042 tetra-
hedron elements and 25,933 nodes) without using par-
allelization takes about 18 minutes on our local Linux
workstation2, and around 4.5 minutes if parallelized
with 6 CPUs.

Gao et al. (2015) found that the 8 unknown param-
eters in the strain-stress relationship (1) are strongly
correlated, and it can be very challenging to uniquely
determine them from limited and noisy in vivo mea-
surements. However, despite the non-uniqueness of

1Simulia, Providence, RI, USA
2Intel(R) Xeon(R) CPU, 2.9GHz, 32G memory
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the HO parameters, they found that the strain-stress
relation in the myofibre direction can be reliably es-
timated based on limited in vivo data (Gao et al.,
2015). Hadjicharalambous et al. (2016) estimated
passive myocardial stiffness in healthy subjects and
in patients with non-ischemic dilated cardiomyopathy
by using a reduced form of the HO law (1 unknown
parameter instead of 8) in order to strike a balance
between the model fidelity and unique parametriza-
tion. Following our previous study (Gao et al., 2015),
we have grouped the eight parameters of (1) into four,
so that:

a = q1 a0 b = q1 b0

af = q2 af0 as = q2 as0

bf = q3 bf0 bs = q3 bs0

afs = q4 afs0 bfs = q4 bfs0

(7)

where q = (q1, . . . , q4) ∈ [0.1, 5]4 are now the four
parameters to be inferred from in vivo data, while
a0, b0, af0, as0, bf0, bs0, afs0, bfs0 are reference values
from the published literature (Gao et al., 2017)3.

3 Statistical Methodology

The key interest of our study is the estimation of the
biomechanical parameters q, introduced in the pre-
vious section, non-invasively from cine MR images.
This is motivated by a previous study that has estab-
lished their diagnostic power for prognostication of
the risk of myocardial infarction (Gao et al., 2017).
The estimation of q follows the procedure described
in Gao et al. (2015), which is based on applying an it-
erative optimization algorithm to find the parameter
values that maximize the agreement (or minimize the
mismatch) between patterns extracted from the cine
MR images and the corresponding predictions from
the mathematical model.

The patterns extracted from the cine MR images
are peak circumferential strains; see Section 4 of the
supplementary material for a discussion of their ad-
vantage over longitudinal and radial strains. The
peak circumferential strains were measured at 24 po-
sitions on the LV wall corresponding to the myocar-
dial segments in the short-axis cine images, combined
with the LV chamber volume taken at end of diastole;
see Section 6.2 and Gao et al. (2017) for details. The
same features can be obtained from the soft-tissue
mechanical model described in the previous section.
Following the dynamics defined in (6), displacements
with respect to the initial geometry are extracted,
then the deformation gradient F at each location is
calculated according to (3). From this the circumfer-
ential strains are obtained via

Ec = c · [ 1
2

(F>F− I) c] (8)

3The reference values are, up to 2 decimal places: a0 = 0.22,
b0 = 1.62, af0 = 2.43, as0 = 0.56, bf0 = 1.83, bs0 = 0.77,
afs0 = 0.39, and bfs0 = 1.70.

in which c is the circumferential direction at each
point in the LV wall. This vector, c, is defined as
the cross product of the transmural direction and the
long-axis direction from the centre of the LV base
plane to the apex shown in Figure 2. Finally peak
circumferential strains are averaged within each seg-
ment within the LV wall corresponding to the seg-
ments from the short-axis cine images, giving a 24-
dimensional vector. We add to this the LV cavity
volume, which is calculated by triangulating the de-
formed endocardial surface first and then summing
over the tetrahedron volume elements. To transform
the LV volume and the circumferential strains onto
the same scale, they are non-dimensionalized4, as in
Gao et al. (2017). Henceforth we refer to the non-
dimensionalized patterns extracted from the MR im-
ages as data or observations, yobs, and the corre-
sponding output from the mathematical model, m(q),
as the simulations. Here, the argument, q, indi-
cates dependence of the outputs on the biomechani-
cal parameters, and the word simulation emphasizes
that the dynamical equation (6) from Section 2 have
no closed-form solution but have to be numerically
solved with finite element discretization. Due to the
high computational costs, this procedure is not viable
in the context of a clinical decision support system. In
Section 3.2 we therefore describe an alternative pro-
cedure that bypasses simulations from the soft-tissue
mechanical model. But first, in Section 3.1, we revise
some basic concepts from statistical inference.

3.1 Parameter estimation

Given experimental data yobs, the goal is to find the
optimal parameter vector q̂ leading to a prediction
m(q̂) as close as possible to the data yobs. Let the
target loss be the non-negative function

`m(q) = αd
(
m(q),yobs

)2
+ Z, (9)

where d(·, ·) is a metric measuring the distance be-
tween the prediction from the mathematical model
(the simulator) at q and the experimental data, while
α and Z are some positive constants. The estimate q̂
is the value of q that minimizes the loss (9):

q̂ = arg min
q∈Q

`m(q). (10)

A standard choice for d(·, ·) is the Euclidean distance:

d2(yi,yj) = ‖yi − yj‖ =

[
k∑

t=1

(yit − yjt)2
]1/2

, (11)

where yi,yj ∈ Rk. If the data yobs come from an i.i.d.
Gaussian distribution centred at the true simulation

4We transform the LV cavity volume V via V → V −Vo
Vo

,

with the reference volume Vo to be taken as the measured vol-
ume; see Gao et al. (2017).
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output with variance σ2I, minimizing the squared
Euclidean loss corresponds to maximizing the log like-
lihood, which has several optimality criteria (consis-
tency, asymptotic unbiasedness and asymptotic effi-
ciency; see e.g. Casella and Berger (2002)). Several
global optimization algorithms have been proposed in
the literature, such as genetic algorithms, multistart
and simulated annealing methods, reviewed in Lo-
catelli and Schoen (2013). However, all these meth-
ods require many iterative function evaluations, and
each individual evaluation of the objective function
`m(q) involves a costly forward simulation from the
model, m(q). This leads to high computational costs
overall; e.g. those reported in Gao et al. (2015) are in
the order of over a week. The direct optimization of
the loss function (11) is thus unsuitable for a clinical
decision support system.

3.2 Emulation

In order to reduce the computational burden brought
by the numerical solution of the dynamical equations
(6) from Section 2 with finite element discretization,
increasing attention has been drawn to the concept
of emulation (Kennedy and O’Hagan, 2001; O’Hagan,
2006). An emulator m̂, also known as surrogate model
or metamodel, is a statistical approximation of the un-
derlying dynamical model m based on a set of costly
training runs:

D = {qi,yi = m(qi)}ni=1. (12)

The training simulations should be obtained by ex-
ploiting the fact that all n runs used to fit the surface
can be done in parallel, even before seeing any experi-
mental data. Whenever a simulation from the under-
lying mathematical model is needed at a point which
has not been visited before, the costly value m(q)
is replaced by a fast prediction from the surrogate
model m̂(q). Figure 3 shows a diagram comparing
the concepts of simulation (i.e. numerically solving
the dynamical model equations) and emulation. The
next section, Section 3.3, reviews the statistical model
commonly used for emulation, Section 3.4 describes
the design of the training set, and Section 4 discusses
various alternative emulation strategies.

3.3 Gaussian Processes

The present section provides a brief review of non-
parametric Bayesian modelling with Gaussian pro-
cesses (GPs). For a more comprehensive overview,
the reader is referred to Rasmussen and Williams
(2006). A stochastic process {f(q) : q ∈ Q} is
said to be a Gaussian process (GP) if and only if,
for every n and inputs q1, . . . , qn, the random vector
f = (f(q1), . . . , f(qn)) has a multivariate Gaussian
distribution:

f ∼ N(m,K).

real world system or 
process model or simulator

emulator
(statistical model of the 

simulator)

Figure 3: Diagram illustrating the concepts of
simulation and emulation. A simulator is based
on a mathematical model (in the present applica-
tion this is the model described in Section 2) and
approximates the real world system (solid horizontal
arrow). An emulator is a computationally cheap sta-
tistical surrogate model that approximates the simu-
lator (solid vertical arrow). Being a double approxi-
mation, the emulator indirectly models the real world
system (dashed arrow).

Similarly to a multivariate Gaussian, completely
specified by a mean vector and a covariance matrix,
the GP is parametrized by a mean and a covariance
function:

m(q) = E[f(q)] (13)

k(qi, qj) = Cov[f(qi), f(qj)], (14)

respectively returning the mean of a random variable
and the covariance between two random variables, as
function of the inputs only. In this work we consider
a constant mean function m(q) = c for the local GP
method (see Section 4.2) and a linear mean function
m(q) = b>h(q), with h>(q) = (1, q>), for the multi-
variate output GP method as suggested in Conti et al.
(2009); Conti and O’Hagan (2010). The covariance
function considered is the ARD Squared Exponential
kernel5:

k(qi, qj) = σ2
f exp

{
−1

2

d∑
k=1

(qik − qjk)2

λ2k

}
+ σ2δij .

(15)

The GP model hyperparameters, θ =
(λ1, . . . , λd, σf , σ), can be estimated either by
maximizing the log marginal likelihood or by
MCMC sampling, see Rasmussen and Williams
(2006) for more details. They represent the signal
variance (σ2

f ), the noise variance (σ2), and intrinsic
coordinate-specific lengthscales for function variation
along a given dimension (λ1, . . . , λd).

5This kernel is referred to as ARD (for ‘automatic rele-
vance determination’) in the literature due to the fact that
the inference of the length scales λk ‘automatically’ indicates
the relevance of the corresponding parameters (Rasmussen and
Williams, 2006)
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Denote the set of observed data as D =
{(q1, y1), . . . , (qn, yn)}, where q is the input and y is
a real-valued output variable. We collectively denote
the training outputs as y = (y1, . . . , yn). Condition-
ing the GP prior on the observed data gives rise to the
posterior GP (see Rasmussen and Williams (2006) for
more details):

f(q) ∼ GP(f̂(q), s(q, q′)) (16)

f̂(q) = m(q) + k(q)>(K + σ2I)−1(y −m)

s(q, q′) = k(q, q′)− k(q)>(K + σ2I)−1k(q′),

where m = (m(q1), . . . ,m(qn)) is the prior mean
at the training points, K = [k(qi, qj)]

n
i,j=1 is

the training covariance matrix, while k(q) =
(k(q1, q), . . . , k(qn, q)) is the n-vector of covariances
between the training points and the test point. The
conditional expectation function of the posterior pro-
cess is the best predictor in the sense of minimizing
the mean squared prediction error. Hence, the pre-
diction from the emulator at a generic point q is given
by f̂(q) and the conditional expectation function f̂(·)
is often referred to as the surrogate model.

3.4 Design of Training Runs

To learn the emulator one has to make a decision
on how to design the inputs of the training data (12).
Because of the computational complexity of each sim-
ulation, we aim to pick each training input qi in order
to cover the whole parameter domain Q as effectively
as possible. Let q = (q1, . . . , qd) denote a generic el-
ement of Q. The simplest approach involves defining
a grid gk ∈ RG between a lower and upper bound for
each coordinate qk (k = 1, . . . , d):

gk : lbk = qk1 < · · · < qkG = ubk.

The total number of points qi at which a simulation
is required equals Gd, which for high dimensions d
becomes computationally prohibitive. A naive alter-
native would be to draw samples from a uniform dis-
tribution in the d-dimensional domain. However, this
can easily lead to points being clustered together, and
hence an ineffective coverage of the space. To address
this shortcoming, space-filling designs are widely used
in the emulation literature, with the Latin hypercube
design or the Sobol sequence being the most widely
used options; see e.g. Jones et al. (1998); Santner
et al. (2003) and Fang et al. (2006). An illustration
is given in Figure 4. Improving the design with ad-
vanced methods from computational Bayesian statis-
tics is a topical research area, see e.g. Overstall and
Woods (2017), but this is beyond the remit of the
present study.
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Figure 4: A comparison of different design
choices for the training inputs. The plots show
100 points {qi} in the 2D space [0, 1]2 using differ-
ent design choices: regular grid (top left), sampled
from a uniform distribution (top right), Latin hyper-
cube design (bottom left), and from a Sobol sequence
(bottom right).

4 Emulation strategies

There are various decisions that one has to take
in practical applications of an emulator: emulate
the output functions or emulate the loss function;
fit separate univariate output GPs or fit a single
multivariate-output GP; and how to deal with large
training data: fit a local GP, or fit a sparse GP? The
present section provides a methodological overview.
We will compare the alternative emulation strategies
in a comparative evaluation study in Section 7.

4.1 Emulating the outputs versus em-
ulating the loss function

4.1.1 Output emulation

Output emulation represents the strategy of directly
emulating the model output, i.e. replacing m(q) by
m̂(q). The estimation problem in (10) can be approx-
imated by replacing any evaluation of the computa-
tionally expensive mathematical model (the simula-
tor) m(q) by the output from this surrogate model
m̂(q). This leads to a loss function that does not
involve any further costly simulations and can be op-
timized using standard optimization algorithms; see
e.g. Locatelli and Schoen (2013). The surrogate-based
loss, given a metric d(·, ·), is the positive function:

`m̂(q) = αd
(
m̂(q),yobs

)2
+ Z. (17)

For the Euclidean metric, d(qi, qj) = ‖qi − qj‖, we
have α = 1/(2σ2) and Z = Z(σ); and minimizing the
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loss is equivalent to maximizing the likelihood of the
data yobs under the assumptions stated in Section 3.1.
The estimate

q̂ = arg min
q∈Q

`m̂(q) (18)

represents an approximate, but computationally fea-
sible, solution to the minimization of the target loss
defined in (10).

The advantage of output emulation is that the pro-
cess of training the emulator is complete by the time
the patient comes into the clinic, and that, at that
time, only the above optimization problem has to
be solved. The drawback is that either k indepen-
dent emulators m̂j or a k-dimensional output emu-
lator have to be trained, leading to higher computa-
tional costs than emulating the loss function directly.

4.1.2 Loss emulation

Loss emulation represents the strategy of directly em-
ulating the loss function (9), and then replacing the
original optimization problem (10) by

q̂ = arg min
q∈Q

ˆ̀
m(q), (19)

where ˆ̀
m(q) is the surrogate loss from the emulation.

The advantage is a reduction of the training complex-
ity, as a k-dimensional vector y = m(q) is replaced
by a scalar `m(q) as the target function. The training

data used to build the emulator ˆ̀
m(q) are represented

by the pairs {qi, `m(qi)}ni=1. These are obtained by
transforming the previously collected kD outputs of
the space-filling design evaluations to 1D values:

yi = m(qi) −→ `m(qi).

The disadvantage is that, as opposed to output em-
ulation, the emulator can only be trained after the
patient has come into the clinic and the training data
have become available. This is because, in order to
compute the distances between the simulations and
the patient data, we need the patient data. We need
to emphasize, though, that the computational costs
of training the emulator “on demand” are still orders
of magnitude lower than the repeated finite element
discretizations required for the original mathematical
model of Section 2. As an aside, we note that the ex-
tension of loss emulation along the lines of Bayesian
optimization (Shahriari et al., 2016) is not feasible
in a clinical context, as this would require additional
simulations from the model to be run at the time a
clinical decision has to be made, which as opposed to
training the emulator is not computationally viable.

4.2 Sparse GP versus local GP

4.2.1 The need for sparsity.

For training the emulator we can in principle gener-
ate an arbitrarily large training set from the simula-

tor, i.e. the original mathematical model from Sec-
tion 2. However, when the sample size n is large, it
is usually not feasible to use exact GP regression on
the full dataset as described in Section 3.3, due to the
O(n3) computational complexity of the n×n training
covariance matrix K inversion. There are two strate-
gies to address this difficulty. The approach of sparse
GPs is based on a replacement of the n actual data
points by m � n so-called inducing points that cap-
ture most of the information in the data. In this way,
the computational complexity is reduced from O(n3)
to O(nm2). The alternative approach of local GPs is
based on a selection of a subset of the data that are
closest to the input where a new prediction is to be
made. In what follows, we provide a brief method-
ological summary. An empirical evaluation can be
found in Section 7.

4.2.2 Sparse GPs.

The approach of sparse GPs, discussed in Titsias
(2009) as an improvement on an earlier method pro-
posed in Snelsen and Ghahramani (2005), consid-
ers a fixed number of m inducing variables u =
(u1, . . . , um), with m � n, corresponding to inputs
Z = [z1, . . . ,zm]>. The locations of the inducing
points and the kernel hyperparameters are chosen
with variational inference to maximize the evidence
lower bound (ELBO), i.e. a lower bound on the
log marginal likelihood. Denoting by y noisy obser-
vations of the unknown true latent function f , the
ELBO can be derived by applying Jensen’s inequal-
ity:

log p(y) = log

∫ ∫
p(y,f ,u)dudf

= log

∫ ∫
q(f ,u)

p(y,f ,u)

q(f ,u)
dudf

≥
∫ ∫

q(f ,u) log
p(y,f ,u)

q(f ,u)
dudf

=

∫ ∫
p(f |u)q(u) log

p(y|f)p(u)

q(u)
dudf︸ ︷︷ ︸

F(q(u))

where q(f ,u) = p(f |u)q(u), p(y|f) is the probability
of the observations given the latent function, which
is assumed to be an i.i.d. Gaussian distribution, and
p(f |u) is the probability of the latent function given
the function values at the inducing points, which can
be obtained from the Gaussian process. Note that
p(f |u) has cancelled out inside the log. The ELBO,
F(q(u)), is first maximized with respect to the vari-
ational distribution q(u). This can be done analyti-
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cally, as shown in Titsias (2009), and leads to

F = max
q(u)
F(q(u))

= log
[
N(y|0, σ2I +Qnn

]
− 1

2σ2
trace(K̃nn)

where Qnn = KnmK
−1
mmKmn, K̃nn = Knn − Qnn,

Knn is the covariance matrix of the original n training
points, Kmm is the covariance matrix at the m induc-
ing points, and Kmn, Knm are the cross-covariance
matrices between the n original training and m in-
ducing points. Note that the computational costs of
computing Qmm, and hence F , is O(nm2), as op-
posed to O(n3) for the original GP. The second step
of the optimization procedure consists in finding the
inducing points Z = [z1, . . . ,zm]> that maximize F .
To this end, we use the iterative procedure proposed
in Titsias (2009).

4.2.3 Local GPs.

A local Gaussian process approach based on the K-
nearest-neighbours was proposed in Gramacy and
Apley (2015). This method uses the standard GP
prediction formulas described in Section 3.3, but sub-
setting the training data. Whenever we require a
prediction at a given input, we find the training in-
puts representing the K nearest neighbours in input-
domain, which will form the local set of training in-
puts, and the corresponding outputs will represent
the local training outputs. Note that every time we
query a prediction at a different input, the training
sets need to be re-computed and the GP needs to be
re-trained. However, because of the small number of
neighbours K � 1000 usually selected, this method is
computationally fast; see Gramacy and Apley (2015)
for further details.

For training data D = {(q1, y1), . . . , (qn, yn)} =
{Q,y}, we can summarize the algorithm as follows:

Algorithm 1. Predicting from a local Gaussian
process at q∗:

1. Find the indices N (q∗) of the points in Q having
the K smallest Euclidean distances from q∗;

2. Training inputs: QK(q∗) = {q′1, . . . , q′K} = {qi :
i ∈ N (q∗)};

3. Training outputs: yK(q∗) = {y′1, . . . , y′K} = {yi :
i ∈ N (q∗)};

4. Train a GP using the data DK(q∗) =
{QK(q∗),yK(q∗)};

5. Predictive mean: f̂(q∗) = m(q∗) + k(q∗)
>[K +

σ2I]−1(yK(q∗)−m);

6. Predictive variance: s2(q∗) = k(q∗, q∗) −
k(q∗)

>[K + σ2I]−1k(q∗).

In the algorithm above, K = [k(q′i, q
′
j)]

K
i,j=1 is the

K ×K training covariance matrix, the K × 1 vector
of covariances between the training points and the
test point is k(q∗) = (k(q′1, q∗), . . . , k(q′K , q∗)) and
m = (m(q′1), . . . ,m(q′K)) is the K × 1 prior mean
vector. Note that whenever the target parameters
change, e.g. during an iterative optimization, the al-
gorithm has to be repeated. We consider a constant
mean function m(x) = c and the squared exponential
kernel (15), as widely used in the emulation of com-
puter codes literature; see e.g. Fang et al. (2006);
Santner et al. (2003). The model hyperparameters
are estimated by maximizing the log marginal like-
lihood using the Quasi-Newton method, with σ ini-
tialized at a small value, σ = 10−2 (since the model
described in Section 2 is deterministic).

This method was found to be the best in the
comprehensive comparison presented in Davies et al.
(2019) and represents a benchmark for the current
study, along with the expensive optimization prob-
lem solved in Gao et al. (2015).

4.3 Separate univariate output GPs
versus multivariate output GP

Recall that output emulation is the strategy of di-
rectly emulating the model output, i.e. replacing
m(q) by m̂(q). If the model is multivariate, i.e. m =
(m1, . . . ,mk), a straightforward approach is to fit k in-
dependent real-valued emulators m̂j(q) of yj = mj(q)
for j = 1, . . . , k, and consider the multivariate surro-
gate model as the vector m̂ = (m̂1, . . . , m̂k). A predic-
tion from m̂(q) is then obtained by predicting from
each univariate component m̂j(q) for j = 1, . . . , k. If
multiple cores are available on the machine, it is pos-
sible to take advantage of the parallel nature of the
fitting and prediction tasks by fitting (or predicting
from) a univariate emulator on each core and obtain-
ing k emulators (or predictions) at the cost of one.

Independence between the individual outputs is a
restrictive assumption to place on the system, though.
In this section, we briefly review a method for relaxing
this constraint, proposed by Conti et al. (2009) and
Conti and O’Hagan (2010). We found that an alter-
native method based on latent Gaussian processes,
proposed by Alvarez and Lawrence (2011), suffered
either from low accuracy or excessive computational
costs in the context of our study, and we therefore
relegate these details to the supplementary material.
Conti et al. (2009) and Conti and O’Hagan (2010) in-
troduce a GP prior over the outputs of the simulator
y = f(·) as follows:

f(·)|B,Σ, r ∼ N(m(·), k(·, ·)Σ) (20)

where k(·, ·) is the kernel function providing the spa-
tial correlation over the parameter space (equal for
each output), and Σ provides the covariance between
the outputs of the simulator. Let [A]ij denote entry
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(i, j) of matrix A. The covariance structure can be
summarized by the following:

Cov(f1(q3), f2(q4)) = k(q3, q4)[Σ]12, (21)

where fl(·) is the lth output such that for Y a matrix
with lth column containing output l evaluated over
the design space, the following holds:

Cov(vec(Y ), vec(Y )) = Σ⊗K. (22)

The matrix K contains the evaluations of the ker-
nel k(·, ·) over the design space and vec(·) is the ma-
trix vectorization operator which stacks together the
columns of the matrix in order to form a vector. Let-
tingH be a matrix with ith column containing h(qi),
this leads to the matrix normal distribution as a gen-
eralization of the multivariate Gaussian:

Y|B,Σ, r ∼ MN(HB,Σ⊗K) (23)

which combined with the prior in (20) gives a full
posterior for the latent variable of the form:

f(·)|B,Σ, r,Y ∼ N(m∗(·), k∗(·, ·)Σ) (24)

where k∗(q1, q2) and m∗(·) can be found using stan-
dard Gaussian identities (see Section 2.3 in Bishop
(2006)). One can sample from a posterior distribu-
tion of the roughness hyperparameter by adopting
a prior of the form π(B,Σ, r) = π(r)π(B,Σ|r) ∝∏p

i=1(1+r2i )−1|Σ|−
q+1
2 (p = dimension of inputs) and

integrating the hyperparameters B and Σ out of the
full posterior in (24) such that we sample from a
distribution of the form:

πR(r|Y ) ∝ πR(r)|K|−M
2

· |H>KH|−M
2 |Y >GY |−

n−m
2

(25)

where G = K−1 −K−1H(H>K−1H)−1H>K−1.
As suggested by the authors, we adopt the median
from these MCMC samples as the lengthscales in
our GP (for validity of these summaries, unimodality
of the posterior distributions can be seen in contour
plots).

Taking point estimates of the parameters B̂GLS and
ΣGLS (Dutilleul, 1999), the resultant posterior for the
emulator is given by the following multivariate Stu-
dent’s process:

f(·)|r,Y ∼ Tl(f̂(·), ρ(·, ·)Σ̂GLS) (26)

where

f̂(q1) = B̂GLSh(q1) (27)

+ (Y −HB̂GLS)>K−1t(q1)

and

ρ(q1, q2) = k∗(q1, q2)

+ [h(q1)−H>K−1t(q2)]> (28)

· (HK−1H)−1[h(q1)−H>K−1t(q2)]

We can take the mean of this distribution, (27), as
our estimate of the simulator.

In order to permit real time decision making, as
well as preventing stability issues in matrix inver-
sions, we have to consider an approximation of the
full GP approach. Unfortunately, higher computa-
tional costs in the multivariate output framework im-
ply that the local GP approach in parameter space
(see Section 4.2) is no longer viable. We therefore
opt to find the nearest neighbours in function space
and obtain the local GP based on the nearest neigh-
bours of the vector of outputs for which parameter
estimation is required. Computational costs are re-
duced since the local GP only needs to be fitted once,
avoiding the repeated re-estimations inherent in Al-
gorithm 1. The procedure can be summarized in the
following algorithm, where predictive means and vari-
ances are provided in the context of the method of
Conti and O’Hagan:

Algorithm 2. Predicting from a local multioutput
Gaussian process at (q∗,y∗):

1. Find the indices N (y∗) of the points in Y having
the K smallest Euclidean distances from y∗;

2. Training inputs: QK(y∗) = {q′1, . . . , q′K} = {qi :
i ∈ N (y∗)};

3. Training outputs: yK(y∗) = {y′1, . . . , y′K} =
{yi : i ∈ N (y∗)};

4. Train a multivariate output GP using the data
DK(y∗) = {QK(y∗),yK(y∗)};

5. Predictive mean at test point q∗, see (27):

f̂(q∗) = B̂GLSh(x∗)+(Y −HB̂GLS)>K−1t(q∗);

6. Predictive variance at test point q∗, see (28):

s2(q∗) = ρ(q∗, q∗)Σ̂GLS

In the algorithm above, f̂(q∗) denotes the posterior
mean of the multivariate output GP given in (27) and
the predictive variance s(q∗) is given in the covariance
of (26). K denotes the autocovariance matrix from
the initial Gaussian process prior outlined in (20).
The model hyperparameters are sampled from the
posterior distribution by Metropolis Hastings MCMC
(Hastings, 1970). To reduce the computational costs
for real-time decision support at the clinic, we reduce
the posterior distribution of the hyperparameters to
a point estimate - the posterior median - which will
be plugged into the GP used for emulation.6 Using
multiple MCMC chains in parallel permits the use
of MCMC convergence diagnostics via the potential
scale reduction factor (Gelman et al., 2004), without
incurring any additional computational costs.

6We confirmed empirically that this method gives very sim-
ilar results to a proper Bayesian posterior average using the full
posterior sample of hyperparameters. However, predictions for
the latter approach require the inversion of a posterior pop-
ulation of covariance matrices, which is computationally too
expensive for the clinic.
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5 Building and applying the
emulator

Building and applying the emulator is a process in
three phases. In the first phase, a set of constitu-
tive parameter vectors q is generated from a Sobol
sequence. In general, these are the 8D vectors from
the Holzapfel-Ogden model defined in (1), but based
on the discussion at the end of Section 2, we have re-
duced the dimension to 4D, as defined in (7). For each
parameter vector q, the dynamical equations (6) from
Section 2 are solved numerically with finite element
discretization, ideally by massive parallelization, to
obtain the corresponding data vectors yobs: these
are 25D vectors of 24 peak circumferential stains at
well-defined positions at the LV wall and the non-
dimensionalized LV chamber volume at end of dias-
tole; see the beginning of Section 3 for details. In the
second phase, Gaussian process regression is applied
to the training set obtained in the first phase. De-
pending on the mode of operation, this training set
can either consist of a set of independent scalar out-
puts, output vectors, or loss functions. In the third
phase, an iterative optimization algorithm is applied
to the emulated loss function, to obtain the parame-
ter estimate for new test data. In a clinical context,
Phase 1 is carried out before using the emulator in
the clinic. Phase 3 is the way the emulator is used as
a decision support system in the clinic, with the test
data corresponding to data obtained from a group
of patients. Phase 2 depends on the mode of oper-
ation. When emulating the output, this phase can
be completed before using the emulator in the clinic.
When emulating the loss function, the emulator has
to be created “on demand” after obtaining the patient
data.

5.1 Phase 1: Parallel simulations from
the model

In order to build the emulator we need a set of
training runs D = {(qi,yi)}ni=1, for parameter vec-
tors qi and associated model outputs yi. In our
study, the training inputsQ = [q1, . . . , qn]> represent
n = 10, 000 points from a Sobol sequence in [0.1, 5]4,
where the domain has been chosen to represent typi-
cal parameter ranges from the literature (Gao et al.,
2017). The corresponding outputs yi are obtained as
described at the beginning of Section 3.

5.2 Phase 2: Training the emulator

As discussed above, there are three different emula-
tion methods. However, what all these methods have
in common is the construction of the K ×K training
covariance matrix K = [k(qi, qj)]

K
i,j=1, the K × 1

vector of covariances between the training points
and the test point k(q∗) = (k(q1, q∗), . . . , k(qK , q∗)),

and the specification of the mean function m =
(m(q1), . . . ,m(qK)). The choice of K depends on
the emulation strategy. When using a standard GP,
K = n, i.e. K is the number of training points.
When using a sparse GP, K = m, where m is the
number of inducement points. For a local GP, K
is the number of nearest neighbours to the query
point. For the univariate-output GPs, we chose a
constant mean function m(q) = c. For the multi-
output GP, we followed Conti et al. (2009) and Conti
and O’Hagan (2010), and used a low-order polyno-
mial m(q) = b>h(q) with h>(q) = (1, q>). For
the kernel k(qi, qj) we chose the squared exponen-
tial function from equation (15) as in our previous
work (Gao et al., 2017). This kernel is widely used in
the emulation of computer codes literature, see e.g.
Fang et al. (2006) and Santner et al. (2003). This
choice of kernel requires the selection of 2 + dim(q)
hyperparameters, for the vertical scale, the noise vari-
ance, and the length scale associated with each of the
dim(q) parameters. For the univariate output GPs,
the hyperparameters were estimated by maximizing
the log marginal likelihood, using the Quasi-Newton
method with multiple restarts (for avoiding local op-
tima). For the multivariate output GPs, we used
the sampling-based procedure described at the end
of Section 4.3. These hyperparameters were either
obtained with standard iterative optimization algo-
rithms to maximize the marginal likelihood, or they
were sampled from the posterior distribution with
MCMC; see Sections 3 and 4.3 for details.

5.3 Phase 3: Using the emulator for
parameter estimation

The final step is the minimization of the loss func-
tion (10). When the outputs are emulated, then the
loss function (9) is approximated by the surrogate
loss (17), and the task is to find a solution to the op-
timization problem (18). Conversely, when the loss
function is emulated directly, then the task is to find
a solution to the optimization problem (19), replac-
ing the true loss (9) by the output from the emulator.
In either case, we face a high-dimensional and typi-
cally multimodal optimization problem, for which a
variety of algorithms have been proposed in the liter-
ature. In the present work, the surrogate-based loss
and the emulated loss are optimized using the Global
Search algorithm by Ugray et al. (2007), implemented
in MATLAB’s Global Optimization toolbox.7. See
Section 2 in the online supplementary material for
more details.

7https://uk.mathworks.com/products/

global-optimization.html
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6 Data

The objective of the present article is to assess the
performance of the emulation strategies discussed in
Section 4 in a comparative evaluation study. To this
end, we use both simulated data from the LV model
and real MRI data from a healthy subject. Training
data are obtained by simulating the forward FE LV
model with sets of chosen parameters. Note that only
in the former case, the true parameters are known and
a performance evaluation based on an objective gold
standard is feasible, while in the latter case we have
to resort to a comparison with the literature.

6.1 Simulated data

We generated a simulated test set of sample size
ntest = 100 by continuing the Sobol sequence that was
used for generating the training data. This ensures
that the whole parameter space is uniformly covered,
while guaranteeing that the parameter vectors used
for testing, and hence their associated data vectors,
are different and independent from the training data.
The format of the test data is the same as the training
data: a 25-dimensional vector m(q) representing 24
circumferential strains and the non-dimensionalized
left ventricle volume taken at end of diastole, as de-
scribed in Section 6.2. So formally, the test set is of
the form

D = {m(qn+1), . . . ,m(qn+ntest
)} (29)

with {qn+1, . . . , qn+ntest
} representing the ntest pa-

rameter vectors obtained by continuing the Sobol se-
quence after the first n = 10, 000 points used for gen-
erating the training set. Further details are provided
in Section 3 of the supplementary material.

6.2 MRI cine data

A 3D left ventricular (LV) geometry model was re-
constructed from a MR imaging study of a healthy
volunteer (male, 31 years). The MRI study was con-
ducted on a Siemens MAGNETOM Avanto (Erlan-
gen, Germany) 1.5-Tesla scanner with a 12-element
phased array cardiac surface coil. Cine MR images
were acquired using the steady-state precession imag-
ing protocol at short-axial planes from the base to
apex, and three long-axial views (the left ventricu-
lar outflow tract view, the four-chamber view, and
the one-chamber view) as shown in Figure 1. Short-
axis and long-axis cine images were then manually
segmented to extract the endocardial and epicardial
boundaries at early-diastole when the LV pressure
was lowest (see Figure 1). The 3D LV model was re-
constructed in Solidworks (Dassault Systemes Solid-
Works Corp., Waltham, MA USA) using B-spline sur-
faces. Tetrahedron elements were generated to repre-
sent the whole LV domain with 133,000 elements and
26,000 nodes, shown in Figure 2(a).

Twenty four peak segmentally averaged circum-
ferential strains in diastole at short-axis cine im-
ages were measured using a B-spline deformable reg-
istration approach (Gao et al., 2014a) with 4 po-
sitions of short-axis cine images from the basal to
the middle ventricle. Following the clinical conven-
tion, strains were calculated with respect to the end-
diastolic phase. The end-diastolic volume was also
calculated from short-axis cine images at end of di-
astole. Ventricular pressure can only be measured
invasively, and therefore (for ethical reasons) is not
available for healthy volunteers. For that reason, a
population-based average end-diastolic pressure was
assumed, which is 8 mmHg.

7 Results

7.1 Evaluating sparse versus local
GPs

We compared the performance of the sparse GP, de-
scribed in Section 4.2.2, and the local GP, described
in Section 4.2.3, on the simulated test data, described
in Section 6.1, using the framework of separate out-
put emulation, as described in Section 4.3.

For the sparse GP we tried 100, 500 and 1000 in-
ducing points, using the code accompanying the pa-
per by Titsias (2009). The computational costs for
the prediction at a new query point were between 0.5
and 0.6 seconds for 100 inducing points, and in the
order of several seconds for 1000 inducing points8.
These computational costs are accumulated over all
the steps of the iterative optimization routine for solv-
ing the optimization problem (17). For instance, the
computational costs for an optimization routine with
1000 iterative steps are in the order of 10 minutes
with 100 inducing points, and in the order of an hour
with 1000 inducing points. Since the ultimate goal
of emulation is fast decision support in the clinic, we
restricted our analysis to 100 inducing points.

Figure 5 shows the predictive accuracy of the sparse
GP model on the test data. Each panel shows the
true test outputs (horizontal axis) vs the prediction
of the sparse GP (vertical axis) at the test inputs.
We can see that the fit of some variables, like the LV
chamber volume and Strains 17, 19, 20, 21, 22 and 23
are slightly off the perfect prediction line comparing
the true with the predicted parameter values. The
predictive accuracy improves by increasing the num-
ber of inducing points, but at the cost of a slower
prediction time, as discussed above.

For comparison, we used a local GP with the same
number of nearest neighbours as the number of in-
ducing points for the sparse GP: K = 100. The CPU
time required to get a prediction at a new query point

8Dual Intel Xeon CPU E5-2699 v3, 2.30GHz, 36 cores and
128GB memory.
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Figure 5: Results for emulation with variational sparse GPs. The figure shows for each of the 25
outputs (LV volume and 24 longitudinal circumferential strains at end of diastole) the true vs predicted test
outputs using separate output emulation, as described in Section 4.3, with variational sparse GPs (described in
Section 4.2.2) and K = 100 inducing points.

was approximately 0.18 seconds9 We evaluated the
predictive accuracy on the test data. Figure 6 shows
that local GP regression using the K = 100 nearest-
neighbours leads to accurate predictions at the test
inputs, with the predicted and true test outputs all
lying on or very close to the perfect prediction line
comparing the true with the predicted parameter val-
ues.

This finding suggests that the local GP approach
achieves improved accuracy at lower computational
costs, and was hence used in the subsequent studies.

9Dual Intel Xeon CPU E5-2699 v3, 2.30GHz, 36 cores and
128GB memory.

7.2 Evaluating loss versus output em-
ulation

We have extended an earlier study (Davies et al.,
2019) and compared the paradigms of loss versus
output emulation, as discussed in Section 4.1, using
both separate univariate output GPs and multivari-
ate output GPs, as discussed in Section 4.3. For
the latter case, the method proposed in Conti and
O’Hagan (2010) was used. For the loss function (11)
we used the Euclidean distance. All simulations used
local GPs with K = 100 nearest neighbours, as de-
scribed in Section 4.2.3, with Algorithm 1 used for the
univariate output GP, and Algorithm 2 used for the
multivariate output GP. In summary, the competing
methods are as follows:

M1 Output emulation using local GPs;
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Figure 6: Results for emulation with local GPs. The figure shows for each of the 25 outputs (LV volume
and 24 longitudinal circumferential strains at end of diastole) the true vs predicted test outputs using separate
output emulation, as described in Section 4.3, with local GPs (described in Section 4.2.3) using the K = 100
nearest neighbours.

M2 Loss emulation using local GPs;

M3 Output emulation using local multivariate out-
put GPs.

Let D = {(qi,yi)}ni=1 denote the n = 10, 000 training
runs and Dtest = {(qt,yt)}n+m

t=n+1 denote the m = 100
test data; the latter are not used to fit the GP models.
For each test output yt ∈ Dtest we estimate the cor-
responding parameter vector q̂t using the 3 methods
summarized above. We now compare the estimated
q̂t to the known test input qt using the mean squared
error (MSE) score:

MSEt =
1

d

d∑
k=1

(q̂tk − qtk)2,

obtaining a sample of 100 MSEt scores for each
method. Table 1 reports the median out-of-sample
MSE and the interquartile range for the 3 different

approaches, and highlights in bold the best combina-
tion found. In Figure 7 we show the distribution of
the 100 MSEt scores for each method using boxplots.
Panel (a) shows the original y-axis scale, while Panel
(b) shows a reduced y-axis scale to focus on the lowest
MSE scores.

Both Table 1 and Figure 7 show that emulating the
output and then minimizing the surrogate-based loss
(18) leads to a substantially lower error than emulat-
ing the loss function directly and then minimizing it
via (19). Depending on the output GP method used,
this error reduction is between 3 and 5 orders of mag-
nitude. The explanation for this result is presumably
related to the information loss inherent in mapping
25 separate outputs (1 LV chamber volume and 24
circumferential strains) into a single scalar quantity.
This suggests that the higher computational costs of
the more detailed emulation are rewarded by higher
accuracy.
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(a) (b)

Figure 7: Distribution of the 100 out-of-sample MSE scores for each method. (a) Boxplots of the
mean squared error for all 3 methods in the original y-axis scale and (b) with a reduced y-axis scale. The
methods from left to right on the left plot are as follows: Local GP emulation of the loss, local GP emulation of
the outputs, and local multiple output GP emulation. The plot on the right includes only the output emulation
methods.

Table 1: Comparison of the different emulation strategies. Median (1st, 3rd) quartiles of the mean
squared error distribution for the out-of-sample parameter vectors. The method with the lowest median MSE
is highlighted in bold: Output emulation using local multivariate output GPs.

MSE

Statistical approximation Emulation target Median (1st, 3rd) quartiles

Single output GP Output 1× 10−4 (4× 10−5, 3× 10−4)

Single output GP Loss 2× 10−1 (6× 10−2, 7× 10−1)

Multivariate output GP Output 5 × 10−6 (1 × 10−6, 3 × 10−5)

7.3 Evaluating single output versus
multivariate output GPs

Table 1 and Figure 7 allow us to compare the per-
formance of the multivariate output GP with that
of separate univariate output GPs. The parameter
estimation error achieved with the multivariate out-
put GP is about two orders of magnitude lower than
the error obtained with the separate univariate out-
put GPs. This suggests that additional accuracy can
be achieved by explicitly modelling the correlations
between the various outputs. For the previous com-
parison, we used a fixed value of K = 100 nearest
neighbours in Algorithm 2, to mimic the value used
for the univariate output GPs in Algorithm 1, as dis-
cussed in Section 7.1. However, we also investigated
the dependence of the parameter estimation accuracy
(in terms of MSE) on K, the number of nearest neigh-
bours used in the local GP algorithm, by repeating
the estimation of the GP for different values of K.
The results are shown in Figure 8. The figure shows
that when decreasing the value of K to smaller values,

K < 100, the performance deteriorates, as expected.
Interestingly, the performance also degrades when in-
creasing the value of K beyond K > 200. At first,
this appears counter-intuitive. However, a possible
explanation is as follows. Including additional pa-
rameters that are far away from the target parameter
have a negligible direct influence on the GP output,
which follows from the exponential decay implied by
the functional form of the kernel; see (15). However,
if the characteristic length scales, expressed by the
hyperparameters λk in (15), are different in different
areas of the parameter space, then the increase of K
can lead to a suboptimal estimate of the length scale
hyperparameters λk, and hence a deterioration of the
performance overall. Varying length scales could be
modelled with non-stationary kernels, as opposed to
the stationary kernel that we have used (and which is
commonly used). However, Figure 8 suggests that in
addition to reducing the computational complexity,
our local GP method also provides more robustness
against deviation from stationarity.
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(a) (b)

Figure 8: Validating the performance of the local multivariate output Gaussian process. The
numerical values correspond to median out-of-sample MSE values in the predicted parameters using a local
multivariate emulator as outlined in Section 4.3 with different numbers of nearest neighbours in function space.
The plot on the right constrains the y-axis to exclude outliers, allowing us to see the minimum value of MSE
occurring around K = 100.

Table 2: Estimates for real MRI data. The literature gold standard and the estimated parameters q̂ from
emulation method M3. The confidence intervals (CIs) are obtained using a parametric bootstrap procedure.

a b af bf as bs afs bfs

Literature 0.2245 1.6215 2.4267 1.8269 0.5562 0.7747 0.3905 1.6950

Point estimate

(95% CI)

0.2249

(0.2246,

0.2252)

1.6247

(1.6223,

1.6264)

2.4218

(2.4128,

2.4685)

1.8232

(1.8165,

1.8283)

0.5633

(0.5586,

0.5673)

0.7845

(0.7795,

0.7901)

0.3916

(0.3885,

0.3943)

1.6994

(1.6862,

1.7114)

7.4 Performance evaluation on MRI
cine data

From Table 1 we found that the best strategy is rep-
resented by method M3: Output emulation using a
local multivariate output GP. In this section we ap-
ply method M3 to estimate the constitutive parame-
ter vector q of (1) from cine MRI data of a healthy
volunteer. First, we extracted the LV geometry from
the MRI scans, as described in Section 6.2 and illus-
trated in Figures 1 (segmentation) and 2 (mesh cre-
ation). Next, we extracted from the MRI scans the
LV chamber volume and 24 circumferential strains at
clearly defined positions on the LV wall. These were
non-dimensionalized, as described at the beginning of
Section 3, to provide the data yobs which were to be
matched by the corresponding predictions from the
biomechanical model of Section 2, m(q). The em-
ulation was carried out in the reduced 4D parame-
ter space, which was mapped back into the 8D space
via (7). For real data, the true parameters are un-
known, so we used the parameters from the literature
(Gao et al., 2017) as a benchmark. These parame-
ters were obtained from the same cine MRI data us-

ing the iterative optimization procedure described in
Section 3.1, solving the soft-tissue mechanical equa-
tions from Section 2 by (computationally expensive)
brute-force numerical integration using finite element
discretization. A comparison between the benchmark
parameters and the parameters obtained with our em-
ulator is shown in Table 2. The values are very simi-
lar, with a mean square error of only MSE = 0.00003.
Four parameters lie outside the 95% confidence inter-
vals obtained with the parametric boostrap procedure
described below, which reflects a slight bias resulting
from our dimension reduction (7).

One important aspect of the constitutive behaviour
of the myocardium can be reflected in the Cauchy
stress-stretch curves. Figure 9 shows the myofibre
stress-stretch relationship for the healthy volunteer,
obtained using the Holzapfel-Ogden law, (1), with
the parameters shown in Table 2. The two panels
refer to different directions: stretch along the sheet
direction, panels (a,c), and along the myocyte, panels
(b,d). The black dashed line shows the curve obtained
from the literature gold standard method of Gao et al.
(2017). The blue solid curve shows the stress-stretch
relationship corresponding to the parameter vector q̂
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(a) (b)

(c) (d)

Figure 9: Plots of the Cauchy stress against the stretch along (a) the sheet direction and (b)
the myocyte. The current best estimate (i.e. the literature gold standard) from Gao et al. (2017) is reported
as a dashed black line. Estimates of the curves using the best emulation approach (M3) are given as a blue
solid line. The error bars show a 95% confidence interval, obtained by using the bootstrap method described
in Section 7.4. Each plot contains a residual curve, providing the difference between the true and estimated
curves. These residual curves are plotted with 95% confidence intervals in (c) for he sheet direction and (d)
along the myocyte.

estimated using our emulation method M3. In order
to obtain an indication of the uncertainty of our in-
ference, we adopt a bootstrap approach (Efron, 1981;
Efron and Tibshirani, 1994). First we obtain a point
estimate of the parameters, q̂, from the noisy data,
yobs, and use it to compute the corresponding out-
put in data space, ŷ. We then obtain the residuals,
ε̂ = yobs − ŷ or ε̂i = yobsi − ŷi, for 1 ≤ i ≤ 25, ran-
domly sample with replacement from the set of resid-
uals R = {ε̂i}1≤i≤25, and generate surrogate data
ỹi = ŷi + ε̃i, where ε̃i is the ith draw from R. We
then repeat the parameter estimation on the surro-
gate data ỹ to obtain new parameter estimates q̃, and
repeat the procedure 100 times, to obtain a distribu-
tion of q̃; this is the bootstrap distribution used for
uncertainty quantification. For every sampled param-
eter vector q̃ we compute the Cauchy stress-stretch
curve. The results are shown in Figure 9. The figure
shows the stress-stretch curve for the estimated pa-
rameter vector q̂ (in blue) and 95% confidence inter-
vals for the estimated curves obtained from the sam-

ple of 100 Cauchy stress-stretch curves corresponding
to the bootstrap sample {q̃}. The literature curve
lies mostly within this confidence interval; the slight
bias for large stretches results from the dimension re-
duction in (7).

As already discussed at various places before, the
computational complexity of the numerical procedure
required to obtain the gold standard solution in Ta-
ble 2 and Figure 9 is very high; in the order of over a
week when following the procedure described in Gao
et al. (2015). This computational complexity ren-
ders the method unfit for use in the clinical prac-
tice. By contrast, the proposed emulation method
has reduced the computational complexity by three
orders of magnitude, to less than 15 minutes 10. This
complexity reduction makes the inclusion of biome-
chanical parameter estimation in a clinical decision
support system a viable prospect for future improved
prognostication of the risk of myocardial infarction.

10Intel Xeon CPU, 2.9GHz, 32 cores and 32GB memory.
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8 Discussion

The present article follows up on Gao et al. (2017), in
which we have demonstrated the diagnostic power of
the constitutive parameters of the Holzapfel-Ogden
model of passive myocardium, equation (1), for prog-
nostication of the risk of myocardial infarction. How-
ever, the high computational costs of the numerical
procedures required for the parameter estimation cur-
rently prevent a translation of the mathematical mod-
elling framework into medical practice and meaning-
ful health outcomes. In the present study, we have
therefore explored the approach of statistical emula-
tion, whereby the computationally expensive math-
ematical model is replaced by a statistical surrogate
model. We have carried out a comparative evaluation
of different emulation strategies, and have demon-
strated that a reduction of the computational costs
by three orders of magnitude is feasible at negligible
loss in accuracy.

In the present proof-of-concept study, we have ap-
plied a novel emulation approach to a representa-
tive healthy subject. To have clinical translation, we
need to be able to apply this approach to a large
cohort of patients. In other words, we need to de-
velop an emulation framework that can include vari-
ations of subject-specific LV geometries, accompa-
nied by regional heterogeneity in material properties.
This could be caused by regional ischemia, regional
diffuse fibrosis, and myocardial infarction. To this
end we need to find a low-dimensional representa-
tion of both the LV geometry and disease features
(e.g. infarct size, shape and transmurality) obtained
from MRI, as well as enlarge the parameter set to in-
clude spatial parameter variations. Sensitivity anal-
ysis (Saltelli et al., 2001) and dimension reduction
techniques (Murphy, 2012) can be applied to man-
age the total number of parameters. There are var-
ious approaches that one can pursue for geometrical
changes, including the 6D parametric representation
proposed in Achille et al. (2018), principal compo-
nent analysis (PCA; see e.g. Chapter 12 in Murphy
(2012)), to project the high dimensional LV geometry
vector into a low dimensional coordinate system that
contains maximum information about typical varia-
tions in the patient population, non-linear extensions
of PCA, like kernel PCA (Scholkopf et al., 1998), to
project the high dimensional LV geometry vector onto
low-dimensional non-linear manifolds, or various non-
linear dimension reduction techniques from the ma-
chine learning community, like self-organising maps
or deep neural networks; see e.g. Murphy (2012) for
a review. We leave a comparative evaluation of these
techniques for future work. It is expected that, as
more measurements become available, more patient
specific parameters (such as regional variations) can
be included in future model extensions. By providing
a procedure for fast and computationally efficient in-

ference, the work described in the present paper lays
the foundations for their estimation in a time frame
that is viable in the clinical practice.
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