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Abstract

Summary: MyelinJ is a free user friendly ImageJ macro for high throughput analysis of fluorescent

micrographs such as 2D-myelinating cultures and statistical analysis using R. MyelinJ can analyse

single images or complex experiments with multiple conditions, where the ggpubr package in R is

automatically used for statistical analysis and the production of publication quality graphs. The

main outputs are percentage (%) neurite density and % myelination. % neurite density is calculated

using the normalize local contrast algorithm, followed by thresholding, to adjust for differences in

intensity. For % myelination the myelin sheaths are selected using the Frangi vesselness algorithm,

in conjunction with a grey scale morphology filter and the removal of cell bodies using a high in-

tensity mask. MyelinJ uses a simple graphical user interface and user name system for reproduci-

bility and sharing that will be useful to the wider scientific community that study 2D-myelination

in vitro.

Availability and implementation: MyelinJ is freely available at https://github.com/BarnettLab/

MyelinJ. For statistical analysis the freely available R and the ggpubr package are also required.

MyelinJ has a user guide (Supplementary Material) and has been tested on both Windows

(Windows 10) and Mac (High Sierra) operating systems.

Contact: Susan.Barnett@glasgow.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Myelin is an essential component of the central nervous system

(CNS) and its degeneration is associated with spinal cord injury and

several CNS diseases, most notably multiple sclerosis (Goldenberg,

2012). Myelinating cultures generated from dissociated embryonic

rodent spinal cords have been developed (Kerman et al., 2015; Pang

et al., 2012; Sorensen et al., 2008; Thomson et al., 2008) as a tool to

study developmental myelination (Ioannidou et al., 2012), charac-

teristics of spinal cord injury (Boomkamp et al., 2012) and demye-

lination (Lindner and Linington, 2016). Consequently, myelinating

cultures can be used as a high throughput screen for potential

therapeutics that promote (re)myelination (McCanney et al., 2018,

2019). One of the main bottlenecks for these screens is the accurate

high throughput quantification of myelin sheaths. Currently, only a

CellProfiler pipeline is freely available for analysis of in vitro myelin-

ation (available at https://github.com/muecs/cp). The MyelinJ

ImageJ plugin we have developed is a freely available ImageJ

(Schindelin et al., 2012) macro that allows for high throughput ana-

lysis of individual experiments or large studies. The macro produces

the percentage (%) of myelination and the % of neurite density for

each image and links to R (R Core Team, 2013) for automated stat-

istical analysis and graph production. The user friendly graphical
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user interface (GUI) and username system support reproducibility

and sharing. MyelinJ aims to be widely applicable to the neurosci-

ence community, because the settings can be easily adjusted/opti-

mized specifically for your experiment. This study has only tested

MyelinJ using myelinating cultures, however it is likely to also be

useful for analysing slice cultures (Hill et al., 2014) and tissue

sections.

2 Materials and methods

Myelinating cultures were made according to Sorensen et al. (2008),

demyelinated as described in McCanney et al. (2019) and manual

analysis of micrographs was performed according to Sorensen et al.

(2008). MyelinJ analyses % myelination and % neurite density of

2D fluorescent micrographs.

2.1 Background subtraction
Background is first subtracted either using ImageJ’s ‘rolling ball’

background subtraction, or using the neurite image as a mask to re-

move any bleed through of neurite fluorescence, followed by sub-

traction of pixels below a user provided threshold (the user can also

select no background subtraction).

2.2 Myelin sheath selection
The Frangi vesselness (Frangi et al., 1998) plugin is used to select

myelin sheaths. Non-myelin sheath pixels are removed using a com-

bination of ‘grey scale attribute filtering’ from the MorphoLibJ li-

brary (Legland et al., 2016) and removal of a high intensity mask

(that corresponds to cell bodies); both of which are optional. %

myelination is calculated as:

Total myelin pixels/Total neurite pixels * 100.

2.3 Neurite selection
The percentage of (%) neurite density is calculated using the ImageJ

filter ‘normalize local contrast’ (NLC). Alternatively, all standard

ImageJ thresholding methods are also available to the user.

2.4 Neurite density analysis
% neurite density is calculated as:

Total neurite pixels/Total pixels * 100.

2.5 Statistical analysis
MyelinJ links ImageJ to R via the command line and uses the ggpubr

package (https://github.com/kassambara/ggpubr) for statistical ana-

lysis and the production of publication ready graphs. MyelinJ per-

forms Welch’s T test followed by correction for multiple testing

using the false discovery rate (FDR). The user can choose between

comparing all experimental conditions to each other or comparing

all experimental conditions to control only.

3 Results

MyelinJ calculates ‘% myelination’ and ‘% neurite density’. In order

to test the macro we first analysed an in vitro myelinating time

course and compared it to the freely available CellProfiler pipeline

(Fig. 1A–E, Supplementary Fig. S1 illustrates comparisons for the

entire time course). MyelinJ is able to identify about 46% more

myelin sheath pixels on average per image than Cellprofiler, based

on a comparison of 30 images at each time point taken from three

technical replicates. In previously published data based on this

Fig. 1. Application of MyelinJ using a myelinating time course and complement mediated demyelination. Representative images for myelination after 24 DIV are

illustrated in this figure. Representative images of the full time course (18–24 DIV) are illustrated in Supplementary Figure S1. (A) Rat spinal cord myelinating cul-

ture after 24 DIV where SMI31-IR is red and PLP-IR is green. (B) MyelinJ myelin analysis of A. (C) Overlay comparing the original myelin (PLP-IR, in green) and the

MyelinJ analysis (red). (D) CellProfiler analysis of A. (E) Overlay comparing the CellProfiler myelin analysis (green) to the MyelinJ myelin analysis (red). (F)

Comparison between MyelinJ and CellProfiler for a % myelination time course of in vitro rat myelinating cultures between 18 and 24 DIV, calculated using PLP

immunoreactivity as a percentage of NF-H immunoreactivity. (G) Manual analysis of A. (H) Comparison between manual analysis (green) and MyelinJ (red), for

three images from 24 DIV. (I) Normalized % myelination difference between MyelinJ and manual analysis. (J) Representative image of Neurofilament heavy (NF-

H, red) for A. (K) MyelinJ analysis of NF-H. (L) CellProfiler analysis of NF-H. (M) Comparison between MyelinJ and CellProfiler for a % neurite density time course

of in vitro rat myelinating cultures between 18 and 24 DIV, calculated using NF-H immunoreactivity as a percentage of total pixels. (N) Representative image of an

in vitro rat spinal cord myelinating culture after complement demyelination. (O) Print version all images are in black and white. MyelinJ analysis of N. Biological

replicates ¼ 1; technical replicates ¼ 3 (Color version of this figure is available at Bioinformatics online.)
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model this is the standard number of images to constitute a biologic-

al replicate (Fig. 1E and F and Supplementary Fig. S1C). MyelinJ’s

neurite density is also more consistent across images (Fig. 1J–M and

Supplementary Fig. S4). MyelinJ was also compared to manual ana-

lysis of % myelination by drawing over the myelin sheaths (Fig. 1G–

I). MyelinJ is very similar to manual analysis and takes �15–18 s per

image compared to about 15 min per image. Furthermore, we find

that Frangi vesselness is superior to the Otsu thresholding method in

ImageJ for determining % myelination, as illustrated in

Supplementary Figure S1E.

MyelinJ’s ability to ignore non-myelin sheath background was

tested using myelinating cultures that have been demyelinated in a

complement-mediated manner (McCanney et al, 2019).

Demyelination leaves significant background, which is predomin-

antly not myelin sheaths (Fig. 1N). MyelinJ effectively disregards

the non-myelin sheath background (Fig. 1M). Furthermore, MyelinJ

successfully analyses the remaining undamaged myelin sheaths

(Fig. 1M). In comparison, CellProfiler misses the majority of these

myelin sheaths (for Fig. 1N CellProfiler identified 0% myelination—

image post analysis not shown). Supplementary Figure S2 illustrates

the graphs and statistical analysis performed by MyelinJ for an ex-

ample dataset (demyelination versus remyelination), using the

ggpubr package in R.

4 Conclusions

This newly developed MyelinJ is a user friendly ImageJ macro for

the analysis of fluorescent micrographs of 2D myelinating cultures

providing quantification of the % of neurite density and the % of

myelination. To the best of our knowledge, there are currently no

other publicly available ImageJ macros for this analysis and MyelinJ

marks a significant improvement upon the freely available

CellProfiler pipeline (available at https://github.com/muecs/cp),

being able to more accurately analyse both myelin sheaths and neu-

rites. MyelinJ also offers automated calculation of % neurite density

and % myelination in order to avoid human error, can analyse com-

plex experiments where a summary of the results for each condition

is provided and seamlessly links to R for the graphical representa-

tion of results and statistical analysis. In addition, MyelinJ analyses

myelin sheaths significantly better than the Otsu ImageJ threshold-

ing algorithm (Otsu was selected following comparisons between all

ImageJ thresholding algorithms). This is the first time (to the best of

our knowledge) that an ImageJ macro that can interact with the stat-

istical package R has been made freely available. MyelinJ uses the

ggpubr package to perform statistical analysis and produce publica-

tion quality graphs, providing a seamless analysis pipeline from raw

images to graphical representation and statistical analysis for high

throughput screens.
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