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THE PREDICTION OF TURBULENT BOUNDARY LAYERS

by

R.A. IIcD. GALBRAITH.

SUMMARY

In the past there has been some argument about how the 

problem of predicting turbulent boundary layers could best 

be handled. The present paper attempts to alleviate some 

of the disagreement and separately treats the model and 

the solution procedure. It is shown that the choice of 

dependent variable for the closure hypothesis is of minor 

importance when compared to the final form of the model. 

Consideration is also given to the way in which simple 

models, such as the constant eddy-viscosity assumption, may 

be improved and also the possible limitation of such 

procedures. This, it is suggested, is when, of necessity, the 

specification of the modelled quantity is by a complicated 

rate equation. Here the use of the turbulent transport 

equations as a basis for the model is accepted. However, 

it is concluded that until the complex and hopefully more 

general turbulence models can predict relatively uncomplicated 

flows, with at least as good an accuracy as the simpler 

models discussed, then their use in such flows is 

superfluous./...



/superfluous. Finally, a brief discussion on integral 

methods suggests, that where a suitable velocity profile 

family exists, such procedures can form the basis of a 

fast, simple and accurate method of solution.

1) Introduction

The prediction of turbulent boundary layer development 

has from its inception been bedevilled by an inability to 

formulate a concise and accurate model for the apparently 

random nature of the flow. Many models and prediction 

procedures have been proposed, with various degrees of 

success. Most of the earlier workable methods were of an 

integral form, incorporating some simple auxiliary equation 

derived from scant empirical data. In general, such methods 

rarely gave satisfactory predictions for flows, other than 

those from which the models were developed,^ This 

situation remained until the early ISGO's,

About this time two major developments occurred. First,
2 3 4*a new breed of integral procedures was developed. * *

Second, as computers became more widely available, much 

attention was focussed on solving the governing equations in 

their basic form using simple closure hypothesis, such as 

a constant eddy-viscosity model and a suitable numerical 

analysis,®*® *^*

The/•••
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The net result of the above was a minor split in attitudes

towards methods of predicting turbulent boundary layer

development. Those who favoured integral methods, continued

to do so, and not only improved their accuracy, but extended
8 9 10 111their applicability to a wide variety of flow situations, » » » '

In contrast to this, there was a generally accepted

obsolescence of integral procedures, by the exponents of

finite difference methods. This was apparently a result

of integral methods lack of generality, incurred through

their implicit need of at least a suitable skin friction

law, and more recently, an accurate velocity profile family.

In due course, when finite difference procedures had 

themselves been successfully developed, a split occurred 

among the exponents of MDifferential Methods”. The simple 

eddy-viscosity and mixing-length models, received much 

criticism by those who favoured the development of more 

complex and ideally completely general models, based on some 

turbulent transport equation(s). It had also been 

suggested that the simple eddy-viscosity concept should be 

discarded on the basis of it not being a local property of 

the flow. Hov;ever, as with the integral methods, those who 

favoured the simpler forms of eddy-viscosity and mixing 

length, continued to develop new procedures and model 

formulations for handling a wide variety of flow situations. 12.

The present report attempts to reconcile some of the above 

conflicts./...
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/conflicts. It is suggested that,at present, no model 

or numerical procedure is supreme, emd it is not clear jsh 

in which direction future efforts, in developing new 

models, should be channelled. One thing is clear, however, 

for "production” programs, the simplest and most efficient 

procedure, capable of satisfying the designers requirements, 

should at all times be used. To make the correct choice, 

one must, therefore, be aware of the available techniques 

and be able to recognise that a particular flow may be ail

satisfactorily predicted via a particular model and a ,

particular solution procedure. One cannot help making a 

poor but illustrative analogy between the above and the , I 

analytic solution of differential equations, ; liamanl

In this report it is demonstrated that, for relatively simple 

flow situations, simple models can give better predictions 

of flow development than some of the more sophisticated oo 

proposals. Further, the choice of modelled quantity is 

of minor importance when compared to the precise form of 

the model itself. This, of course, implies an indifference* 

for a particular model, between eddy-viscosity, mixing 

length, turbulent kinetic energy and entrainment, etc., but 

sensitivity to the succinctness and plausibility of the / oi 

numerous models that have been proposed, n.'iol:

The way in which the constant eddy-viscosity model may be 

intuitively improved, whilst remaining relatively , 

uncomplicated,/...
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/uncomplicated, was investigated and the limitations of 

such models are discussed. It is suggested that much of 

the constant eddy-viscosity model’s success can be 

attributed to its apparently reasonable predictions of two 

particular separating flows, where the averaging effect of 

the constant value, conceals the true poor quality of the 

predictions,

As regards the limitations of intuitive improvements to 

simple models, it is concluded that when the adequate 

prediction of a flow, requires the specification of the 

independent variable to be modelled via a rate equation, 

then it would seem reasonable, where enough data is 

available, to use the turbulent transport equations as a 

basis for the model. This does not preclude the use of 

intuitive arguments in the specification of the individual 

terms appearing in such equations. Nevertheless, a wide 

and useful range of flows may still be very satisfactorily 

predicted, using very simple procedures.

Finallyi it is concluded that where a suitable velocity 

profile family exists, then the incorporation of the model 

into an integral procedure will yield a simple solution 

without any severe loss of accuracy.

The current investigation took the following form. First, 

an uncomplicated and flexible integral solution procedure 

for/...

s_
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/for incompressible two-dimensional boundary layers was 

programed and tested using an arbitrary closure 

hypothesis. Then, without alteration to the main progreim, 

three closure hypotheses of similar formulation but 

differing dependent variables were used in turn, to predict 

the development of a variety of flow situations; they 

were found to give very similar results. Second, various 

flow developments were predicted using a constant eddy- 

viscosity model, which was subsequently improved to 

satisfactorily predict flows proceeding to separation.

2) Notation

x,y
u,v

U

P
6

6*

e
H

H*

P
V

distance along and normal to the surface, 

velocities in the boundary layer in the x,y directions 

velocity outside the boundary layer 

static pressure

boundary layer thickness 

displacement thickness =

momentum thickness =

form parameter = —e
form parameter =

/ (1 - -) dy
U

/ H (1 - H) dy
U U

)
0

entrainment d {U (6 - 6*)}
dx

entrainment coefficient = Ve/U 

density

kinematic viscosity
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VT

Re

T

T W

U
T

cf

effective viscosity 

kinematic eddy-viscosity

0 = U0/v

shear stress

wall shear stress 

friction velocity = Tu)/p

skin friction coefficient co/^pU2

ve locity defect parameter = I■—V. ^
00

/{(U - u)/u } dy 
o T

pressure gradient parameter =

JTT^ H - 1 
/(^) H

Tw dx

Subscripts

2D pertaining to two-dimensionality

eq pertaining to equilibrium conditions

exp experiment

max maximum value of

0;4 value at y/6 = 0.4

3) The Integral Solution Procedure

The basic procedure follows that of Patel & Head13, 

which may be briefly described as follows.

First we assume that the velocities are adequately represented 

throughout/...
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throughout by the Thompson profile family (as described in 

ref, 14) which provides relationships of the form.

- = f (H, Re , y/6)
U 1 e

cf = f (H, Re )
2 e

(1)

(2)

We further assume that at some initial station (1) the

values of H and Re are known
0

1 :::■

2'

CIS

The object is to determine the values of H and Re0 at the 

second station (2) a short distance downstream.

If we assume a value of H at (2) then we can determine the 

value of Reg which satisfies the momentum integral equation.

- CH + 2) i a
dx 2 U dx (3)

using relations (1) and (2) and so define the velocity profile 

there,/..,



there. It is then possible to determine the shear-stress 

profile, at the mid station (A) of the interval, from the 

continuity equation

+ = 0 
3x 3y

and the conservation of momentum equation

9u + viH = -i ^ + i

(4)

u-
9x

(5)
3y dx 3y

written in the integral form

li = 12 - uSH y + 2 /y- uiii dy . u ry> lii dy (6,
p P dx 3x 3x

and then applied in finite difference form over the interval.

At this stage in the procedure, the mean flow has been 

completely described and a check can be made as to whether 

or not that particular choice of H yields a flow field, which 

satisfies any criterion we may choose to apply. If the 

check is unsatisfactory, repeat the procedure with a different 

value of H at (2). In fact, rather than proceeding by trial, 

it has been found more convenient to choose three different 

values of downstream H, and interpolate to find that value 

of H, for which the criterion is satisfied.

It will be recognised that the procedure just described is 

rather clumsy, expensive in computing time, and if (for 

example) an entrainment model is used, computes unnecessary 

information/...
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information. However, it is extremely flexible and 

transparent and cannot in itself introduce any form of 

instability into the computations. It is therefore well 
suited for the present work.

4) Flow Predictions Using Similar Shear-Stress,
Eddy-Viscosity and Entrainment Models.

4.1 Background
O

In 1970 Head & Patel described an improved and very 

successful entrainment model, which was based on heuristic 

and qualitative physical arguments. The model consisted 

of prescribing the entrainment coefficient (Ce) for 

equilibrium layers, and modifying this value to take 

account of deviations from equivalent equilibrium conditions.

Specifically the model is given by.

Ce = Ce F (r,) eq 1

and

where

Ce = H* (i eq U dx eq»
_ 1 dU61 ll duel

U dx J2D/ U dx 1

(7)

(8)

(9)
eq,

F(r1> 2r7-T for rl> 1
5 - 4r.

(see fig.D(lO)

F(r1> =
3 - 2r,

for r^< 1

and follows from the momentum integral equation.
eq

using the value of it that acrues from the empirical tt -G 

relation given by Nash for equilibrium layers, i.e.,
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G - 6.1 (tt - 1,81)2 - 1.7 (11)

The predictions of flow development obtained by this method 

were as good, and often better, than those of more 

complicated procedures (figs. 2,3).

Later analysis of measured boundary layer development showed 

that the maximum value of eddy viscosity in the outer part 

of the layer varied between wide limits and exhibited distinct 

trends similar to those assumed by Head & Patel for the 

entrainment coefficient. That is, for layers developing 

faster than the corresponding equilibrium layer (i.e. r^ > 1.0), 

the maximum value of the eddy viscosity is less than would be 

expected under self preserving conditions, and vice versa.

In fact. Head & Galbraith showed that,for equilibrium 

layers, the ratio ve<^/vT]max remains substantially constant 

over a wide range of pressure gradients. Galbraith^^ also 

demonstrated that the eddy viscosity and the entrainment were 

very closely related, even in non-equilibrium layers 

(figs. 3,4,5) and, although unable to substantiate the 

validity of Head & Patel’s arbitrary correction to Ce e(^

(i.e. eqn. 10), or indeed suggest an improved formulation, he 

clearly showed that the above mentioned trends did exist 

(fig. 6).

It thus appeared that similar model formulations for the 

entrainment and eddy viscosity would yield similar 

predictions of flow development. Indeed, as mentioned in 

sect.l,/...
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sect. 1, the choice between entrainment and eddy viscosity, 

as the dependent variable of the model, was not nearly as 

important as its precise formulation. This led Galbraith 

to state.

15

"The behavior of the entrainment and eddy viscosity
in the outer part of layer are not just vaguely
similar but very closely related so that any
correlation proposed for (v_/U6*) „ should beT max.
equally valid for Ce 6/6*. There is also every 

reason to expect that similar correlations might 
apply to say the dissipation integral and other 

such hypothesis".

The present section tests this proposal by predicting 

experimentally obtained flow developments, using similar 

model formulations for the entrainment, eddy viscosity 

and the value of the shear stress at position y/6 = 0.4.

The reason for modelling the shear stress directly, and not, 

for example, the dissipation integral, is given in the 

following section.

4.2) The model formulations

All three models tested were of similar form in that 

they followed Head & Patel's method of specifying the 

equivalent equilibrium value of the dependent variable, 

and then modifying that, to account for non-equilibrium 

conditions. Although the specification of the equilibrium 

value varied slightly between models, the modifying function 

described/...
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described by eqn.lO was always used, since, as discussed 

above, no obvious improvement was evident.

Using 4> to represent the quantity being modelled, then all 

three hypothesis take the following form.

eq i (12)

with F (Tj^) given by eqn. 10 and

♦ = F2 (’req) (13)

where tr follows from Nash’s irr - G relation for equilibrium eq
layers and is a function of the local values of H and ReQ.

In the case of the entrainment and eddy viscosity, the choice

of function for was easily obtained by fitting an

appropriate curve through the results obtained from the 

direct analysis of measured boundary layer developments as 

described in Ref. 14. This gave the following.

Ce ii6*1 = 0.18 - e (0*3ireq + 2,52) (14)
eq

and V,
U6*

= 0.024 - e-CO* 525lTeq + 4*95) (15)

0.4

The comparisons of these functions, with the above mentioned 

results, are given in figs. 7,:8.

Turning now to the shear-stress model, (i.e. the variation

of/...

'j *1^

.
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of t/tw at y/6 = 0.4), it should be noted that it had ssb

originally been intended to model the dissipation integral. ';^b 

However, during the programing and testing of the basic 

solution procedure, an initially temporary and simple i-wi'

closure hypothesis was used. This took the now unusual -'ids 

form of eqns. 12, 13 with eqn. 13 being specified by

0)

= 0.65 + IT eq (16) rlt.r w
0.4

The linearity was not speculative, for it had been noticed, 

during the preparation of ref. 16, that the contours of tv-,

(T/xw)max were virtually coincident with those of tt (see

fig. 9); a rather interesting result. The maximum value

of t/tw was a little inconvenient for the purpose required

and so the value at y/6 = 0.4 was chosen quite arbitrarily.

Again the results of ref. 14 were used to obtain eqn. 16

and these are compared in fig. 10, . T-tb

■-anoaeb

Due to the success and usefulness of this model, it was

retained as part of the investigation. iD

4,3) Results

Figures 11-19 illustrate predictions of flow developments 

from the above three models for the following flows.
B tXtias'x

noxdfii'jBv 3 ,iebora ,o:/ won snxn'xuT

1
4
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1. Wieghardt zero pressure gradient 1400 **

2. Bradshaw a = -0.15 2500

3. Bradshaw a = -0.255 2600

4. Schubauer & Spangenberg Flow B 4500

5. Schubauer & Spangenberg Flow E 4800

6. Ludwieg & Tillmann dp/dx>>0.0 1200

7. Perry adverse pressure gradient 2900

8. Tillmann re-attaching :flow 1500

9. Bradshaw & Ferriss relaxing flow 2400

When all three predictions from the models appear as a solid 

line, as in the case of Wieghardt’s flow, then they lie 

within the thickness of the given line.

The results clearly shov? that the three models considered 

gave nearly equivalent predictions. Any small deviations 

from each other were more a function of the deficiencies 

inherent in the velocity profiles, rather than of the models 

themselves.

It will be seen that, in general, the accuracy obtained from 

these models is good,except for the flows of Perry, Ludweig 

& Tillmann and Tillmann. Even here, however, the results 

are as good, or as bad, as some of the better known models.

** The numeric index is that used at the Conference, held 
at Stanford University, on the prediction of two- 
dimensional turbulent boundary layers (ref.l7).
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4.4) Discussion

It will be recalled that the aim of the present section 

was to provide some evidence in support of an indifference 

towards the choice of dependent variable for a particular 

model. That which has been presented, it may be argued, 

is not an entirely independent check, since the use of the 

models closely follows their derivation. However, in each 

case, the model formulation is similar and the only 

"tunning" carried out was for the dependent variable's 

equivalent equilibrium value. Of course, a different 

profile family may yield a slightly different specification. 

In fact, in a finite-difference procedure,where one is not 

restricted by the profile family, this problem does not 

arise and so the specification of the equivalent equilibrium 

value (i.e. eqn. 13) could take the form.

(f> = A + Bit eq (17)

as is the case with the shear-stress model (eqn. 16).

Whether this would give similar results,to those already 

presented,remains to be seen.

If one accepts the results with the above qualification, 

then their significance is very clear. It is,that one 

need no longer argue, if one ever did, whether it is the 

eddy viscosity, entrainment, dissipation integral or turbulent 

kinetic energy, etc., that should or should not be modelled. 

Hach/...
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Each one, it would appear, gives just as good a prediction 

as the rest, provided it takes the same form and the 

required empiricisms are of similar quality. The choice 

between them then becomes one of ease of programing, the 

availability of reliable empirical data and, if an integral 

procedure is to be used, the deficiences of the 

appropriate profile family.
■ i

A further implication of the results stems from the 

accuracy of the predictions being just as good as some of 

the more complicated procedures,which suggests that, for 

many flows, a simple but realistic procedure will suffice. 

This is reassuring for those who require fast and simple 

methods, which may be included as a small part of a large 

inviscid " . viscous flow calculation. A fuller 

discussion of this point is given in section 6 of this 

report.

5) Improved Eddy-Viscosity Models 

5.1 Introduction

Here the eddy viscosity concept was employed to 

investigate the dificiencies of simple models and the way 

in which they may be improved, whilst remaining relatively 

uncomplicated, to satisfactorily handle a wider range of 

flows than had hitherto been possible.

To/...
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To avoid unnecessary discussion of eddy viscosity 

variation in the wall region and the associated controversy, 

which is not the concern of this paper, the value of vT/U6* 

at y/6 = 0.4 has been modelled throughout.

18

Initially the eddy viscosity was simply taken as a universal 

constant, which only gave satisfactory predictions for zero 

pressure gradient flow,and then subsequently improved to 

adequately handle equilibrium and separating flows.

Recalling (from the previous section) that the modelled 

quantity is of minor importance when compared to its 

specification and that the eddy viscosity and entrainment 

coefficient show similar variations throughout the entire 

development of the layer, then it is not unrealistic to 

expect that the results,of the above outlined investigation, 

will be applicable to the entrainment concept. Indeed, 

there is every reason to expect that their applicability is 

relatively independent of the modelled quantity.

5.2 The Model
U6*i

constant.
0.4

This is the simplest specification of eddy viscosity

we can have. Originally, the possibility of the ratio

vt/U6* being treated as a constant was considered by 

19Clauser , who had suggested that, in the outer region of 

the flow, the ratio vT/U6* could, as a rough approximation, 

take/...
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take the universal value of 0,018. Although the

magnitude of the constant varies from author to author,

the constant eddy viscosity model has been employed in
20 21the analysis of quilibrium layers * , and in numerous

6 7prediction procedures, * with varying degrees of success 

and criticism.

In the present model the eddy viscosity is described by 

the relation

V

U6
0.017 (18)

0.4

This value, which is a little higher than that normally 

used (e.g., 0.016), is taken from Galbraith & Head’s 

analysis for zero pressure gradient flow, the results of 

which are presented in Fig. 8,

The predictive capability of the above model for the flows 

1 to 5 and 9 of sect. 4.3 and also Goldberg's flow^^ 

(pressure distribution No, 3), is illustrated in figs. 20 

to 26,

It can be seen that for Wieghardt's flow the predictions 

are very satisfactory and every bit as good as more recent 

complex models (see fig. 16), However, in the case of 

Bradshaw's two equilibrium flows, figs. 21, 22, the model 

over predicts the development of H and under predicts that 

of/..,
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of cf. The more severe the pressure gradient the poorer 

the prediction. It is salutary to note that this is 

also the case with the similar model used by Cebeci &

Smith , in their finite-difference procedure (figs. 17, 18).

dG15 .aaGalbraith has shown that where ----------------  is positive
dClog Reg)

there is a corresponding reduction in vT/u5*J relative
max

to the equivalent equilibrium value (fig. 28). It is,

therefore, not unreasonable to expect that any model which

under estimates the true variation of eddy viscosity will

result in an over prediction of G and hence H. Thus the

increasing disagreement,between prediction and experiment,

is a consequence of the above model under predicting the

value of V /U6*J in the equilibrium adverse pressure
0.4

gradients (see fig. 27).

In the two separating flows of Schubauer & Spangenberg, 

the predictions (figs. 23, 24) are apparently quite 

satisfactory, at least over the first part of the flow. 

Similar results from other authors,for these two flows , 

have probably accounted for much of the constant eddy 

viscosity model’s success and long life. However, a 

closer inspection reveals a quite unrealistic prediction 

of flow development.

Consider the initial stages of flow E’s development, where 

H and hence G are increasing only slowly. The visible 

over/...
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over prediction of H and under prediction of cf is a

consequence of the model giving too small a value of

V /U6*J ; see fig, 27, However, as the layer approaches
0,4

separation, the true value of vT/U6*Jlax will gradually

decrease to around 0,2 of the equivalent equilibrium value,

(see fig, 28) and so the model's value of v /U6*J = 0,017,
0,4

increasingly over predicts the true value,with the

consequent under prediction of H and corresponding over

prediction of cf. The model's unfavourable predictive

capability for separating flows is, therefore, somewhat

concealed by its constant value falling around the mid range

of the true variation of v /U6*J , and thus over the flow
T 0,4

tends to average out the discrepances of prediction.

In Schubauer & Spangenberg Flow B (fig, 25) where, from

the outset, the experimental variation of H increases more

rapidly than that of Flow E, with an implicit reduction in

the value of v /U6*J , the model is initially more
0,4

satisfactory than it was in the case of Flow E, This is

reflected in a good prediction for this part of the flow.

This quality of prediction, however, only exists until

the rate of increase of H or G is such that, even with the

increase in VT/U6,^ due to the severity of the equivalent
0,4

equilibrium layer, the true value of v /u6*J is less than
0,4

that given by the model. After this stage has been reached, 

the model increasingly under predicts the development of H,

It/,,.
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It can therefore be seen that the constant eddy viscosity 

model is only applicable to zero pressure gradient flows. 

Even here, as with the case of Weighardt, only over the 

fully developed and well behaved region, with the starting 

or non-equilibrium part of the flow being handled with 

care.

5.3) The model vT/u|S* 5 F (Tfeq)

16Head & Galbraith have shown that even in equilibrium

layers, of which zero pressure gradient is a special case,

there is substantial variation with pressure gradient in

the value of vT/u6<J , This section takes account of
max.

this variation by considering v /U6*J to be a function of
t.4

ir given by eqn. 15, i.e., eq

V

U6“II6*J
S 0.024 -e "(0,525ireq + 4*95) (19)

0.4

As figs. 21,22 show, the predictive capability of the simple 

eddy viscosity model has been extended to satisfactorily 

handle the two equilibrium layers investigated by Bradshaw. 

In contrast to this improvement, however, the predictions 

for the two separating layers of Schubauer & Spangenberg 

(figs, 23,24) have been impaired and are quite 

unsatisfactory.

The poor prediction of the two separating flows is not 

entirely/...
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entirely unexpected for, as can be seen in fig. 27, the 

new model seriously over estimates the true variation of 

the eddy viscosity, resulting in an under estimation of 

the shape factor development. These two flows, however, 

exhibit substantial deviations from equilibrium conditions. 

Any model used to predict such flow situations must 

satisfactorily account for their manifestations in the 

modelled quantity.

5,4) Eddy Viscosity in Non-Equilibrium Layers

Various authors, e.g., 3,4,23 have considered ways of 

improving simple models to account for non-equilibrium flow
g

conditions. In sect, 4,Head & Patel's method was 

discussed and applied to the eddy viscosity concept as well 

as the modelling of the shear stress. Their method, which 

was originally based on qualitative and heuristic arguments, 

did not have the modifying function (eqn. 10) checked
14against experiment until the analysis of Galbraith & Head 

provided some consistent data. Even tlien, however, 

Galbraith15 was only able to substantiate the general trend 

of the proposed function,due to a large amount of scatter 

which was not entirely unexpected.

The justification for Head & Patel’s model, therefore, lies 

in the quality of the predictions obtained which has been 

clearly demonstrated in sect, 4, Head & Patel also 

suggested that further improvements in predictive accuracy 

could be obtained in two ways. First, all experimentally 

investigated flows contain some degree of three-dimensionality.

This/...
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This will manifest itself through an imbalance of the

momentum integral equation,from which a suitable

modification to the model may be made by assuming that

the three-dimensionality of the layer is of a plane

convergent/divergent nature and that the increased/decreased

rate of growth may be treated as if it arose from purely
24two-dimensional causes; Head has recently provided 

additional evidence and thoughts on this.*

Second, and more important, they limited the rate at which 

the entrainment coefficient was allowed to change. This 

action appears to have been mainly intuitive and originated 

from the poor predictions obtained for Golberg's flow 

(fig, 2c). Again, justification for this course of action 

came from the improved predictions and, more recently, from 

the work of Galbraith^^.

As before, he substantiated the correctness of introducing 

such a lag term but could not verify the approprietness of 

the one used. Here, however, Galbraith's results are 

significant in the development and improvement of simple 

models,

Figures 28, 29 recast Galbraith's results such that
dG(v /U5*) /(v /U5*) is correlated against -

dH da°8 Ree)instead of 9 — as originally used, and it can be seen
dx

from/...
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from fig. 28, that,at least for separating flov/s , there can 

be little doubt that there is a substantial reduction in 

the relative value of VT/U6s^ax Also, from the analysis 

of Perry's flow, in which there is a significant imbalance 

of the momentum integral equation, the assumed three- 

dimensional causes appear to modify the value of the eddy 

viscosity such that it parallels the variation arising 

from purely two-dimensional causes. Results presented by 

Head indicate that, in contrast to the reduced value of 

V in Perry's possible convergent flow, there is a

marked increase for divergent flows.

For two-dimensional non-equilibrium flows, other than those 

where G is increasing monotonically, notably relaxing 

layers, the correlation presented in fig. 28 is no longer 

valid, as is clearly demonstrated in fig. 29.

25Bradshaw & Ferriss's flow , it will be recalled, consisted 

of a layer, the first part of which developed in an adverse 

pressure gradient conducive to the development of a 

particular equilibrium layer. At some position downstream 

this pressure gradient was removed and the subsequent 

development in zero pressure gradient was intensively 

investigated.

22Golberg's flow was in many respects similar to that of 

Bradshaw/...
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Bradshaw & Ferriss's, but the initial development was in 

the presence of a severe adverse pressure gradient 

causing the layer to proceed towards separation. Just 

before the onset of separation the pressure gradient was 

removed and the layer allowed to relax in zero pressure 

gradient. In this flow, however, the entire development 

of the layer was thoroughly investigated.

Now it can be seen from fig. 29 that, at the point of 

relaxation, the respective eddy viscosities are where they 

now would be expected. In the case of Bradshaw &

Ferriss's flow, close to equilibrium conditions, whilst for 

Golberg's flow, close to separation. Tlie subsequent 

trajectories of the eddy viscosity are those of a slow 

recovery. In fact, a lagging behind the rate at which the 

mean velocity profile adjusts to the new situation; it 

exhibits a damped response. Head & Patel's inclusion of 

a limiter, for the rate at which the entrainment coefficient 

is allowed to change, is thus seen to be reasonable. Any 

model purporting to account for such deviations from 

equilibrium conditions must exhibit, albeit crudely, this 

damped response.

dHThe author has found that the parameters 0^ and dG/d (log R6q)

are too closely coupled to the solution and do not give as 

stable predictions, using the current procedure, as the
^ 1 duel / 1 due j Xparameter r1 (= ^ / jj >•

Hence/... 2D eq
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Hence, the improved raodel^considered in the present section^ 

which can satisfactorily predict nominally two-dimensional 

separating flows, is that used in sect. 4,and is based on 

tne parameter r^ and the modifying function given by 

eqn. 10, For the sake of comparison, the results of 

sect, 4 are here repeated in figs, 20 to 24 where the very 

satisfactory agreement between experiment and the 

predictions,for both the equilibrium and separating layers, 

may be seen.

For the two relaxing layers (i.e. figs. 25, 26) it can be 

seen that Bradshaw & Ferriss's flow is very satisfactorily 

predicted,whilst the result for the more severe case 

considered by Golberg is very poor (except over the first 

part of the flow), both absolutely and relative to the 

prediction of Bradshaw et al * However, Head and Patel 

(see fig. 2c) obtained very satisfactory results after the 

inclusion of a simple lag term and taking due account of 

tiiree-dimensionality.

Returning to Bradshaw & Ferriss’s flow (figs, 19, 25), the 

present predictions are in better agreement with the 

measurements than the more complicated models, especially 

for the skin friction. The present model may, therefore, 

be considered adequate for predicting moderately relaxing 

layers, although the extent to which this can be applied is 

unknown/...
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unknown and its acceptance does not imply validity. The 

major defect of the model, i.e. , the exclusion of the 

damped response, is ever present»but in this case the 

incurred error appears to be small,

6) Concluding Discussion 

6,1 Closure Hypotheses

The results of sect. 4 showed that the predictive 

capability of a particular model is relatively insensitive 

to the choise of modelled quantity, but very sensitive to 

its formulation. In sect. 5, a crude eddy-viscosity 

model was improved in an intuitive and pragmatic way until 

it could satisfactorily predict separating and, possibly, 

mildly relaxing layers. It was further pointed out that 

in relaxing layers the response of the eddy viscosity, 

once the pressure gradient had been removed, visibly lagged 

behind the rate at which the mean velocity profile 

adjusted to the new situation. In these more complicated 

flows it would, therefore, seem reasonable to specify the 

eddy viscosity by a rate equation.

If one prescribed the eddy viscosity by some differential 

equation (e.g. , ref. 23), the entrainment could take a 

similar form and so too the shear stress. Here, however, 

the simple models based on mucii empirical data become less 

distinguishable from the more complex** turbulence models

** Here "complex” refers to the amount of detailed turbulence 

modelled.
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which also take the form of a differential equation(s).

It could indeed be suggested that, in recognising the need 

to specify the modelled quantity by a differential 

equation in the more complex flows, the exponents of simple 

models have come round to the stance held by those who 

favoured more complicated procedures. On the face of it, 

this would appear to be the case.

Consider first the more complex turbulence models where the 

underlying theme appears to be one of a search for generality. 

The assumption beingjthat the more complex the model the 

more general it will be,and thus the more desirable. 

Eventually, one model would suffice for a whole range of 

flow situations. Currently, however, such models are in 

need of improvement, even in the simple flows which have 

been considered here. Nevertheless, they do possess the 

distinct advantage that there is no requirement to conjure 

up the basic form of the model, since this is generally 

dictated by the turbulent transport equation(s) chosen.

The exponents of simpler models appear to develop them 

pragmatically for an increasing range of flow situations, 

where it is assumed that the modelling of the mean flow 

quantities is adequate, but in this they severely limit 

the number of flows that they can handle. They may 

argue, of course, that this limited range is not only 

much/...



30,

much larger than would be expected but also is very 

useful and, further, that the predictive accuracy is 

relatively very good. So why use a cumbersome 

complicated model when a simple one will suffice? It 

will be easier to program and cheaper to run.

However, when the flow under consideration is such that 

the model equation(s) can no longer be of a simple form 

then it would seem reasonable to use the exact turbulence 

transport equations as a basis for the model. As already 

stated,the use of these equations does not preclude the 

use of intuitive speculations and qualitative arguments 

about the flow structure,and does not imply the retention 

of all the terms appearing in the chosen equation(s).

Similarly, their use neither restricts the choice of

quantity to be modelled nor does it imply superiority of

one over the other. It is perfectly in order for Ng &
27Spalding to model the eddy viscosity using a Reynolds-

2 6stress model whilst Bradshaw et al model the shear stress,
2 8McDonald & Camarata use an extended mixing length. Green

et al 29 the entrainment.

All the last three works base their model on the Turbulent 

Kinetic Energy Equation.

6.2) Integral Solution Procedures

So far the choice of solution procedure has not been 

discussed,/...
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discussed. It is the author's opinion that this should 

be treated separately from the model formulation. In 

general, once the model has been chosen then consider the 

solution procedure to be employedjand this should not 

exclude the possible use of an integral technique.

After all, the very satisfactory results of sect. 4 were
.13obtained by just such a method. Also, Patel & Head

developed a simple and fast integral solution procedure
26for use with the Bradshaw et al model,and this generally 

yielded improved accuracy of prediction over the original 

method (see fig. 30).

It may, therefore, be said that where a suitable family of 

velocity profiles exist there can be little reason why it 

should not form the basis of a solution procedure which 

will, in general, be simple, fast and economic. Such 

procedures will, therefore, appeal to those who wish a fast 

algorithm to form part of an inviscid-viscous flow program.

Such analysis not only requires the accurate prediction

of the boundary layer flow parameters like 6*,but also the

skin friction, sometimes the heat transfer and the effects

of transpiration, etc. Here again, integral methods have

distinct advantages. First, most velocity profile

families accurately model the flow in the vicinity of the 

1 18wall * ,and this results in good predictions of skin
30 31friction. Second, it has been demonstrated * that, 

for/...
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for particular flows, good calculations of heat transfer

may be obtained by first solving the momentum layer by a

fast integral procedure giving profiles of shear stress,

eddy viscosity and, via a Prandtl No. assumption, eddy

conductivity from which the thermal layer may be solved

using a finite difference procedure. Finally, much work

has also been carried out for boundary layers with

distributed injection ,and a suitably three parameter

family of two-dimensional velocity profiles has been 

32.developed

7) Conclusions

1) In any closure hypothesis, the modelled quantity 

is of minor importance when compared to its 

specification.

2) Similar model formulations^using different 

dependent variables with an equivalent quality

of empiricismfwill yield very similar predictions.

3) Simple models may be easily improved to 

satisfactorily predict a wide variety of flow ' 

situations, often with better accuracy than current 

more complex turbulence models.

4) When the flow is of such complexity that to obtain 

satisfactory predictions the model is specified

by a rate equation, it would seem reasonable to 

base it on one or more of the turbulent transport 

equations,

5) /...
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5) Conslusion 4 does not imply the obsolescence of 

simple models.

6) The method of solution is relatively independent 

of the closure hypothesis.

7) Integral procedures can provide very simple and 

fast solution algorithms. Where a suitable 

velocity profile family exists, such procedures 

should always be seriously considered.

.. JLC ■
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O SCHUBAUER S SPANGENBERG FLOW E 

• SCHUBAUER & SPANGENBERG FLOW B
Cfroh the analysis described

X INCREASING

FIG. 27. EDDY VISCOSITY DEVELOPMENT FOR SCHUBAUER 

& SPANGENBERG’S FLOWS B & E
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* EXPERIMENT
o CALCULATIONS OF BRADSHAW Er AL^F-D PROCEDURE)

-----CALCULATIONS OF PATEL & HEAd/iNTECRAL \
I PROCEDUREJ
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$ BRADSHAW & FERRIS, 
RELAXING FLOW

^ TILLMAN RE-ATTACHING FLOW

fig.30. predictions from a finite-difference and an
INTEGRAL PROCEDURE USING THE SAME
CLOSURE HYPOTHESIS
(taken from PATEL & HEAD, REF. is)
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