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a b s t r a c t

Combustion of hydrogen or hydrogen containing blends in gas turbines and industrial combustors can
activate thermoacoustic combustion instabilities. Convective instabilities are an important and yet less
investigated class of combustion instability that are caused by the so called “entropy waves”. As a major
shortcoming, the partial decay of these convective-diffusive waves in the post-flame region of com-
bustors is still largely unexplored. This paper, therefore, presents an investigation of the annihilating
effects, due to hydrodynamics, heat transfer and flow stretch upon the nozzle response. The classical
compact analysis is first extended to include the decay of entropy waves and heat transfer from the
nozzle. Amplitudes and phase shifts of the responding acoustical waves are then calculated for subcritical
and supercritical nozzles subject to acoustic and entropic forcing. A relation for the stretch of entropy
wave in the nozzle is subsequently developed. It is shown that heat transfer and hydrodynamic decay can
impart considerable effects on the entropic response of the nozzle. It is further shown that the flow
stretching effects are strongly frequency dependent. The results indicate that dissipation and dispersion
of entropy waves can significantly influence their conversion to sound and therefore should be included
in the entropy wave models.
© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Noise emitted by the power generating devices is deemed an
important environmental pollution, and there is an increasing
emphasis on making these systems quieter [1]. In gas turbines, the
noise generated by the combustion of fuel has been identified as a
major contributor to the total noise emitted from the unit [2,3].
Further, combustion generated noise can sometimes contribute
with the so called thermoacoustic instabilities [3,4]. These in-
stabilities include strong pressure oscillations, which can induce
pronounced mechanical vibrations and lead to hardware damage
[4]. Avoiding thermoacoustic instabilities is, currently, a major
challenge before the development of clean gas turbine combustors
[4]. It follows that understanding and modelling of combustion
generated noise is a crucial element for the future advancements of
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gas turbine combustion technologies [5,6].
Combustion noise is, broadly, divided into direct and indirect

components [1,2]. Direct combustion noise arises from the fluctu-
ations in the flame heat release, mainly caused by the turbulence in
the flow or interaction of the flame with acoustics [1,2]. This topic
has been studied extensively through numerical simulations [3,7,8]
and experiments [2,9e11]. Indirect combustion noise, however, is
relatively less explored. The generation of sound by thismechanism
is due to the conversion of density inhomogeneities into acoustic
waves, which often occurs in a downstream nozzle. As a result, this
mechanism, also called entropy noise, includes post flame in-
teractions mainly within the exit nozzle of the combustor [1]. The
physical principles of entropy noise were explained by Ffwocs
Williams and Howe [12] and Howe [13] in the seventies. They
showed that convection of low density fluid parcels through a re-
gion of mean pressure gradient, can generate sound [12,13]. Such
parcels of low density fluid or hot spots, often called entropy waves,
can be readily generated in a gas turbine combustor [4]. The process
of conversion of entropy waves to acoustic waves was first
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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modelled by Marble and Candel [14]. In their seminal work, these
authors derived analytical expressions for the reflected and trans-
mitted acoustic waves, generated by the passage of entropic and
acoustic waves through a nozzle [14]. Their analysis was one-
dimensional, fully linear and on the basis of compactness of the
nozzle and Euler equations [14]. Although they did not present any
comparison, the subsequent studies confirmed the validity of their
results. Cumpsty and Marble [15] extended the analysis of Marble
and Candel [14] to a turbine stage as a quasi-two-dimensional
domain. The comparison between the analytical results and
experimental data obtained from a Rolls-Royce aero-engine
revealed maximum 50% error for the predicted entropy wave. They
found that the entropy noise is strongly affected by the pressure
ratio in each stage [15]. Later, Cumpsty [16] theoretically compared
pressure, entropy and vorticity noise in an unsteady combustion
and estimated that entropy noise dominates the total noise emis-
sion. The analysis was in qualitative agreement with the experi-
ments on an aero-engine.

Recently, these models were extended to less restrictive con-
ditions and examined more thoroughly in a series of work by
various authors. Stow et al. [17] conducted a frequency asymptotic
expansion of the flow perturbations and introduced the concept of
effective length of the nozzle. They, therefore, released the
assumption of nozzle compactness in the analysis of Marble and
Candel [14] and calculated the reflection characteristics of an
annular nozzle [17]. These authors used a numerical solver to
compare the analytical results and very good agreement was found
for the frequencies below 1Hz. A similar approach was taken by
Goh and Morgans [18] in their quasi one-dimensional analysis of a
non-compact nozzle. These authors derived theoretical expressions
for the phase of the transmission coefficients due to an incident
acoustic or entropic wave and compared those with numerical
simulations [18]. Moase et al. [19] used hypergeometric functions in
their quasi-one-dimensional, analytical investigation of the dy-
namic response of a nozzle. In their analysis, the nozzle could have
an arbitrary shape and be subject to acoustic and entropic excita-
tion [19]. A quasi one-dimensional Euler solver with an adapted
nonlinear artificial dissipation model was used to validate the
analytical solution. Moase et al. [19], further, investigated the ef-
fects of nonlinearities and developed amethod to quantify the level
of nonlinearity [19]. Hosseinalipour et al. numerically showed that
the assumption of passive scalar in analysis of entropy waves is
largely incorrect [20].

The comprehensive measurements of Bake and his co-workers
[21,22] provided experimental data on entropy noise and
increased the theoretical interest in this problem. Leyko et al. [23]
conducted Large Eddy Simulation (LES) of Bake et al. experiment
[22] along with analytical compact analysis. They concluded that
the compact analysis of Marble and Candel was capable of pre-
dicting the experimental results of Bake et al. [22]. In a combined
analytical and numerical investigation, Duran et al. [24,25]
considered the subsonic case in Bake et al. experiment [22]. They
showed that the compact model of Marble and Candel [14] can only
predict the noise generation at low Mach numbers in their case
studies [24,25]. Duran and Moreau [26] used Magnus expansion to
release the assumption of compactness in the acoustic and entropic
analyses of nozzles. The analytical relations were validated against
the results of Marble and Candel [14] for the case of a nozzle with a
linear steady velocity profile. They derived analytical expressions
for the dynamic response of the transmitted noise and showed that
this is highly frequency dependent [26]. The compact analysis of
Ref. [14] has been further extended to include high amplitude
acoustic and entropic waves through a second order, nonlinear
analysis [27].

Over the last few decades, the theoretical results of Marble and
Candel [14] have extensively been employed in the numerical and
theoretical studies of combustion noise and thermoacoustic in-
stabilities [25]. Despite this, the practical significance of entropy
waves in both of these topics is still being debated. For instance, in a
theoretical study, Leyko et al. [28] showed that the ratio of indirect
to direct combustion noise depends upon the Mach numbers in the
flame region and nozzle. They then argued that comparing to direct
combustion noise, indirect noise is insignificant in small scale
combustors, but becomes appreciable in gas turbines [28]. Further,
Duran and Moreau [26] demonstrated that the ratio of indirect to
direct noise decreases at higher frequencies. They, therefore,
confirmed the argumentmade by other authors on the limitation of
the effects of entropy waves to low frequencies [26]. Similar
conclusionwas made by Fattahi et al. [29] in their recent numerical
simulation of entropy wave propagation. These authors further
showed that advection of entropy waves in heat transferring flows
is associated with significant dissipation and dispersion [29].

The influence of entropy noise on thermoacoustic instabilities
has been, particularly, a matter of contention. Dowling and her co-
worker experimentally [30] and theoretically [31] demonstrated
that the downstream boundary condition of a combustor could be
thermo-acoustically destabilising. Keller [32] proposed a model for
the frequency of entropically driven instabilities in a gas turbine
premixed combustor with chocked exit. According to Keller's
model [32], the main driver of instabilities is the acoustic waves
generated by the convection of entropy disturbances through the
downstream chocked nozzle. Similar arguments were made by Zhu
et al. [33] in their numerical simulation of a spray combustor.
Polifke et al. [34] developed a linear model for the thermoacoustics
of a premixed combustor with chocked exit. These authors showed
that the interactions between the generated entropy waves and the
chocked exit nozzle could alter the thermoacoustic stability of the
system [34]. This was later confirmed by the experiments of Hield
et al. [35] on a thermoacoustically unstable, premixed combustor
with open and choked exit nozzles. Hield et al. [35], further, showed
that through the inclusion of dispersive entropy waves and the
boundary conductions of Marble and Candel [14], the observed
thermoacoustic instability could be successfully modelled. They,
therefore, concluded that entropy waves are of significance in
thermoacoustic stability of combustors [34]. However, Eckstein
et al. [36,37] made a totally different conclusion from their exper-
imental and modelling works on a liquid fuel combustor. They
considered the dispersion of entropy waves and argued that en-
tropy waves make a negligible contribution with the thermoa-
coustic instability of the combustor [36]. Their model for the
dispersion of entropy wave was developed in the earlier work of
Sattelmayer [38], who modelled the dispersing process as a tem-
poral stretch of a density impulse. This analysis was on the basis of
the residence time distribution in a simple exhaust duct [38]. The
probability density function (p.d.f) of this residence time was used
to model the dispersion process [38]. Sattelmayer [38] argued that
non-uniformity of a duct flow can cause significant dispersion and
hence, entropy waves could hardly survive in real combustors. He,
therefore, considered entropy waves to be of little significance in
the analysis of thermoacoustic instabilities [38]. The opposing
statements made in Refs. [35,36,37] could be due to the effects of
flow on entropy waves. As Fattahi et al. [29] demonstrated, the
thermal and hydrodynamic conditions of the flow can significantly
affect the entropy wave. Since the extent of these effects heavily
depends on the convecting time scale [29], they are expected to be
more pronounced in the long combustion tube of Eckstein et al.
[36,37] in comparison to the short-length rig of Hield. et al. [35].

Similar to the numerical results reported in Refs. [36,37],
experimental studies of entropy waves inside thermoacoustically
unstable combustors have confirmed that entropy waves could be



Fig. 1. The schematic configuration of the nozzle illustrating the propagating and
convecting waves.
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highly dispersive [39,40]. However, the recent direct numerical
simulation of Morgans et al. [41] in an incompressible, non-
reactive, channel flow showed that entropy waves could mostly
survive the flow decay and dispersion effects. These authors
rebutted the conclusion made by Sattelmayer [38] due to defects in
applying p.d.f [41] and argued that the correct p.d.f should be
Gaussian-like rather than a rectangular distribution as used by
Sattelmayer [38]. The conclusionmade byMorgans et al. [41] shows
that non-physical assumptions made in the analyses of entropy
waves could be partially responsible for inconsistency in the liter-
ature. Similarly, Domenic et al. [42e45] in a series of analytical and
experimental works, showed that the analytical model for predic-
tion of acoustics of a subsonic flow can be defective without a
reverberation. Another potential source of contention could be the
pressure loss in the nozzle, which has been recently incorporated
by Domenic et al. [42e45] into the entropy wave conversion
models. These authors measured the reflection coefficient and
clearly separated indirect and direct noise [43]. It was shown that
the indirect noise in both up-warding and down-warding di-
rections should not be neglected, particularly at sonic nozzle con-
ditions [43,44]. Domenic et al. [43] also concluded that probable
merging in measurement of direct and indirect noise might be the
reason of dismissing entropy noise in some studies.

Following the work of Morgans et al. [41], Wassmer et al. [46]
developed a linear one-dimensional convective-diffusive model of
entropy waves, in which effective diffusivity was inferred from
experimental data [46]. The theoretical investigation of Goh and
Morgans [47] showed that introducing decay and dispersion of
entropy waves could significantly modify the thermoacoustic
instability of the system. These authors considered a simple ther-
moacoustic model of a premixed combustor [47] and added
decaying and dispersive entropy waves to the system [47]. They
showed that depending upon the strength of the decay and
dispersion of entropy waves, thermoacoustic instability could be
either encouraged or discouraged [47]. In a recent large eddy
simulation of an aero-engine combustor, it was shown that entropy
waves shift the eigen modes of the system to higher frequencies
and could cause mixed acoustic-entropic instabilities [48]. Further,
Lourier et al. [49] emphasised the effect of the shape of entropy
waves on the peak pressure fluctuations. They argued that the
shallower shaped entropy wave generate smaller peaks in the
pressure wave [49]. This finding was a strong evidence for the in-
fluence of dispersion mechanisms on the entropy noise. Recently,
Magri et al. [50] introduced a new source of entropy fluctuations in
combustors, referred to as compositional wave, caused by the
chemical potential of an incomplete mixing. This source of entropy
wave could be another reason for the difference between the
analytical results and experimental data reported in literature.
Following thework ofMarble and Candel [14], Magri et al. extended
compact relations for both supercritical and subcritical nozzles
[50]. The validity of their approach was confirmed in the limits of
uniform Mach number at the nozzle inlet and outlet and no
compositional fluctuations. They concluded that chemical potential
of gases can change through the nozzle resulting in an additional
source of entropy disturbances [50].

The preceding review of literature clearly showed that the decay
and dispersion of entropy waves could significantly affect indirect
combustion noise and thermoacoustic stability of the combustor.
However, the extents of these effects are, currently, unknown. This
has resulted in significant disagreements in the literature and
caused confusion about the practical significance of entropy waves.
An essential step in improving the situation is to detect all the
possible mechanisms of decay and dispersion of entropy waves and
include them in the thermoacoustic models of combustors. In
general, there exist two mechanisms of decay and dispersion of
entropy waves. These are due to hydrodynamics and heat transfer
[29]. The former can decay the entropy wave by viscous dissipation
and turbulent mixing and also disperse the wave by the spatial
non-uniformities of the velocity field. Transfer of heat from the
combustor and nozzle can also modify acoustic and entropic waves.
Further, it can affect the velocity field in compressible flows and
therefore leave an indirect influence on the acoustic and entropic
waves [48,49]. In reality, all combustors and exit nozzles include
heat transfer and hydrodynamic effects. This raises the question
that whether these effects should be involved in the low order
thermoacoustic models of combustors.

The problems of heat transfer and hydrodynamic dispersions in
ducts have received some attention in the literature [29,38,49e52].
In particular, Karimi et al. [51,52] and Fattahi et al. [29] have
demonstrated the significant effects of heat transfer upon the
reflection and transmission of the resultant sound waves, and the
survival of entropy waves. Howe [53] elaborated on the stretch
effects by calculating the stretch of the entropy waves in Bake's
experiment [22]. Further, Goh and Morgans [19] denoted the
importance of stretch of entropy waves upon the dynamic response
of the nozzle. However, they did not consider this effect in their
analysis. The significance of the dissipation and dispersion of en-
tropy waves have been noted by a number of authors in their
analytical [18,54], numerical [41,47] and experimental [37] in-
vestigations and also in the reviews of the subject, see for example
[1,54]. Despite these, so far most of the analyses of nozzle response,
including the early ones [14,15] and their more recent extensions
[17e19,26,27], have totally ignored the decay and dispersion of
entropy waves. So far, a systematic evaluation of these effects upon
the acoustic and entropic responses of nozzles has not been re-
ported. To address this issue, the current study adds the dissipation
and dispersion of the entropy waves to a predictive model of in-
direct combustion noise. This is achieved by considering the hy-
drodynamic and thermal effects of the flow field on entropy waves
and further allowing for the entropy wave stretch in the nozzle.
Prediction of the phase shift by considering the concept of ‘effective
length’ in a non-compact nozzle with a finite length is another
advantage of the current analytical approach.
2. Problem configuration and the governing equations

In the current work, a convergent-divergent nozzle shown in
Fig. 1 is considered. The convergent and divergent parts are
respectively called throat upstream and downstream. An incident
entropic (s) or acoustic incident wave (Pþ1 ) enter the nozzle and this
generally produces three acoustic waves: P�1 ; P

þ
2 and P�2 . In here,

indices 1 and 2 stand for the upstream and downstream of the
throat, respectively. In addition, þ and e symbols indicate the
waves travelling towards the downstream and upstream directions.
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In keeping with the literature [23e26], the section of the nozzle
located upstream of the throat is much shorter than the down-
stream part.

The proceeding analyses include the following assumptions.

(a) The steady heat transfer is assumed to be purely radiative,
(b) cooling does not change the critical statue of the nozzle,
(c) there is no shock wave in the divergent part of the super-

critical nozzle,
(d) there are no frictional losses and the unsteady heat transfer

is negligible,
(e) The working fluid is the product of a lean-premixed

hydrogen combustion given by Eq. (73),
(f) the working fluid is an inviscid, non-heat-conducting, ideal

gas,
(g) the supercritical cases exclude shock waves,
(h) the combustion products are completely mixed.

The one-dimensional conservation equations of mass, mo-
mentum and energy are [48].

1
r

�
vr

vt
þ u

vr

vx

�
þ vu
vx

¼ 0; (1)

vu
vt

þu
vu
vx

þ 1
r

vp
vx

¼ 0; (2)

Ds
Dt

¼ q
rT

: (3)

In the above equations, p; r;u; s and t are respectively the static
pressure (Pa), fluid density (kg/m3), velocity (m/s), entropy (kJ/kgK)
and time (s). Further, T is the fluid absolute temperature (K) and q is
the heat addition or loss per unit volume (W/m3).

Flow variables are then substituted by the summation of the
steady and perturbation parts such that g ¼ gþ g0, in which g is a
flow property. Ignoring the second order terms results in the
linearized form of mass, momentum and energy equation (1)- (3).
These are [18].

�
v

vt
þ u

v

vx

�
r0

r
þu

v

vx

�
u0

u

�
¼ 0; (4)

v

vt

�
u0

u

�
þ u

v

vx

�
u0

u

�
þ r0

r

vu
vx

þ 2ru
u0

u
vu
vx

þ p
v

vx

�
p0

p

�
þ p0

p
vp0

vp
¼ 0;

(5)

Ds0

Dt
¼ qR

p

�
q

0

q
� u

0

u
� p

0

p

�
: (6)

It, further, follows from the first law of thermodynamics that
[41].

s0

cp
¼ p0

gp
þ r0

r
: (7)

Combining Eqs. (4), (6) and (7) yields

�
v

vt
þ u

v

vx

��
p0

gp

�
þ u

v

vx

�
u

0

u

�
¼ qR

p

�
q

0

q
� u

0

u
� p

0

p

�
: (8)

The acoustic waves are assumed to be planar and propagating in
both directions of the one-dimensional domain. Thus [18],
p
0

gp
¼ Pþ exp

�
iu
h
t � x

uþ c

i�
þ P� exp

�
iu
h
t � x

u� c

i�
; (9)

u
0

c
¼Uþ exp

�
iu
h
t � x

uþ c

i�
þ U� exp

�
iu
h
t � x

u� c

i�
; (10)

in which u is the angular frequency and the superscripts þ and
e respectively denote downstream-travelling and upstream-
travelling waves. Further, the convected entropy wave can be pre-
sented as

s
0

cp
¼ s exp

h
iu
�
t � x

u

�i
: (11)

By substitution of the harmonic solutions for the pressure and
velocity into Eqs. (4) and (8), the following expressions can be
developed.

rþ ¼ Uþ; (12-a)

r� ¼ � U�; (12-b)

Uþ ¼ Pþ; (12-c)

U� ¼ � P�; (12-d)

qþ ¼ Pþ
�
gþ 1

M

�
þ P�

�
g� 1

M

�
: (12-e)

Due to the fixed geometry of the nozzle, the mass variation at
the inlet and outlet are identical. Hence,

1
M

�
u0

c

�
þ r0

r
¼ const: (13)

Because of the heat transfer effects on the entropy waves, an
energy balance should be introduced. This is [50].

_q ¼ _mCpðTt2 � Tt1Þ (14)

where Tt ; _m and _q are the stagnation temperature (K), mass flow
rate (kg/s) and heat transfer rate (W). Linearizing Eq. (14) and

considering

 
�_m
_m

!
1

¼
 

�_m
_m

!
2

[23] for the two parts of the nozzle

reveals that

T 0t1
Tt1

þ
�_q

_mCpTt1
¼ T 0t2

Tt2

�
1þ 1

B

�
þ 1
B

�_m
_m
: (15)

As mentioned before, q is the heat transfer per unit volume and

q¼ _m
V
CpDTt ¼ r1u1

V
A

CpDTt : (16)

By linearizing Eq. (16), the heat transfer fluctuation can be
expressed as

q0

q
¼A

T 0t2
Tt2

� B
T 0t1
Tt1

þ r01
r1

þ u01
u1

; (17-a)

in which
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A¼ � Tt2
Tt2 � Tt1

; (17-b)

B¼ � Tt1
Tt2 � Tt1

: (17-c)

The stagnation temperature is defined as [55].

Tt ¼ T
�
1þg� 1

2
M2
�

(18)

Linearization of this relation yields

T 0t
Tt

¼ 1
1þ 1

2 ðg� 1ÞM2

�
g

�
p

0

gp

�
� r0

r
þ ðg� 1ÞMu0

c

�

¼ 1
1þ 1

2 ðg� 1ÞM2

�
ðg� 1Þ

�
p

0

gp

�
� s0

cp
þ ðg� 1ÞMu0

c

�
: (19)

Further, the cross-sectional variation in a choked nozzle is
associated with [22].

A
A� ¼

1
M

�
2

gþ 1

�
1þ 1

2
ðg� 1ÞM2

�� gþ1
2ðg�1Þ

exp
��

�Ds
R

��
1� T

Tt

��
;

(20)

where A� is the throat surface area and Ds is the entropy change.
Through linearization of this equation and considering constant
temperature in each part of the nozzle ðDs0 ¼ 0Þ, it can readily be
shown that M0

M ¼ 0 [23]. This implies that [14].

u0

c
�g

2
M
�
p0

gp

�
þ 1
2
M

r0

r
¼ 0: (21)

For a choked nozzle without any shock waves, the following
relation holds

Pþ1 þ P�1 � Pþ2 � P�2 ¼ 0: (22)

Heat transfer modifies the Mach number at the outlet of a
conduit with a constant cross section [55]. However, the variation
of Mach number through a heat transferring conduit with variable
area section (e.g. a nozzle) differs from that of a constant area
conduit, traditionally presented by Rayleigh line [56]. Considering
the nozzle geometry, inlet condition and the variation of the stag-
nation temperature, outlet Mach number can be found by an iter-
ative method [56].
3. Dispersion and dissipation of the entropy waves

3.1. A compact nozzle

If the length of a nozzle becomes negligible compared to the
acoustic and entropic wavelengths, the compact assumption is
valid. This assumption is often used in the low frequency limit.
3.1.1. Hydrodynamic mechanisms
Turbulent mixing and boundaries interactions may disturb the

flow and cause the decay of entropy waves [41,47]. These are highly
complicated and problem dependent phenomena. In the current
investigation, the net effect of these is represented by a decay co-
efficient (kn) for the entropy wave attenuation. Thus,
s2
s1

¼1� kn; (23)

where s2 and s1 respectively denote the amplitude of the entropy
wave (s ¼ s0

cp) in the downstream and upstream sections of the
nozzle throat. kn depends on the nozzle geometry and fluid flow
and should be exclusively determined for each nozzle and flow
condition. Considering Eqs. (7), (13), (15) and assuming an adia-
batic, i.e. Tt1 ¼ Tt2, compact nozzle, incorporating Eq. (23), result in
the following expressions for the response of a subcritical nozzle to
a dissipative incident entropy wave

P�1 ¼
0@�M1M2kn

�
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(24)

Pþ2 ¼ M2
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�
1þ1

2ðg�1ÞM2
1
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1CAs:

(25)

Following Marble and Candel [14], in the derivation of Eqs. (24)
and (25) the transmitted acoustic wave in the upstream section
(Pþ1 ) and the upstream propagating component in the downstream
section (P�2 ) are assumed to be zero. Combining Eqs. (7) and
(21)e(23), and assuming compactness, the acoustic response of a
supercritical nozzle to a dissipative entropy wave is expressed by

P�2 ¼ 1
4

 �M1 þ kn
2 ðg� 1ÞM1M2 �M2ð1� knÞ

�
1þ 1

2 ðg� 1ÞM1

!
s; (26)

Pþ2 ¼ 1
4

 
�kn

2 ðg� 1ÞM2M1 þM2ð1� knÞ �M1

1þ 1
2 ðg� 1ÞM1

!
s; (27)

and, the reflected component takes the same form as that derived
by Marble and Candel [14],

P�1 ¼ �M1
2

1þ 1
2 ðg� 1ÞM1

s: (28)
3.2. Heat transfer

Heat transfer can leave a decaying effect on the incident entropy
wave as convective wave. Once again, it is assumed that an entropy
wave is incident upon a subcritical nozzle. As explained earlier, in
such configuration Pþ1 ¼ P�2 ¼ 0. Setting s1 ¼ s and manipulating
Eqs. (7), (15) and (19), for a subcritical nozzle reveals

1

1þ 1
2 ðg� 1ÞM2

1

h
ðg� 1Þð1�M1ÞP�1 þ s

i
þ

�_Q
_mCpTt1

þ

24��1þ 1
B

�
1

1þ 1
2 ðg� 1ÞM2

2

ðg� 1Þð1þM2Þ�
1
B

�
1
M2

þ 1
�
Pþ2 ¼s2

0@1� B�1

2 ðg� 1ÞM2
2

1
1þ1

2 ðg�1ÞM2
2

1A: (29)
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By applying Eq. (13) to the upstream and downstream sections
of the nozzle and assuming zero unsteady heat transfer, a relation
amongst the amplitudes of the transmission and reflection acoustic
waves and that of the entropy wave is derived. This is

Pþ2 ¼M2ðM1 � 1Þ
M1ðM2 þ 1ÞP

�
1 � M2

M2 þ 1
sþ M2

M2 þ 1
s2: (30)

Substituting Eq. (30) into (29) results in

Kp1

Ksubc;s2
P�1 þ Ksubc;s

Ksubc;s2
s ¼ s2; (31-a)

where

KP1 ¼
1

1þ 1
2 ðg� 1ÞM2

1

ðg� 1Þð1�M1Þ

�
�
1þ 1

B

�
1

1þ 1
2 ðg� 1ÞM2

2

ðg� 1ÞM2ðM1 � 1Þ
M1

� 1
B
ðM1 � 1Þ

M1
;

(31-b)

Ksubc;s ¼
1

1þ 1
2 ðg� 1ÞM2

1

þ
�
1þ 1

B

�
1

1þ 1
2 ðg� 1ÞM2

2

ðg� 1ÞM2

þ 1
B
;

(31-c)
 
1þ 1

2
ðg� 1ÞM2

2

1� B�1

2
ðg� 1ÞM2

2

! 
1

1þ 1
2
ðg� 1ÞM2

1

ðg�1Þð1�M1Þ�
1

1þ 1
2
ðg� 1ÞM2

2

�
1þ B�1

�
ðg�1Þð1�M2Þ�B�1

�
1� 1

M2

�!

P�1 þ 1

1þ 1
2
ðg� 1ÞM2

1

 
1þ 1

2
ðg� 1ÞM2

2

1� B�1

2
ðg� 1ÞM2

2

!
s�

 
1þ 1

2
ðg� 1ÞM2

2

1� B�1

2
ðg� 1ÞM2

2

! 
2M2ðg� 1Þ

�
1þ B�1

�
1þ 1

2
ðg� 1ÞM2

2

þ2B�1

M2

!

Pþ2 ¼ s2 �
�_Q

_mCpTt1

 
1þ 1

2
ðg� 1ÞM2

2

1� B�1

2
ðg� 1ÞM2

2

!
:

(37)
Ksubc;s2 ¼
�
1þ B�1	ððg� 1ÞM2 þ 1

	
1þ 1

2 ðg� 1ÞM2
2

: (31-d)

In Eq. (31-c) and (31-d), subscript “subc” denotes subcritical
status. Due to the smaller length and flow residence time of the
upstream part compared to those in the downstream section, it is
assumed that heat transfer has a negligible effect on the convergent
part. Considering this assumption, the reflected entropic wave is
expressed by Ref. [14].
P�1 ¼ �
�
M2 �M1

1�M1

�" 1
2M1s

1þ 1
2 ðg� 1ÞM1M2

#
: (32)

The ratio of the transmitted and incident entropy waves is
defined as

s2
s
¼ Kp1

Ksub;s2

�
M1 �M2

1�M1

�" 1
2M1

1þ 1
2 ðg� 1ÞM1M2

#
þ Ks

Ksub;s2
: (33)

By substituting this ratio into kn ¼ 1� s2
s and Eq. (25), one can

readily find the amplitude of the transmitted wave. In the super-
critical case, P�1 ; Pþ2 and P�2 should be considered. By assuming
negligible heat transfer effect on the upstream section of the
nozzle, the reflected entropy wave becomes the same as Eq. (28).
Using Eq. (7),

rþ2 ¼ Pþ2 � s2: (34)

Eq. (18) then provides the transmission wave,

Pþ2 ¼ P�2

 
1þ 1

2 ðg� 1ÞM2

1� 1
2 ðg� 1ÞM2

!
þ s2

2

 
M2

1� 1
2 ðg� 1ÞM2

!
: (35)

By using Eq. (22) and after some algebraic manipulation, it can
be shown that

Pþ2 ¼ �M1

4

 
1þ 1

2 ðg� 1ÞM2

1þ 1
2 ðg� 1ÞM2

!
sþM2

4
s2: (36)

Combining Eqs. (15) and (22) yields the following equation
Considering Eqs. ((22), (28), (36) and (37), the ratio of the inci-
dent and transmitted entropy waves becomes

s2
s

¼ Ksupc;s

Ksupc;s2
; (38-a)

where



Ksupc;s¼
 

1þ1
2
ðg�1ÞM2

2

1�B�1

2
ðg�1ÞM2

2

! �M1

2

1þ1
2
ðg�1ÞM1

 
ðg�1Þð1�M1Þ
1þ1

2
ðg�1ÞM2

1

�
�
1þB�1	ðg�1Þð1�M2Þ

1þ1
2
ðg�1ÞM2

2

�B�1
�
1� 1

M2

�!
þ 1

1þ1
2
ðg�1ÞM2

1

!
þ

 
1þ1

2
ðg�1ÞM2

2

1�B�1

2
ðg�1ÞM2

2

! 
2M2ðg�1Þ

�
1þB�1

�
1þ1

2
ðg�1ÞM2

2

þ2B�1

!
;

(38-b)
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Ksupc;s2 ¼1þM2

4

 
1þ 1

2 ðg� 1ÞM2
2

1� B�1

2 ðg� 1ÞM2
2

! 
2M2ðg� 1Þ�1þ B�1	

1þ 1
2 ðg� 1ÞM2

2

þ 2B�1

M2

!
;

(38-c)

and subscript “supc” stands for the supercritical condition. Pþ2 and
P�2 are obtained by Eqs. (26) and (27). Further, P�1 is found through
Eq. (22). Here, the response of heat transferring nozzle to an inci-
dent acoustic wave by the strength of P1

þ ¼ ε is further analysed.
Considering Eqs. (12) and (13), in the subcritical regime, a relation
amongst the transmitted acoustic wave in the diverging part and
the acoustic components in the converging section is derived. This
is

P2
þ ¼ 1

M1ð1þM2Þ
h
M2

�
P1

þ � P1
�
�
þM1M2

�
P1

þ þ P1
�
�i

:

(39)

Combining Eqs. (12), (17) and (19) gives

P1
� ¼ K1

þ

K1
� ε; (40-a)

where

K1
þ¼ �B

�
1þ1

2
ðg�1ÞM2

2
�
ðg�1Þð1þM1ÞþA

�
1

þ1
2
ðg�1ÞM1

2
�
ðg�1Þ

�
M2

M1
þM2

�
þ
�
1þ1

2
ðg�1ÞM1

2
��

1

þ1
2
ðg�1ÞM2

2
���ðgM2þ1Þ

M1ð1þM2Þ
�ðgM2þ1Þ

ð1þM2Þ
þðg�1Þ

�
;

(40-b)

K1
� ¼B

�
1þ 1

2
ðg� 1ÞM2

2
�
ðg� 1Þð1�M1Þ þ A

�
1

þ 1
2
ðg� 1ÞM1

2
�
ðg� 1Þ

�
M2

M1
�M2

�
þ
�
1þ 1

2
ðg� 1ÞM1

2
��

1

þ 1
2
ðg� 1ÞM2

2
��ðgM2 þ 1Þ

ð1þM2Þ
� ðgM2 þ 1Þ
M1ð1þM2Þ

þ ðg� 1Þ
�
:

(40-c)

The transmitted acoustic wave in the downstream section is
found by substituting Eq. (40-a) into Eq. (39), which gives
Pþ2 ¼ 1
M1ð1þM2Þ

"
M2ε

 
1�Kþ

1
K�
1

!
þM1M2ε

 
1þKþ

1
K�
1

!#
: (41)

In the supercritical regime, relations derived by Marble and
Candel [14] are still valid. These are

P1
� ¼ 1� 1

2 ðg� 1ÞM1

1þ 1
2 ðg� 1ÞM1

ε; (42)

P2
þ ¼ 1þ 1

2 ðg� 1ÞM2

1þ 1
2 ðg� 1ÞM1

ε; (43)

P2
� ¼ 1� 1

2 ðg� 1ÞM2

1þ 1
2 ðg� 1ÞM1

ε: (44)

However, the outlet Mach number should be now calculated by
the iterative method [56] which involves heat transfer effect.

3.2.1. Combined effects of hydrodynamic mechanisms and heat
transfer

The analyses presented in sections 3.1.1 and 3.1.2 are linear and
therefore, the principle of superposition holds. Hence,

s2;with heat transfer;no dissipation ¼s2with heat transfer;with dissipation

þ kns:

Accordingly, through using Eq. (33) for a subcritical nozzle, it can
be shown that

s2
s
¼ 1
Ksubc;s2

 
KP1

�
M1 �M2

1�M1

� 1
2M1

1þ 1
2 ðg� 1ÞM1M2

þ Ksubc;s

!
� kn;

(45)

while Pþ2 is found by substituting Eq. (45) into Eq. (25). In the su-
percritical regime, using Eq. (38),

s2
s
¼ Ksupc;s

Ksupc;s2
� kn; (46)

and Pþ2 and P�2 are calculate by Eqs. (26) and (27), respectively.

3.3. Non-compact nozzle

3.3.1. Stretch of the entropy wave in the nozzle
As stated earlier, so far, there has been no attempt for calculating

the stretch of a convective front in a nozzle. This section considers



Fig. 2. Motion of the entropy wave from inlet to the nozzle throat.
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the stretch of entropy wave as it convects through the nozzle from
the inlet to the throat. In the current problem, the kinematic ac-
celeration of the convective flow is the main cause of the wave
stretch. The flow acceleration is not spatially constant, however, a
mean value of acceleration is utilised here. The motion of the en-
tropy wave is illustrated in Fig. 2. This configuration is chosen on
the basis the analysis in Ref. [41].

In Fig. 2, Dt and dt are respectively the temporal wave width
and stretch of the incident entropy wave in the time domain and
Dt0 ¼ Dtþ dt. Further, it is assumed that the distance between A
and B at the inlet approaches zero. Utilising simple kinematic re-
lations reveals the following relation for the temporal width of the
entropy wave at the throat

Dt0 ¼ V* �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aV0Dt� 2aV*Dtþ V*2

p
a

(47)

where V0، V
� and a are the velocity at the inlet, velocity at the

throat and mean acceleration, respectively. To obtain the transfer
function of the convected entropy wave from the inlet to the throat,
an approach similar to that of Ref. [38] is taken. The wave function
between the throat and the inlet may be related by a Green func-
tion. That is

s2 ¼
ðt
0

GðtÞsinletðt � tÞdt; (48)

inwhich, t is the convection time of a flow particle from the inlet to
the throat. If the Green function is known, the final functionwill be
calculated by the integration of Eq. (48). Using Laplace trans-
formation, the integration is transformed to

s2ðsÞ ¼ GðsÞs1ðsÞ: (49)

According to the primary assumption of the extreme vicinity of
A and B, the incident wave can be assumed to be an impulse (Dirac
delta function). In other word, s1ðtÞ ¼ dðtÞ. Hence, s1ðsÞ ¼ 1 and
the final wave function becomes identical to the Green function.
Fig. 3. (a) A convergent-divergent nozzle (b) Equiva
That is

s2ðsÞ ¼ GðsÞ: (50)

Considering energy balance for the entropy wave,

ð1� knÞ
ðþ∞

�∞

sinletdt¼ð1� knÞ
ðþ∞

�∞

dðtÞdt ¼
ðþ∞

�∞

s2dt ¼ sfinalDt
";

(51)

where sfinal is the amplitude of the entropy wave (or size of the
vertical side of the triangle) in the final wave configuration. Further,
Dt" ¼ Dt

0
=2 and therfore

sfinal ¼
1� kn
Dt"

: (52)

Furthermore,

s2 ¼
�sfinal
2Dt"

�
t � �tþ Dt"

		
t� Dt" < t < tþ Dt": (53)

Finally, a transfer function is calculated by applying the Fourier
transformation,

GðiuÞ ¼ 1� kn
2u2Dt"2

e�iut
�
eiuDt

"�
1� 2Dt"iu

	� e�iuDt"
�
; (54)

which provides the amplitude and phase of the stretched wave at
the throat. To study the stretch effects only, kn in Eq. (54) should be
set to zero.
3.4. Effective length of a nozzle with heat transfer

This section extends the analysis of non-adiabatic flow to non-
compact nozzles. Similar to Ref. [18], the concept of “Effective
Length” is utilised here. Effective length approximates a nozzle
with two connected conduits without any change in the cross-
sectional area (Fig. 3). Each conduit has its own length as an
effective length.

To find the effective length, the linearized equations of mass,
momentum and energy (Eq. (4), (5) and (6)) are considered.
Dimensionless flow perturbations may be written as

p
0

gp
¼ bpðXÞeiut ;

r
0

r
¼ brðXÞeiut ; u

0

u
¼ buðXÞeiut ; (55)

in which X ¼ x=L and L is the axial nozzle length.
3.5. Asymptotic analysis of a supercritical nozzle

In a choked nozzle, Mach number and the dimensionless fre-
quency may be presented with respect to the flow velocity at the
lent conduits of constant cross-sectional areas.
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throat (i.e. sonic speed c). Thus,

M*¼ u
c*
; U ¼ uL

c*
;

inwhich, the superscript * denotes the throat of a choked nozzle
and U is the dimensionless frequency and L stands for the axial
length of the nozzle. After removing the steady flow component
and using the dimensionless perturbations, the mass conservation
equation is written as [18].

iUbrþM*

0@dbu
dX

þ dbr
dX

1A ¼ 0: (56)

The energy equation reduces to

iU
�bp � br�þM*

0@dbp
dX

þ dbr
dX

1A ¼ M*DTt
T

�bq � bp � bu�: (57)

Conservation of the total enthalpy in the mean flow results in

c2 ¼ c*2

2
ðgþ 1Þ � u2

2
ðgþ 1Þ þ Qðg� 1Þ: (58)

It should be noted that the unit of q in Eq. (3) is W/m3. However,
the unit of Q in Eq. (58) is J/kg. Thus,

Q ¼ q
V
_m
¼ cpDTt : (59)

By employing Eqs. (50) and (51), the momentum equation
becomes

iUbuþM*dbu
dX

þ dM*

dX

�
2bu þ br � gbp�þ 1

2
dbp
dX

�
gþ 1
M* � ðg� 1ÞM*

þ 2cpDTt
M*c*2

ðg� 1Þ
�

¼ 0:

(60)

Further, an algebraic manipulation of Eqs. (49), (52) and (58)
reveals

iU
�
M*
�
2bu þ br � bp�� 1

M*

�br þ bp��þ d
dX

��
M*2 � 1

	�
2bu þ br

� gbp��þ
dbp
dX

2cpDTt
c*2

ðg� 1Þþ �M*2 � 1
	DTt

T

�bq � bp � bu� ¼ 0: (61)

Flow perturbations may be presented by the following asymp-
totic expansions [18].

bp¼ bp0 þ iUbp1 þ O
�
U2
�
; (62-a)

br¼ br0 þ iUbr1 þ O
�
U2
�
; (62-b)

bu¼ bu0 þ iUbu1 þ O
�
U2
�
: (62-c)

By substituting Eq. (62) into Eq. (61), the boundary conditions of
a choked nozzle for the zeroth order are derived. These are
2bu0 þ br0 � gbp0 ¼ 0; (63)

bq0 � bu0 � bp0 ¼ 0: (64)

Due to neglecting the higher order terms, Eqs. (63) and (64) are
valid for a compact nozzle. Eq. (63) was derived by Stow et al. [17]
and later by Goh and Morgans [18]. It is noted that Eq. (64) is
essentially the same as Eq. (12).

The first order of asymptotic expansion of Eq. (61) is integrated.
This reveals

��
M*2 � 1

��
2bu1 þ br1 � bp1

��X2

X1

¼
�br0 þ bp0� ðX2

X1

dX
M* �

�
2bu0

þ br0 � bp0

� ðX2

X1

M*dX � 2ðg� 1ÞcpDTt
ðX2

X1

M*2

u2
dbp1

�
ðX2

X1

DTt
T

�
M*2 þ 1

	�bq1 � bp1 � bu1

�
dX:

(65)

By using Eq. (65) in the range of X ¼ Xin to X ¼ X�and consideration

of c ¼
ffiffiffiffiffiffiffiffiffi
gRT

q
and cp

gR ðg� 1Þ ¼ 1, the effective length of the

convergent part is found as follows

l1 ¼
ðX*

Xin

M0

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g�1

2 M
2 � DTt1

T

1þ g�1
2 M

2
0 � DTt1

T1

vuuut dX; (66)

in which M0 and T1 are respectively the mean inlet Mach number
and temperature and DTt1 ¼ T� � Tt1. It should be noted that due to
the assumption of M�≪1 in deriving Eq. (65), the terms including
the multiplication of M� can be neglected before those including
1 =M�.

For the divergent part, Eq. (65) should be implemented between
X ¼ X� and X ¼ Xout. In accordance with Eq. (63), the effective
length of the divergent part is obtained as

l2 ¼

�bp0 þ br0�ðX*

Xin

1
M* dX � ðg� 1Þbp0

ðX*

Xin

M*dX�bp0þbr0

�
M*

2
� ðg� 1Þbp0M

*
2

; (67)

where M*
2 is the outlet Mach number, which can be rewritten in

accordance with the first law of thermodynamics,

M*
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ1
2

1þ g�1
2 M

2 � DTt2
T2

vuuut : (68)

Duran and Moreaue [26] showed that indirect noise prevails
only at low frequencies. Hence, to assess the entropy noise, the
values of bp0 þ br0 and bp0 are substituted from the results of the
compact nozzle in section of 3.1.3. These present the combined
effects of heat transfer and hydrodynamic mechanisms. The other
important note is that for a nozzle with an incident acoustic wave,
the acoustic part of br0 should be used (this means br0 ¼ bp0) in Eq.
(67). As a result, the acoustic effective length (l2;p) and entropic
effective length (l2;s) are different in the convergent and divergent
parts. The acoustic phase response of the nozzle to an incident
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Fig. 4. The acoustic energy reflection (a) and transmission coefficient (b) to an incident entropic wave. The current relations (solid line) and the numerical simulation of Ref. [52]
(dots).
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entropy wave, s, for the first order of U may be expressed as [18].

Pþ2
s

¼
�����Pþ2s
�����eikþ2 l2;sþikþ0 l1 þ O

�
U2
�
; (69)

P�2
s

¼
�����P�2s
�����eik�2 l2;sþikþ0 l1 þ O

�
U2
�
; (70)

where kþ2 ¼ u=ðc2 þ u2Þ, k�2 ¼ u=ðc2 �u2Þ and kþ0 ¼ u= u1. Simi-
larly, the nozzle responses to acoustic waves are [18].

Pþ2
Pþ1

¼
�����Pþ2Pþ1
�����eikþ2 l2;pþikþ1 l1 þ O

�
U2
�
; (71)

P�2
Pþ1

¼
�����P�2Pþ1
�����eik�2 l2;pþikþ1 l1 þ O

�
U2
�
; (72)

in which kþ1 ¼ u
c1þu1

.

4. Combustion of the lean premixed mixture

Lean-premixed mixtures of pure hydrogen and air can react at
an equivalence ratio as low as 0.14 [57] with a combustion reaction
given by

H2 þ3:57ðO2 þ 3:76N2Þ/H2Oþ 3:07O2 þ 13:42N2 (73)

The heat capacity of the working fluid (the mixture of O2;H2O
and N2) are calculated on the basis of their mole fractions using
Dalton model [58].
Table 1
The inlet and outlet Mach numbers and area ratios of the adiabatic nozzle from Ref. [23

M1¼0.025 A1 =A*

A2 =A*

M1¼0.05 A1 =A*

A2 =A*

M1¼0.1 A1 =A*

A2 =A*
5. Validation

It is noted that currently there is no publicly available experi-
mental data for comparison against the developed analytical
model. Therefore, the analytical results are compared with the
published numerical results and the existing theoretical results in
the limit of no wave decay. To demonstrate the validity of the re-
lations derived in Section 3, the following two main points are
considered. (1)When variation of the stagnation temperature tends
to zero (i.e. flow becomes adiabatic), the values of A and B in Eq. (17)
approach infinity. Under this condition, Eqs. (24) to (27), (30), (31),
(36), (39), (40-a) and (46) reduce to those of Marble and Candel
[14]. Further, the relations of effective length, Eqs. (66) and (67),
reduce to those of Goh and Morgans [18]. Moreover, by setting the
dissipation of entropy waves to zero, Eqs. (33) and (38) tend to
unity, which means s2 ¼ s1; i.e. as expected, the entropy wave
remains unchanged. Furthermore, expectedly, by setting u ¼ 0, the
transfer function G in Eq. (54) tends to unity. This means that in the
limit of zero frequency there is no dispersion of the entropy waves,
which is consistent with the physics of the problem.

(2) Karimi et al. [51,52] calculated the acoustic energy of
reflection (SR) and transmission (ST) coefficient in a duct with a
mean temperature gradient. In their setting, the incident wave was
entropic (s), and they defined acoustic energy reflection and
transmission coefficients as [51].

SR ¼
ðg� 1Þ�1�M0

	2
r20M0c

4
0

����Rs
����2; ST ¼ ðg� 1Þ�1þMl

	2
r0rlM0c0cl

����Ts
����2; (74)

where R and T are the reflected and transmitted components of the
acoustic wave [51,52]. Under compact conditions, these coefficients
were calculated by the current relations and compared by the low
].

Unchoked Choked
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Fig. 5. Transmitted and reflected acoustic waves (P�1 and Pþ2 Þ in a subcritical nozzle subject to an incident acoustic wave (Pþ1 ) for the inlet Mach number of (a) 0.025, (b) 0.05 and (c)
0.1.
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Fig. 6. Amplitudes of the transmitted acoustic waves (P�2 and Pþ2 Þ in a supercritical nozzle subject to an incident acoustic wave (Pþ1 ) for the inlet Mach number of (a) 0.025, (b) 0.05
and (c) 0.1.
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Fig. 7. Transmitted acoustic wave (Pþ2 ) for a subcritical nozzle subject to an incident entropy wave (s) for varying inlet Mach numbers (a) 0.025 (b) 0.05 (c) 0.1.
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frequency simulation of Karimi et al. [52], in which Tt2
Tt1

¼ 0:5. Fig. 4
depicts this comparison, which shows an excellent agreement.

These two series of evidence serve as the validation of the cur-
rent theoretical work.

It should be noted that the analysis for predicting noise ampli-
tude was based on compact nozzle, which implies zero frequency.
Nonetheless, compact nozzle assumption can be well utilised for
the evaluation of finite frequency noise [21,22,48] (e.g. rumble
[34,47]) with an acceptable accuracy depending on the flow con-
ditions [21,22]. Due to the use of ‘effective length’, prediction of the
phase shift is independent of the frequency. Further, the valid range
for Mach number is M< 1 for subcritical conditions and M> 1 for
supercritical nozzle.

6. Results and discussions

6.1. The nozzle geometry

In the current work, the divergent section of the nozzle is ten
times longer than that of the convergent section. The area ratio is
chosen such that the outlet Mach numbers do not change in the
selected inlet Mach numbers, as Table 1 illustrates [23].

6.2. Heat transfer and hydrodynamic mechanisms in compact
nozzles

Fig. 5 shows the amplitudes of the reflected and transmitted
waves in a compact, heat transferring nozzle subject to an incident
acoustic wave. The horizontal axis in this figure represents the
nozzle outlet to inlet stagnation temperature ratio (q). This figure
also contains the results of Marble and Candel [14], which are
independent of the variations in the stagnation temperature and
assume an adiabatic flow. Fig. 5 illustrates transmitted and re-
flected noise in a subcritical nozzle of various Mach numbers. This
figure clearly shows that for the considered Mach numbers,
intensification of the cooling rate (decreasing q) results in
increasing the amplitude of the transmitted wave and decreasing
that of the reflected wave. Importantly, as the ratio of the outlet to
inlet stagnation temperature approaches unity, the amplitudes of
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Fig. 9. Amplitude of the transmitted waves (Pþ2 and P�2 ) for a supercritical nozzle subject to an incident entropy wave (s) for different inlet Mach numbers (a) 0.025 (b) 0.05 (c) 0.1.
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both reflected and transmitted waves approach the values pre-
dicted by Marble and Candel [14] in an adiabatic flow.

Fig. 6 depicts the similar information as Fig. 5 for the corre-
sponding supercritical nozzle. This figure shows that by intensi-
fying the cooling rate in the supercritical nozzle, the amplitude of
the Pþ2 increases, while that of P�2 wave decreases. This trend is in
agreement with the numerical results of Karimi et al. [53,54] for
heat transferring flows in ducts with constant and variable cross-
sections. Unlike the subcritical condition, the Pþ2 increment roams
only around 6 to 7%. Further, the amplitude of the Pþ2 waves are
smaller than those under the subcritical condition. In this case, the
reduction in the amplitude of P�2 waves is less than 10%. The
response exhibits a linear behaviour in all investigated cases and for
the adiabatic nozzle, the results coincide with those of Ref. [14].

Next, we analyse the influences of hydrodynamic mechanisms
and heat transfer on the nozzle response. Fig. 7 shows the response
of a subcritical nozzle under different hydrodynamic decay co-
efficients and stagnation temperature ratios (q). For the adiabatic
case (q ¼ 1:0), all the responses coincide with those of Marble and
Candel [14]. The response amplitude is clearly reduced by
increasing either of the cooling rate or hydrodynamic decay in a
linear fashion. The slope is almost the same for all cases. In the
usual frequency range of the entropy waves (less than few hundred
Hz) [35], the entropy wavelength is comparable with the turbulent
integral scale of the flow [27]. As a result, in the current study, the
decay coefficients (kn) are assigned small values (less than 10%).
Fig. 7a indicates that for M¼ 0.025, by mitigating 10% of the
amplitude of the incident entropy wave, Pþ2 reduces by 50 and 45%
at q ¼ 0:9 and q ¼ 1:0, respectively. It could be, clearly, seen in
Fig. 7a and b that the attenuation of the response becomes stronger
at higher inlet Mach numbers. This arises from the fact that by
increasing the inlet and fixing the outlet Mach number, the velocity
(and therefore the pressure) gradient through the nozzle decreases.
Hence, conversion of entropy waves to sound declines. It is inferred
from Fig. 7aec that hydrodynamic mechanisms and cooling have
comparable effects upon the amplitude of the transmitted acoustic
wave, i.e. Pþ2 . It is, further, clear from these figures that the absolute
value of the Pþ2 is Mach number dependent. However, its reduction
due to cooling and hydrodynamics features little sensitivity to the
inlet Mach number. In keeping with others [23,59], Figs. 5 and 7
confirm that, in general, the acoustic response of the subsonic
nozzle is much stronger than its entropic response.

The amplitude ratio of the outlet to the inlet entropy waves in a
subcritical nozzle have been shown in Fig. 8. In Fig. 8, this value has
been plotted for different hydrodynamic decay coefficient and a
range of stagnation temperature ratios. As expected, for zero hy-
drodynamic decay and adiabatic nozzle there is no reduction in the
amplitude of the entropy wave. It is clear from Fig. 8 that the hy-
drodynamic decay has a strong influence on the attenuation of the
entropy wave, while the cooling effects are less pronounced.

Fig. 9 shows the amplitude of the transmitted wave for different
inlet Mach numbers and decay coefficients in the supercritical
regime of a nozzle with the incident entropic wave. Once again, the
responses under adiabatic condition and for no hydrodynamic
decay coincide with those of Marble and Candel [14]. This figure
shows that, in general, by decreasing q the transmitted response is
intensified. This means that cooling results in strengthening of the
transmitted entropy waves (Pþ2 and P�2 ). This is due to increasing
the outlet Mach number and magnifying the pressure gradient
through the nozzle, which enhances the conversion of entropy
waves into acoustic waves. Figs. 7 and 9 show that in comparison
with the subcritical nozzle, the supercritical nozzle is less affected
by the hydrodynamic mechanisms. For instance, by diminishing
10% of the entropy wave (kn ¼ 0:1) for q ¼ 0:9, 14e17 and more
than 50% decrements are observed in the amplitude of Pþ2 in the
supercritical and subcritical nozzles, respectively.
The ratio of the outlet to inlet entropywaves for the supercritical

nozzle is depicted in Fig. 10. As expected, the values of the ampli-
tude ratio at the adiabatic case tend to 1� kn. Similar to that dis-
cussed for the subcritical nozzle, Fig. 10 shows that under
supercritical condition both hydrodynamic decay and cooling have
considerable effects on the attenuation of the entropy wave.
However, the cooling effects in the supercritical case appear to have
stronger effects compared to those in the subcritical nozzle.
6.3. Phase response of the entropy wave in a non-compact nozzle-
stretch effects

As stated earlier, due to flow acceleration in the nozzle different
parts of the entropy wave may experience different velocities. This
stretches the waves and runs a dispersion process. The dependency
of the stretch to the governing parameters can be determined
through the analysis presented in Section 3. The resultant transfer
function under varying inlet Mach numbers in both subcritical and
supercritical nozzles are discussed here.

Figs. 11 and 12 show the transfer function of the entropy wave
calculate by Eq. (54) for Dt =t ¼ 0:25 and 0:5, respectively. The
amplitude and phase of the transfer function have been presented
for both subcritical and supercritical cases. It is observed, in these
figures, that by increasing the wave width, the phase change is
intensified in both subcritical and supercritical cases. Figs.11 and 12
clearly show the strong effect of the wave frequency, and therefore
wavelength, upon the amplitude attenuation by the stretch effects.
Furthermore, the variation of the inlet Mach number has a strong
effect on the entropy transfer function in the subcritical nozzle. For
instance, by decreasing Mach number for Dt =t ¼ 0:25, the phase
increment is 32 and 10% in subcritical and supercritical conditions,
respectively. Further, these values for Dt =t ¼ 0:5 become 69 and
38%. This raises from the velocity (and then the pressure) gradient
throughout the nozzle. When the inlet velocity decreases, the ve-
locity gradient increases and the stretch effect rises. However, the
gradient does not increase significantly for the investigated inlet
Mach numbers of the supercritical nozzle. As expected, for all cases
the phase shows the characteristics of a classical convective lag
with lower slopes at higher inlet Mach numbers. It can be simply
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verified that the convection delay calculated from the slope of the
phase graphs corresponds to the average residence time of the
entropy wave inside the nozzle.

Figs. 11 and 12 show that the amplitude of the transfer function
decays rapidly as the non-dimensional frequency increases. This
fall of the amplitude is significant in both cases studied in these
figures. Nonetheless, the case with larger temporal width, shown in
Fig. 12, appears to feature a quicker decay. In either case the initial
decay of the amplitude is followed by a series of peaks and troughs.
The change in the Mach number modifies the locations of these
peaks and troughs. Although the inlet Mach number canmodify the
amplitude ratio considerably, the general qualitative behaviour of
the transfer function remains independent of the inlet Mach
number. The observed behaviour is of practical significance in the
analysis of entropy noise. According to these results, high frequency
entropy waves are majorly annihilated by stretch effects, while the
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percritical condition.
low frequency wave can mostly survive. As the frequency ap-
proaches zero, the effect of stretch on the entropy wave becomes
negligible. This means that in a compact nozzle, the stretch is
insignificant due to coinciding the throat and boundaries. By
increasing the frequency, the nozzle length becomes comparable to
the wavelength and the effect of stretch becomes more pro-
nounced. This behaviour is consistent with the experimental [35],
numerical [41] and analytical [26] evidence indicating that only low
frequency entropy waves are of practical significance.
6.4. Phase response of non-compact nozzles-heat transfer effects

In this section, the phase response of the acoustic waves in the
divergent section of the nozzle is calculated by using the results of
the effective length analysis presented in section 3. Similar to the
previous investigations [18], the nozzle under supercritical
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Fig. 14. Transmission and reflection entropy wave (Pþ2 =s and P�2 =s) phases in a supercritical nozzle by an incident entropy wave at inlet Mach number of (a) 0.025, (b) 0.05, (c) 0.1.
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condition is excited acoustically and entropically.
Fig. 13 shows the phase response of the transmission wave in a

nozzle subject to an incident acoustic wave. Fig. 13a shows that by
increasing the heat transfer rate (i.e. decreasing q) there is a sig-
nificant change in the phase of P�2 / Pþ1 . Nevertheless, within the
considered frequency range, the phase change of Pþ2 / P

þ
1 remains

quite small. Thus, it may be concluded that for this acoustically
excited nozzle, the phase of Pþ2 is almost insensitive to heat transfer.
However, this is not the case for the P�2 . It could be, readily, verified
that increasing the inlet Mach number has negligible effect upon
the phase change in Fig. 13 and therefore is not further elaborated
here.

Fig. 14 shows the transmission phase in a nozzle with an
entropic incident wave and under varying inlet Mach numbers.
Although not shown here, it is found that increasing the decay
coefficient leaves a negligibly small effect on the phase change. In
keeping with the earlier works [18], Fig. 14 shows that the phase of
Pþ2 =s and P�2 =s feature a linear behaviour as the dimensionless
frequency varies.

In general, variation of the phases of Pþ2 =s and P�2 =s with
respect to frequency is strongly dependent upon the inlet Mach
number. For higher inlet Mach numbers (Fig. 14c) the phase vari-
ation with frequency is much smaller than that at low inlet Mach
number (Fig. 14a). It is also noted that increasing the cooling rate
results in the phase decline of Pþ2 =s for all inlet Mach numbers.
However, a reverse trend is observed for the phase of P�2 =s. The
results shown in Figs. 13 and 14 clearly demonstrate the influences
of heat transfer on the phase response of pressure waves in the
divergent section of the nozzle. As expected, this influence is
negligible at frequencies approaching zero. However, it quickly
growswith increasing the frequency and becomes appreciable even
at relatively low values of the dimensionless frequency.
7. Conclusions

The contribution of entropy noise with combustion instability
continues to be a matter of contention. The disagreement has been
chiefly caused by neglecting the influences of flowand heat transfer
on the entropy wave convecting through the combustor. This paper,
therefore, presented a series of analytical studies on the effects of
dissipation and dispersion mechanisms upon the transmission and
reflection of entropy waves in subcritical and supercritical exit
nozzles of hydrogen combustors. These mechanisms are due to the
hydrodynamic, heat transfer and flow stretch effects. The compact
analysis of Marble and Candel [14] was, first, extended to include
heat transfer and hydrodynamic decay of entropy waves. Ampli-
tudes of the reflected and transmitted components were calculated
for the acoustically and entropically excited nozzles under varying
inlet Mach number, heat transfer rate and hydrodynamic decay.
Analytical expressions were, further, derived to find the stretch of
convective waves in a nozzle. The concept of effective length was,
subsequently, employed to calculate the effects of heat transfer and
hydrodynamic decay upon the phase response of the nozzle
acoustics.

The main findings of this work can be summarised as follows.

� In keeping with that reported in the recent literature, it was
shown that the acoustic responses of the nozzles are stronger
than their entropic responses.

� Heat transfer from the nozzle was shown to be able to signifi-
cantly modify the low frequency response of the subcritical
nozzles to acoustic waves. This effect appeared to be weaker in
supercritical nozzles.
� The effects of heat transfer and hydrodynamic decay on the
reflected and transmitted waves in an entropically excited
nozzle could be appreciable.

� The extent of the influences of heat transfer and hydrodynamic
effects upon the entropy response were found to be, generally,
dependent on the inlet Mach number. This implies that the
temperature of combustion products and thus the equivalence
ratio of hydrogen and oxidiser mixture can affect the decay of
entropy wave. In the investigated supercritical case, the phase of
the response was found weakly related to hydrodynamic decay.
However, even at relatively low dimensionless frequencies, the
influence of heat transfer was considerable.

� It was shown that the dispersion of entropy waves in nozzles is
highly frequency dependent. This is such that only low fre-
quency entropy waves can survive the stretch effects of the flow
inside the nozzle.

� It is evident from this study that the decay mechanisms of en-
tropy waves can significantly affect their conversion to sound.
Thus, inclusion of these mechanisms in the theoretical models
of entropy waves appears to be a necessity.
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