
Intrusion detection and classification with
autoencoded deep neural network

Shahadate Rezvy1[0000−0002−2684−7117], Miltos Petridis1[0000−0003−1275−1023],
Aboubaker Lasebae1[0000−0003−2312−9694], and Tahmina

Zebin2[0000−0003−0437−0570]

1 Middlesex University , London, United Kingdom
{s.rezvy, M.Petridis, A.Lasebae}@mdx.ac.uk

2 University of Manchester, United Kingdom
{tahmina.zebin}@manchester.ac.uk

Abstract. A Network Intrusion Detection System is a critical compo-
nent of every internet connected system due to likely attacks from both
external and internal sources. A NIDS is used to detect network born
attacks such as denial of service attacks, malware, and intruders that are
operating within the system. Neural networks have become an increas-
ingly popular solution for network intrusion detection. Their capability
of learning complex patterns and behaviors make them a suitable solu-
tion for differentiating between normal traffic and network attacks. In
this paper, we have applied a deep autoencoded dense neural network
algorithm for detecting intrusion or attacks in network connection and
evaluated the algorithm with the benchmark NSL-KDD dataset. Our re-
sults showed an excellent performance with an overall detection accuracy
of 99.3% for Probe, Remote to Local, Denial of Service and User to Root
type of attacks. We also presented a comparison with recent approaches
used in literature which showed a substantial improvement in terms of
accuracy and speed of detection with the proposed algorithm.

Keywords: Deep learning · secure computing · intrusion detection sys-
tem · autoencoder · dense neural network.

1 Introduction

Over the past few decades, the Internet has penetrated all aspects of our
lives. Experts predict that by 2020 there would be 50 billion connected devices.
As technology becomes more and more integrated, the challenge to keep the
systems safe and away from vulnerability or attacks increases. Over the years
we have seen an increase in hacks in banking systems, healthcare systems and
many Internet of Things (IoT) devices [1]. These attacks cause billions of dollars
in losses every year and loss of systems at crucial times. This has led to higher
importance in cyber security specifically in the intrusion detection systems. A
related challenge with most modern-day infrastructure is that data requirements
pertaining to security are often an afterthought. It is assumed that this impacts

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/200757942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the results of any machine learning algorithm applied towards the problem; how-
ever, an analysis contrasting the differences are yet to be seen. In addition to
this, there is little research in the results of applying next level analysis using
deep learning algorithms to determine if there is an improvement in accuracy
versus its traditional machine learning counterparts. Deep learning (hierarchi-
cal learning) is part of a broader family of machine learning methods based on
learning data representations, as opposed to task-specific algorithms. Recently,
deep learning based methods have been successfully implemented in NIDS appli-
cations. Deep learning can substitute for manually designed feature extraction
to create more secure firewall or intrusion detector [2].

In this work, we have proposed a data mining based hybrid intrusion detec-
tion system for distinguishing normal and intrusive events from the NSL-KDD
dataset [3]. We focused on exploring low latency models while maintaining high
accuracy by proposing a deep auto-encoded dense neural network (DNN) frame-
work for effective intrusion detection. The NIDS using deep learning did alleviate
the need of feature selection or feature engineering during the detection process.
In our design, the autoencoder facilitated an unsupervised pre-tarining on the
data to provide compressed and less noisy representation of the input space,
while the final dense neural network functioned as the supervised classifier for
our experimental intrusion detection scenario.

The remainder of this paper is organized as follows. Section 2 introduces
the background literature in the recent development in intrusion detection sys-
tems using deep learning techniques, we then provide details on our parameter
settings for the implemented model in section III. The performance of the devel-
oped model for attack classification is evaluated in section IV. We also compared
the results with some recent deep learning techniques appeared in the literature
using the same dataset. Finally, the paper is concluded in section V along with
ideas for future work.

2 Background Literature

In recent years, machine learning has been widely applied to problems in de-
tecting network attacks, particularly novel attacks. Given the landscape of the
Internet, machine learning can be applied to handle the massive amounts of
traffic to determine what is malicious or benign. NIDS are classifiers that dif-
ferentiate unauthorized or anomalous traffic from authorized or normal traffic.
Fig. 1 shows an illustration of the propoed components for the NIDS implemen-
tation. As can be seen in the diagram, the network gateways and routers devices
could potentially host an NIDS. In the recent past, researchers have investigated
a wide variety of Machine Learning techniques to design intrusion detection sys-
tems for normal and attack classification. However the NIDS design community
suffered from some major challenges as there are very few labeled traffic dataset
from real networks for developing an NIDS. Additionally, effective feature se-
lection from the Network Traffic dataset for anomaly detection is difficult. The
features selected for one class of attack may not work well for other categories
of attacks due to continuously changing and evolving attack scenarios.

Fig. 1. Illustration of the proposed network intrusion detection system(NIDS)

Because of the lack of public data sets for network-based IDSs, we used the
NSL-KDD dataset (which may not be a perfect representation of existing real
networks) to compare different intrusion detection methods. However, traditional
machine learning methods depend heavily on feature engineering, and extracting
features is often time-consuming and complex. Thus, it is impractical to detect
attacks with traditional machine learning methods in real-time applications [4].
To set our research in context, in the next subsection, we present a literature
review on the intrusion detection systems that used deep learning techniques
and the NSL-KDD dataset for their performance benchmarking.

Deep machine learning for intrusion detection: Neural networks have be-
come an increasingly popular solution for network intrusion detection systems
(NIDS). Their capability of learning complex patterns and behaviors make them
a suitable solution for differentiating between normal traffic and network attacks
[6]. One of the earliest work found in literature that used deep learning approach
with Deep Belief Network (DBN) as a feature selector and Support Vector Ma-
chine (SVM) as a classifier was reported in [7]. This approach resulted in an
accuracy of 92.84% when applied on training data of NSL-KDD dataset. We
observed a use of Artificial neural networks (ANN) with enhanced resilient back-
propagation for the design in ref [8] . This work also used the training dataset
only by subdividing it in three parts (training (70%), validation (15%) and test-
ing (15%)). The inclusion of the unlabeled data for testing resulted in a reduction
of performance for this method. Ref [9] applied fuzzy clustering based ANN that
resulted above 80% detection accuracy of with a low false positive rate. In [10],
the work used an unsupervised greedy learning algorithm to learn similarity rep-
resentations over the nonlinear and high-dimensional data in KDD dataset.The
results show that four-hidden-layer Restricted Boltzmann machines can produce
the higher accuracy in comparison with SVM and ANN. A deep Neural Network
is essentially a multilayer perceptron, which was initially developed by stacking
linear classifiers. The model is fed inputs, inputs get multiplied by weights and
the passed into an activation function. The model uses backpropagation to ad-
just weights and increase accuracy. Deep Neural Networks with three or more
hidden layers support higher generalization capability in comparison to ANN
[11]. In [12], a deep belief network for malicious code detection method was re-
ported that included an autoencoder based dimensionality reduction technique.
An accelerated deep architecture was introduced in Potluri et al. [13] to iden-

tify the abnormalities in the network data. They evaluated the performance of
the model training related to different processor types and number of cores. Li
et al. [14] presented an intrusion detection method using convolutional neural
networks which adopts a novel representation learning method of graphic con-
version. However, the model accuracy ranged from 79% to 81.57% which did not
justify the increased latency added by the representation learning of the feature
space. In reference [15], Vinaykumar et al. reported various convolutional and
recurrent neural network architectures for IDS implementation, however their
results for under-represented remote to local (R2L) and user to root (U2R) at-
tacks were very low. Shone et al.[1] reported a stacked non-symmetric deep auto-
encoders with random forest classifier achieved an overall accuracy of 85.42%,
with very poor performance on the R2L and U2R intrusion categories. A stacked
autoencoder based implementation of NIDS by Farahnakian et al. [16] produced
high accuracy (94.71%) and high detection rate (94.53%), however, these models
could still be improved. The findings from our literature review have shown that
despite the high detection accuracy being achieved, with most researchers still
experimenting on combining various algorithms (e.g. training, optimisation, acti-
vation and classification) and layering approaches to produce the most accurate
and efficient solution for a specific dataset.

In our research, we focused on exploring low latency models while maintain-
ing high accuracy by proposing a hybrid deep neural network that includes an
unsupervised pre-training using autoencoders to make the model more adaptive
to the changes in the network traffic. We then used a dedicated supervised dense
neural network structure for the final classification. In our design, we made sure
the memory or processing power to train and execute machine learning models
are within the capability of the routers processing power. We hence believe the
model and work presented in this paper will serve towards the real time and low
latency implementation of the NIDS models.

3 Data Pre-processing and Implementation of the model

In this section, we further discuss on the technical details of our proposed deep
learning based approach to increase the performance accuracy of the NSL-KDD
benchmarking dataset. In the dataset, there are 41 different nominal, numeric
and binary features extracted from a specific network connection. The 42nd

column contains data about the label on the network access type(i.e intrusion or
normal). Table 1 summarizes the types of attacks or intrusion events available
in the dataset. We have remapped the entire dataset to a five class scenario
with four attack classes and one normal category for training and classification
purposes. Further description on the features extracted in the dataset can be
found in ref [17], [18].

3.1 Data Pre-processing

The KDD dataset [5] has a huge number of redundant records , which causes
the learning algorithms to be biased towards the frequent records, and thus

prevent them from learning infrequent records which are usually more harmful
to networks such as U2R and R2L attacks [18].

In this work, we have merged the training and test dataset from the KDD
1999 dataset and removed all duplicate records in data. We then intentionally
added some duplicates in the R2L and U2R attack groups to have a increased
representation of the smaller attack groups in the dataset. This in total consti-
tuted in 151063 instances of labelled data. We then separated 20% of the entire
dataset as test set, the remaining 80% of the data was used for training and
validation purpose.

We performed the following pre-processing on the NSL-KDD training and
test sets:

– Encoding: As mentioned previously, the dataset contains different features
with different value ranges. Hence, The dataset is preprocessed before apply-
ing autoencoded learning on it. Before using the data-set, we first convert the
categorical features to numeric values. Categorical features such as protocol
type, service and flag are encoded into numbered variables using one-hot
(1-to-n) encoding. We have also applied log encoding on the large numerical
features such as source bytes, destination bytes and duration to avoid any
kind of biasing on the training due to their large values.

– Scaling and Normalization: All numeric features values are ranged between
0 and 1. We performed a min-max normalization on the feature vectors.

The output labels are one hot encoded. Therefore, the total number of input
dimension is 122 after performing the above-mentioned steps and output dimen-
sion is 5 (4 attacksor intrusion types and 1 normal).

3.2 Proposed Model

Fig. 2 illustrates the work flow and the proposed deep model architecture for the
intrusion detection system. Similar to most existing deep learning research, our
proposed classification model was implemented using python keras library [19]
with TensorFlow back end. All of our evaluations were performed on a Windows
machine with an Intel Xeon 3.60GHz processor, 32 GB RAM and an NVIDIA
GTX 1050 GPU.

We employed two main functional stages in our proposed model. An auto-
encoder based unsupervised pre-training layer and a supervised dense neural
network for classification of the attack types for the NIDS. We describe our
intuition for using these components in the system development in the coming
subsections.

Unsupervised pre-training with Autoencoder An autoencoder is a type
of artificial neural network used to learn efficient data representation in an un-
supervised manner. In our proposed model, we have employed an autoencoder
with an encoding and a decoding layer that has been trained to minimize the
reconstruction error. This incorporated prior knowledge from the training set to

Fig. 2. Workflow and architecture of the proposed autoencoded dense neural network

effectively learn from the data itself and provide good performance. Such pre-
training allow both the data for the current task and for previous related tasks
to self-organize the learning system to build the learning system in a data driven
fashion. We have fed the autoencoder with the features from the training dataset
without labels (unsupervised). A set of compressed and robust feature is built at
the end of this step. The encoder part of the autoencoder aims to compress in-
put data into a low-dimensional representation, and there is a decoder part that
reconstructs input data based on the low-dimension representation generated by
the encoder.

For a given training datasetX = {x1, x2, ..., xm} with m samples or instances,
where xn is an n-dimensional feature vector, the encoder maps the input vector
xn to a hidden representation vector hn through a deterministic mapping fθ as
given in (1)

hn = fθ(xn) = σ(Wxn + b) (1)

where W is a p× p, p is the number of hidden units, b is a bias vector, θ is the
mapping parameter set θ = {W, b}. σ is sigmoid activation function.

The decoder maps back the resulting hidden representation hn to a recon-
structed p-dimensional vector yn in input space.

yi = gθ(hn) = σ(Whn + b) (2)

The goal of training the autoencoder is to minimize the difference between input
and output. Therefore, a error function is calculated by the following equation:

E(x, y) =
1

m

∥∥∥∑m

i=1
(xn − yn)

∥∥∥2 (3)

The main objective is to find the optimal parameters to minimize the difference
between input and reconstructed output over the whole training set (m).

Supervised Classification with DNN A three layer dense neural network
is employed of a is trained by using the first auto-encoder,s output as inputs.
This task sequence is retrained in a supervised manner with the class labels and
the input feature given to the classifier. We have used a softmax activation layer
as the output layer. The layer calculates the loss between the predicted values
and the true values, and the weights in the network are adjusted according to
the loss.

The simple softmax layer, which is placed at the final layer, can be defined
as follows:

P (c|x) = argmaxc∈C
exp(xL−1WL + bL)∑NC

k=1 exp(xL−1Wk)
, (4)

where c is the number of classes, L is the last layer index, and NC is the total
number of class types including normal network connection and intrusion. After
this stage, all layers are fine-tuned through back-propagation in a supervised

Fig. 3. Training and validation set accuracy over increasing number of epochs(training
iterations)

way. In the test phase, the softmax layer outputs the probability of the predicted
categories.

Fig. 3 plots the performance of the network training process for 100 iterations.
During training, we have used additional techniques such as dropout and batch
normalization to avoid over fitting and also to speedup the training process. The
proposed algorithm achieves approximately 99% accuracy for the training set in
20 iterations which is four times faster if no dropout and batch normalization was
employed. We used a five-fold cross-validation using 20% of the training data and
the validation data set also achieves high overall accuracy with slight deviation
over time. Potentially this allows a reduction in the training epochs required,
and will be of vital importance for developing low-latency models and training
future networks with bigger data sets. The proposed algorithm is summarized
here in Algorithm I.

4 Model Evaluation

The main aim of our designed model is to show that the intrusion detection sys-
tem we designed using deep autoencoded neural network framework will maxi-
mize accuracy and minimize any falsely categorized values.

Algorithm 1: Auto-encoded DNN training algorithm

Input: Taining dataset X = {x1, x2, ..., xm}, Number of layers L
1 for l ∈ [1, L] do;
2 Initialize Wl = 0,W l = 0, bl = 0, b′l = 0;

Encoding layer;
3 Calculate encoding or hidden representation using equation(1);

hl = s(Wlxl1 + bl);
Decoding layer;

4 while not loss==stopping criteria do;
5 Compute yl using equation (2);
6 Compute the loss function: binary cross-entropy;
7 Update layer parameters θ = {W, b};
8 end while;
9 end for;

Classifier:Dense neural network, Soft-max activation at the output layer;
10 Initialize (Wl+1, bl+1) at the supervised layer;
11 Calculate the labels for each sample xn of the training dataset X;
12 Apply batch normalization and dropout for speeding up the calculation;
13 Perform back-propagation in a supervised manner to tune parameters of all

layers, loss function categorical cross-entropy;
14 end;

Output: Class labels

Fig. 4. Receiver operating characteristics for different classes

Table 1. Attack types in the KDD Cup 1999 dataset [5]

Attack Type Description of the Attack Categories

Denial of Ser-
vice (DoS)

A DoS attack is a type
of attack in which the
hacker makes a comput-
ing resources or memory
too busy or too full to
serve legitimate networking
requests and hence denying
users access to a machine.

apache, back, land,
mailbomb, neptune,
pod, processtable,
smurf, teardrop,
udpstorm.

Probe Probing is an attack in
which the hacker scans a ma-
chine or a networking device
in order to determine weak-
nesses or vulnerabilities that
may later be exploited so as
to compromise the system.

ipsweep, mscan,
nmap, portsweep,
saint, satan

Remote to Lo-
cal (R2L)

A remote to user attack is
an attack in which a user
sends packets to a machine
over the internet, which s/he
does not have access to in or-
der to expose the machines
vulnerabilities and exploit
privileges which a local user
would have on the computer

ftpwrite, guesspass-
word, imap, mul-
tihop, named, phf,
sendmail, snmpge-
tattack, snmpguess,
warezmaster, worm,
xlock, xsnoop, http-
tunnel.

User to Root
(U2R)

User to root attacks are
exploitations in which the
hacker starts off on the sys-
tem with a normal user ac-
count and attempts to abuse
vulnerabilities in the system
in order to gain super user
privileges.

bufferoverflow, load-
module, perl, rootkit,
ps, sqlattack, xterm.

4.1 Model evaluation matrices

If True Positive (TP) is the number of attacks classified rightly as attack; True
Negative (TN) is the number of normal events rightly classified normal; False
Positive (FP) is the number of normal events misclassified as attacks and False
Negative (FN) is the number of attacks misclassified as normal, we can define
accuracy, recall, precision and F1 values of a model can be defined using the
following equations [20].

– Accuracy: It is an indicator of the total number of correct predictions pro-
vided by the model and defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (5)

– Recall, precision and F measure: Three of the most commonly used per-
formance measures with F measure being the harmonic mean of recall and
precision measures are defined as follows:

Recall or True positive rate =
TP

TP + FN
. (6)

Precision =
TP

TP + FP
. (7)

F Measure =
2 ∗ Precision ∗ Recall

Precision+Recall
(8)

Fig. 4 showed the class-wise receiver operating characteristic (ROC) for our pro-
posed model. The model produced highly accurate predictions for the classes
of the designed NIDS. We obtained a true positive rate (TPR) of above 99%
for normal connection and DoS attack category. The model benefited from com-
paratively higher number of instances in these two categories. The TPR for the
U2R (showed in red in Fig. 4) category was 89.2%, while R2L and Probe attack
types had a TPR rate of 94.3% and 98.4% respectively. While compared with
the ROC curve presented in Shone et al. [1], our model achieved much higher
TPR values for the under-represented intrusion types R2L and U2R.

4.2 Confusion Matrix

We presented the confusion matrix plot in Fig. 5, for our model when evaluated
with the test data set. The rows correspond to the predicted class (Output Class)
and the columns correspond to the true class (Target Class). The diagonal cells in
the confusion matrix correspond to observations that are correctly classified (TP
and TN ’s). The off-diagonal cells correspond to incorrectly classified observations

Fig. 5. Confusion matrix of the test dataset

(FP and FN ’s). Both the number of observations and the percentage of the total
number of observations are shown in each cell.

The column on the far right of the plot shows the percentages of all the
examples predicted to belong to each class that are correctly and incorrectly
classified. These values are often called the precision and false discovery rate
respectively. The row at the bottom of the plot shows the percentages of all the
examples belonging to each class that are correctly and incorrectly classified.
These metrics are often called the recall and false negative rate, respectively. The
cell in the bottom right of the plot shows the overall accuracy of the classifier
which is 99.3% in our case.

To be noted, we have utilized builtin Matlab functions plotroc(true class, pre-
dicted class) and plotconfusion(true class, predicted class) for generating Fig. 4
and Fig. 5. Both true class and predicted class variables were one-hot encoded
and imported from the python interface as .mat file for plotting purposes.

4.3 Comparison with other approaches

Our results showed an excellent performance with an overall detection accuracy
of 99.3% for Probe, R2L, DoS and U2R type attacks. Table 2 summarizes the
class-wise true positive rate (TPR) and overall accuracy of our proposed model
with some concurrent deep learning methods presented in the literature. All pre-
viously reported models in the literature showed poor performance in detecting
R2L and U2R type attacks due to lack of data. We up-sampled and restructured

Table 2. Quantitative comparison of the proposed method with other deep learning
techniques for NSL-KDD 5-class intrusion detection

Learning method Year DoS (%) Probe R2L U2R Normal Overall Accuracy (%)

Self Taught Learning
[21]

2016 - - - - - 75.76

Convolutional Neural
Networks [14]

2017 - - - - - 81.57

Deep Belief Network
(DBN) [1]

2018 87.96 72.97 0 0 95.64 80.58

CNN-3 layer[15] 2017 97.5 92.5 3.43 6.33 99.9 97.0
CNN 3 layer+LSTM
[15]

2017 99.5 86.8 0.0 7.45 99.7 98.7

Deep Neural Network
[13]

2016 97.7 89.8 13 39.6 95 93

Symmetric
Autoencoder(S-
NDAE) [1]

2018 94.58 94.67 3.82 2.70 97.73 85.42

Stacked Autoencoder
[16]

2018 - - - - - 94.7

Proposed Autoen-
coded DNN

2018 99.9 98.4 94.3 89.2 99.6 99.3

the dataset to deal with this discrepancy and the trained model achieved above
89% accuracy for all the classes.

5 Conclusions

Cyber threats have become a prime concern for information security. NIDS is
one of the security mechanisms used to guard these applications against attacks.
In this research, we have applied a deep network intrusion detection model and
evaluated the algorithm with the benchmark NSL-KDD dataset. Currently, the
algorithm is trained offline on high performance computer. Our results showed
an excellent performance with an overall detection accuracy of 99.3% for Probe,
R2L, DoS and U2R type of attacks. We also presented a comparison with recent
approches used in literature which showed a substantial improvement in terms
of accuracy and latency with proposed autoencoded DNN. In future, we will
provide extensions or modifications of the proposed algorithm for mobile and
IoT security platforms as suggested in ref [22] using intelligent agents such as
soft computing and advanced unsupervised clustering algorithms. Because of the
availability of deep learning libraries in python such as Keras and TensorFlow
Lite [23], on-device machine learning inference is now possible with low latency.
Hence, future models will cover a broader range of attacks, respond in real time
and update itself over time. Future extension of this work will be to improve
the detection accuracy and to reduce the rate of false negative and false positive
rate in attack detection to improve the systems performance. In future, we will
also continue our efforts for improvements to the approach and will apply the

technique on similar but more recent and complex datasets such as Aegean Wi-Fi
Intrusion Dataset (AWID) [24], UNSW-NB15dataset [25].

References

[1] N. Shone, T. N. Ngoc, V. D. Phai, et al., “A deep learning approach to network
intrusion detection,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 2, no. 1, pp. 41–50, Feb. 2018.

[2] B. Lee, S. Amaresh, C. Green, et al., “Comparative study of deep learning models
for network intrusion detection,” SMU Data Science Review, Article 8, vol. 1,
no. 1, 2018.

[3] Nsl-kdd dataset. [Online]. Available: http://www.unb.ca/cic/datasets/nsl.
html.

[4] H. Liu, B. Lang, M. Liu, et al., “Cnn and rnn based payload classification meth-
ods for attack detection,” Knowledge-Based Systems, 2018.

[5] J. McHugh, “Testing intrusion detection systems: A critique of the 1998 and
1999 darpa intrusion detection system evaluations as performed by lincoln lab-
oratory,” ACM Trans. Inf. Syst. Secur., vol. 3, no. 4, pp. 262–294, Nov. 2000.

[6] Y. Mirsky, T. Doitshman, Y. Elovici, et al., “Kitsune: An ensemble of autoen-
coders for online network intrusion detection,” CoRR, vol. 1802.09089, 2018.

[7] M. A. Salama, H. F. Eid, R. A. Ramadan, et al., “Hybrid intelligent intrusion de-
tection scheme,” in Soft Computing in Industrial Applications, A. Gaspar-Cunha,
R. Takahashi, G. Schaefer, et al., Eds., Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, pp. 293–303.

[8] R. S. Naoum, N. A. Abid, and Z. N. Al-Sultani, “An enhanced resilient backprop-
agation artificial neural network for intrusion detection system,” in International
Journal of Computer Science and Network Security, vol. 12, Mar. 2012.

[9] N. Pandeeswari and G. Kumar, “Anomaly detection system in cloud environment
using fuzzy clustering based ann,” Mobile Networks and Applications, vol. 21,
no. 3, pp. 494–505, Jun. 2016.

[10] N. Gao, L. Gao, Q. Gao, et al., “An intrusion detection model based on deep
belief networks,” in 2014 Second International Conference on Advanced Cloud
and Big Data, Nov. 2014, pp. 247–252.

[11] O. Kaynar, A. G. Yüksek, Y. Görmez, et al., “Intrusion detection with autoen-
coder based deep learning machine,” in 25th Signal Processing and Communica-
tions Applications Conference (SIU), May 2017, pp. 1–4.

[12] Y. Li, R. Ma, and R. Jiao, “A hybrid malicious code detection method based on
deep learning,” 2015.

[13] S. Potluri and C. Diedrich, “Accelerated deep neural networks for enhanced
intrusion detection system,” in 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA), Sep. 2016, pp. 1–8.

[14] Z. Li, Z. Qin, K. Huang, et al., “Intrusion detection using convolutional neural
networks for representation learning,” in Neural Information Processing, D. Liu,
S. Xie, Y. Li, et al., Eds., Springer International Publishing, 2017, pp. 858–866.

[15] R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Applying convolutional
neural network for network intrusion detection,” in 2017 International Confer-
ence on Advances in Computing, Communications and Informatics (ICACCI),
Sep. 2017, pp. 1222–1228.

[16] F. Farahnakian and J. Heikkonen, “A deep auto-encoder based approach for
intrusion detection system,” in 2018 18th International Conference on Advanced
Communication Technology, Feb. 2018, pp. 1–6.

[17] L. Dhanabal and S. Shantharajah, “A study on nsl-kdd dataset for intrusion
detection system based on classification algorithms,” International Journal of
Advanced Research in Computer and Communication Engineering, vol. 4, no. 6,
pp. 446–452, 2015.

[18] M. Tavallaee, E. Bagheri, W. Lu, et al., “A detailed analysis of the kdd cup 99
data set,” in 2009 IEEE Symposium on Computational Intelligence for Security
and Defense Applications, Jul. 2009, pp. 1–6.

[19] F. Chollet. (2013). Keras: The python deep learning library, [Online]. Available:
https://keras.io/.

[20] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures
for classification tasks,” Information Processing & Management, vol. 45, no. 4,
pp. 427–437, 2009.

[21] A. Javaid, Q. Niyaz, W. Sun, et al., “A deep learning approach for network
intrusion detection system,” in Proceedings of the 9th EAI International Confer-
ence on Bio-inspired Information and Communications Technologies (Formerly
BIONETICS), ser. BICT’15, New York City, United States: ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering),
2016, pp. 21–26.

[22] J. Abawajy, S. Huda, S. Sharmeen, et al., “Identifying cyber threats to mobile-
iot applications in edge computing paradigm,” Future Generation Computer Sys-
tems, 2018.

[23] Tensorflow lite: A new mobile-specific library, 2017. [Online]. Available: https:
//www.tensorflow.org/mobile/tflite/.

[24] Awid dataset - wireless security datasets project, 2014. [Online]. Available: http:
//icsdweb.aegean.gr/awid/.

[25] N. Moustafa and J. Slay, “Unsw-nb15: A comprehensive data set for network in-
trusion detection systems (unsw-nb15 network data set),” in 2015 Military Com-
munications and Information Systems Conference (MilCIS), Nov. 2015, pp. 1–
6.

