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Abstract
Amazonia forest plays a major role in providing ecosystem services for human and 
sanctuaries for wildlife. However, ongoing deforestation and habitat fragmentation 
in the Brazilian Amazon has threatened both. The ocelot is an ecologically important 
mesopredator and a potential conservation ambassador species, yet there are no pre‐
vious studies on its habitat preference and spatial patterns in this biome. From 2010 
to 2017, twelve sites were surveyed, totaling 899 camera trap stations, the largest 
known dataset for this species. Using occupancy modeling incorporating spatial au‐
tocorrelation, we assessed habitat use for ocelot populations across the Brazilian 
Amazon. Our results revealed a positive sigmoidal correlation between 
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1  | INTRODUC TION

South America's Amazon basin harbors over half of all the tropical rain‐
forests left on Earth, spanning a vast area of 6.7 million km2 (Wittmann 
& Junk, 2016), and is home to roughly half of the world's species (Shukla, 
Nobre, & Sellers, 1990). Unfortunately, human‐induced changes to its 
ecosystem, for a host of social‐economic reasons, are causing widespread 
biodiversity declines in the Amazon (Gibson et al., 2011; Newbold et al., 
2015; Guilherme de Andrade Vasconcelos, 2017). Over 2000–2012, the 
average rate of tropical dense forests loss was 74,400 km2/year (Malhi, 
Gardner, Goldsmith, Silman, & Zelazowski, 2014). Deforestation is inten‐
sifying pressures on forest vertebrates, as well as on indigenous and non‐
indigenous forest dwellers and their livelihoods. In addition, the process 
of deforestation is not random, with remaining forests often being con‐
fined to steep slopes and hilltops unsuitable for both large‐scale agricul‐
ture and cattle ranch. This leads to habitat fragmentation and population 
isolation (Malhi et al., 2014), especially throughout the so‐called arc of 
deforestation region, which together influence the nature and frequency 
of species interactions with unknown cascading effects on long‐term 
biodiversity persistence (Haddad et al., 2015).

Forest carnivores, especially apex predators, are thought to be par‐
ticularly vulnerable and sensitive to deforestation and forest fragmen‐
tation (Noss, Quigley, Hornocker, Merrill, & Paquet, 1996) because of 
their restricted carnivorous diet (Vetter, Hansbauer, Végvári, & Storch, 
2011) and large home ranges. They are essential for maintaining the 
community structure within a foodweb, and are vital to ecosystem 
functioning (Ripple et al., 2014). Mesopredators can fill this role to 
some degree when apex predators are eradicated or depleted (Prugh 
et al., 2009). Some omnivorous mesopredators, typically opportunists 
with broad diets, such as raccoons (Procyon lotor), may respond pos‐
itively to anthropogenic resources with behavioral change (Prange & 
Gehrt, 2004). In these cases, mesopredators with good adaptability 
might serve as a buffer to sustain ecosystem stability and integrity 
when apex predators are inadequate. Alternatively, mesopredators are 
sometimes associated with unpredictable cascade effects, such as dis‐
ease outbreaks and human–wildlife conflicts (Prugh et al., 2009). These 
various, and unpredictable, possibilities provide a background for an in‐
terest in medium‐sized Neotropical cats in addition to the fundamental 
interest in their poorly documented autecology.

The ocelot Leopardus pardalis (Linnaeus, 1758; Figure 1) is a me‐
dium‐sized (6.6–18.6 kg) Neotropical spotted cat with a broad geo‐
graphic distribution in the Americas, ranging from the extreme south 
of Texas (USA), throughout Mesoamerica and the Amazon, to open 
environments in northern Argentina and flood plains, dry coniferous 
forests, and rainforests (Emmons & Feer, 1998; Murray & Gardner, 
1997). Ocelots are considered solitary, nocturnal/crepuscular, and 
semi‐arboreal and are excellent climbers (Di Bitetti, Paviolo, & De 
Angelo, 2006). Documented home ranges are average 12.5 ± SE 
3.4 km2 (Gonzalez‐Borrajo, López‐Bao, & Palomares, 2016). They 
have been recorded at elevations up to 1,200 m (Nowell & Jackson, 
1996) and are classified as Least Concern on the IUCN Red List 
(Paviolo et al., 2015). They were heavily exploited in Amazonia 
by the international fur trade between the 1930s and mid‐1970s 
(Antunes et al., 2016; Smith, 1976). Currently, ocelots suffer habi‐
tat loss, fragmentation, and other anthropogenic pressures, such as 
oil exploration (Kolowski & Alonso, 2010), vehicle collisions, illegal 
trade, and retaliatory killing due to depredation on small livestock 
(Paviolo et al., 2015).

Nevertheless, ocelot, a mesopredator, has been studied much 
less than larger, more charismatic, felids, such as jaguar (Panthera 
onca) and puma (Puma concolor). Since 2000, studies of ocelot using 

remote‐sensing derived metrics of forest cover, disjunct core area density, elevation, 
distance to roads, distance to settlements and habitat use, and that habitat use by 
ocelots was negatively associated with slope and distance to river/lake. These find‐
ings shed light on the regional scale habitat use of ocelots and indicate important 
species–habitat relationships, thus providing valuable information for conservation 
management and land‐use planning.

K E Y W O R D S

Brazilian Amazon, camera traps, mesopredator, occupancy, ocelot, restricted spatial regression

F I G U R E  1  Ocelot was taken by one camera trap in 2013 
(photos provided by Daniel G. Rocha)



     |  5051WANG et al.

camera traps have proliferated (Blake et al., 2015; de Oliveira et al., 
2010; Paviolo et al., 2015; Pratas‐Santiago, Gonçalves, da Maia 
Soares, & Spironello, 2016; Wang, 2002), in particular, those esti‐
mating the species’ abundance and density (Di Bitetti, Paviolo, De 
Angelo, & Di Blanco, 2008; Di Bitetti et al., 2006; Dillon & Kelly, 
2007; Penido et al., 2016; Rocha, Sollmann, Ramalho, Ilha, & Tan, 
2016). These studies have revealed various aspects of ocelot ecol‐
ogy (Supporting Information Table S1), and three of them used the 
occupancy modeling framework: two of them investigated the inter‐
actions between ocelots and sympatric species (Massara, Paschoal, 
Bailey, Doherty, & Chiarello, 2016; Massara, de Oliveira Paschoal 
et al., 2018; Massara, Paschoal et al., 2018), the third investigated 
how an attractant affected detection (Cove, Spinola, Jackson, & 
Saenz, 2014). Other studies report that ocelot densities correlate 
with forest cover (Paviolo et al., 2015), precipitation (Maffei, Noss, 
Cuéllar, & Rumiz, 2005; Rocha et al., 2016), and latitude (Di Bitetti 
et al., 2008; Rocha et al., 2016); in addition, ocelots may have an 
affinity for some specific matrices, such as eucalyptus plantation 
(Massara, de Oliveira Paschoal et al., 2018; Massara, Paschoal et al., 
2018). Ocelots have been recorded in a great variety of habitats, 
from heavily logged and fragmented forests, to early and late suc‐
cessional forests, the outskirts of major cities and towns, disturbed 
scrub/woodland Savannah and agricultural areas (de Oliveira et al., 
2010). Notwithstanding these fragments of research, studies on the 
habitat preference of ocelots on a regional scale are lacking.

Occupancy modeling has become a popular tool for investigat‐
ing species occurrence over temporal and spatial scales. This type of 
model estimates the probability of a site being occupied by a species, 
taking into account imperfect detection processes (Mackenzie et al., 
2002).

We use camera trap detection/nondetection data from 12 sites 
in Brazilian Amazonia to examine the habitat use of the ocelot. This 
is by far the largest known dataset for this species. Our key objective 
is to reveal the influence of different environmental variables and 
anthropogenic impacts on ocelot occupancy at a landscape scale and 
thus predict its habitat use across the Brazilian Amazon.

2  | METHODS

2.1 | Study area

Data were collected across twelve sites in the Amazon basin, Brazil 
from 2010 to 2017: (a) Cabo Frio and Km 37 experimental forest re‐
serves, from part of the Biological and Dynamics of Forest Fragments 
Project (PBDFF) (Laurance, Ferreira, Rankin‐de Merona, & Laurance, 
1998), (b) Cuieiras Forest Reserve and Tropical Forestry Experimental 
Station (ZF2), (c) Adolpho Ducke Forest Reserve (DUCKE), (d) 
Amanã Sustainable Development Reserve (RDSA), (e) Médio Juruá 
Extractive Reserve and Uacarí Sustainable Development Reserve 
(REMJ & RSUA), (f) Uatumã Biological Reserve (Uatuma), (g) Campos 
Amazônicos National Park (PNCA), (h) Mapinguari National Park 
(PNM), (i) Juruena National Park (PNJU), (j) Terra do Meio Ecological 
Station (TMES), (k) São Benedito River (SBR), (l) Nascentes do Lago 

Jari National Park, Igapó‐Açu Sustainable Development Reserve and 
Tupana Settlement Project (BRA319). Apart from the São Benedito 
River (Serra do Cachimbo), which is a private area, and the Tupana 
Settlement Project, the sites are located in protected areas or re‐
serves. The climatic classification of this region, according to Köppen 
(Kottek, Grieser, Beck, Rudolf, & Rubel, 2006), is tropical moist cli‐
mate. The entire survey region consisted of a similar baseline mosaic 
of tropical forest, mostly upland nonfloodable terra firme forests (dry 
land/solid ground) and, to a lesser extent, seasonally flooded forests.

2.2 | Camera trap survey

Data collection and surveys at most of our study areas were designed 
to study large mammals like jaguars, so our data on ocelots repre‐
sent by‐catch (except for the REMJ and RSUA dataset, see methods 
in Costa, Peres, & Abrahams, 2018). In Malaysia, Tan et al. (2017) 
used them to estimate habitat use of clouded leopards, as did Penjor, 
Macdonald, Wangchuk, Tandin, and Tan (2018) in Bhutan. Camera 
trapping, although originally motivated by studies of large mammals, 
yielded data on ocelots (Figure 2). In total, 899 unbaited camera trap 
stations were operated, involving a total survey effort of 40,347 days, 
yielding 334 independent detections of ocelots. The independent de‐
tection events were defined as the consecutive conspecific images 
with >30 min apart at the same camera trap station. Stations at RDSA 
had two cameras facing each other 4–5 m apart and stations at all 
other survey areas had only single cameras. All camera trap stations 
were placed at approximately 30–50 cm above ground along randomly 
selected transects in different surveyed sites, perpendicular to exist‐
ing trails or animal tracks used for previous censuses of primates and 
terrestrial vertebrates to enhance the opportunity to detect the focal 
species (Di Bitetti et al., 2006). The sensitivity sensor was set at “high.” 
Camera traps were operational for 24 hr a day during the monitoring 
period, aside from malfunctions, damage, or theft. Details of camera 
trap deployment (the numbers of stations, effort, mean trap spacing, 
and total numbers of records of ocelot) are provided in Table 1.

2.3 | Data analysis

Detection histories based on photographic records were con‐
structed in a two dimensional matrix format. Data were analyzed 
using (a) single‐species, single‐season occupancy models in a maxi‐
mum‐likelihood framework (Mackenzie et al., 2002), which can 
help to select the most informative covariates, and (b) single‐sea‐
son spatial occupancy models that account for spatial autocorrela‐
tion in a Bayesian framework (Johnson, Conn, Hooten, Ray, & Pond, 
2013). The latter method was used as our study combined multiple 
protected areas at varying distances apart, distributed across the 
Brazilian Amazon basin. To minimize the possibility of violating the 
assumption of population closure (Rota, Fletcher, Dorazio, & Betts, 
2009), only the first 120‐day period of each survey was included in 
the analysis. Collapsing sampling periods minimizes the failure of 
convergence in models when overall detection probability is low 
(Dillon & Kelly, 2007; Otis, Burnham, White, & Anderson, 1978). It 
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can also increase temporal independence among occasions (Dillon 
& Kelly, 2007). The 120‐day data subsets were collapsed into 
multiple‐day sampling occasions (7, 10, 12, 15 days of period) to 
maximize temporal independence of captures. The optimum num‐
ber of days per occasion was selected based on a chi‐square good‐
ness‐of‐fit (MacKenzie & Bailey, 2004) test for the global model 
performed with 1,000 bootstraps. A 12‐day period represented 
the optimum number of days to maximize model fit (Supporting 
Information Table S2).

Building on previous studies of similar mesopredators, such 
as golden cats (Pardofelis teminckii) and clouded leopards (Neofelis 
nebulosa; Haidir, Dinata, Linkie, & Macdonald, 2013; Tan et al., 
2017), we interpreted ocelot occupancy as a proxy for habitat use 
of ocelot. Habitat use was modeled by occupancy models using 
three types of covariates: (a) habitat use covariates on natural en‐
vironment: elevation, slope (mean angle of slope), forest cover(VCF, 
GFC30, GFC50, GFC75, GFC90), distance to rivers and distance to 
lakes, (b) habitat use covariates on human activity and fragmenta‐
tion:, distance to roads, distance to settlements, and measures of 
forest fragmentation (CWED, Contig, DCAD), and (c) detection co‐
variates that describe each of surveyed sites: survey site (the 12 dif‐
ferent surveyed sites) and effort (number of days that each camera 
trap station was active within occasions). The summary statistics 
of each of these covariates are tabulated (Supporting Information 
Table S3). We hypothesized that ocelots would have a bias for flat 
land, dense forests, areas near rivers/lakes and avoid approach‐
ing roads, settlements and fragmented forests. For the detection 
covariates, we hypothesized that the higher the camera trapping 
effort, the higher probability of detecting focal species. Different 
surveyed sites would have different detection probabilities due to 

geographical and biological features. The occupancy covariates at 
each camera trap location were generated using QGIS version 2.18.9 
(QGIS Development Team, 2017). Elevation and slope values were 
extracted from a 30 × 30 m of resolution digital elevation model 
(DEM), the Shuttle Radar Topography Mission (USGS, 2003), down‐
loaded from U.S. Geological Survey (https://earthexplorer.usgs.gov/). 
The distance to rivers/lakes and paved roads was produced using 
Cartographic Integrated Basis Digital CIM IBGE (IBGE, 2011). The 
distance to settlements was from an open source (OpenStreetMap 
Contributors, 2015, https://planet.openstreetmap.org), including 
towns, villages, and isolated settlements. Vegetation Continuous 
Forest of 250‐m resolution (DiMiceli et al., 2011) and 30‐m reso‐
lution Global Forest Change (Hansen et al., 2013) was used as mea‐
sures of forest cover. Specifically, the Global Forest Change layer 
(Hansen et al., 2013) allows users to set a threshold of percentage of 
tree cover that is to be considered as forest for the area of interest. 
On account of this and a previous similar study (Tan et al., 2017), 
we set four different threshold values (30%, 50%, 75% and 90%). 
Forest fragmentation variables such as CWED (Contrast‐weighted 
edge density is a measure of edge density standardized to a per unit 
area), Contig (Contiguity index is an index of spatial connectedness 
of forest), and DCAD (Disjunct core area density is the number of 
disconnected patches of suitable interior habitat per unit area) were 
chosen to examine the effects of edge and forest fragmentation on 
ocelot habitat use. The measures of forest fragmentation dataset 
were produced by FRAGSTATS 4 (McGarigal, Cushman, Neel, & Ene, 
2002). For all above continuous covariates, values were extracted 
from the mean of all raster cells included in a 500‐m radius around 
each camera trap station and were derived using the “zonal statis‐
tics” tool in QGIS. This radius was chosen to represent an overview 

TA B L E  1  Details of camera trap survey for ocelots in Brazilian Amazon

Year Site Area (km2) Stations Effort

No. of 
camera traps 
per station Spacing (SD) in m

Records of 
ocelots

2010 PDBFF (Manaus) 350 30 946 1 1,365.08 (71.90) 10

2010 ZF2 (Manaus) 380 30 1,050 1 1,389.33 (19.32) 8

2010–2011 BRA319 8,127.4518 196 9,647 1 312.79 (321.94) 8

2012 DUCKE (Manaus) 100 30 1,877 1 1,351.25 (87.99) 4

2013–2014 RDSA 23,500 64 2,682 2 1,245.76 (262.50) 45

2013–2014 REMJ & RSUA 886.22 183 6,169 1 457.70 (265.84) 48

2014 Uatuma 1,601.704 95 2,867 1 1,153.32 (1055.38) 5

2015 REMJ & RSUA 886.22 25 1,112 1 7,371.60 (4367.87) 14

2016 PNCA 9,613 86 5,537 1 2,872.18 (1048.53) 28

2016 PNM 17,228.52 58 1,939 1 3,747.17 (1813.93) 57

2016 PNJU 19,582.03 18 1,276 1 987.64 (13.28) 16

2016 TMES 3,373.111 61 3,652 1 1,340.78 (60.59) 86

2017 SBR 8.31 23 1,593 1 1,380.649 (135.88) 5

Total 899 40,347 334

Notes. Effort is in number of camera trap × days, the spacing is the average distance between camera traps and their nearest neighbor.

https://earthexplorer.usgs.gov/
https://planet.openstreetmap.org
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of the environmental setting and habitat type surrounding each 
camera trap station. Due to the limited availability of VCF and GFC 
maps (the latest maps are for years 2010 and 2014, respectively), we 
used the temporally closest one.

Statistical analyses were undertaken in two parts. The first se‐
lected the most informative covariates. First, Pearson's correlation 
test was conducted to examine collinearity between continuous 
covariates. Covariates with r > |0.6| were considered correlated. 
Second, univariate occupancy models were conducted with R pack‐
age “unmarked” (Fiske & Rochard, 2011) and we selected the co‐
variate (of the correlated pair) based on the model with lower ΔAIC 
value. We used the “AICcmodavg” package (Mazerolle, 2017) in R 
(R Development Core Team, 2017) for this second step. In order to 
avoid bias from correlated detections due to spatial replicates that 
are not sampled randomly, we conducted occupancy models in pro‐
gram PRESENCE (Hines, 2006) account for correlated detections 
(Hines et al., 2010) to checking for the effect of correlated detections 
(Supporting Information Table S6). Third, the best candidate model 
including the most informative covariates was selected by AICc 
(corrected Akaike's information criterion, used due to small‐sam‐
ple correction). Models with all possible combinations of remaining 
covariates were compared, and the models within ΔAICc < 2 were 
considered to the best‐performing models (Burnham & Anderson, 
2004). The dredging command in the multi‐model inference pack‐
age “MuMIn” (Bartoń, 2013) was used to average the parameters 
in R (Team RC, 2017). Finally, based on the summed model weights 
(importance; Barbieri & Berger, 2004; Kalies, Dickson, Chambers, & 
Covington, 2012), the most influential covariates (importance > 0.5) 
were retained for the subsequence analysis.

The second part of the statistical process used the R package 
“stocc” to account for spatial autocorrelation (Johnson, 2015). A 
restricted spatial regression model (RSR) was used to generate the 
spatial autocorrelation parameter. RSR models use an efficient Gibbs 
sampler Markov chain Monte Carlo method to make Bayesian infer‐
ence about the detection and occupancy processes and models were 
fitted using a probit link function (probit link, uses the inverse of the 
cumulative distribution function of the standard normal distribution 
to transform probabilities to the standard normal variable, Razzaghi, 
2013) instead of the logit link function used in the first part. This 
increased computational efficiency (Johnson et al., 2013). In the RSR 
model, the threshold was set to 1.99 km according to the average 
ocelot home range (12.46 ± SE 3.39 km2, which corresponded to 
1.99 km radius; Gonzalez‐Borrajo et al., 2016) and moran.cut 89.9 
(0.1*number of camera trap stations), as recommended by Hughes 
and Haran (2013). For each Bayesian model, the Gibbs sampler was 
run for 50,000 iterations following a burn‐in of 10,000 iterations 
that were discarded, and a thinning rate of 5 (Tan et al., 2017). We 
applied an improved occupancy‐based modeling approach that in‐
corporates spatial autocorrelation. This improved model included a 
spatial component which can help to mitigate bias from nonindepen‐
dent environmental covariates (Johnson et al., 2013). All statistical 
analyses for this study were conducted in the R software environ‐
ment v.3.3.3 (R Development Core Team, 2017).

3  | RESULTS

3.1 | Selection of contributing covariates

3.1.1 | Detection covariates

Both site and effort strongly contributed to variation in the detec‐
tion probability of ocelot. PNM had the highest detection prob‐
ability, followed by TMES, PNJU, and RDSA. PNCA had the lowest 
detection probability (Table 3). Effort was positively correlated to 
detection probability (beta = 0.175, SE = 0.029, Table 3).

3.1.2 | Occupancy covariates

There was correlation among all forest cover covariates (VCF and 
GFC30, 50, 75, 90) and among all measures of forest fragmentation 
(CWED, Contig and DCAD). Based on these correlations and the 
performance of each covariate in the univariate habitat use models 
(Supporting Information Table S4), GFC30, D.ROA, D.RIV, D.LAK, 
D.SET, ELE, SLO, and DCAD were selected for the further analysis.

3.2 | Selection of the best model

Among the models that incorporated all possible combinations of 
the eight occupancy covariates, sixteen models (out of 256) had 
ΔAIC < 2 from the top ranked model (Table 2). The best candidate 
model was p(site + effort), ψ[forest cover (GFC30)] with a highest 
weight of 0.11. Based on the summed model weight (importance), 
all of the covariates had some degree of influence on the habitat 
use of ocelot (importance from 0.3 to 1; Table 3). Specifically, habitat 
use by ocelot was strongly positively associated with forest cover 
(GFC30; importance = 1.0; Table 3; Figure 3a), with DCAD (impor‐
tance = 0.51; Table 3; Figure 3d) and strongly negatively related 
to slope (SLO; importance = 0.58; Table 3; Figure 3c). There was a 
weaker positive sigmoidal correlation between habitat use and dis‐
tance to roads, which then leveled off at higher values of distance to 
roads (D.ROA; importance = 0.46; Table 3; Figure 3f) and there was 
a weaker negative relationship between habitat use and distance 
to river (D.RIV; importance = 0.42; Table 3; Figure 3e). The rest of 
covariates had importance <0.4 (see details in Table 3 and Figure 3) 
Our results indicated that the covariates forest cover (GFC30), slope 
(SLO) and disjunct core area density (DCAD) attained a summed 
model weight (importance) of >0.5 (Table 3), which were used in the 
subsequent phase to test for spatial autocorrelation.

3.3 | Best model accounting for spatial 
autocorrelation

The posterior predictive loss criteria were slightly different for the 
model with the spatial correlation parameter (D = 485.1454) and 
without that parameter (D = 485.3477). In addition, the posterior 
variation was larger for the nonspatial model. Further, the poste‐
rior distribution of the spatial variance parameter (�=1∕

√

�) was 
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far from zero (95% credible interval of 8.4975–59039.02), implying 
that additional spatial correlation in the occupancy process strongly 
contributed to the variation in the habitat use probabilities. Based 
on the 95% credible intervals of the covariates, there was strong evi‐
dence to suggest that for both nonspatial models and spatial models, 
Global Forest Change Threshold 30% (GFC30) was significantly as‐
sociated with habitat use as the 95% CI did not overlap zero, while 
slope (SLO) and DCAD were not significantly correlated with habitat 
use (Supporting Information Table S5).

The protected area PNM had the highest estimated habitat use 
probability, followed by TMES and PNJU (Supporting Information 
Table S5). For all protected areas, the naïve habitat use probability 
was much lower than the estimated habitat use probability, show‐
ing evidence of ocelot imperfect detection (Figure 4). Compared 
to models not taking spatial autocorrelation into account, models 
incorporating spatial autocorrelation resulted in slightly lower oc‐
cupancy estimates for the majority of surveyed areas (expect for 
DUCKE, PBDFF, PNJU, and ZF2; Table 4).

Model AICc ΔAICc AICcwt K Log likelihood

ψ (GFC30), p(site + effort) 1,767.78 0 0.11 15 −868.62

ψ (GFC30 + D.ROA + D.
LAK + DCAD + ELE + SLO), 
p(site + effort)

1,768.09 0.32 0.09 20 −863.57

ψ (GFC30 + SLO), 
p(site + effort)

1,768.18 0.41 0.09 16 −867.78

ψ (GFC30 + D.
ROA + DCAD + ELE + SLO), 
p(site + effort)

1,768.25 0.48 0.08 19 −864.69

ψ (GFC30 + D.
ROA + DCAD + SLO), 
p(site + effort)

1,768.52 0.75 0.07 18 −865.87

ψ (GFC30 + D.RIV + SLO), 
p(site + effort)

1,768.8 1.02 0.06 17 −867.05

ψ (GFC30 + DCAD), 
p(site + effort)

1,768.85 1.08 0.06 16 −868.12

ψ (GFC30 + DCAD + SLO), 
p(site + effort)

1,768.91 1.13 0.06 17 −867.11

ψ (GFC30 + D.RIV + D.
ROA + DCAD + SLO), 
p(site+effort)

1,769.04 1.26 0.06 19 −865.09

ψ (GFC30 + D.RIV + DCAD), 
p(site + effort)

1,769.23 1.45 0.05 17 −867.27

ψ (GFC30 + D.RIV + D.LAK), 
p(site + effort)

1,769.32 1.54 0.05 17 −867.31

ψ (GFC30 + D.
RIV + DCAD + SLO), 
p(site + effort)

1,769.34 1.56 0.05 18 −866.28

ψ (GFC30 + D.LAK), 
p(site + effort)

1,769.55 1.77 0.04 16 −868.47

ψ (GFC30 + D.SET), 
p(site + effort)

1,769.66 1.88 0.04 16 −868.52

ψ (GFC30 + D.RIV + D.
ROA + D.
LAK + DCAD + ELE + SLO), 
p(site + effort)

1,769.71 1.94 0.04 21 −863.33

ψ (GFC30 + D.ROA + SLO), 
p(site + effort)

1,769.74 1.96 0.04 17 −867.52

Notes. AICc Akaike's information criterion corrected for finite sample sizes. ΔAICc relative difference 
in AICc values compared with the top ranked model, AICcwt weight, K number of parameters. Site 
covariates tested were: elevation (ELE), slope (SLO), distance to river (D.RIV), distance to lakes 
(D.LAK), distance to roads (D.ROA), distance to settlements (D.SET), Global Forest Change with 
threshold values 30 (GFC30) and disjunct core area density (DCAD). Detection covariates tested 
were: effort and site.

TA B L E  2  Multivariate model selection 
results of ocelot with AICc < 2
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4  | DISCUSSION

We found that habitat use by ocelots is positively associated with 
forest cover, disjunct core area density, distance to roads/settle‐
ments, elevation, and negatively related to slope, distance to riv‐
ers/lakes. Nevertheless, ocelots also emerge as rather adaptable 
and their habitat use is not much influenced by other environmen‐
tal variables. This suggests, as we would have predicted from their 
size and anatomy, that they are adaptable predators to a certain 
extent and are able to thrive wherever there are forests popu‐
lated with suitable prey—a characterization that informs thinking 
about both their role as Neotropical carnivore guilds and their 
conservation.

Our results implied that the probability of habitat use by ocelots 
is various in different surveyed areas. The attribute of surveyed area 
might be one of the reasons to explain the variation of probability 
of habitat use in different study sites. The estimated probability of 
habitat use by ocelots in SBR was low because it was a private area, 
while other areas were protected area. This meant that the ocelot 
status is better in protected area than in private area. Another rea‐
son might be the human disturbance at a few of the protected areas. 
DUCKE, PBDFF, and ZF2 protected areas are fringed by city sub‐
urbs due to rapid urban expansion (Gonçalves, 2013). Our habitat 
use analysis revealed that the Global Forest Change threshold 30% 
(GFC30) had an important influence on ocelot occurrence: increased 
forest cover was associated with increased estimated probability of 
habitat use (sigmoidal relationship). This accords with findings from 
Peru and Texas, where ocelots preferred dense and closed canopy 
forest (Emmons, 1988; Haines, Grassman, Tewes, & Janečka, 2006). 
This was not unexpected insofar as greater forest cover was proba‐
bly associated with higher prey availability (Droz & Pȩkalski, 2001, 
but see Hearn et al., 2017). Additionally, it has been suggested that 
the strong preference of ocelots for dense cover might also be re‐
lated to the avoidance of potential competitors such as the bobcat 
(Lynx rufus) in South Texas (de Oliveira et al., 2010). It remains pos‐
sible, however, that a positive relationship between ocelot habitat 
use and GFC30 arises because ocelots use less forested areas with 
lower probability. Although no longer statistically significant when 
spatial autocorrelation was taken into account, slope and disjunct 
core areas density (DCAD) were also influential covariates for oce‐
lot habitat use. There are previous hints that the ocelot might avoid 
steeper slopes due to lower availability of prey there (de Oliveira 
et al., 2010). The positive relationship between DCAD and habitat 
use suggests that forest fragmentation process in some degree is 
favorable for ocelots concerning higher density of disconnected 
patches of suitable interior forest habitat, which supported by previ‐
ous study about clouded leopard (Neofelis nebulosi; Tan et al., 2017).

All other covariates (importance <0.5) were not included in 
subsequent spatial autocorrelation analysis; however, they cannot 
ignore the influence on habitat use by ocelot. Our findings suggest 
that distance to road (D.ROA) emerged as important. Ocelots have 
been recorded killed on roads in the Tariquía−Baritú corridor be‐
tween Bolivia and Argentina (Cuyckens, Falke, & Petracca, 2014). 
Similarly, we found that distance to settlements had a negative 
effect, although this was weak (importance = 0.30). Distance to 
roads and settlements may be to do with persecution by/avoid‐
ance of humans or indirect anthropogenic impacts like overhunting 
of prey. Temporal avoidance of ocelot in the presence of humans 
(Massara, de Oliveira Paschoal et al., 2018; Massara, Paschoal 
et al., 2018; Pardo Vargas, Cove, Spinola, de la Cruz, & Saenz, 
2016) and other competitor, puma (Massara, de Oliveira Paschoal 
et al., 2018; Massara, Paschoal et al., 2018) has been observed, 
which also suggests that ocelots might avoid human activities or 
other larger species. As predicted, elevation was also influential 
covariate for ocelot habitat use. Previous studies indicated that 
the probability of habitat use by ocelots decreased with elevation 

TA B L E  3  Summed model weights for covariates used to model 
the probabilities of occupancy and detection of ocelots

Covariate

Summed 
model 
weights

β‐parameters

Estimate SE z

Ocelot occupancy (ψ)

GFC30 1.00 1.303 0.441 2.9566

SLO 0.58 −0.839 0.366 −2.2934

DCAD 0.51 0.542 0.332 1.6304

D.ROA 0.46 −2.426 0.921 −2.6355

D.RIV 0.42 −0.169 0.247 −0.6838

D.LAK 0.38 −0.959 0.624 −1.5372

ELE 0.37 −1.161 0.638 −1.8177

D.SET 0.30 0.013 0.416 0.0312

Ocelot detection (p)

Effort 1.00 0.175 0.0289 6.050

PNCA 1.00 −4.563 0.3909 −11.671

PNM 1.00 1.620 0.2880 5.623

TMES 1.00 1.482 0.2924 5.067

RDSA 0.96 1.205 0.3027 3.982

Uatuma 0.90 −1.303 0.5024 −2.594

BRA319 0.89 −1.973 0.4003 −4.929

DUCKE 0.83 −1.143 0.5523 −2.070

PNJU 0.80 1.254 0.4668 2.687

REMJ & RSUA 0.74 1.032 0.3444 2.997

PBDFF 0.64 0.822 0.4718 1.743

SBR 0.46 −0.229 0.6086 −0.377

ZF2 0.36 0.252 0.4306 0.586

Notes. AICc Akaike's information criterion corrected for finite sample 
sizes. ΔAICc relative difference in AICc values compared with the top 
ranked model, AICcwt weight, K number of parameters. Site covariates 
tested were: elevation (ELE), slope (SLO), distance to rivers (D.RIV), dis‐
tance to lakes (D.LAK), distance to roads (D.ROA), distance to settle‐
ments (D.SET), Global Forest Change with threshold values 30 (GFC30) 
and disjunct core area density (DCAD). Detection covariates tested were 
as follows: effort and site. Estimates and standard error (SE) of untrans‐
formed covariate effects (β parameters) are given for the most parsimo‐
nious model that included the covariate.
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(Ahumada, Hurtado, & Lizcano, 2013; Di Bitetti, Albanesi, Foguet, 
De Angelo, & Brown, 2013). Perhaps this is because lowland for‐
ests have higher net primary productivity (Robertson et al., 2010), 
which may increase resources (Peres, 1994) to sustain a greater 
abundance of ocelot prey. These prey may, in a seasonal way, use 
lowland forests to take advantage of the abundant trophic re‐
source in this forest type following the receding waters (Costa 
et al., 2018). However, it is important to note that variability in 
elevation throughout central and southern Brazilian Amazon 
extends over a limited range (22.56–241.34 m a.s.l., average 
96.92 m), which might be one reason why the effect of elevation 
was weak (importance = 0.37). Distance to river/lakes was also 
omitted from our final model, but a previous study revealed that 
ocelots tend to aggregate near major rivers (Emmons, 1987). In our 
classification, water bodies included only major rivers and lakes so 
further analysis might need to focus on smaller streams and rivers 
deeper within protected area, because in the case of many areas 
in the Amazon that have great extensions of nonfloodable terra 
firme (dry land/solid ground), density of small streams may have 

influence. In addition, in our case, the camera trap stations were 
mainly concentrated at close proximity to rivers so further analysis 
should investigate whether the effect of river on ocelot occupancy 
still exist when considering further distances from rivers.

The presence of sympatric species can influence ocelot's habi‐
tat use in Atlantic Forest remnants: The presence of a top predator 
(jaguars, P. onca, and pumas, P. concolor) was positively associated 
with ocelot habitat use (Massara, de Oliveira Paschoal et al., 2018; 
Massara, Paschoal et al., 2018, Supporting Information Table S1). 
There was also a weaker negative relationship reported between 
numbers of domestic dogs (Canis familiaris) detected and ocelot 
occupancy (Massara, de Oliveira Paschoal et al., 2018; Massara, 
Paschoal et al., 2018, Supporting Information Table S1). This fac‐
tor and the availability of prey or presence of apex predators were 
not included in our analysis. The prey of ocelots is mainly com‐
prised of small and medium‐sized mammals such as the three‐toed 
sloth (Bradypus variegatus) and nine‐banded long‐nosed armadillo 
(Dasypus novemcinctus) but also includes birds, fish, and snakes 
(Emmons, 1987; Wang, 2002). The presence–absence of prey might 

F I G U R E  2  Map with the camera trap surveyed areas used to model ocelot habitat use in Central Amazon, Brazil. Protected areas: Amanã 
Sustainable Development Reserve (RDSA); Médio Juruá Extractive Reserve and Uacarí Sustainable Development Reserve (REMJ & RSUA); Campos 
Amazônicos National Park (PNCA); Mapinguari National Park (PNM); Adolpho Ducke Forest Reserve (DUCKE); Cabo Frio and Km 37 experimental 
forest reserves (PBDFF); Cuieiras Forest Reserve and Tropical Forestry Experimental Station (ZF2); The Juruena National Park (PNJU); Terra do 
Meio Ecological Station (TMES); São Benedito River (SBR); Uatumã (Uatuma); Nasentes do Lago Jari National Park and IGAP‐AU Sustainable 
Development (BRA319). Projection: WGS84, Datum: WGS 1984 (EPSG4326)
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F I G U R E  3  Relationship between ocelot estimated habitat use probability and occupancy covariates with summed model weights >0.3. 
(a) Global Forest Change Threshold 30%; (b) elevation; (c) slope; (d) disjunct core area density; (e) distance to river; (f) distance to roads; (g) 
distance to settlements; (h) distance to lakes
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be a key and more immediate factor than forest cover or water 
availability in explaining ocelot habitat use pattern. There are some 
studies focused on the sympatric species or prey of ocelot (Massara, 
de Oliveira Paschoal et al., 2018; Massara et al., 2016; Massara, 
Paschoal et al., 2018; Pratas‐Santiago et al., 2016; Supporting 
Information Table S1), in the future they could be studied using 
multispecies occupancy models (Rota et al., 2016) and piecewise 
structural equation modeling (SEM; Geary, Ritchie, Lawton, Healey, 
& Nimmo, 2018; Grace et al., 2012).

Our results prompt comparisons with other similar mesopred‐
ators, such as the clouded leopard, which would appear to be an 
ecological analog of the ocelot. They have some commonalities, 
such as similar size (11–23 kg for clouded leopard), activity pattern 
(Di Bitetti et al., 2006; Grassman, Tewes, Silvy, & Kreetiyutanont, 
2005), and similar functional role in the ecosystem. A study in 
Peninsular Malaysia indicated that clouded leopard habitat use in‐
creased with increasing distance to rivers or streams and higher 
elevation. Our findings for ocelot mirrored this elevation effect, 
but not the effect of distance to rivers. Furthermore, DCAD was a 
strong contributory factor for ocelots, and similarly it was a posi‐
tive influence on habitat use of the Malaysian clouded leopard (Tan 
et al., 2017). Tan et al. (2017) also found that habitat use by clouded 
leopards was positively associated with forest cover, mirroring our 
results for ocelots. Findings like these start to resolve the niche 
differentiation of these seemingly similar felids which co‐occur 
and share an evolutionary history. Nevertheless, in general, forest 
cover, topographical factor (elevation or slope), distance to water 
(river or lakes), and distance to roads and settlements all emerge as 
important to these medium‐sized felids.

Unsurprisingly, the results indicate that detection probability was 
positively correlated with camera trapping efforts and was not con‐
stant across all survey areas. This was to be expected because the 
longer a camera trap survey, the higher the probability of detecting 
a species. In fact, the increase in the sample efforts to obtain more 
robust data should be encouraged, leaving cameras for at least 90–
120 days in the field and having several years of sampling. Meanwhile, 
there are other factors that might lead to different detection proba‐
bilities, such as seasonality (period of the year that the surveys were 
carried out: e.g., dry or rainy season) and the number of camera traps 
at a station (paired or single cameras). The two sites (REMJ & RSUA 
and RDSA) with different detection probabilities that are situated in 
the far west of Brazilian Amazonia illustrate strong influences of rivers 
and seasonal flooding (see also Costa et al., 2018). Previous reports 
revealed that position of camera trap stations (on trails or not) might 
also affect the detection probability: The detection probability was 
higher for camera trap stations located on roads than on trails (Di 
Bitetti et al., 2006). Additionally, variation in ocelot density at differ‐
ent surveyed areas will also affect detectability, with a higher ocelot 
density associated with higher detectability (Massara, De Oliveira 
Paschoal, Doherty, Hirsch, & Chiarello, 2015). Many sources of evi‐
dence point to a gradient in productivity and biomass, being higher 
in the western/south western Amazon and lower in the central and 
eastern parts of the basin (Houghton, Lawrence, Hackler, & Brown, 
2001). This gradient could influence density and abundance, there‐
fore, detection probability. In our study, we accounted for spatial 
autocorrelation (Johnson et al., 2013) to obtain a more accurate es‐
timate for ocelot habitat use. This correction is biologically important 
(Poley et al., 2014) but often neglected (Hodges & Reich, 2010).

RSR models Nonspatial models

Occupancy (%)Occupancy (%) SE Occupancy (%) SE

BRA319 77.71 0.4021 77.88 0.4021 4.59

PNCA 62.79 0.3043 62.97 0.3043 24.42

PNM 59.99 0.2060 60.42 0.2060 41.38

RDSA 79.59 0.2498 79.77 0.2498 48.44

REMJ&RUSA 76.61 0.3481 77.82 0.3481 22.12

DUCKE 63.82 0.4262 62.98 0.4262 13.33

PBDFF 63.96 0.3645 63.37 0.3645 26.67

ZF2 68.42 0.3633 67.80 0.3633 26.67

TMES 77.67 0.1848 77.94 0.1848 62.30

PNJU 68.39 0.2263 68.25 0.2263 50.00

Uatuma 67.96 0.4266 70.19 0.4266 4.21

SBR 69.43 0.3820 70.10 0.3820 17.39

Notes. Detection covariates were different surveyed area (site), and number of days a camera trap 
station was active for during each sampling occasion (effort). Occupancy covariates were Global 
Forest Change Threshold 30% (GFC30), disjunct core area density (DCAD), and slope (SLO). 
Restricted spatial regression (RSR) models incorporated spatial autocorrelation, while nonspatial 
models did not. Naïve occupancy estimate represented the estimate of occupancy obtained without 
incorporating variations in detection probability, occupancy covariates, or spatial autocorrelation.

TA B L E  4  Average probability of 
occupancy and standard error (SE) from 
spatial and nonspatial occupancy models, 
based on the model p(site + effort), 
ψ(GFC30 + DCAD + SLO)
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However, a limitation of our study is that all our surveys were con‐
ducted in prime habitat (except SBR and part of BRA319). Within the 
range of variation we studied, ocelots were ubiquitous. A further limita‐
tion is that we did not consider prey and sympatric predators. Our findings 
that ocelots were ubiquitous, and seemingly abundant in protected areas, 
do not justify complacency regarding their conservation: Deforestation is 
destroying their habitat. Ocelots are strong candidates for conservation 
ambassador species (Macdonald et al., 2017), so their conservation tran‐
scends benefits to their own populations, but extends to the species with 
which they are sympatric, and the habitats they occupy.
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