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Abstract
Amazonia	forest	plays	a	major	role	in	providing	ecosystem	services	for	human	and	
sanctuaries	for	wildlife.	However,	ongoing	deforestation	and	habitat	fragmentation	
in	the	Brazilian	Amazon	has	threatened	both.	The	ocelot	is	an	ecologically	important	
mesopredator	and	a	potential	conservation	ambassador	species,	yet	there	are	no	pre‐
vious	studies	on	its	habitat	preference	and	spatial	patterns	in	this	biome.	From	2010	
to	2017,	twelve	sites	were	surveyed,	totaling	899	camera	trap	stations,	the	largest	
known	dataset	for	this	species.	Using	occupancy	modeling	incorporating	spatial	au‐
tocorrelation,	we	 assessed	 habitat	 use	 for	 ocelot	 populations	 across	 the	 Brazilian	
Amazon.	 Our	 results	 revealed	 a	 positive	 sigmoidal	 correlation	 between	
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1  | INTRODUC TION

South	America's	Amazon	basin	harbors	over	half	of	all	the	tropical	rain‐
forests	left	on	Earth,	spanning	a	vast	area	of	6.7	million	km2	(Wittmann	
&	Junk,	2016),	and	is	home	to	roughly	half	of	the	world's	species	(Shukla,	
Nobre,	&	Sellers,	1990).	Unfortunately,	human‐induced	changes	 to	 its	
ecosystem,	for	a	host	of	social‐economic	reasons,	are	causing	widespread	
biodiversity	declines	in	the	Amazon	(Gibson	et	al.,	2011;	Newbold	et	al.,	
2015;	Guilherme	de	Andrade	Vasconcelos,	2017).	Over	2000–2012,	the	
average	rate	of	tropical	dense	forests	loss	was	74,400	km2/year	(Malhi,	
Gardner,	Goldsmith,	Silman,	&	Zelazowski,	2014).	Deforestation	is	inten‐
sifying	pressures	on	forest	vertebrates,	as	well	as	on	indigenous	and	non‐
indigenous	forest	dwellers	and	their	livelihoods.	In	addition,	the	process	
of	deforestation	is	not	random,	with	remaining	forests	often	being	con‐
fined	to	steep	slopes	and	hilltops	unsuitable	for	both	large‐scale	agricul‐
ture	and	cattle	ranch.	This	leads	to	habitat	fragmentation	and	population	
isolation	(Malhi	et	al.,	2014),	especially	throughout	the	so‐called	arc	of	
deforestation	region,	which	together	influence	the	nature	and	frequency	
of	 species	 interactions	with	unknown	cascading	effects	on	 long‐term	
biodiversity	persistence	(Haddad	et	al.,	2015).

Forest	carnivores,	especially	apex	predators,	are	thought	to	be	par‐
ticularly	vulnerable	and	sensitive	to	deforestation	and	forest	fragmen‐
tation	(Noss,	Quigley,	Hornocker,	Merrill,	&	Paquet,	1996)	because	of	
their	restricted	carnivorous	diet	(Vetter,	Hansbauer,	Végvári,	&	Storch,	
2011)	and	 large	home	ranges.	They	are	essential	 for	maintaining	the	
community	 structure	 within	 a	 foodweb,	 and	 are	 vital	 to	 ecosystem	
functioning	 (Ripple	 et	al.,	 2014).	 Mesopredators	 can	 fill	 this	 role	 to	
some	degree	when	apex	predators	are	eradicated	or	depleted	(Prugh	
et	al.,	2009).	Some	omnivorous	mesopredators,	typically	opportunists	
with	broad	diets,	 such	as	 raccoons	 (Procyon lotor),	may	respond	pos‐
itively	 to	anthropogenic	 resources	with	behavioral	change	 (Prange	&	
Gehrt,	 2004).	 In	 these	 cases,	mesopredators	with	 good	 adaptability	
might	 serve	 as	 a	 buffer	 to	 sustain	 ecosystem	 stability	 and	 integrity	
when	apex	predators	are	inadequate.	Alternatively,	mesopredators	are	
sometimes	associated	with	unpredictable	cascade	effects,	such	as	dis‐
ease	outbreaks	and	human–wildlife	conflicts	(Prugh	et	al.,	2009).	These	
various,	and	unpredictable,	possibilities	provide	a	background	for	an	in‐
terest	in	medium‐sized	Neotropical	cats	in	addition	to	the	fundamental	
interest	in	their	poorly	documented	autecology.

The	ocelot	Leopardus pardalis	(Linnaeus,	1758;	Figure	1)	is	a	me‐
dium‐sized	(6.6–18.6	kg)	Neotropical	spotted	cat	with	a	broad	geo‐
graphic	distribution	in	the	Americas,	ranging	from	the	extreme	south	
of	Texas	(USA),	throughout	Mesoamerica	and	the	Amazon,	to	open	
environments	in	northern	Argentina	and	flood	plains,	dry	coniferous	
forests,	and	rainforests	(Emmons	&	Feer,	1998;	Murray	&	Gardner,	
1997).	Ocelots	 are	 considered	 solitary,	 nocturnal/crepuscular,	 and	
semi‐arboreal	 and	are	excellent	 climbers	 (Di	Bitetti,	Paviolo,	&	De	
Angelo,	 2006).	 Documented	 home	 ranges	 are	 average	 12.5	±	SE 
3.4	km2	 (Gonzalez‐Borrajo,	 López‐Bao,	 &	 Palomares,	 2016).	 They	
have	been	recorded	at	elevations	up	to	1,200	m	(Nowell	&	Jackson,	
1996)	 and	 are	 classified	 as	 Least	 Concern	 on	 the	 IUCN	 Red	 List	
(Paviolo	 et	al.,	 2015).	 They	 were	 heavily	 exploited	 in	 Amazonia	
by	 the	 international	 fur	 trade	 between	 the	 1930s	 and	mid‐1970s	
(Antunes	 et	al.,	 2016;	 Smith,	 1976).	Currently,	 ocelots	 suffer	 habi‐
tat	loss,	fragmentation,	and	other	anthropogenic	pressures,	such	as	
oil	exploration	 (Kolowski	&	Alonso,	2010),	vehicle	collisions,	 illegal	
trade,	and	 retaliatory	killing	due	 to	depredation	on	small	 livestock	
(Paviolo	et	al.,	2015).

Nevertheless,	 ocelot,	 a	mesopredator,	 has	 been	 studied	much	
less	 than	 larger,	more	 charismatic,	 felids,	 such	 as	 jaguar	 (Panthera 
onca)	and	puma	(Puma concolor).	Since	2000,	studies	of	ocelot	using	

remote‐sensing	derived	metrics	of	forest	cover,	disjunct	core	area	density,	elevation,	
distance	to	roads,	distance	to	settlements	and	habitat	use,	and	that	habitat	use	by	
ocelots	was	negatively	associated	with	slope	and	distance	to	river/lake.	These	find‐
ings	 shed	 light	on	 the	 regional	 scale	habitat	use	of	ocelots	and	 indicate	 important	
species–habitat	 relationships,	 thus	providing	valuable	 information	 for	 conservation	
management	and	land‐use	planning.

K E Y W O R D S

Brazilian	Amazon,	camera	traps,	mesopredator,	occupancy,	ocelot,	restricted	spatial	regression

F I G U R E  1  Ocelot	was	taken	by	one	camera	trap	in	2013	
(photos	provided	by	Daniel	G.	Rocha)
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camera	traps	have	proliferated	(Blake	et	al.,	2015;	de	Oliveira	et	al.,	
2010;	 Paviolo	 et	al.,	 2015;	 Pratas‐Santiago,	 Gonçalves,	 da	 Maia	
Soares,	&	Spironello,	 2016;	Wang,	2002),	 in	 particular,	 those	esti‐
mating	 the	species’	abundance	and	density	 (Di	Bitetti,	Paviolo,	De	
Angelo,	 &	Di	 Blanco,	 2008;	 Di	 Bitetti	 et	al.,	 2006;	 Dillon	 &	 Kelly,	
2007;	 Penido	 et	al.,	 2016;	 Rocha,	 Sollmann,	 Ramalho,	 Ilha,	 &	 Tan,	
2016).	These	studies	have	revealed	various	aspects	of	ocelot	ecol‐
ogy	(Supporting	Information	Table	S1),	and	three	of	them	used	the	
occupancy	modeling	framework:	two	of	them	investigated	the	inter‐
actions	between	ocelots	and	sympatric	species	(Massara,	Paschoal,	
Bailey,	 Doherty,	 &	 Chiarello,	 2016;	Massara,	 de	Oliveira	 Paschoal	
et	al.,	 2018;	Massara,	 Paschoal	 et	al.,	 2018),	 the	 third	 investigated	
how	 an	 attractant	 affected	 detection	 (Cove,	 Spinola,	 Jackson,	 &	
Saenz,	 2014).	Other	 studies	 report	 that	 ocelot	 densities	 correlate	
with	forest	cover	(Paviolo	et	al.,	2015),	precipitation	(Maffei,	Noss,	
Cuéllar,	&	Rumiz,	2005;	Rocha	et	al.,	2016),	and	 latitude	(Di	Bitetti	
et	al.,	 2008;	 Rocha	 et	al.,	 2016);	 in	 addition,	 ocelots	may	 have	 an	
affinity	 for	 some	 specific	 matrices,	 such	 as	 eucalyptus	 plantation	
(Massara,	de	Oliveira	Paschoal	et	al.,	2018;	Massara,	Paschoal	et	al.,	
2018).	Ocelots	 have	 been	 recorded	 in	 a	 great	 variety	 of	 habitats,	
from	heavily	 logged	and	fragmented	forests,	 to	early	and	 late	suc‐
cessional	forests,	the	outskirts	of	major	cities	and	towns,	disturbed	
scrub/woodland	Savannah	and	agricultural	areas	(de	Oliveira	et	al.,	
2010).	Notwithstanding	these	fragments	of	research,	studies	on	the	
habitat	preference	of	ocelots	on	a	regional	scale	are	lacking.

Occupancy	modeling	has	become	a	popular	tool	for	 investigat‐
ing	species	occurrence	over	temporal	and	spatial	scales.	This	type	of	
model	estimates	the	probability	of	a	site	being	occupied	by	a	species,	
taking	into	account	imperfect	detection	processes	(Mackenzie	et	al.,	
2002).

We	use	camera	trap	detection/nondetection	data	from	12	sites	
in	Brazilian	Amazonia	to	examine	the	habitat	use	of	the	ocelot.	This	
is	by	far	the	largest	known	dataset	for	this	species.	Our	key	objective	
is	 to	 reveal	 the	 influence	of	different	environmental	 variables	and	
anthropogenic	impacts	on	ocelot	occupancy	at	a	landscape	scale	and	
thus	predict	its	habitat	use	across	the	Brazilian	Amazon.

2  | METHODS

2.1 | Study area

Data	were	collected	across	twelve	sites	in	the	Amazon	basin,	Brazil	
from	2010	to	2017:	(a)	Cabo	Frio	and	Km	37	experimental	forest	re‐
serves,	from	part	of	the	Biological	and	Dynamics	of	Forest	Fragments	
Project	(PBDFF)	(Laurance,	Ferreira,	Rankin‐de	Merona,	&	Laurance,	
1998),	(b)	Cuieiras	Forest	Reserve	and	Tropical	Forestry	Experimental	
Station	 (ZF2),	 (c)	 Adolpho	 Ducke	 Forest	 Reserve	 (DUCKE),	 (d)	
Amanã	Sustainable	Development	Reserve	 (RDSA),	 (e)	Médio	Juruá	
Extractive	 Reserve	 and	 Uacarí	 Sustainable	 Development	 Reserve	
(REMJ	&	RSUA),	(f)	Uatumã	Biological	Reserve	(Uatuma),	(g)	Campos	
Amazônicos	 National	 Park	 (PNCA),	 (h)	 Mapinguari	 National	 Park	
(PNM),	(i)	Juruena	National	Park	(PNJU),	(j)	Terra	do	Meio	Ecological	
Station	(TMES),	(k)	São	Benedito	River	(SBR),	(l)	Nascentes	do	Lago	

Jari	National	Park,	Igapó‐Açu	Sustainable	Development	Reserve	and	
Tupana	Settlement	Project	(BRA319).	Apart	from	the	São	Benedito	
River	(Serra	do	Cachimbo),	which	is	a	private	area,	and	the	Tupana	
Settlement	Project,	 the	 sites	 are	 located	 in	protected	areas	or	 re‐
serves.	The	climatic	classification	of	this	region,	according	to	Köppen	
(Kottek,	Grieser,	Beck,	Rudolf,	&	Rubel,	2006),	 is	tropical	moist	cli‐
mate.	The	entire	survey	region	consisted	of	a	similar	baseline	mosaic	
of	tropical	forest,	mostly	upland	nonfloodable	terra firme	forests	(dry	
land/solid	ground)	and,	to	a	lesser	extent,	seasonally	flooded	forests.

2.2 | Camera trap survey

Data	collection	and	surveys	at	most	of	our	study	areas	were	designed	
to	 study	 large	mammals	 like	 jaguars,	 so	 our	 data	 on	 ocelots	 repre‐
sent	by‐catch	(except	for	the	REMJ	and	RSUA	dataset,	see	methods	
in	 Costa,	 Peres,	 &	 Abrahams,	 2018).	 In	 Malaysia,	 Tan	 et	al.	 (2017)	
used	them	to	estimate	habitat	use	of	clouded	leopards,	as	did	Penjor,	
Macdonald,	Wangchuk,	 Tandin,	 and	 Tan	 (2018)	 in	 Bhutan.	 Camera	
trapping,	although	originally	motivated	by	studies	of	large	mammals,	
yielded	data	on	ocelots	(Figure	2).	In	total,	899	unbaited	camera	trap	
stations	were	operated,	involving	a	total	survey	effort	of	40,347	days,	
yielding	334	independent	detections	of	ocelots.	The	independent	de‐
tection	 events	were	 defined	 as	 the	 consecutive	 conspecific	 images	
with	>30	min	apart	at	the	same	camera	trap	station.	Stations	at	RDSA	
had	 two	 cameras	 facing	 each	 other	 4–5	m	 apart	 and	 stations	 at	 all	
other	survey	areas	had	only	single	cameras.	All	camera	trap	stations	
were	placed	at	approximately	30–50	cm	above	ground	along	randomly	
selected	transects	in	different	surveyed	sites,	perpendicular	to	exist‐
ing	trails	or	animal	tracks	used	for	previous	censuses	of	primates	and	
terrestrial	vertebrates	to	enhance	the	opportunity	to	detect	the	focal	
species	(Di	Bitetti	et	al.,	2006).	The	sensitivity	sensor	was	set	at	“high.”	
Camera	traps	were	operational	for	24	hr	a	day	during	the	monitoring	
period,	aside	from	malfunctions,	damage,	or	theft.	Details	of	camera	
trap	deployment	(the	numbers	of	stations,	effort,	mean	trap	spacing,	
and	total	numbers	of	records	of	ocelot)	are	provided	in	Table	1.

2.3 | Data analysis

Detection	 histories	 based	 on	 photographic	 records	 were	 con‐
structed	in	a	two	dimensional	matrix	format.	Data	were	analyzed	
using	(a)	single‐species,	single‐season	occupancy	models	in	a	maxi‐
mum‐likelihood	 framework	 (Mackenzie	 et	al.,	 2002),	 which	 can	
help	to	select	the	most	informative	covariates,	and	(b)	single‐sea‐
son	spatial	occupancy	models	that	account	for	spatial	autocorrela‐
tion	in	a	Bayesian	framework	(Johnson,	Conn,	Hooten,	Ray,	&	Pond,	
2013).	The	latter	method	was	used	as	our	study	combined	multiple	
protected	areas	at	varying	distances	apart,	distributed	across	the	
Brazilian	Amazon	basin.	To	minimize	the	possibility	of	violating	the	
assumption	of	population	closure	(Rota,	Fletcher,	Dorazio,	&	Betts,	
2009),	only	the	first	120‐day	period	of	each	survey	was	included	in	
the	analysis.	Collapsing	sampling	periods	minimizes	the	failure	of	
convergence	 in	models	when	overall	detection	probability	 is	 low	
(Dillon	&	Kelly,	2007;	Otis,	Burnham,	White,	&	Anderson,	1978).	It	
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can	also	increase	temporal	independence	among	occasions	(Dillon	
&	 Kelly,	 2007).	 The	 120‐day	 data	 subsets	 were	 collapsed	 into	
multiple‐day	 sampling	occasions	 (7,	10,	12,	15	days	of	period)	 to	
maximize	temporal	independence	of	captures.	The	optimum	num‐
ber	of	days	per	occasion	was	selected	based	on	a	chi‐square	good‐
ness‐of‐fit	 (MacKenzie	&	Bailey,	 2004)	 test	 for	 the	 global	model	
performed	with	 1,000	 bootstraps.	 A	 12‐day	 period	 represented	
the	 optimum	 number	 of	 days	 to	maximize	model	 fit	 (Supporting	
Information	Table	S2).

Building	 on	 previous	 studies	 of	 similar	 mesopredators,	 such	
as	golden	cats	 (Pardofelis teminckii)	 and	clouded	 leopards	 (Neofelis 
nebulosa;	 Haidir,	 Dinata,	 Linkie,	 &	 Macdonald,	 2013;	 Tan	 et	al.,	
2017),	we	interpreted	ocelot	occupancy	as	a	proxy	for	habitat	use	
of	 ocelot.	 Habitat	 use	 was	 modeled	 by	 occupancy	 models	 using	
three	types	of	covariates:	 (a)	habitat	use	covariates	on	natural	en‐
vironment:	elevation,	slope	(mean	angle	of	slope),	forest	cover(VCF,	
GFC30,	GFC50,	GFC75,	GFC90),	distance	to	rivers	and	distance	to	
lakes,	 (b)	habitat	use	covariates	on	human	activity	and	fragmenta‐
tion:,	distance	 to	 roads,	distance	 to	 settlements,	 and	measures	of	
forest	fragmentation	(CWED,	Contig,	DCAD),	and	(c)	detection	co‐
variates	that	describe	each	of	surveyed	sites:	survey	site	(the	12	dif‐
ferent	surveyed	sites)	and	effort	(number	of	days	that	each	camera	
trap	 station	was	 active	within	 occasions).	 The	 summary	 statistics	
of	each	of	 these	covariates	are	 tabulated	 (Supporting	 Information	
Table	S3).	We	hypothesized	that	ocelots	would	have	a	bias	for	flat	
land,	 dense	 forests,	 areas	 near	 rivers/lakes	 and	 avoid	 approach‐
ing	 roads,	 settlements	 and	 fragmented	 forests.	 For	 the	 detection	
covariates,	 we	 hypothesized	 that	 the	 higher	 the	 camera	 trapping	
effort,	 the	higher	probability	of	detecting	 focal	 species.	Different	
surveyed	sites	would	have	different	detection	probabilities	due	to	

geographical	and	biological	 features.	The	occupancy	covariates	at	
each	camera	trap	location	were	generated	using	QGIS	version	2.18.9	
(QGIS	Development	Team,	2017).	Elevation	and	slope	values	were	
extracted	 from	 a	 30	×	30	m	 of	 resolution	 digital	 elevation	 model	
(DEM),	the	Shuttle	Radar	Topography	Mission	(USGS,	2003),	down‐
loaded	from	U.S. Geological Survey	(https://earthexplorer.usgs.gov/).	
The	distance	 to	 rivers/lakes	and	paved	 roads	was	produced	using	
Cartographic	 Integrated	Basis	Digital	CIM	 IBGE	 (IBGE,	2011).	The	
distance	to	settlements	was	from	an	open	source	(OpenStreetMap	
Contributors,	 2015,	 https://planet.openstreetmap.org),	 including	
towns,	 villages,	 and	 isolated	 settlements.	 Vegetation	 Continuous	
Forest	of	250‐m	 resolution	 (DiMiceli	 et	al.,	 2011)	 and	30‐m	 reso‐
lution	Global	Forest	Change	(Hansen	et	al.,	2013)	was	used	as	mea‐
sures	of	 forest	 cover.	 Specifically,	 the	Global	Forest	Change	 layer	
(Hansen	et	al.,	2013)	allows	users	to	set	a	threshold	of	percentage	of	
tree	cover	that	is	to	be	considered	as	forest	for	the	area	of	interest.	
On	account	of	 this	 and	a	previous	 similar	 study	 (Tan	et	al.,	 2017),	
we	set	 four	different	 threshold	values	 (30%,	50%,	75%	and	90%).	
Forest	 fragmentation	variables	such	as	CWED	(Contrast‐weighted	
edge	density	is	a	measure	of	edge	density	standardized	to	a	per	unit	
area),	Contig	(Contiguity	index	is	an	index	of	spatial	connectedness	
of	forest),	and	DCAD	(Disjunct	core	area	density	 is	the	number	of	
disconnected	patches	of	suitable	interior	habitat	per	unit	area)	were	
chosen	to	examine	the	effects	of	edge	and	forest	fragmentation	on	
ocelot	 habitat	 use.	 The	measures	 of	 forest	 fragmentation	dataset	
were	produced	by	FRAGSTATS	4	(McGarigal,	Cushman,	Neel,	&	Ene,	
2002).	For	all	above	continuous	covariates,	values	were	extracted	
from	the	mean	of	all	raster	cells	included	in	a	500‐m	radius	around	
each	camera	trap	station	and	were	derived	using	the	“zonal	statis‐
tics”	tool	in	QGIS.	This	radius	was	chosen	to	represent	an	overview	

TA B L E  1  Details	of	camera	trap	survey	for	ocelots	in	Brazilian	Amazon

Year Site Area (km2) Stations Effort

No. of 
camera traps 
per station Spacing (SD) in m

Records of 
ocelots

2010 PDBFF	(Manaus) 350 30 946 1 1,365.08	(71.90) 10

2010 ZF2	(Manaus) 380 30 1,050 1 1,389.33	(19.32) 8

2010–2011 BRA319 8,127.4518 196 9,647 1 312.79	(321.94) 8

2012 DUCKE	(Manaus) 100 30 1,877 1 1,351.25	(87.99) 4

2013–2014 RDSA 23,500 64 2,682 2 1,245.76	(262.50) 45

2013–2014 REMJ	&	RSUA 886.22 183 6,169 1 457.70	(265.84) 48

2014 Uatuma 1,601.704 95 2,867 1 1,153.32	(1055.38) 5

2015 REMJ	&	RSUA 886.22 25 1,112 1 7,371.60	(4367.87) 14

2016 PNCA 9,613 86 5,537 1 2,872.18	(1048.53) 28

2016 PNM 17,228.52 58 1,939 1 3,747.17	(1813.93) 57

2016 PNJU 19,582.03 18 1,276 1 987.64	(13.28) 16

2016 TMES 3,373.111 61 3,652 1 1,340.78	(60.59) 86

2017 SBR 8.31 23 1,593 1 1,380.649	(135.88) 5

Total 899 40,347 334

Notes.	Effort	is	in	number	of	camera	trap	×	days,	the	spacing	is	the	average	distance	between	camera	traps	and	their	nearest	neighbor.

https://earthexplorer.usgs.gov/
https://planet.openstreetmap.org
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of	 the	 environmental	 setting	 and	 habitat	 type	 surrounding	 each	
camera	trap	station.	Due	to	the	limited	availability	of	VCF	and	GFC	
maps	(the	latest	maps	are	for	years	2010	and	2014,	respectively),	we	
used	the	temporally	closest	one.

Statistical	analyses	were	undertaken	in	two	parts.	The	first	se‐
lected	the	most	 informative	covariates.	First,	Pearson's	correlation	
test	 was	 conducted	 to	 examine	 collinearity	 between	 continuous	
covariates.	 Covariates	 with	 r	>	|0.6|	 were	 considered	 correlated.	
Second,	univariate	occupancy	models	were	conducted	with	R	pack‐
age	 “unmarked”	 (Fiske	&	 Rochard,	 2011)	 and	we	 selected	 the	 co‐
variate	(of	the	correlated	pair)	based	on	the	model	with	lower	ΔAIC	
value.	We	used	 the	 “AICcmodavg”	 package	 (Mazerolle,	 2017)	 in	R	
(R	Development	Core	Team,	2017)	for	this	second	step.	In	order	to	
avoid	bias	from	correlated	detections	due	to	spatial	replicates	that	
are	not	sampled	randomly,	we	conducted	occupancy	models	in	pro‐
gram	 PRESENCE	 (Hines,	 2006)	 account	 for	 correlated	 detections	
(Hines	et	al.,	2010)	to	checking	for	the	effect	of	correlated	detections	
(Supporting	Information	Table	S6).	Third,	the	best	candidate	model	
including	 the	 most	 informative	 covariates	 was	 selected	 by	 AICc 
(corrected	 Akaike's	 information	 criterion,	 used	 due	 to	 small‐sam‐
ple	correction).	Models	with	all	possible	combinations	of	remaining	
covariates	were	compared,	and	 the	models	within	ΔAICc < 2 were 
considered	 to	 the	 best‐performing	models	 (Burnham	&	Anderson,	
2004).	The	dredging	command	 in	 the	multi‐model	 inference	pack‐
age	 “MuMIn”	 (Bartoń,	 2013)	was	 used	 to	 average	 the	 parameters	
in	R	(Team	RC,	2017).	Finally,	based	on	the	summed	model	weights	
(importance;	Barbieri	&	Berger,	2004;	Kalies,	Dickson,	Chambers,	&	
Covington,	2012),	the	most	influential	covariates	(importance	>	0.5)	
were	retained	for	the	subsequence	analysis.

The	 second	part	 of	 the	 statistical	 process	 used	 the	R	package	
“stocc”	 to	 account	 for	 spatial	 autocorrelation	 (Johnson,	 2015).	 A	
restricted	spatial	regression	model	(RSR)	was	used	to	generate	the	
spatial	autocorrelation	parameter.	RSR	models	use	an	efficient	Gibbs	
sampler	Markov	chain	Monte	Carlo	method	to	make	Bayesian	infer‐
ence	about	the	detection	and	occupancy	processes	and	models	were	
fitted	using	a	probit	link	function	(probit	link,	uses	the	inverse	of	the	
cumulative	distribution	function	of	the	standard	normal	distribution	
to	transform	probabilities	to	the	standard	normal	variable,	Razzaghi,	
2013)	 instead	of	 the	 logit	 link	 function	used	 in	 the	 first	part.	This	
increased	computational	efficiency	(Johnson	et	al.,	2013).	In	the	RSR	
model,	 the	 threshold	was	set	 to	1.99	km	according	 to	 the	average	
ocelot	 home	 range	 (12.46	±	SE	 3.39	km2,	 which	 corresponded	 to	
1.99	km	 radius;	 Gonzalez‐Borrajo	 et	al.,	 2016)	 and	moran.cut	 89.9	
(0.1*number	of	camera	trap	stations),	as	recommended	by	Hughes	
and	Haran	(2013).	For	each	Bayesian	model,	the	Gibbs	sampler	was	
run	 for	 50,000	 iterations	 following	 a	 burn‐in	 of	 10,000	 iterations	
that	were	discarded,	and	a	thinning	rate	of	5	(Tan	et	al.,	2017).	We	
applied	an	 improved	occupancy‐based	modeling	approach	 that	 in‐
corporates	spatial	autocorrelation.	This	improved	model	included	a	
spatial	component	which	can	help	to	mitigate	bias	from	nonindepen‐
dent	environmental	covariates	 (Johnson	et	al.,	2013).	All	statistical	
analyses	for	this	study	were	conducted	in	the	R	software	environ‐
ment	v.3.3.3	(R	Development	Core	Team,	2017).

3  | RESULTS

3.1 | Selection of contributing covariates

3.1.1 | Detection covariates

Both	site	and	effort	strongly	contributed	to	variation	in	the	detec‐
tion	 probability	 of	 ocelot.	 PNM	 had	 the	 highest	 detection	 prob‐
ability,	followed	by	TMES,	PNJU,	and	RDSA.	PNCA	had	the	lowest	
detection	 probability	 (Table	3).	 Effort	was	 positively	 correlated	 to	
detection	probability	(beta	=	0.175,	SE	=	0.029,	Table	3).

3.1.2 | Occupancy covariates

There	was	 correlation	 among	all	 forest	 cover	 covariates	 (VCF	and	
GFC30,	50,	75,	90)	and	among	all	measures	of	forest	fragmentation	
(CWED,	 Contig	 and	 DCAD).	 Based	 on	 these	 correlations	 and	 the	
performance	of	each	covariate	in	the	univariate	habitat	use	models	
(Supporting	 Information	 Table	 S4),	 GFC30,	 D.ROA,	D.RIV,	 D.LAK,	
D.SET,	ELE,	SLO,	and	DCAD	were	selected	for	the	further	analysis.

3.2 | Selection of the best model

Among	 the	models	 that	 incorporated	 all	 possible	 combinations	 of	
the	 eight	 occupancy	 covariates,	 sixteen	 models	 (out	 of	 256)	 had	
ΔAIC	<	2	from	the	top	ranked	model	 (Table	2).	The	best	candidate	
model	was	p(site	+	effort),	ψ[forest	 cover	 (GFC30)]	with	 a	 highest	
weight	of	0.11.	Based	on	 the	summed	model	weight	 (importance),	
all	 of	 the	 covariates	 had	 some	 degree	 of	 influence	 on	 the	 habitat	
use	of	ocelot	(importance	from	0.3	to	1;	Table	3).	Specifically,	habitat	
use	by	ocelot	was	 strongly	positively	associated	with	 forest	 cover	
(GFC30;	 importance	=	1.0;	 Table	3;	 Figure	3a),	with	DCAD	 (impor‐
tance	=	0.51;	 Table	3;	 Figure	3d)	 and	 strongly	 negatively	 related	
to	 slope	 (SLO;	 importance	=	0.58;	Table	3;	Figure	3c).	There	was	a	
weaker	positive	sigmoidal	correlation	between	habitat	use	and	dis‐
tance	to	roads,	which	then	leveled	off	at	higher	values	of	distance	to	
roads	(D.ROA;	importance	=	0.46;	Table	3;	Figure	3f)	and	there	was	
a	 weaker	 negative	 relationship	 between	 habitat	 use	 and	 distance	
to	 river	 (D.RIV;	 importance	=	0.42;	 Table	3;	 Figure	3e).	 The	 rest	 of	
covariates	had	importance	<0.4	(see	details	in	Table	3	and	Figure	3)	
Our	results	indicated	that	the	covariates	forest	cover	(GFC30),	slope	
(SLO)	 and	 disjunct	 core	 area	 density	 (DCAD)	 attained	 a	 summed	
model	weight	(importance)	of	>0.5	(Table	3),	which	were	used	in	the	
subsequent	phase	to	test	for	spatial	autocorrelation.

3.3 | Best model accounting for spatial 
autocorrelation

The	posterior	predictive	loss	criteria	were	slightly	different	for	the	
model	 with	 the	 spatial	 correlation	 parameter	 (D	=	485.1454)	 and	
without	 that	 parameter	 (D	=	485.3477).	 In	 addition,	 the	 posterior	
variation	was	 larger	 for	 the	 nonspatial	model.	 Further,	 the	 poste‐
rior	 distribution	 of	 the	 spatial	 variance	 parameter	 (�=1∕

√

�)	 was	
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far	from	zero	(95%	credible	interval	of	8.4975–59039.02),	 implying	
that	additional	spatial	correlation	in	the	occupancy	process	strongly	
contributed	to	the	variation	 in	the	habitat	use	probabilities.	Based	
on	the	95%	credible	intervals	of	the	covariates,	there	was	strong	evi‐
dence	to	suggest	that	for	both	nonspatial	models	and	spatial	models,	
Global	Forest	Change	Threshold	30%	(GFC30)	was	significantly	as‐
sociated	with	habitat	use	as	the	95%	CI	did	not	overlap	zero,	while	
slope	(SLO)	and	DCAD	were	not	significantly	correlated	with	habitat	
use	(Supporting	Information	Table	S5).

The	protected	area	PNM	had	the	highest	estimated	habitat	use	
probability,	 followed	 by	 TMES	 and	 PNJU	 (Supporting	 Information	
Table	S5).	For	all	protected	areas,	the	naïve	habitat	use	probability	
was	much	 lower	than	the	estimated	habitat	use	probability,	show‐
ing	 evidence	 of	 ocelot	 imperfect	 detection	 (Figure	4).	 Compared	
to	models	 not	 taking	 spatial	 autocorrelation	 into	 account,	models	
incorporating	 spatial	 autocorrelation	 resulted	 in	 slightly	 lower	 oc‐
cupancy	 estimates	 for	 the	majority	 of	 surveyed	 areas	 (expect	 for	
DUCKE,	PBDFF,	PNJU,	and	ZF2;	Table	4).

Model AICc ΔAICc AICcwt K Log likelihood

ψ (GFC30),	p(site	+	effort) 1,767.78 0 0.11 15 −868.62

ψ (GFC30	+	D.ROA	+	D.
LAK	+	DCAD	+	ELE	+	SLO),	
p(site	+	effort)

1,768.09 0.32 0.09 20 −863.57

ψ (GFC30	+	SLO),	
p(site	+	effort)

1,768.18 0.41 0.09 16 −867.78

ψ (GFC30	+	D.
ROA	+	DCAD	+	ELE	+	SLO),	
p(site	+	effort)

1,768.25 0.48 0.08 19 −864.69

ψ (GFC30	+	D.
ROA	+	DCAD	+	SLO),	
p(site	+	effort)

1,768.52 0.75 0.07 18 −865.87

ψ (GFC30	+	D.RIV	+	SLO),	
p(site	+	effort)

1,768.8 1.02 0.06 17 −867.05

ψ (GFC30	+	DCAD),	
p(site	+	effort)

1,768.85 1.08 0.06 16 −868.12

ψ (GFC30	+	DCAD	+	SLO),	
p(site	+	effort)

1,768.91 1.13 0.06 17 −867.11

ψ (GFC30	+	D.RIV	+	D.
ROA	+	DCAD	+	SLO),	
p(site+effort)

1,769.04 1.26 0.06 19 −865.09

ψ (GFC30	+	D.RIV	+	DCAD),	
p(site	+	effort)

1,769.23 1.45 0.05 17 −867.27

ψ (GFC30	+	D.RIV	+	D.LAK),	
p(site	+	effort)

1,769.32 1.54 0.05 17 −867.31

ψ (GFC30	+	D.
RIV	+	DCAD	+	SLO),	
p(site	+	effort)

1,769.34 1.56 0.05 18 −866.28

ψ (GFC30	+	D.LAK),	
p(site	+	effort)

1,769.55 1.77 0.04 16 −868.47

ψ (GFC30	+	D.SET),	
p(site	+	effort)

1,769.66 1.88 0.04 16 −868.52

ψ (GFC30	+	D.RIV	+	D.
ROA	+	D.
LAK	+	DCAD	+	ELE	+	SLO),	
p(site	+	effort)

1,769.71 1.94 0.04 21 −863.33

ψ (GFC30	+	D.ROA	+	SLO),	
p(site	+	effort)

1,769.74 1.96 0.04 17 −867.52

Notes.	AICc	Akaike's	information	criterion	corrected	for	finite	sample	sizes.	ΔAICc	relative	difference	
in	AICc	values	compared	with	the	top	ranked	model,	AICcwt	weight,	K	number	of	parameters.	Site	
covariates	 tested	 were:	 elevation	 (ELE),	 slope	 (SLO),	 distance	 to	 river	 (D.RIV),	 distance	 to	 lakes	
(D.LAK),	 distance	 to	 roads	 (D.ROA),	 distance	 to	 settlements	 (D.SET),	Global	 Forest	Change	with	
threshold	values	30	 (GFC30)	and	disjunct	core	area	density	 (DCAD).	Detection	covariates	 tested	
were:	effort	and	site.

TA B L E  2  Multivariate	model	selection	
results	of	ocelot	with	AICc < 2
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4  | DISCUSSION

We	found	that	habitat	use	by	ocelots	is	positively	associated	with	
forest	cover,	disjunct	core	area	density,	distance	to	roads/settle‐
ments,	elevation,	and	negatively	related	to	slope,	distance	to	riv‐
ers/lakes.	Nevertheless,	ocelots	also	emerge	as	rather	adaptable	
and	their	habitat	use	is	not	much	influenced	by	other	environmen‐
tal	variables.	This	suggests,	as	we	would	have	predicted	from	their	
size	and	anatomy,	 that	 they	are	adaptable	predators	 to	a	certain	
extent	 and	 are	 able	 to	 thrive	 wherever	 there	 are	 forests	 popu‐
lated	with	suitable	prey—a	characterization	that	informs	thinking	
about	 both	 their	 role	 as	 Neotropical	 carnivore	 guilds	 and	 their	
conservation.

Our	results	implied	that	the	probability	of	habitat	use	by	ocelots	
is	various	in	different	surveyed	areas.	The	attribute	of	surveyed	area	
might	be	one	of	the	reasons	to	explain	the	variation	of	probability	
of	habitat	use	in	different	study	sites.	The	estimated	probability	of	
habitat	use	by	ocelots	in	SBR	was	low	because	it	was	a	private	area,	
while	other	areas	were	protected	area.	This	meant	that	the	ocelot	
status	is	better	in	protected	area	than	in	private	area.	Another	rea‐
son	might	be	the	human	disturbance	at	a	few	of	the	protected	areas.	
DUCKE,	PBDFF,	 and	ZF2	protected	areas	are	 fringed	by	city	 sub‐
urbs	due	 to	 rapid	urban	expansion	 (Gonçalves,	2013).	Our	habitat	
use	analysis	revealed	that	the	Global	Forest	Change	threshold	30%	
(GFC30)	had	an	important	influence	on	ocelot	occurrence:	increased	
forest	cover	was	associated	with	increased	estimated	probability	of	
habitat	use	(sigmoidal	relationship).	This	accords	with	findings	from	
Peru	and	Texas,	where	ocelots	preferred	dense	and	closed	canopy	
forest	(Emmons,	1988;	Haines,	Grassman,	Tewes,	&	Janečka,	2006).	
This	was	not	unexpected	insofar	as	greater	forest	cover	was	proba‐
bly	associated	with	higher	prey	availability	(Droz	&	Pȩkalski,	2001,	
but	see	Hearn	et	al.,	2017).	Additionally,	it	has	been	suggested	that	
the	strong	preference	of	ocelots	for	dense	cover	might	also	be	re‐
lated	to	the	avoidance	of	potential	competitors	such	as	the	bobcat	
(Lynx rufus)	in	South	Texas	(de	Oliveira	et	al.,	2010).	It	remains	pos‐
sible,	however,	 that	a	positive	 relationship	between	ocelot	habitat	
use	and	GFC30	arises	because	ocelots	use	less	forested	areas	with	
lower	probability.	Although	no	 longer	statistically	significant	when	
spatial	 autocorrelation	was	 taken	 into	 account,	 slope	 and	 disjunct	
core	areas	density	(DCAD)	were	also	influential	covariates	for	oce‐
lot	habitat	use.	There	are	previous	hints	that	the	ocelot	might	avoid	
steeper	 slopes	 due	 to	 lower	 availability	 of	 prey	 there	 (de	Oliveira	
et	al.,	2010).	The	positive	 relationship	between	DCAD	and	habitat	
use	 suggests	 that	 forest	 fragmentation	 process	 in	 some	degree	 is	
favorable	 for	 ocelots	 concerning	 higher	 density	 of	 disconnected	
patches	of	suitable	interior	forest	habitat,	which	supported	by	previ‐
ous	study	about	clouded	leopard	(Neofelis nebulosi;	Tan	et	al.,	2017).

All	 other	 covariates	 (importance	 <0.5)	 were	 not	 included	 in	
subsequent	spatial	autocorrelation	analysis;	however,	they	cannot	
ignore	the	influence	on	habitat	use	by	ocelot.	Our	findings	suggest	
that	distance	to	road	(D.ROA)	emerged	as	important.	Ocelots	have	
been	recorded	killed	on	roads	in	the	Tariquía−Baritú	corridor	be‐
tween	Bolivia	and	Argentina	(Cuyckens,	Falke,	&	Petracca,	2014).	
Similarly,	 we	 found	 that	 distance	 to	 settlements	 had	 a	 negative	
effect,	 although	 this	was	weak	 (importance	=	0.30).	 Distance	 to	
roads	 and	 settlements	may	be	 to	 do	with	 persecution	 by/avoid‐
ance	of	humans	or	indirect	anthropogenic	impacts	like	overhunting	
of	prey.	Temporal	avoidance	of	ocelot	in	the	presence	of	humans	
(Massara,	 de	 Oliveira	 Paschoal	 et	al.,	 2018;	 Massara,	 Paschoal	
et	al.,	 2018;	 Pardo	 Vargas,	 Cove,	 Spinola,	 de	 la	 Cruz,	 &	 Saenz,	
2016)	and	other	competitor,	puma	(Massara,	de	Oliveira	Paschoal	
et	al.,	 2018;	Massara,	 Paschoal	 et	al.,	 2018)	 has	 been	 observed,	
which	also	suggests	that	ocelots	might	avoid	human	activities	or	
other	 larger	 species.	As	 predicted,	 elevation	was	 also	 influential	
covariate	 for	 ocelot	 habitat	 use.	 Previous	 studies	 indicated	 that	
the	probability	of	habitat	use	by	ocelots	decreased	with	elevation	

TA B L E  3  Summed	model	weights	for	covariates	used	to	model	
the	probabilities	of	occupancy	and	detection	of	ocelots

Covariate

Summed 
model 
weights

β‐parameters

Estimate SE z

Ocelot	occupancy	(ψ)

GFC30 1.00 1.303 0.441 2.9566

SLO 0.58 −0.839 0.366 −2.2934

DCAD 0.51 0.542 0.332 1.6304

D.ROA 0.46 −2.426 0.921 −2.6355

D.RIV 0.42 −0.169 0.247 −0.6838

D.LAK 0.38 −0.959 0.624 −1.5372

ELE 0.37 −1.161 0.638 −1.8177

D.SET 0.30 0.013 0.416 0.0312

Ocelot	detection	(p)

Effort 1.00 0.175 0.0289 6.050

PNCA 1.00 −4.563 0.3909 −11.671

PNM 1.00 1.620 0.2880 5.623

TMES 1.00 1.482 0.2924 5.067

RDSA 0.96 1.205 0.3027 3.982

Uatuma 0.90 −1.303 0.5024 −2.594

BRA319 0.89 −1.973 0.4003 −4.929

DUCKE 0.83 −1.143 0.5523 −2.070

PNJU 0.80 1.254 0.4668 2.687

REMJ	&	RSUA 0.74 1.032 0.3444 2.997

PBDFF 0.64 0.822 0.4718 1.743

SBR 0.46 −0.229 0.6086 −0.377

ZF2 0.36 0.252 0.4306 0.586

Notes.	 AICc	 Akaike's	 information	 criterion	 corrected	 for	 finite	 sample	
sizes.	ΔAICc	 relative	 difference	 in	AICc	 values	 compared	with	 the	 top	
ranked	model,	AICcwt	weight,	K	number	of	parameters.	Site	covariates	
tested	were:	elevation	(ELE),	slope	(SLO),	distance	to	rivers	(D.RIV),	dis‐
tance	 to	 lakes	 (D.LAK),	 distance	 to	 roads	 (D.ROA),	 distance	 to	 settle‐
ments	(D.SET),	Global	Forest	Change	with	threshold	values	30	(GFC30)	
and	disjunct	core	area	density	(DCAD).	Detection	covariates	tested	were	
as	follows:	effort	and	site.	Estimates	and	standard	error	(SE)	of	untrans‐
formed	covariate	effects	(β	parameters)	are	given	for	the	most	parsimo‐
nious	model	that	included	the	covariate.
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(Ahumada,	Hurtado,	&	Lizcano,	2013;	Di	Bitetti,	Albanesi,	Foguet,	
De	Angelo,	&	Brown,	2013).	Perhaps	this	is	because	lowland	for‐
ests	have	higher	net	primary	productivity	(Robertson	et	al.,	2010),	
which	may	 increase	 resources	 (Peres,	 1994)	 to	 sustain	 a	 greater	
abundance	of	ocelot	prey.	These	prey	may,	in	a	seasonal	way,	use	
lowland	 forests	 to	 take	 advantage	 of	 the	 abundant	 trophic	 re‐
source	 in	 this	 forest	 type	 following	 the	 receding	 waters	 (Costa	
et	al.,	 2018).	 However,	 it	 is	 important	 to	 note	 that	 variability	 in	
elevation	 throughout	 central	 and	 southern	 Brazilian	 Amazon	
extends	 over	 a	 limited	 range	 (22.56–241.34	m	 a.s.l.,	 average	
96.92	m),	which	might	be	one	reason	why	the	effect	of	elevation	
was	 weak	 (importance	=	0.37).	 Distance	 to	 river/lakes	 was	 also	
omitted	from	our	final	model,	but	a	previous	study	revealed	that	
ocelots	tend	to	aggregate	near	major	rivers	(Emmons,	1987).	In	our	
classification,	water	bodies	included	only	major	rivers	and	lakes	so	
further	analysis	might	need	to	focus	on	smaller	streams	and	rivers	
deeper	within	protected	area,	because	in	the	case	of	many	areas	
in	 the	Amazon	 that	 have	 great	 extensions	 of	 nonfloodable	 terra 
firme	 (dry	 land/solid	 ground),	 density	of	 small	 streams	may	have	

influence.	In	addition,	 in	our	case,	the	camera	trap	stations	were	
mainly	concentrated	at	close	proximity	to	rivers	so	further	analysis	
should	investigate	whether	the	effect	of	river	on	ocelot	occupancy	
still	exist	when	considering	further	distances	from	rivers.

The	presence	of	sympatric	species	can	influence	ocelot's	habi‐
tat	use	in	Atlantic	Forest	remnants:	The	presence	of	a	top	predator	
(jaguars,	P. onca,	and	pumas,	P. concolor)	was	positively	associated	
with	ocelot	habitat	use	(Massara,	de	Oliveira	Paschoal	et	al.,	2018;	
Massara,	 Paschoal	 et	al.,	 2018,	 Supporting	 Information	 Table	 S1).	
There	was	 also	 a	weaker	negative	 relationship	 reported	between	
numbers	 of	 domestic	 dogs	 (Canis familiaris)	 detected	 and	 ocelot	
occupancy	 (Massara,	 de	 Oliveira	 Paschoal	 et	al.,	 2018;	 Massara,	
Paschoal	 et	al.,	 2018,	 Supporting	 Information	 Table	 S1).	 This	 fac‐
tor	and	the	availability	of	prey	or	presence	of	apex	predators	were	
not	 included	 in	 our	 analysis.	 The	 prey	 of	 ocelots	 is	 mainly	 com‐
prised	of	small	and	medium‐sized	mammals	such	as	the	three‐toed	
sloth	 (Bradypus variegatus)	 and	 nine‐banded	 long‐nosed	 armadillo	
(Dasypus novemcinctus)	 but	 also	 includes	 birds,	 fish,	 and	 snakes	
(Emmons,	1987;	Wang,	2002).	The	presence–absence	of	prey	might	

F I G U R E  2  Map	with	the	camera	trap	surveyed	areas	used	to	model	ocelot	habitat	use	in	Central	Amazon,	Brazil.	Protected	areas:	Amanã 
Sustainable Development Reserve	(RDSA);	Médio Juruá Extractive Reserve	and	Uacarí Sustainable Development Reserve	(REMJ	&	RSUA);	Campos 
Amazônicos National Park	(PNCA);	Mapinguari National Park	(PNM);	Adolpho Ducke Forest Reserve	(DUCKE);	Cabo Frio and Km 37 experimental 
forest reserves	(PBDFF);	Cuieiras Forest Reserve and Tropical Forestry Experimental Station	(ZF2);	The Juruena National Park	(PNJU);	Terra do 
Meio Ecological Station	(TMES);	São Benedito River	(SBR);	Uatumã	(Uatuma);	Nasentes do Lago Jari National Park and IGAP‐AU Sustainable 
Development	(BRA319).	Projection:	WGS84,	Datum:	WGS	1984	(EPSG4326)
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F I G U R E  3  Relationship	between	ocelot	estimated	habitat	use	probability	and	occupancy	covariates	with	summed	model	weights	>0.3.	
(a)	Global	Forest	Change	Threshold	30%;	(b)	elevation;	(c)	slope;	(d)	disjunct	core	area	density;	(e)	distance	to	river;	(f)	distance	to	roads;	(g)	
distance	to	settlements;	(h)	distance	to	lakes
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be	 a	 key	 and	 more	 immediate	 factor	 than	 forest	 cover	 or	 water	
availability	in	explaining	ocelot	habitat	use	pattern.	There	are	some	
studies	focused	on	the	sympatric	species	or	prey	of	ocelot	(Massara,	
de	 Oliveira	 Paschoal	 et	al.,	 2018;	 Massara	 et	al.,	 2016;	 Massara,	
Paschoal	 et	al.,	 2018;	 Pratas‐Santiago	 et	al.,	 2016;	 Supporting	
Information	 Table	 S1),	 in	 the	 future	 they	 could	 be	 studied	 using	
multispecies	 occupancy	models	 (Rota	 et	al.,	 2016)	 and	 piecewise	
structural	equation	modeling	(SEM;	Geary,	Ritchie,	Lawton,	Healey,	
&	Nimmo,	2018;	Grace	et	al.,	2012).

Our	results	prompt	comparisons	with	other	similar	mesopred‐
ators,	 such	as	 the	clouded	 leopard,	which	would	appear	 to	be	an	
ecological	 analog	 of	 the	 ocelot.	 They	 have	 some	 commonalities,	
such	as	similar	size	(11–23	kg	for	clouded	leopard),	activity	pattern	
(Di	Bitetti	et	al.,	2006;	Grassman,	Tewes,	Silvy,	&	Kreetiyutanont,	
2005),	 and	 similar	 functional	 role	 in	 the	 ecosystem.	 A	 study	 in	
Peninsular	Malaysia	indicated	that	clouded	leopard	habitat	use	in‐
creased	with	 increasing	 distance	 to	 rivers	 or	 streams	 and	 higher	
elevation.	 Our	 findings	 for	 ocelot	mirrored	 this	 elevation	 effect,	
but	not	the	effect	of	distance	to	rivers.	Furthermore,	DCAD	was	a	
strong	contributory	factor	for	ocelots,	and	similarly	it	was	a	posi‐
tive	influence	on	habitat	use	of	the	Malaysian	clouded	leopard	(Tan	
et	al.,	2017).	Tan	et	al.	(2017)	also	found	that	habitat	use	by	clouded	
leopards	was	positively	associated	with	forest	cover,	mirroring	our	
results	 for	 ocelots.	 Findings	 like	 these	 start	 to	 resolve	 the	 niche	
differentiation	 of	 these	 seemingly	 similar	 felids	 which	 co‐occur	
and	share	an	evolutionary	history.	Nevertheless,	in	general,	forest	
cover,	 topographical	 factor	 (elevation	or	slope),	distance	to	water	
(river	or	lakes),	and	distance	to	roads	and	settlements	all	emerge	as	
important	to	these	medium‐sized	felids.

Unsurprisingly,	the	results	indicate	that	detection	probability	was	
positively	correlated	with	camera	trapping	efforts	and	was	not	con‐
stant	across	all	 survey	areas.	This	was	 to	be	expected	because	 the	
longer	a	camera	trap	survey,	the	higher	the	probability	of	detecting	
a	species.	In	fact,	the	increase	in	the	sample	efforts	to	obtain	more	
robust	data	should	be	encouraged,	 leaving	cameras	for	at	 least	90–
120	days	in	the	field	and	having	several	years	of	sampling.	Meanwhile,	
there	are	other	factors	that	might	lead	to	different	detection	proba‐
bilities,	such	as	seasonality	(period	of	the	year	that	the	surveys	were	
carried	out:	e.g.,	dry	or	rainy	season)	and	the	number	of	camera	traps	
at	a	station	(paired	or	single	cameras).	The	two	sites	(REMJ	&	RSUA	
and	RDSA)	with	different	detection	probabilities	that	are	situated	in	
the	far	west	of	Brazilian	Amazonia	illustrate	strong	influences	of	rivers	
and	seasonal	flooding	(see	also	Costa	et	al.,	2018).	Previous	reports	
revealed	that	position	of	camera	trap	stations	(on	trails	or	not)	might	
also	affect	 the	detection	probability:	The	detection	probability	was	
higher	 for	 camera	 trap	 stations	 located	 on	 roads	 than	 on	 trails	 (Di	
Bitetti	et	al.,	2006).	Additionally,	variation	in	ocelot	density	at	differ‐
ent	surveyed	areas	will	also	affect	detectability,	with	a	higher	ocelot	
density	 associated	 with	 higher	 detectability	 (Massara,	 De	 Oliveira	
Paschoal,	Doherty,	Hirsch,	&	Chiarello,	2015).	Many	sources	of	evi‐
dence	point	to	a	gradient	 in	productivity	and	biomass,	being	higher	
in	the	western/south	western	Amazon	and	lower	 in	the	central	and	
eastern	parts	of	 the	basin	 (Houghton,	Lawrence,	Hackler,	&	Brown,	
2001).	This	gradient	could	 influence	density	and	abundance,	 there‐
fore,	 detection	 probability.	 In	 our	 study,	 we	 accounted	 for	 spatial	
autocorrelation	(Johnson	et	al.,	2013)	to	obtain	a	more	accurate	es‐
timate	for	ocelot	habitat	use.	This	correction	is	biologically	important	
(Poley	et	al.,	2014)	but	often	neglected	(Hodges	&	Reich,	2010).

RSR models Nonspatial models

Occupancy (%)Occupancy (%) SE Occupancy (%) SE

BRA319 77.71 0.4021 77.88 0.4021 4.59

PNCA 62.79 0.3043 62.97 0.3043 24.42

PNM 59.99 0.2060 60.42 0.2060 41.38

RDSA 79.59 0.2498 79.77 0.2498 48.44

REMJ&RUSA 76.61 0.3481 77.82 0.3481 22.12

DUCKE 63.82 0.4262 62.98 0.4262 13.33

PBDFF 63.96 0.3645 63.37 0.3645 26.67

ZF2 68.42 0.3633 67.80 0.3633 26.67

TMES 77.67 0.1848 77.94 0.1848 62.30

PNJU 68.39 0.2263 68.25 0.2263 50.00

Uatuma 67.96 0.4266 70.19 0.4266 4.21

SBR 69.43 0.3820 70.10 0.3820 17.39

Notes.	Detection	covariates	were	different	surveyed	area	(site),	and	number	of	days	a	camera	trap	
station	was	active	 for	during	each	sampling	occasion	 (effort).	Occupancy	covariates	were	Global	
Forest	 Change	 Threshold	 30%	 (GFC30),	 disjunct	 core	 area	 density	 (DCAD),	 and	 slope	 (SLO).	
Restricted	 spatial	 regression	 (RSR)	models	 incorporated	 spatial	 autocorrelation,	while	 nonspatial	
models	did	not.	Naïve	occupancy	estimate	represented	the	estimate	of	occupancy	obtained	without	
incorporating	variations	in	detection	probability,	occupancy	covariates,	or	spatial	autocorrelation.

TA B L E  4  Average	probability	of	
occupancy	and	standard	error	(SE)	from	
spatial	and	nonspatial	occupancy	models,	
based	on	the	model	p(site	+	effort),	
ψ(GFC30	+	DCAD	+	SLO)
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However,	a	limitation	of	our	study	is	that	all	our	surveys	were	con‐
ducted	 in	prime	habitat	 (except	SBR	and	part	of	BRA319).	Within	 the	
range	of	variation	we	studied,	ocelots	were	ubiquitous.	A	further	limita‐
tion	is	that	we	did	not	consider	prey	and	sympatric	predators.	Our	findings	
that	ocelots	were	ubiquitous,	and	seemingly	abundant	in	protected	areas,	
do	not	justify	complacency	regarding	their	conservation:	Deforestation	is	
destroying	their	habitat.	Ocelots	are	strong	candidates	for	conservation	
ambassador	species	(Macdonald	et	al.,	2017),	so	their	conservation	tran‐
scends	benefits	to	their	own	populations,	but	extends	to	the	species	with	
which	they	are	sympatric,	and	the	habitats	they	occupy.
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