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Abstract

A striking example of coupling between growth and form occurs during the
segmentation of the vertebrate embryo. During segmentation, pairs of segments,
one on either side of the anterior-posterior axis, bud off from the presomitic meso-
derm (PSM) at regular intervals in time. In the clock and wavefront model, a
multicellular oscillator regulates the time at which the next pair of segments form
whilst a wavefront regulates their spatial location. In most mathematical models
of segmentation, it is assumed that cells in the PSM are oscillators with a constant
characteristic frequency. Based on recent experimental findings, here we propose
a model in which the natural oscillation frequency of each PSM cell is a function
of its position in the cell cycle. Given adequate oscillator coupling and that cells
in the PSM are randomly distributed in the cell cycle, we find that the emergent
oscillator period is a weighted average of the constituent oscillator frequencies with
the weightings dependent on the fraction of cells in a given cell cycle state. Here,
we show that such a model can allow for coupling between pattern formation and
growth rate in PSM tissue.

1 Introduction

The development of an embryo is a remarkably reproducible and robust process.
Whilst our knowledge of the molecular pathways underpinning development has
increased dramatically, many principles underpinning how growth of the embryo
is coupled to form remain undiscovered.

A particularly striking example of pattern robustness arises during somito-
genesis of the vertebrate embryo. Here, the trunk of the embryo segments at
species-specific, regular intervals in time in a highly reproducible manner (Gibb
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et al., 2010; Pourquié, 2018). Within each individual embryo, there is a remark-
ably stereotyped pattern of segments. Moreover, scaling phenomena, whereby the
somite size varies as a function of PSM size, have been observed in multiple species
(Cooke, 1975; Lauschke et al., 2013; Ishimatsu et al., 2018).

Whilst the formation of each pair of segments is preceded by a wave of an-
teriorly travelling oscillatory gene expression, it is not fully understood precisely
how the dynamic patterns of clock gene expression affect segment size. In the
clock and wave front model of somite formation (Cooke and Zeeman, 1976), an
oscillator that resides in the PSM regulates the time at which the next segment
boundary forms whilst a wavefront that sits in the posteriorly moving tail specifies
the position of the next segment boundary. Owing to the discovery of a molecular
oscillator, known as the segmentation clock, and gradients in multiple vertebrate
species, the clock and wavefront model has gained significant traction.

The segmentation clock is comprised of a population of coupled genetic oscilla-
tors (Delaune et al., 2012; Lauschke et al., 2013; Masamizu et al., 2006; Soroldoni
et al., 2014) that depend on numerous molecular pathways (e.g. Fgf, Wnt, Notch
(Dequéant et al., 2006; Krol et al., 2011; Hubaud and Pourquié, 2014)). Notch
signalling plays a fundamental role in the emergence of synchronous, tissue scale
oscillations (Jiang et al., 2000; Ferjentsik et al., 2009; Okubo et al., 2012). In
canonical Notch signalling, a Delta ligand in one cell binds to a Notch receptor
in another, eventually resulting in the release of the Notch Intracellular Domain
(NICD) (Hori et al., 2013; D’Souza et al., 2010). NICD translocates to the nu-
cleus and forms a transcription complex that activates the transcription of Hes/Her
genes, which are key negative regulators of the somitogenesis clock.

Recent in vivo work in both mouse and chick PSM tissue has shown that
embryo treatment with a particular class of pharmacological perturbations results
in an increased NICD half-life, higher levels of NICD, a longer clock period and
larger segments (Wiedermann et al., 2015). In a follow-up study in in vitro cell
lines, it has been shown that the cyclin dependent kinases CDK1 and CDK2 are
molecular targets of the aforementioned pharmacological perturbations and that
CDK1 and CDK2-mediated phosphorylation of NICD results in an increased rate
of degradation (Carrieri et al., 2019). Moreover, the study showed that levels
of NICD in in witro cell lines fluctuate in a cell cycle dependent manner with
lower levels seen in cell cycle phases in which CDK1 or CDK2 activity are high.
Inhibiting CDK activity in mouse PSM tissue resulted in a similar phenotype to
that observed by Wiedermann et al. (2015), i.e. higher levels of NICD and a
longer clock period. A consistent interpretation of these data is that as CDK
activity levels in PSM cells vary through the cell cycle, so the phosphorylation
status of NICD and hence its degradation rate also varies. As we have found that
higher levels of NICD are correlated with a longer clock period, we proposed the
hypothesis that the natural oscillation frequency of an individual cell is modulated
by position in the cell cycle (Carrieri et al., 2019).

Notably, the cell cycle has previously been shown to affect segmentation of the
vertebrate embryo. Prior to the discovery of molecular clock and wavefronts in
the PSM, Stern and colleagues (Primmett et al., 1988, 1989) performed a series
of experiments in the chick embryo in which heat shock and a variety of chemical
perturbations to the cell cycle exhibited a phenotype in which somite aberrations



were observed at intervals of approximately six somites. As the time taken to
generate six somites in the chick embryo is approximately equal to the cell cycle
duration, the authors proposed a cell cycle model of somitogenesis in which cells
that entered the PSM together differentiated together. Subsequently, this model
was formulated using a system of partial differential equations (Collier et al., 2000).
Further evidence for cell cycle coupling to the somitogenesis clock has been found
in the zebrafish where during M phase of the cell cycle it has been shown that a
cell’s segmentation clock oscillator pauses, resulting in its oscillator phase lagging
that of the tissue upon reentry into the cell cycle (Horikawa et al., 2006). Whilst
coupling from the segmentation clock to the cell cycle has been less well studied,
in the zebrafish embryo it has been observed that mitosis preferentially occurs in
the off phase of the segmentation clock cycle (Delaune et al., 2012).

In this study, we explore a computational model of the PSM in which there is
a heterogeneous distribution of cell cycle dependent oscillation frequencies. The
model is used to demonstrate in silico the hypothesis that cell cycle coupling to the
segmentation clock can buffer pattern wavelength from the effect of global pertur-
bations to the PSM growth rate. The layout is as follows: in Section 2 we present a
computational model of cell cycle-coupled oscillations in the PSM; in Section 3 we
introduce a minimal model of coupled, cell cycle-dependent oscillators and show
that the emergent oscillator period can be tuned by the cell cycle distribution.
We then consider the behaviour of constant and cell cycle dependent-frequency
models of PSM oscillations in the context of a clock and wavefront model and test
the hypothesis that cell cycle-coupled PSM oscillations can be robust to variation
in embryo growth rate. Finally, in Section 4 we conclude with a discussion.

2 Methods

Model Development

To describe the progression of individual cells through the somitogenesis clock
cycle, we consider a phase coupled oscillator model given by
DBi (i) + A sin(; — 0), i=1,.,N (1)
dt — W 7 - 7 1) — Ly )

where 6;(t) represents the phase of the ith cell at time ¢, w; represents the natural
frequency of the it" cell at time ¢, C;(t) represents the position of the it cell
in the cell cycle at time ¢, the sum is taken over nearest neighbours and A is a
coupling strength. Nearest neighbours are defined using a cut-off rule: cells that
are positioned within a distance § of the i*? cell are defined to be its neighbours.

The variable C;(t), a measure of cell cycle progression, tracks the time that
has elapsed since the last cell division. Hence

ac;
dt

L,
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Figure 1: A schematic illustration of a model for cell cycle modulated oscillator fre-
quency. Oscillator frequency (solid red line) and cell target size (dashed blue line) are
plotted against cell cycle phase. Vertical lines delineate cell cycle phases.

with cell cycle phase, P;, defined as follows:

Go C; € [0,Tg,],
Gl Cz € [TGoyTGo + TG1]7

P, = S Ci€Tg, + Ty, T, + T, + Tsl, (2)
Gy C; € [TGO +Tq, +Ts,Tg, +Tg, +Ts + T,

M CZ'E [TG0+TG1+TS+TG27TG0+TG1+TS+TG2+TM]7

where T, Tc,, Ts, T, and Ths represent the durations of Gy, G1, Ts, G2 and
M (see Table 1 for parameter values).

In this study, following experimental work by Wiedermann et al. (2015) and
Carrieri et al. (2019), it is assumed that the cell cycle modulates a cell’s natural
oscillator frequency (see Figure 1). Although Carrieri et al. (2019) have identified
that both CDK2 and CDK1 can modify NICD stability at the G; — S and Go — M
transitions, respectively, here, for the sake of model simplicity, we assume an effect
only at the G; — S transition. The key model assumption is that a cell’s natural
oscillator frequency, wg, increases by a factor r at the G; — S transition, i.e.

wer={ = e .

wo otherwise,

where T7 and T5 define the interval during which the oscillation rate is increased.

Note that in Section 3 the consequences of cell cycle coupling to the somitoge-
nesis oscillator will be explored. The null (constant oscillator frequency) model,
where there is no coupling to the cell cycle, is captured by setting » = 1 as the
oscillator frequency is wg throughout the cell cycle. For cell cycle dependence,
r> 1.

Assuming that cell growth occurs during GG; phase of the cell cycle, here we
suppose that the cell radius increases linearly in time throughout G; of the cell



cycle so that the cell area approximately doubles, i.e.
Gy a,
G a1+ (V2- D)D),
1
a(Ci) =4 § a2, (4)
G2 d\/éy
M a,

where @ is the cell radius after division. When the cell cycle of the i** reaches the
end of the cell cycle, C; is reset such that C; = 0, the cell divides, randomly samples
G1 and Go durations and places a daughter cell adjacent to it in a randomly chosen
direction.

To describe cell mechanics in the PSM, we let r;(t) represent the spatial position
of the " cell in a model of the PSM defined in two spatial dimensions. It is
assumed that motion is over-damped and that cells interact via an intercellular
force law, F, i.e.

=Y Flri-y) 6)

where the sum is taken over nearest neighbours. Defining the equilibrium separa-
tion distance between the it and j¥* cells, i.e. an effective resting spring length,
to be

aij = a(Ci) + a(Cj),
the overlap is defined to be
Tij = ’I‘Z’ — I‘j‘ — aij.

For overlapping cells (i.e. r;; < 0), the elastic force between two cells is given by

ri; \ (r; —r;)
F:kai-ln<1+—]> L (6)
’ aij ) |(ri — 1)

where k is a spring constant (Fletcher, 2010).

A minimal clock and wavefront model

To consider the effect of cell cycle -coupled PSM oscillators on pattern formation in
the PSM, we consider a cell-based model in which cells are confined to reside in a
semi-infinite domain of width L,. Each cell in the PSM can grow, progress through
the cell cycle and divide. Additionally, each cell in the PSM has a somitogenesis
clock that is coupled to its nearest neighbours. Lp(t) is defined to be the position
of the posterior boundary of the PSM and it is assumed that oscillations occur
only in the region y € [L,(t) — L, Ly(t)], where the constant L, is defined to
be the length of the oscillatory region of the PSM. When the i*" cell crosses the
boundary y = L,(t) — L, (see Figure 2) at some time ¢}, it stops oscillating and
its phase is fixed in time, i.e.
Hz(t) = Qi(tik), t> t;-k.

)



Anterior Posterior
y = Lp(ty)-L y = Lo(t;)
Non-Oscillating region, Oscillating region P

Figure 2: A schematic illustration of the model of the PSM at times t = ¢; (left) and
t =ty (right, to > t1). The oscillating region is defined such that y € [L,(t) — L, L, ()]
where L,(t) denotes the posterior boundary of the PSM at time ¢ (black dot), L,(t) — L,
denotes the anterior boundary of the PSM (red line) and L, is the length of the oscillating
region. Dashed lines denote hard boundaries.

The above conditions yields an integral form of the clock and wavefront result
S = vT. Suppose the last boundary formed at position S;_; and time ¢;_1. The
position of the next boundary will occur at position

tg
Sp = Sp_1+ / U(t)dt,
th—1
where v(t) represents the velocity of the wavefront and ¢, satisfies
ty
/ w(t)dt =27
th—1

Note that in the case of constant oscillator frequency and wavefront velocity
S =T

Hard wall boundary conditions are given by

dI‘Z’

tin=0
a "

and imposed on the lines z = 0, x = L, and y = 0 (normals are n = [—1,0],
n = [1,0] and n = [0, —1], respectively).

Simulations

Equations (1)- (4) were implemented using the Chaste software environment (Pitt-
Francis et al., 2009). Parameter values are presented in Table 1. The initial



Parameter Value Unit Description Reference

Wo 1.39 h! somitogenesis clock frequency

A 50.0 h~! oscillator coupling strength

r 4.5 Dimensionless somitogenesis clock acceleration factor
T, 0.0 h G duration
T, 3.0+ Ej3 h (G1 duration

Ts 3.0 h S duration
Te, 2.0+ L3 h (G5 duration

Ty 1 h M duration

T T, + 16, —2.0 h Start of clock acceleration

15 Te, +1¢, +1s—1.0 h End of clock acceleration

k 400 h—! spring constant

a 0.375 non dim cell radius after division

t* 65.0 h time at which G is half maximal

C 4.5 h maximal Gg

L, 5.0 c.d. PSM width

L, 35.0 c.d. PSM length

) 1.5 c.d. nearest neighbour cut-off threshold

dt 0.001 h time step

T 4.0 h Gy increase time scale

Table 1: A table with parameter values. E|;; denotes random variable sampled from an

exponential distribution with mean z.



conditions are chosen such that at ¢ = 0 a 5 x 20 honeycomb mesh of cells are
initially uniformly distributed in the cell cycle, i.e.

Ci =Up1,

To avoid artefacts from the initial data, the cell population is simulated in the
interval ¢ € [0,50 | h. At ¢t = 50 h, the somitogenesis clock model is initialised
with spatially homogeneous initial conditions

0; =0, Vi

and the model is simulated in the interval ¢ € [50, 100 |h.

Metrics

Global order of the cell population is computed using

N
. 1 .
p(E)e ) = =3 D), 7)
7=1

where ¢ = v/—1, N is the number of oscillators in the PSM and p(¢) and ¥(t)
represent the order parameter and the average phase at time, ¢, respectively. The
average frequency of the PSM is computed to be

1 . db;
PO=5 2 g
7=1
The pattern wavelength, .S, is computed by plotting sin(f;) against y; for every
cell in the PSM. The peaks of the distribution are identified using the Matlab
command ‘findpeaks’. Suppose consecutive peaks are identified at position y; and
Yr+1. The length of the k™ segment is defined to be

SkW*) = Yr+1 — Yk,

where
Y = Yr + Yk+1

2

3 Results

3.1 Cell cycle coupling can tune the emergent frequency
of PSM oscillators

To investigate the effect of cell cycle coupling on the emergent frequency, equations
(1)-(3) were solved on a fixed regular hexagonal lattice in which cells had a model
for cell cycle dynamics but did not divide (see Supplementary Movie 1). In the case
where 7 > 1 (i.e. cell cycle coupling to the clock frequency), we found that: (i) the
emergent oscillator frequency, €2, was largely independent of the coupling strength
A (see Figure 3 (a)); and (ii) for large enough values of coupling strength, A,
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Figure 3: Emergent oscillator frequency in a cell-cycle modulated natural oscillator
frequency model. (a) The average oscillator frequency, €2, is plotted against oscillator
coupling strength, A. Red line - simulation. Blue line - equation (8). Dotted lines -
minimal (wp) and maximal frequencies (rwp). (b) The order parameter, p, is plotted
against oscillator coupling strength, A (see equation (7)). (c) The average oscillator
frequency, €2, is plotted as a function of «, the fraction of the cell cycle in which cells
oscillate with a higher frequency. Solid blue line - simulation. Dashed red line - equation
(8). Dotted lines - minimal (wp) and maximal frequencies (rwy).

oscillator coupling can synchronise the population (see Figure 3 (b)). Additionally,
the emergent oscillator frequency is a weighted average of the constituent oscillator
frequencies (see Figure 3 (c)).

Assuming that oscillator coupling is strong enough to synchronise the oscilla-
tors in the PSM, we find that the emergent average frequency of the population
can be estimated as a weighted-average of the individual oscillation frequencies,
ie.

Q=wo(1—a+ra), (8)

where

Ty — Ty
o =
Teo

9)

and Tcc =T, +1q, +Ts+Tq,+Th. These results show that a cell cycle-coupled
two-frequency model of the somitogenesis oscillator yields an emergent frequency
that can be tuned by the distribution of cells within the cell cycle.

3.2 Constant growth patterns

To explore whether a population of oscillator frequencies can result in robust
pattern formation in an in silico model of segment patterning, a minimal clock
and wavefront model was constructed (as described in Section 2).
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Figure 4: Constant pattern wavelength in a clock and wavefront model. (a) Phase
dynamics plotted against space and time, ¢, in a representative simulation. (b) The
proportion of cells in different cell cycle phases is plotted against time, t. (c) The
velocity of the posterior tip of the PSM, vp, is plotted against time, t. (d) The emergent
tissue oscillation rate, €2, in the posterior PSM is plotted against time, ¢. (e) The steady
state pattern wavelength, S, is plotted against axial position, y. Equations (1) - (4)
were solve as described in Section 2. r = 1. Other parameter values as in Table 1.

Pattern formation in the null model yields constant pattern wave-
length

To verify that the null model (equations (1) - (4), 7 = 1) introduced in Section 2
yields expected results, in Figure 4 (a) we present phase dynamics from a repre-
sentative simulation (see Supplementary Movie 2). Note that the distribution of
cells in the cell cycle is approximately constant (Figure 4 (b)) and that the PSM
grows at an approximately constant rate (Figure 4 (c¢)). As each cell has a fixed
oscillator frequency, the tissue averaged oscillator frequency is constant (Figure 4
(d)). The proposed clock and wavefront mechanism yields a pattern wavelength
of approximately constant size (Figure 4 (e)).



An emergent oscillator frequency in a two frequency, cell cycle-
coupled model of the posterior PSM

To explore whether the introduction of cell cycle dependence on oscillator fre-
quency yields robust pattern formation in an in silico model of segment pattern-
ing, we adapted the null model so that a PSM cell’s natural oscillator frequency is
a function of the cell cycle (equations (1) - (4), r = 4.5, see Supplementary Movie
3).

We found that, as expected, sufficiently strong oscillator coupling is required for
synchronisation of a system with a heterogeneous distribution of natural oscillator
frequencies (results not shown). In Figure 5 (a) we depict numerical simulations
from the cell cycle-coupled model. As expected, the cell cycle dynamics and pos-
terior tip velocities (Figure 4 (b) and (c), respectively) show similar profiles to
the corresponding plots in Figure 4. However, as a result of cell cycle coupling,
the tissue averaged oscillator frequency, €2(t), varies in time (see Figure 5 (b)-(d)).
The resulting pattern wavelength is approximately constant along the axis (see
Figure 5 (e)). A key feature of the model is that, similar to the results presented
in Figure 3, the emergent oscillation rate, (t), can be approximated as being a
weighted average of the constituent oscillator frequencies. Hence, in the proposed
model, the pattern wavelength can be tuned via modulation of the cell cycle.

3.3 Global growth patterns

To test the hypothesis that cell cycle coupling can couple growth and form in a
clock and wavefront model of pattern formation in the PSM, an increase in cell
cycle duration is imposed via the equation

1 = (1w (£552)), a0

where t* is the time at which T, is half maximal, C' is the maximal increase in
Gy duration and 7 defines the time scale over which Gy increases. Hence, early
in the simulation T, is approximately 0 but it increases to a maximal value C.
Biologically, this could represent a delay in a cell reentering the cell cycle at the
end of M phase.

Variable pattern wavelength upon growth perturbation in a con-
stant frequency model

We first consider the behaviour of the null model (equations (1) - (4), r = 1)
together with the growth condition given by equation (10) (see Supplementary
Movie 4). Figure 6 (a) depicts phase dynamics similar to the constant growth rate
case (see Figure 4) with regular synchronised oscillations in the posterior PSM. As
time evolves, the fraction of cells in Gy increases (Figure 6 (b)) and the posterior
tip velocity, vp(t), decreases (Figure 6 (c)). As the somitogenesis clock frequency
is constant (Figure 6 (d)), the effect of the reduced posterior tip velocity is to
reduce pattern wavelength (Figure 6 (e)). Hence, in the proposed model pattern
wavelength is not robust to slow perturbation to the tissue growth rate.
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Figure 5: Constant pattern wavelength in a cell cycle coupled clock and wavefront model.
(a) Phase dynamics plotted against space, y, and time, t. (b) The proportion of cells in
different cell cycle phases is plotted against time, ¢. (c) The velocity of the posterior tip
of the PSM, vp, is plotted against time, ¢. (d) The average tissue oscillation rate, 2, in
the posterior PSM is plotted against time, ¢. Dotted lines - minimal (wy) and maximal
frequencies (rwp). (e) The steady state pattern wavelength, S, is plotted against axial
position, y. Equations (1) - (4) were solve as described in Section 2. Other parameter
values as in Table 1.
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Figure 6: Decreasing pattern wavelength in a clock and wavefront model with non-
uniform growth. (a) Phase dynamics plotted against space and time. (b) The proportion
of cells in different cell cycle phases is plotted against time, ¢. (c¢) The velocity of the
posterior tip of the PSM, vp, is plotted against time, t. (d) The average tissue oscillation
rate, €2, in the posterior PSM is plotted against time, ¢. (e) The steady state pattern
wavelength, S, is plotted against axial position, y. Equations (1) - (4) and (10) were
solve as described in Section 2. r = 1. Other parameter values as in Table 1.



Cell cycle coupling can compensate for global patterning of tissue
growth

To investigate whether cell cycle coupling to the somitogenesis clock can in princi-
ple make pattern formation robust to the presence of perturbation in the growth
dynamics of the PSM, the cell cycle-coupled oscillator frequency model (equations
(1) - (4), r = 4.5) was simulated in the case of global variation in the tissue growth
rate defined by equation (10) (see Figure 7 (a) for phase dynamics in a represen-
tative simulation and Supplementary Movie 5). As is the case in Figure 6, as a
result of the imposed increase in Gy time given by equation (10), the fraction of
cells in Gy increases in time and the posterior tip velocity, vp(t), decreases (Fig-
ure 7 (b) and (c), respectively). For this model, the effect of cell cycle coupling
to the tissue averaged oscillation frequency is that the decreasing tissue growth
rate is coupled with a decreasing averaged tissue oscillation rate (Figure 7 (d)).
The trend of decreasing pattern wavelength observed in Figure 6 is reduced (see
Figure 7 (e)). These simulation results show that coupling emergent tissue scale
oscillation frequency to the tissue scale growth rate can result in a buffering of the
final pattern to variation in the growth rate. Hence, in the proposed model the
pattern wavelength is coupled to the the tissue growth rate.

4 Conclusions

The coupling of growth and form is a necessity for many patterning processes that
arise during embryo development. During somitogenesis, pairs of segments form
at regular intervals in space and time with a temporal periodicity that is regulated
by a population of coupled oscillators that reside in the PSM.

Recent experimental work has suggested that the cell cycle modulates the nat-
ural oscillation frequency of cells in the PSM (Wiedermann et al., 2015; Carrieri
et al., 2019). To investigate the consequences of this observation in the context
of pattern formation in the PSM, we developed a cell cycle-dependent model of
coupled oscillators in the PSM in which a PSM cell can have one of two natural
frequencies. We show that in the presence of sufficiently strong oscillator coupling,
the oscillators synchronise to an emergent frequency that is a weighted average of
the constituent frequencies. Consequently, the emergent tissue period is a func-
tion of the distribution of cells in the cell cycle. Moreover, this model gives robust
pattern formation when integrated into a cell-based implementation of the clock
and wavefront model in PSM tissue.

To explore a possible role for cell cycle coupling to the segmentation clock,
we consider a perturbation in which the cell cycle is extended by introducing
a quiescent state in which a cell pauses its cell cycle after mitosis, resulting in
a smaller PSM growth rate. The simulations show that the cell cycle coupled
model exhibits a reduced effect on segment size as the emergent oscillator period
increases.

In the clock and wavefront model of somitogenesis, the timing of boundary for-
mation is regulated by a clock that resides in the PSM and the spatial location by a
propagating wavefront. In contrast, motivated by experiments in the chick embryo
show that perturbation of the cell cycle results in periodic defects in segmentation
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Figure 7: Compensated pattern wavelength in a clock and wavefront model with non-
uniform growth and cell cycle coupling to PSM oscillations. (a) Phase dynamics plotted
against space and time, t. (b) The proportion of cells in different cell cycle phases is
plotted against time, ¢. (c) The velocity of the posterior tip of the PSM, vp, is plotted
against time, t. (d) The average tissue oscillation rate, €2, in the posterior PSM is plotted
against time, ¢. Dotted lines - minimal (wp) and maximal frequencies (rwp). (e) The
steady state pattern wavelength, S, is plotted against axial position, y. Equations (1) -
(4) and (10) were solve as described in Section 2. Parameter values as in Table 1.



(Primmett et al., 1988, 1989). Whilst the discovery of the molecular components
of a clock and a wavefront in numerous vertebrate species have led to the clock
and a wavefront model being a widely accepted model of vertebrate segmentation,
the experimental observations that motivated the cell cycle model have not, to the
best of our knowledge, been explained within the context of a clock and wavefront
model. We note that a feature of the proposed model is that perturbations to the
equilibrium cell cycle distribution decay in an oscillatory manner with a period ap-
proximately equal to that of the cell cycle (see peaked profile in Figure 7). Hence
the emergent oscillator period can exhibit oscillations on the time scale of the cell
cycle. Whilst this feature of the model can potentially reconcile the cell cycle and
clock and wavefront models of somitogenesis, further experiments are required in
a system where the cell cycle distribution and somitogenesis clock period can be
measured in tandem.

The major focus of this study is to explore principles of cell cycle coupling to
the somitogenesis clock in individual cells. Whilst we have tried to use parameter
values and dimensions that are broadly consistent with measurements from PSM
tissue, the models are not species specific and we do not expect the results to
quantitatively reproduce experimental observations. To the best of our knowledge,
oscillator coupling strengths have not been directly estimated in PSM tissue; here
we choose the value of the coupling strength to be large enough so as to guarantee
that there is a spatially homogeneous phase distribution in the PSM. Furthermore,
we have chosen the choice of the acceleration factor, r, to be large enough so as
to observe an effect in the simulations. Future experiments are need to measure
these parameters in a specifies-specific manner.

Whilst in this study we have considered the PSM to be a self-maintaining cell
population, in the embryo cell movements resulting from gastrulation can result
in a flux of cells into the the PSM. Whilst the proposed model does not account
for such a flux, it could be tested experimentally in a tail culture system where
PSM tails are cultured in vitro (e.g. Lauschke et al., 2013).

In the zebrafish it has been proposed that delayed coupling mediated by Notch
signalling tunes the collective period of the segmentation clock (e.g. Morelli et al.,
2009). In contrast, in this study we consider a model in which Notch signalling
alters the individual period of single cells in a cell cycle dependent manner. This
assumption is motivated by observations of correlation between NICD stability
and the emergent somitogenesis clock period (Wiedermann et al., 2015) in the
chick embryo. We note that further experiments are needed in order to measure
in single cells whether there is a cell cycle dependent effect on the somitogenesis
clock frequency.

The model explored in this study is minimal in the sense that modification to
the clock frequency has been considered only at the G1-S transition of the cell
cycle. Measurements from HEK293 cell lines (Carrieri et al., 2019) suggest a more
complicated relationship than the one proposed in this study. In future work, we
will seek to precisely measure the correlation between cell cycle state and clock
frequency in PSM cells.

The major focus of this study was to explore the role of cell cycle regulation
on emergent tissue period in the PSM. We note that the imposed model does not
describe oscillatory waves observed in vivo, a phenomenon that has been described



by numerous approaches ((Murray et al., 2011, 2013; Morelli et al., 2009)). The
main idea proposed in this study, that the distribution of cells in the cell cycle
modulates the somitogenesis clock period, could be implemented in more detailed
models of phase dynamics. Furthermore, to maintain as simple a description of
the clock and wavefront mechanism as possible we have defined the wavefront to
be a fixed distance from posterior tip of the PSM.

In a recent striking variant on the clock and wavefront model, known as the
clock and scaled gradient model (Ishimatsu et al., 2018), the size of a forming
segment depends on the PSM length four cycles ago. The model, supported by
experiments in which surgical reduction in the PSM size results in a scaled segment
size but an unchanged clock period, suggests that the clock period does not play
a role in scaling phenomena. These experimental facts can be reconciled with the
proposed two frequency model; as in the two frequency model the clock period is
a function of the distribution of cells within the cell cycle, a surgical experiment
that removes some of the PSM but does not change the distribution of cells within
the cell cycle would not modify the clock period.

The major aim of this work was to explore in silico the behaviour of a two
frequency, cell cycle-coupled model of the somitogenesis clock. The results show
that a potential role, consistent with existing experimental evidence, could be to
couple the rate of tissue growth to pattern wavelength such that slower growing
PSM does not necessarily yield smaller segments. To further refine and validate the
proposed model, a set of experiments is required that precisely measures coupling
between the cell cycle and the somitogenesis clock in both uncoupled PSM cells
and in tissue contexts.
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A Appendix

Supplementary Movie 1

A movie illustrating spatio-temporal dynamics presented in Figure 3. Left - sin(6)
is plotted against x and y. Middle - Natural oscillator frequency is plotted against
x, y and t. Right - Cell cycle phase is plotted against x, y and ¢ (0 - Differentiated
cell, 1- GQ/Gl, 2—S, 3 - Gg, 4—M.)

Supplementary Movie 2

A movie illustrating spatio-temporal dynamics presented in Figure 4. Left - sin(0)
is plotted against x and y. Middle - Natural oscillator frequency is plotted against
x, y and t. Right - Cell cycle phase is plotted against x, y and ¢ (0 - Differentiated
cell, 1- GQ/Gl, Q—S, 3 - GQ, 4—M.)
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Figure 8: The order parameter is plotted against coupling strength and acceleration
factor.

Supplementary Movie 3

A movie illustrating spatio-temporal dynamics presented in Figure 5. Left - sin(6)
is plotted against x and y. Middle - Natural oscillator frequency is plotted against
x, y and t. Right - Cell cycle phase is plotted against x, y and ¢ (0 - Differentiated
cell, 1- Go/Gl, 2—8, 3 - Gg, 4—M.)

Supplementary Movie 4

A movie illustrating spatio-temporal dynamics presented in Figure 6. Left - sin(0)
is plotted against x and y. Middle - Natural oscillator frequency is plotted against
x, y and t. Right - Cell cycle phase is plotted against x, y and ¢ (0 - Differentiated
cell, 1- Go/Gl, 2—S, 3 - GQ, 4—M.)

Supplementary Movie 5

A movie illustrating spatio-temporal dynamics presented in Figure 7. Left - sin(6)
is plotted against x and y. Middle - Natural oscillator frequency is plotted against
x, y and t. Right - Cell cycle phase is plotted against x, y and ¢ (0 - Differentiated
cell, 1- Go/Gl, 2—8, 3 - Gg, 4—M.)

B Phase diagram





