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A POSTERIORI ERROR ESTIMATION AND ADAPTIVE ALGORITHM FOR1

ATOMISTIC/CONTINUUM COUPLING IN 2D˚2

HAO WANG: , MINGJIE LIAO; , PING LIN§ , AND LEI ZHANG¶3

Abstract. Atomistic/continuum coupling methods aim to achieve optimal balance between accuracy and efficiency.4
Adaptivity is the key for the efficient implementation of such methods. In this paper, we carry out a rigorous a posteriori5
analysis of the residual, the stability constant, and the error bound, for a consistent atomistic/continuum coupling method6
in 2D. We design and implement the corresponding adaptive mesh refinement algorithm, and the convergence rate with7
respect to degrees of freedom is optimal compare with a priori error estimates.8

Key words. atomistic models, coarse graining, atomistic-to-continuum coupling, adaptive algorithm, a posteriori9
error estimate10

AMS subject classifications. 65N12, 65N15, 70C20, 82D2511

1. Introduction. Atomistic/continuum (a/c) coupling methods are a class of computational12

multiscale methods that aim to combine the accuracy of the atomistic model and the efficiency of the13

continuum model for crystalline solids with defects [26, 43, 14]. Namely, the atomistic model can be14

applied in a small neighborhood of the localized defects such as vacancies, dislocations, and cracks,15

while the continuum model (e.g., Cauchy-Born rule) can be employed away from the defect cores16

where elastic deformation occurs. The construction and analysis of different a/c coupling methods17

have attracted considerable attention in the research community in recent years [16, 31, 19, 18]. We18

refer the readers to [23, 20] for a review of such methods.19

The goal of the mathematical analysis for a/c coupling methods is to find the optimal relation of ac-20

curacy vs. degrees of freedom. The a priori analysis has been carried out for several typical a/c coupling21

methods, for example the QNL (quasi-nonlocal quasicontinuum) method [24, 34], the BQCE (blended22

energy-based quasi-continuum) method [15], the BQCF (blended force-based quasi-continuum) method23

[18, 15], the GRAC (geometric reconstruction based atomistic/continuum coupling) method [36] and24

the BGFC (atomistic/continuum blending with ghost force correction) method [38].25

In contrast, although adaptivity is the key for the efficient implementation of a/c coupling methods,26

only few research articles are concerned with the a posteriori error control of these methods. The goal-27

oriented approach has been utilised in [40] by Prudhomme et al. to provide a posteriori error control28

for a three dimensional nanoindentation problem with the quantity of interest being the force acting on29

the indenter. The error estimator is a modification of the rigorously derived residual functional, and its30

effectiveness is only validated numerically. Arndt and Luskin [2, 3] analyze the goal-oriented approach31

for a one dimensional Frenkel-Kontorova model, where the a posteriori error estimators are used to32

optimize the choice of the atomistic region as well as the finite element mesh in the continuum region.33

All these work employ the original energy-based quasicontinuum method as the underlying model34

which is later shown to be inconsistent and suffers from the so-called ”ghost force” [43, 7, 17, 24, 22].35
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Recently, Kochmann et al. [47] proposed an adaptivity strategy for the so-call ”fully-nonlocal quasi-36

continuum” method which apply a discrete model in the entire computational domain without coupling37

of different models. This approach aims to minimize the ghost force rather than eliminate it as in the38

consistent a/c coupling method.39

The residual based a posteriori error bounds for a/c coupling schemes are first derived in [32, 27]40

by Ortner et al. in 1D. A recent advance in this direction [35] is the a posteriori error analysis of a41

consistent energy-based coupling method developed in [41, 42], where the a posteriori error estimators42

are proposed both in the energy norm and in energy itself. For complex lattice, a posteriori error43

analysis for the QC method in 1D has been carried out in [1].44

Despite all those developments, the rigorous mathematical justification of a posteriori error esti-45

mates beyond 1D is still missing. In this paper, we present a rigorous a posteriori error estimate for46

a consistent energy-based a/c method in two dimension, which is of physical significance and has not47

been considered so far to the best knowledge of the authors. We use the residual-based approach [48]48

to establish the estimate in negative Sobolev norms following [35]. Two features distinguish our prob-49

lem from the classic residual-based estimate for finite element approximation of the elliptic equations.50

The first one is the existence of the modeling error which is in origin different from the applications51

of quadrature rules. The second one is that the mesh may not be further refined when it almost co-52

incides with the reference lattice, therefore a model adaptation should be imposed. The analysis and53

algorithm rely on the so-called divergence free tensor field, which characterizes the essential difference54

of 2D results compared with 1D results in [27, 35] where the analysis can be carried out by explicit55

calculations.56

Similar to the a priori analysis of GRAC in [36], we constrain ourselves to the case of nearest-57

neighbor interactions. Although the analysis can be extended to finite range interactions and to other58

a/c coupling methods, we decide not to include these so that the main ideas and steps are clearly59

presented without the distraction from the unnecessary complexity of the presentation. Instead, we60

will make further remarks on this point again in § 5.61

The paper is organized as follows. In § 2 we set up the atomistic, continuum and coupling models62

for point defects. In § 3 we present the main results: the residual estimate, stability bound, and63

rigorous a posteriori error estimates for the coupling scheme. We formulate the corresponding adaptive64

algorithm and demonstrate numerical results in § 4. We draw conclusions and make suggestions for65

future research in § 5. Some auxiliary results are given in § Appendix A.66

2. Formulation. We first give a brief review of a model for crystal defects in an infinite lattice67

in the spirit of [11] in § 2.1 and the Cauchy-Born continuum model in § 2.2. We then present a generic68

form of a/c coupling schemes in § 2.3. We will introduce the consistent scheme GRAC specifically in69

§ 2.4.70

2.1. Atomistic model.71

2.1.1. Atomistic lattice and defects. Given d P t2, 3u, A P Rdˆd non-singular, Λhom :“ AZd is72

the homogeneous reference lattice which represents a perfect single lattice crystal formed by identical73

atoms and possessing no defects. Λ Ă Rd is the reference lattice with some local defects. The mismatch74

between Λ and Λhom represents possible defects Λdef , which are contained in some localized defect cores75

Ddef such that the atoms in ΛzDdef do not interact with defects Λdef (see § 2.1.2 and § 2.1.3 regarding76

interaction neighbourhood). For example, Λdef “ txu for a crystal with a single point defect at x, and77

one can choose a proper radius Rdef ą 0 such that Ddef “ Bx,Rdef , where Bx,R :“ tz P Rd | |z´x| ď Ru.78

For different types of point defects, we have79

‚ Λ Ă Λhom for a vacancy at x P Λhom;80

‚ Λ Ą Λhom for an interstitial at x P Λ but x R Λhom;81

‚ Λ “ Λhom for an impurity at x P Λhom, the difference of the impurity atom with other atoms82

can be characterized by the inhomogeneity of interaction potentials (see § 2.1.3).83

This characterization of localized defects can be straightforwardly generalized to multiple point defects84

and micro-cracks, for example, see the setup of the model problem in § 4.2. Straight screw dislocations85

can be enforced through the appropriate choice of boundary conditions [11].86

This manuscript is for review purposes only.
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2.1.2. Lattice function and lattice function space. Given d P t2, 3u, m P t1, 2, 3u, denote87

the set of vector-valued lattice functions by88

U :“ tv : Λ Ñ Rmu.89

A deformed configuration is a lattice function y P U . Let x be the identity map, the displacement90

u P U is defined by up`q “ yp`q ´ xp`q “ yp`q ´ ` for any ` P Λ.91

For each ` P Λ, we prescribe an interaction neighbourhood N` :“ t`1 P Λ | 0 ă |`1 ´ `| ď rcutu with92

some cut-off radius rcut. The interaction range R` :“ t`1´ ` | `1 P N`u is defined as the union of lattice93

vectors defined by the finite difference of lattice points in N` and `.94

To measure the error for lattice functions we need to introduce function norms and function spaces95

on the lattice. Define the “finite difference stencil” Dvp`q :“ tDρvp`quρPR`
:“ tvp` ` ρq ´ vp`quρPR`

.96

Higher-order finite differences, e.g., DρDςv and D2v can be defined in a canonical way. A lattice97

function norm can hence be defined using those notations. For v P U , let the lattice energy-norm (a98

discrete H1-semi-norm) be99

(1) }Dv}`2 :“

ˆ

ÿ

`PΛ

ÿ

ρPR`

|Dρvp`q|
2

˙1{2

.100

The associated lattice function space is defined by101

9U 1,2 :“
 

u : Λ Ñ Rm
ˇ

ˇ }Du}`2 ă `8
(

.102103

We choose104

(2) B :“ tp`, `` ρq : ` P Λ, ρ P R`u105

to be the collection of all the nearest neighbour bonds in the reference lattice, and for b “ p`, ``ρq P B,106

denote ρb “ ρ. Then the energy norm can be reformulated as107

(3) }Dv}`2 :“

ˆ

ÿ

b“p`,``ρqPB

|Dρvp`q|
2

˙1{2

.108

The homogeneous lattice Λhom “ AZd naturally induces a simplicial micro-triangulation T . In109

2D, T a “ tAξ` T̂ ,Aξ´ T̂ |ξ P Z2u, where T̂ “ convt0, e1, e2u. Let ζ̄ PW 1,8pΛhom;Rq be the P1 nodal110

basis function associated with the origin; namely, ζ̄ is piecewise linear with respect to T a, and ζ̄p0q “ 1111

and ζ̄pξq “ 0 for ξ ‰ 0 and ξ P Λhom. The nodal interpolant of v P U can be written as112

v̄pxq :“
ÿ

ξPZd

vpξqζ̄px´ ξq.113

We can introduce the discrete homogeneous Sobolev spaces114

U 1,2 :“ tu P U |∇ū P L2u,115

with semi-norm }∇ū}L2 . It is known from [30] that 9U 1,2 and U 1,2 are equivalent.116

2.1.3. Interaction potential. For each ` P Λ, let V`pyq denote the site energy associated with117

the lattice site ` P Λ, and we assume that V`pyq P C
kppRdqR`q, k ě 2. In this paper, we consider the118

general multibody interaction potential of the generic pair functional form [46]. Namely, the potential119

is a function of the distances between atoms within interaction range and with no angular dependence.120

Accordingly, we have the following equivalent forms of interaction potentials of generic pair functional121

form,122

(4) V`pyq “ pV`ptDρyp`quρPR`
q “ rV`pt|Dρyp`q|uρPR`

q123

This manuscript is for review purposes only.
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Remark 2.1. For convenience, with a slight abuse of notation, we will use V`pDρyq, V`p|Dρy|q124

instead of pV`ptDρyp`quρPR`
q, rV`pt|Dρyp`q|uρPR`

q when there is no confusion in the context.125

We assume that V` is homogeneous outside the defect region Ddef , namely, V` “ V and R` “ R126

for ` P ΛzDdef . V and R have the following point symmetry: R “ ´R, and V pt´g´ρuρPRq “ V pgq.127

Remark 2.2. Notice that both displacement u and deformation y are discrete functions belonging128

to U , however u P 9U 1,2 while y R 9U 1,2. We define the interaction potential V through y for the129

convenience of stability analysis, the consistency results are the same either with u or with y.130

A great number of practical potentials are in the form (4), including the widely used embedded131

atom model (EAM) [6] and Finnis-Sinclair model [13]. For example, assuming a finite interaction132

neighborhood N` and an interaction range R` for ` P Λ, EAM potential reads133

V`pyq :“
ÿ

`1PN`

φp|yp`q ´ yp`1q|q ` F
´

ř

`1PN`
ψp|yp`q ´ yp`1q|q

¯

,134

“
ÿ

ρPR`

φ
`

|Dρyp`q|
˘

` F
´

ř

ρPR`
ψ
`

|Dρyp`q|
˘

¯

.(5)135

136

for a pair potential φ, an electron density function ψ and an embedding function F .137

The energy of an infinite configuration is typically ill-defined. However, if we redefine the potential138

V`pyq as the difference V`pyq ´ V`p`q, which is equivalent to assuming V`p`q “ 0, the energy functional139

(6) E apyq “
ÿ

`PΛ

V`pyq140

is a meaningful object. Given the point symmetry and smoothness assumptions for the site potentials141

V`, E apyq is well-defined for y ´ yB P U 1,2, where yBpxq “ Bx. Furthermore, if V`pyq is Ck in its142

variables, E a is k times Fréchet differentiable. In particular, we define M as the Lipschitz constant of143

δ2E a, by [11, Lemma 2.1].144

Under the above conditions, the goal of the atomistic problem is to find a strongly stable equilibrium145

y, such that, given a macroscopic applied strain B P Rdˆd, we aim to compute146

(7) y P arg min
 

E apyq
ˇ

ˇ y ´ yB P U 1,2
(

.147

y is strongly stable if there exists c0 ą 0 such that148

xδ2E apyqv, vy ě c0}∇v}2L2 , @v P U 1,2.149

.150

It is proven in [11, Theorem 2.3 ] that, if the homogeneous lattice is stable and y P U is a critical151

point of E a such that u “ y ´ yB P U 1,2, then Dju exhibit the following generic decay, j “ 0, 1, . . . ,152

(8)
ˇ

ˇDjup`q
ˇ

ˇ À |`|1´d´j , and
ˇ

ˇup`q ´ u8
ˇ

ˇ À |`|´d`1.153

where u8 :“ lim|`|Ñ8 up`q.154

2.2. Continuum model. To formulate atomistic to continuum coupling schemes, we need a155

continuum model which is compatible with (6) and defined through a strain energy density function156

W : Rdˆd Ñ R. Let V be the homogeneous site potential on Λhom. A typical choice in the multi-scale157

context is the Cauchy–Born continuum model [10, 33], the energy density W is defined by158

W pFq :“ detA´1V pFxq.159

This manuscript is for review purposes only.
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2.3. A/C coupling. We give a generic formulation of the a/c coupling method and employ160

concepts and notation from various earlier works, such as [26, 43, 44, 21, 37], and we adapt the161

formulation to the settings in this paper.162

First, the computational domain ΩR Ă Rd is a simply connected, polygonal and closed set, such163

that B0,R Ă ΩR Ă B0,c0R for some c0 ą 0. Let R be the radius of ΩR We have the following164

decomposition ΩR “ Ωa
R

Ť

Ωc
R, where the atomistic region Ωa

R is again simply connected and polygonal,165

and contains the defect core: Ddef Ă Ωa
R. Let Ra be the radius of Ωa

R. Let T c
h,R be a shape-regular166

simplicial partition (triangles for d “ 2 or tetrahedra for d “ 3) of the continuum region Ωc
R.167

Next, we decompose the set of atoms Λa,i :“ Λ
Ş

Ωa
R “ Λa

Ť

Λi into a core atomistic set Λa and an168

interface set Λi (typically a few “layers” of atoms surrounding Λa) such that Λ
Ş

Ddef Ă Λa. Let T a
h,R be169

the canonical triangulation induced by Λa,i, which may contain ”holes” due to the existence of defects,170

and Th,R “ T c
h,R

Ť

T a
h,R. Sometimes, it is also convenient to define T i

h,R :“ tT P Th,R : Λi
Ş

T ‰ Hu.171

Please see Figure 1 for an illustration of the computational mesh.172

Fig. 1: Illustration of computational mesh. The computational domain is ΩR, and the corresponding
triangulation is Th,R. Blue nodes in ΩR are atoms in Λa,i. For nearest neighbour interaction, Λi is the
set of outmost layer of blue atoms. Red nodes in Th,R are continuum degrees of freedom. Ωa

R is the
domain induced by the blue nodes, and T a

h,R is the corresponding triangulation. ΩcR and T c
h,R are the

respective complements of Ωa
R and Th,R.

Let Ωh,R “
Ť

TPTh,R
T . Notice that Ωh,R can be multiple-connected, and ΩRzΩh,R characterizes173

possible defects. The space of coarse-grained displacements is,174

Uh,R :“
 

uh : Ωh,R Ñ Rm
ˇ

ˇ uh is continuous and p.w. affine w.r.t. Th,R,175

uh “ 0 on BΩR
(

.176177

We may drop the subscript R in the above definitions, for example, use Th instead of Th,R if there178

is no confusion. Let Nh be the set of nodes in Th, and Fh be the set of edges in Th.179

Denote vorp`q as the voronoi cell associated with atom `, the volume of this cell denoted as |vorp`q|180

equals the volume of the unit cell in Λhom, i.e. vorp`q “ detpAq. For each ` P Λa, the associated181

effective volume is v` “ vorp`q. For ` P Λi the effective volume v` will depend on the geometry of182

the interface (see [36]), let ω` :“
|v`|

|vorp`q|
denote the volume ratio of v` with respect to vor. For each183

element T P Th we define the effective volume of T by184

ωT :“ |T zp
ď

`PΛa

vorp`qqzp
ď

`PΛi

vi
`q|.185

We note that ωT “ 0 if T P T a
h zT i

h, ωT “ |T | if T P T c
h zT i

h, and 0 ď ωT ă |T | if T P T i
h. The choices of186

v` and ωT satisfy
ř

`PΛa,i v` `
ř

TPTh
ωT “ |Ωh,R|.187

This manuscript is for review purposes only.
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Now we are ready to define the generic a/c coupling energy functional E h,188

E hpyhq :“
ÿ

`PΛa

V`pyhq `
ÿ

`PΛi

ω`V
i
` pyhq `

ÿ

TPTh

ωTW p∇yh|T q(9)189

190

where V i
` is a modified interface site potential which satisfies consistency conditions (11) and (12). ω`191

and ωT are suitable coefficients, and their construction will be discussed immediately in Section § 2.4192

and references therein.193

The goal of a/c coupling is to find194

(10) yh,R P arg min
 

E hpyhq
ˇ

ˇ yh ´ y
B P Uh,R

(

.195

The subscript R in yh,R and Uh,R can be omitted if there is no confusion.196

2.4. Consistent Atomistic/Continuum Formulation. The construction of the interface po-197

tential in (10) is the key for the formulation of atomistic/continuum coupling methods. In order to198

demonstrate the a posteriori error estimate for the generic a/c coupling methods, we shall restrict199

ourselves to the GRAC type methods [36].200

2.4.1. The patch tests and consistent a/c method. A key condition that has been widely201

discussed in the a/c coupling literature is that E h should exhibit no “ghost forces”. We call this202

condition the force patch test, namely, for Λ “ Λhom and Φ` “ Φ,203

(11) xδE hpyFq, vy “ 0 @v P Uh, F P Rmˆd.204

In addition, to guarantee that E h approximates the atomistic energy E a, it is reasonable to require205

that the interface potentials satisfy an energy patch test206

(12) V i
` py

Fq “ V pyFq @` P Λi, F P Rmˆd.207

If an a/c method satisfies the patch test (11) and (12), it is called a consistent a/c method.208

2.4.2. GRAC: Geometric reconstruction based consistent a/c method. To complete the209

construction of the consistent a/c coupling energy (9), we must specify the interface region Λi and210

the interface site potential. The geometric reconstruction approach was pioneered by Shimokawa et al211

[44], and then modified and extended in [9, 36]. We refer to [37] for details of the implementation of212

geometric reconstruction based consistent atomistic/continuum (GRAC) coupling energy for multibody213

potentials with general interaction range and arbitrary interfaces. The extension of GRAC to 3D is a214

work in progress [12].215

For a prototype implementation of GRAC, we consider the 2D triangular lattice Λhom :“ AZ2216

with217

(13) A “

„

1 cospπ{3q
0 sinpπ{3q



.218

Let a1 “ p1, 0q
T , then aj “ Aj´1

6 a1, j “ 1, . . . , 6, are the nearest neighbour directions in Λhom,219

where A6 is the rotation matrix corresponding to a π{3 clockwise planar rotation.220

Given the homogeneous site potential V
`

Dyp`q
˘

, we can represent V i
` in terms of V . For each221

` P Λi, ρ, ς P R`, let C`;ρ,ς be free parameters, and define222

(14) V i
` pyq :“ V

´

`
ř

ςPR`
C`;ρ,ςDςyp`q

˘

ρPR`

¯

223

A convenient short-hand notation is224

V i
` pyq “ V pC` ¨Dyp`qq, where

"

C` :“ pC`;ρ,ςqρ,ςPR`
, and

C` ¨Dy :“
`
ř

ςPR`
C`;ρ,ςDςy

˘

ρPR`
.

225
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We name the parameters C`;ρ,ς as the reconstruction parameters. They are chosen so that the226

resulting energy functional E h satisfies the energy and force patch tests (11) and (12). A sufficient227

(and likely necessary) condition for the energy patch test is that F ¨R` “ C` ¨ pF ¨Rq for all F P Rmˆd228

and ` P Λi. This is equivalent to229

(15) ρ “
ÿ

ςPR`

C`;ρ,ςς, @` P Λi, ρ P R`.230

In addition, optimal condition and stabilisation mechanism were proposed in [37] and [29] to improve231

the accuracy and stability of GRAC scheme.232

2.4.3. Stress formulation. The stress tensor based formulation can be obtained from the first233

variation of the energy. For any y P U , and yh ´ yB P Uh, there exist piecewise constant tensor234

fields σapy; ¨q P P0pTaq
2ˆ2, σcpyh; ¨q P P0pThq

2ˆ2, and σhpyh; ¨q P P0pThq
2ˆ2, such that they satisfy the235

following identities236

xδE apyq, vy “
ÿ

TPTa

|T |σapy;T q : ∇T v,@v P U ,(16)237

xδE cpyhq, vhy “
ÿ

TPTh

|T |σcpyh;T q : ∇T vh,@vh P Uh,(17)238

xδE hpyhq, vhy “
ÿ

TPTh

|T |σhpyh;T q : ∇T vh,@vh P Uh.(18)239

240

here Ta is the micro-triangulation induced by the reference lattice Λ. We call σa an atomistic stress241

tensor, σc a continuum stress tensor, and σh an a/c stress tensor. For the nearest neighbour inter-242

actions, we can choose the following atomistic stress tensor, continuum stress tensor, and a/c stress243

tensor respectively from the first variations (16)-(18),244

σapy;T q :“
1

detA

ÿ

b“p`,``ρqPBT
Ş

B

BρV` b aρ,(19)245

σcpyh;T q :“ BW p∇T yhq “
1

detA

6
ÿ

j“1

BjV p∇T yhq b aj ,(20)246

σhpyh;T q :“
ÿ

b“p`,``ρqPBT
Ş

B

BρV
h
` pIayhq b aρ ` ωTσ

cpyh;T q.(21)247

248

We call piecewise constant tensor field σ P P0pT q2ˆ2 divergence free if249

ÿ

TPT
|T |σpT q : ∇T v ” 0,@v P pP1pT qq2.250

By definitions (18), it is easy to know that the force patch test condition (11) is equivalent to that251

σhpFxq is divergence free for any constant deformation gradient F.252

The discrete divergence free tensor fields over the triangulation T can be characterized by the253

non-conforming Crouzeix-Raviart finite elements [36, 28]. The Crouzeix-Raviart finite element space254

over T is defined as255

N1pT q “ tc :
ď

TPT
intpT q Ñ R

ˇ

ˇ c is piecewise affine w.r.t. T , and256

continuous in edge midpoints qf ,@f P Fu257258

The following lemma in [36] characterizes the discrete divergence-free tensor field.259
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Lemma 2.3. A tensor field σ P P0pT q2ˆ2 is divergence free if and only if there exists a constant260

σ0 P R2ˆ2 and a function c P N1pT q2 such that261

σ “ σ0 `∇cJ, where J “

„

0 ´1
1 0



P SOp2q.262

263

The immediate corollary provides a representation of the stress tensor.264

Corollary 2.4. The stress tensors in the definitions (16)-(18) are not unique. Given any stress265

tensor σ P P0pT q2ˆ2 satisfies one of the definitions (16)-(18) , where T is the corresponding triangu-266

lation. Define the admissible set as Admpσq :“ tσ`∇cJ, c P N1pT q2u, then any σ1 P Admpσq satisfies267

the definition of stress tensor.268

2.4.4. A Priori Error Estimates. In the analytical framework proposed in [20, 11], the numer-269

ical error can be split into 3 parts: the modeling error due to the discrepancy between the atomistic270

model and the continuum model at the interface and the finite element edges, the coarsening error due271

to finite element discretization of the solution space in the continuum region, and the truncation error272

due to the finite size of the computational domain. It is proven in [11] that there exists a strongly273

stable solution yh,R to (10) and a constant Ca´priorifor GRAC method such that,274

(22) }∇uh,R ´∇u}L2 ď Ca´priori
`

}hD2u}`2pΛ
Ş

pΩc
Rqq
` }Du}`2pΛzBR{2q

˘

275

where uh,R “ yh,R ´ y
B .276

With the generic decay property (8), and the following quasi-optimal conditions:277

‚ the radius of the atomistic region T a
h,R satisfies,278

(23) CR1`2{d
a ď R ď CR1`2{d

a ,279

‚ T c
h,R is a graded mesh so that the mesh size function hpxq “ diampT q for x P T P T c

h,R satisfies,280

(24) |hpxq| ď Cmesh
` |x|

Ra

˘β
, with 1 ă β ă

d` 2

2
.281

It holds that there exists a constant C0 ą 0, depending on Ca´priori, C, C, Cmesh, and β such that282

for R sufficiently large,283

(25) }∇uh,R ´∇u}L2 ď C0R
´d{2´1.284

In particular, when d “ 2, and when P1 finite elements are used in the continuum region, we have,285

(26) }∇uh,R ´∇u}L2 ď C0N
´1,286

where N is the overall degrees of freedom.287

3. Error Analysis. We present the a posteriori error analysis in this section. In § 3.1, we derive288

the residual estimate for the consistent GRAC a/c coupling scheme introduced in § 2.4. Then, we give289

a lower bound for the stability constant which is computable from the a/c solution uh in § 3.2. Finally,290

we put forward the main results Theorem 3.7 and Theorem 3.9 in § 3.3.291

3.1. Residual Estimate. To be more precise, we restrict ourselves to the case of nearest neigh-292

bour multibody interactions, namely, we use the so-called ”grac23” method introduced in [36] as the293

a/c coupling mechanism. We will extend the formulation to general short-range multibody interactions294

in a future work and discuss it briefly in § 5.295

For lattice function u : Λ Ñ Rm, we denote its continuous and piecewise affine interpolant with296

respect to the micro-triangulation Ta by Iau. Notice that Λ is a lattice with defect, we can construct the297
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piecewise interpolant with respect to Λhom by extending u to vacancy sites, which will be introduced298

in § Appendix A. Identifying u “ Iau, we can define the (piecewise constant) gradient ∇u “ ∇Iau :299

Rm Ñ Rmˆd and the spaces of compact and finite energy displacements, respectively, by300

U c :“ tu : Λ Ñ Rm|suppp∇uq is compactu.301

It can be shown that that U c is dense in U 1,2 [11].302

The first variation of the atomistic variational problem (7) is to find y ´ yB P U 1,2 such that303

(27) xδE apyq, vy “ 0, @v P U 1,2.304

The first variation of the a/c coupling variational problem (10) is to find yh´y
B P Uh,R such that305

(28) xδE hpyhq, vhy “ 0, @vh P Uh,R.306

We introduce the truncation operator TR as in [11] by first choosing a C1 cut-off function ηpxq “ 1307

for |x| ď 4{6 and ηpxq “ 0 for |x| ě 5{6. Define TR : U 1,2 Ñ UR for R ą 0 by308

TRup`q :“ ηp`{Rqpup`q ´ aRq, where aR :“

ż

B5R{6zB4R{6

Iaupxqdx,309

where UR is defined by310

UR :“ tu P U c|upxq “ 0 @x P ΛzΩRu.311

The residual R is defined as an operator on U 1,2 which is given by312

(29) Rrvs “ xδE apIayhq, vy, @v P U 1,2.313

By (28), denote vR “ TRv, and take vh “ ChTRv : U 1,2 Ñ Uh,R, where Ch : UR Ñ Uh,R is the314

modified Clément operator [5, 49] whose definition will be made clear in the following subsections. By315

(28) we can separate the residual into three groups,316

Rrvs “ xδE apIayhq, vy “xδE
apIayhq, vy ´ xδE

hpyhq, vhy317

“xδE apIayhq, vy ´ xδE
apIayhq, vRy318

` xδE apIayhq, vRy ´ rδE
hpyhq, vRs319

` rδE hpyhq, vRs ´ xδE
hpyhq, vhy.320321

Notice that vR R Uh,R, therefore we cannot use the pairing xδE hpyhq, vRy. Instead, we define operation322

r¨, ¨s as,323

rδE hpyhq, vRs :“
ÿ

TPTh

ż

T

σhpyh, T q∇vR dx324

“
ÿ

TPTh

σhpyh, T qp
ÿ

T 1PTa,T 1
Ş

T‰H

|T
č

T 1|∇vRq325

“
ÿ

TPTa

|T |
`

ÿ

T 1PTh,T 1
Ş

T‰H

|T 1
Ş

T |

|T |
σhpyh, T

1q
˘

∇vR(30)326

327

In the above decomposition of the residual Rrvs, the first group R1 :“ xδE apIayhq, vy´xδE apIayhq, vRy328

represents the truncation error, the second group R2 :“ xδE apIayhq, vRy´ rδE hpyhq, vRs represents the329

modeling error, and the third group R3 :“ rδE hpyhq, vRs´xδE hpyhq, vhy represents the coarsening error.330

We will deal with the contributions from those three groups separately in the following subsections.331

Remark 3.1. Those residual estimators R1, R2 and R3 are based on first variation of the energies,332

and can be in turn represented by stress formulation. By Lemma 2.3 and Corollary 2.4, the stresses333

are unique up to a divergence-free tensor field. Therefore, we need to minimize those estimators with334

respect to divergence-free tensor field, which will be introduced in § 4.1.1.335
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3.1.1. Truncation error. To analyze the truncation error R1, we need the Lemma 7.3 for the336

truncation operator TR in [11], namely, if the radius of the computational domain R is sufficiently337

large (in the nearest neighbour case, we only need R ą 6), the following estimates hold338

}DvR ´Dv}`2 ď CTr}Dv}`2pΛzBR{2q
@v P U 1,2,339

}DvR}`2 ď CTr}Dv}`2pΛ
Ş

BRq @v P U 1,2,340341

where vR “ TRv, and CTr is independent of R.342

For any v P U 1,2, the stress-based formulation of the first variation (31), the fact that vRp`q “ vp`q343

for |`{R| ď 4{6, the equivalence of }Dv}`2 and }∇v}L2 , and Cauchy-Schwarz inequality lead to,344

|R1| “ |xδE
apIayhq, vy ´ xδE

apIayhq, vRy|345

“ |
ÿ

TPTa

σapIayh, T qp∇v ´∇vRq ´
ÿ

TPTa

σ0p∇v ´∇vRq|(31)346

ď

ż

ΩRzBR{2

|pσapIayhq ´ σ
0qp∇v ´∇vRq| dx347

ď }σapIayhq ´ σ
0}L2pΩRzBR{2q

}∇v ´∇vR}L2348

ď CTr}σapIayhq ´ σ
0}L2pΩRzBR{2q

}∇v}L2(32)349
350

where σ0 is divergence-free, i.e.
ř

TPTa
σ0p∇v ´ ∇vRq “ 0. In this paper, we assume a macroscopic351

applied strain B P Rdˆd, hence we can specify σ0 “ BW pyBq. If we do not have uniform deformation352

at far field, for example in the case of nano-indentation, σ0 can be computed from surface deformation.353

Thus, the truncation error estimator ηT is given by354

(33) ηT puhq :“ CTr}σapIauhq ´ σ
0}L2pΩRzBR{2q

.355

Remark 3.2. The numbers 4{6, 5{6 in the definition of truncation operator TR, and consequently356

R{2 in the estimator ηT are not essential. We can choose different numbers to define an estimator on357

a smaller outer domain, but the constant CTr will increase correspondingly. In practice, since Th is a358

graded mesh, we can choose the boundary layer of triangles to evaluate ηT .359

3.1.2. Modeling error. In the analysis of the modeling error R2, the stress based formulation360

of xδE apIayhq, vRy and the definition of rδE hpyhq, vRs (30) lead to,361

|R2| :“|xδE apIayhq, vRy ´ rδE
hpyhq, vRs|362

“
ˇ

ˇ

ÿ

TPTa

|T |σapIayh, T q∇vR ´
ÿ

TPTa

|T |
`

ÿ

T 1PTh,T 1
Ş

T‰H

|T 1
Ş

T |

|T |
σhpyh, T

1q
˘

∇vR
ˇ

ˇ363

ďCTr
 

ÿ

TPTa

|T |
“

σapIayh, T q ´
ÿ

T 1PTh,T 1
Ş

T‰H

|T 1
Ş

T |

|T |
σhpyh, T

1q
‰2( 1

2 }∇v}L2 .(34)364

365

As a result, we define the modeling error estimator ηM by,366

(35) ηM pyhq :“ CTr
 

ÿ

TPTa

|T |
“

σapIayh, T q ´
ÿ

T 1PTh,T 1
Ş

T‰H

|T 1
Ş

T |

|T |
σhpyh, T

1q
‰2( 1

2 .367

With the canonical choice of σa and in (19) and (20), we can see that only those T P Ta intersects368

with the interface and edges in T c
h have nontrivial contributions to ηM .369

3.1.3. Coarsening error. For the coarsening error R3, we first observe that370

R3 :“rδE hpyhq, vRs ´ xδE
hpyhq, vhy,371

“
ÿ

TPTh

ż

T

σhpyh, T qp∇vR ´∇vhqdx.(36)372

373
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Here, we take vh “ ChvR, where Ch is the modified Clément interpolation operator [5, 49]. For374

any node x P Nh in the triangulation Th, let φx be the nodal basis with respect to x on Th, and375

ωx “ supppφxq be the support of φx. The interpolation operator Ch : L1pΩh,Rq Ñ Vh can be defined376

by,377

Chw “
ÿ

xPNh

Ş

IntpΩhq

wxφx, where wx “

ş

ωx
wφx dx

ş

ωx
φx dx

,@x P Nh.378

By definition, Chw satisfies the Dirichlet boundary condition. The Clement interpolation enjoys379

the following properties [4, 49], for any element T P Th, and any interior edge f P Fh
Ş

intpΩh,Rq,380

}w ´ Chw}L2pT q ď CTh
hT }∇w}L2pωpT qq,(37)381

}w ´ Chw}L2pfq ď C 1Th
h

1
2

f }∇w}L2pωpfqq,(38)382
383

where hT is the diameter of T , and hf is the length of f . The element patch is ωpT q :“
Ť

xPNh

Ş

T ωx,384

and the edge patch is ωpfq :“
Ť

xPNh

Ş

f ωx. The constants CTh
and C 1Th

depend only on the shape385

regularity of Th.386

For notational convenience, we assume that each interior edge f P Fh
Ş

intpΩhq has a prescribed387

orientation. T`f and T´f are the triangles on the left hand side and right hand side of the edge f , ν`388

and ν´ are the corresponding outward unit norm vector. The integration by parts of (36) leads to,389

R3 “
ÿ

TPTh

ż

T

σhpyh, T qp∇vR ´∇vhqdx390

“
ÿ

fPFh

Ş

intpΩRq

ż

f

pσhpyh, T
`
f qν

` ` σhpyh, T
´
f qν

´q ¨ pvR ´ vhqds391

“
ÿ

fPFh

Ş

intpΩRq

JσhKf ¨
ż

fPFh

pvR ´ vhqds,392

393394

where JσhKf :“ σhpyh, T
`
f qν

` ` σhpyh, T
´
f qν

´ denotes the jump of σh across the edge f . Cauchy-395

Schwarz inequality and the property of Clement interpolation (38) give rise to,396

|R3| ď
ÿ

fPFh

Ş

intpΩRq

|JσhKf |h
1
2

f }vR ´ vh}L2pfq397

ď C 1Th

ÿ

fPFh

Ş

intpΩRq

|JσhKf |hf }∇vR ´∇vh}L2pωf q398

ď C 1Th
p

ÿ

fPFh

Ş

intpΩRq

phf JσhKf q2q
1
2 p

ÿ

fPFh

Ş

intpΩRq

}∇vR ´∇vh}2L2pωf q
q

1
2399

ď
?

3C 1Th
p

ÿ

fPFh

Ş

intpΩRq

phf JσhKf q2q
1
2 }∇vR ´∇vh}L2pΩq400

ď
?

3CTrC 1Th
p

ÿ

fPFh

Ş

intpΩRq

phf JσhKf q2q
1
2 }∇v}L2pΩq.401

402

The coarse-graining error estimator is then defined as,403

(39) ηCpuhq :“
?

3CTrC 1Th
p
ÿ

fPFh

phf JσhKf q2q
1
2404

3.1.4. Residual Estimate. Combining the above estimates, we have the following theorem for405

the residual.406
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Theorem 3.3. For @v P U 1,2, let yh be the a/c solution of variational problem (10), the residual407

Rrvs “ xδE apIayhq, vy can be bounded by the sum of the truncation error (the L2 norm of the atomistc408

stress tensor close to the outer boundary), modeling error (the difference of a/c stress tensor and409

atomistic stress tensor), and the coarsening error (jump of a/c stress tensor across interior edges),410

namely,411

(40) xδE apIayhq, vy ď
`

ηT pyhq ` ηM pyhq ` ηCpyhq
˘

}∇v}L2 ,412

where ηT pyhq, ηM pyhq and ηCpyhq are given in (33), (35) and (39) respectively.413

Remark 3.4. All the estimators ηT , ηM and ηC depend on the a/c solution yh, through their414

dependence on the discrete stress tensor σhpyhq and σapIayhq. We can therefore write,415

(41) ηpyhq :“ η̃pσapIayhq, σ
hpyhqq “ ηT pyhq ` ηM pyhq ` ηCpyhq.416

By Remark 3.1 we denote Admpσhq,Admpσaq the sets of all possible stress tensors. Therefore, the417

desired estimate of the residual is418

(42) xδE apIayhq, vy ď min
Admpσhpyhqq,AdmpσapIayhqq

η̃pσapIayhq, σ
hpyhqq}∇v}L2 .419

We refer to the exact or approximate minimization of the residual with respect to the admissible420

tensor field as “stress tensor correction”, and we will discuss the implementation of stress tensor421

correction in detail in § 4.1.1.422

3.2. Stability. In this subsection, we will deduce a computable estimate of the a posteriori sta-423

bility constant. Similar as the residual estimate, we restrict ourselves to the case of nearest-neighbour424

interaction with vacancies. We follow the stability analysis in [31]. The main difference is: first, we425

derive the stability results for the many-body potentials of generic pair functional form (4), while in426

[31] only pair interaction potentials are considered; second, in the a posteriori analysis the stability427

constant depends on the atomistic Hessian δ2E a and the a/c solution uh, and therefore it is com-428

putable, as opposed to the a priori analysis in [31], the stability constant is related to the a/c Hessian429

δ2E h and the unknown atomistic solution u where certain assumptions for u have to be made.430

Theorem 3.5. Suppose that the multi-body interaction potential is of the generic pair functional431

form (4), we have the following results,432

(43) xδ2E apIayhqv, vy ě γpyhq}∇v}2L2pΩRq
@v P U ,433

where the precise definition of γpyhq will be given as the analysis proceeds.434

The proof of Theorem 3.5 can be divided into the following steps:435

1. Write δ2E apIayhq as a quadratic form with nonuniform coefficients defined on the interaction436

bonds;437

2. Use the perturbation arguments (49), (50) to bound δ2E a by quantities from a uniform defor-438

mation;439

3. Define the so-called vacancy stability index (53) to further bound δ2E a for lattice with defects440

by the stability constant for a uniformly deformed homogeneous lattice;441

4. The stability constant can be obtained through an optimization procedure.442

Recall that by (2), B is the collection of all the nearest neighbour bonds in the reference lattice Λ.443

Here we define444

(44) B :“ tp`, `` ρq : ` P Λhom, ρ P R`u445

to be the collection of all the nearest neighbour bonds in the homogeneous reference lattice Λhom. To446

simplify notation, we use y to denote Iayh, and Ω to denote ΩR in the following analysis of this section.447
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3.2.1. Second variation of the energy. Using the generic pair functional form multi-body448

interaction potential (4) and Remark 2.1, we write out the second variation of the atomistic energy449

E apyq “
ř

`PΛ V p|Dyp`q|q as450

xδ2E apyqv, vy “
ÿ

`PΛ

ÿ

ρ,ςPR`

BρςV p|Dyp`q|qpDρvp`qq
T
` Dρyp`q

|Dρyp`q|
b

Dςyp`q

|Dςyp`q|

˘

pDςvp`qq451

`
ÿ

`PΛ

ÿ

ρPR`

BρV p|Dyp`q|q

|Dρyp`q|
pDρvp`qq

T
`

I´
Dρyp`q

|Dρyp`q|
b

Dρyp`q

|Dρyp`q|

˘

Dρvp`q452

“
ÿ

`PΛ

ÿ

ρPR`

BρρV p|Dyp`q|q

|Dρyp`q|2
pDρyp`q ¨Dρvp`qq

2
453

`
ÿ

`PΛ

ÿ

ρ,ςPR`,ρ‰ς

BρςV p|Dyp`q|q

|Dρyp`q||Dςyp`q|
pDρyp`q ¨Dρvp`qqpDςyp`q ¨Dςvp`qq454

`
ÿ

`PΛ

ÿ

ρPR`

BρV p|Dyp`q|q

|Dρyp`q|3
|Dρyp`q ˆDρvp`q|

2,(45)455

456

where BρV p|Dyp`q|q represents the first order partial derivatives of V p|Dyp`q|q with respect to |Dρypxq|,457

and BρςV p|Dyp`q|q represents the second order partial derivatives with respect to |Dρyp`q| and |Dςyp`q|,458

I is the identity matrix, and aˆ b “ a1b2 ´ a2b1. We have also used the identity459

hT1 p
r1

|r1|
b

r2

|r2|
qh2 “ ph1 ¨

r1

|r1|
qph2 ¨

r2

|r2|
q,460

and hT pI´
r

|r|
b

r

|r|
qh “ |hˆ

r

|r|
|2.(46)461

462

For nearest neighbour interactions, |Rp`q| ď 6, we define463

C1
`,ρ “

BρρV pDyp`qq

|Dρyp`q|2
, C2

`,ρ “ 0^ min
ς,ς‰ρ

BρςV pDyp`qq

|Dρyp`q||Dςyp`q|
,464

C`,ρ “ min
`
pC1

`,ρ ´ 5C2
`,ρq, CK`,ρ “

BρV pDyp`qq

|Dρyp`q|3
.465

466

Applying Cauchy-Schwarz inequality to (45), we obtain the following estimate,467

xδ2E apyqv, vy ě
ÿ

`PΛ

ÿ

ρPR`

C`,ρ|Dρyp`q ¨Dρvp`q|
2 `

ÿ

`PΛ

ÿ

ρPR`

CK`,ρ|Dρyp`q ˆDρv|
2

468

“
ÿ

bPB
Cb|Dbyp`q ¨Dbvp`q|

2 `
ÿ

bPB
CKb |Dbyp`q ˆDbvp`q|

2
469

ěC
ÿ

bPB
|Dbyp`q ¨Dbvp`q|

2 ` CK
ÿ

bPB
|Dbyp`q ˆDbvp`q|

2
470

“C
ÿ

bPB

ż

b

|Dby ¨∇bv|
2 db` CK

ÿ

bPB

ż

b

|Dby ˆ∇bv|
2 db.(47)471

472

where Cb :“ C`,ρ and CKb :“ CK`,ρ for b “ p`, `` ρq, CpKq :“ minbPB C
pKq

b (here we use CpKq to denote473

both C and CK for brevity). We have also used the fact that for nearest neighbour interactions,474

Dbv “ ∇bvpxq, @x P intpbq, and Dby “ Dbyp`q is a constant for each b “ p`, `` ρq P B.475

3.2.2. The perturbation argument. Our next task is to obtain the estimates,476

(48) C
ÿ

bPB

ż

b

|Dby ¨∇bv|
2 db ě c}∇v}2L2pΩq, and CK

ÿ

bPB

ż

b

|Dby ˆ∇bv|
2 db ě cK}∇v}2L2pΩq,477
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for some c ą 0 and cK (which could be negative).478

(48) is not straighforward since Dby varies on each b P B. To tackle this issue, we use the following479

perturbation results from Lemma 6.3 of [31]. For g P R2, b P B, and α ą 0, we have480

ˇ

ˇ

ˇ
|Dby ¨ g|

2 ´ |Bρb ¨ g|
2
ˇ

ˇ

ˇ
ď α|Bρb ¨ g|

2 ` p1`
1

α
q∆2|ρb|

2|BT g|2,(49)481

and
ˇ

ˇ

ˇ
|Dby ˆ g|

2 ´ |Bρb ˆ g|
2
ˇ

ˇ

ˇ
ď αK|Bρb ˆ g|

2 ` p1`
1

αK
q∆2|ρb|

2|BT gK|2.(50)482
483

where ρb is the direction vector of b, B P R2ˆ2 is fixed, αpKq are unknowns to be determined, and484

∆ “ maxTPT }B
´1∇y|T ´ I}, gK is obtained by π{2 counterclockwise rotation of g.485

Given y, ∆ and B can be solved from the convex optimization problem ∆ “ maxTPT }B
´1∇y|T´I}.486

We will choose free parameters α and αK in the subsequent analysis to keep the estimate of the stability487

constant sharp. Applying(49) and (50) to (47), taking the same α and αK for each bond b P B and488

using the fact that |ρb| “ 1 , we obtain489

C
ÿ

bPB

ż

b

|Dby ¨∇bv|
2 db` CK

ÿ

bPB

ż

b

|Dby ˆ∇bv|
2 db490

ěC
ÿ

bPB

ż

b

|Bρb ¨∇bv|
2 db` CK

ÿ

bPB

ż

b

|Bρb ˆ∇bv|
2 db491

´

ˆ

α|C|
ÿ

bPB

ż

b

|Bρb ¨∇bv|
2 db` αK|CK|

ÿ

bPB

ż

b

|Bρb ˆ∇bv|
2 db492

`∆2Cp1`
1

α
q
ÿ

bPB

ż

b

|BT∇bv|
2 db`∆2CKp1`

1

αK
q
ÿ

bPB

ż

b

|BT∇bv
K|2 db

˙

493

“C̃
ÿ

bPB

ż

b

|ρb ¨∇bvB|
2 db` C̃K

ÿ

bPB

ż

b

|ρb ˆ∇bvB|
2 db494

´

ˆ

∆2Cp1`
1

α
q
ÿ

bPB

ż

b

|BT∇bEv|
2 db`∆2CKp1`

1

αK
q
ÿ

bPB

ż

b

|BT∇bEv
K|2 db

˙

495

496

where C̃pKq :“ CpKq´α|CpKq|, we have used BT∇bv “ ∇bB
T v, Bρb ¨∇bv “ ρb ¨B

T∇bv, and vB :“ BT v.497

Ev is the extension of v from Λ to the vacancy sites defined in the Appendix § A, it is clear that498

EvK “ pEvqK.499

Let500

xH̃v, vy :“ C̃
ÿ

bPB

ż

b

|ρb ¨∇bvB|
2 db` C̃K

ÿ

bPB

ż

b

|ρb ˆ∇bvB|
2 db501

and502

xL̃pKqv, vy : “ CpKqp1`
1

αpKq
q
ÿ

bPB

ż

b

|BT∇bEv
pKq|2 db503

“ L̃pKq}∇pBTEvpKqq}2L2pΩq.(51)504
505

where L̃pKq “
3

detA6
p1`

1

αpKq
qCpKq. (51) is due to the application of the so-called bond-density lemma506

with respect to Dirichlet boundary conditions [41, Lemma 4.5]. Combining the above results, we have507

the following estimate,508

(52) xδ2E apyqv, vy ě xH̃pyqv, vy ´∆2pL̃}∇pBTEvq}2L2pΩq ` L̃
K}∇pBTEvKq}2L2pΩqq509
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3.2.3. Vacancy stability index. We introduce the vacancy stability index κ as510

(53) κpVq “ max
!

k ą 0 : ΦBpuq ě kΦBpEuq, @u P U
)

.511

Since C̃ ą 0 and C̃K might be negative, we define the constants512

(54) C̄pKq :“ minpC̃pKq, κC̃pKqq.513

We can further estimate (52) by514

xδ2E apyqv, vy ěC̄
ÿ

bPB

ż

b

|ρb ¨∇bpEBT vq|2 db` C̄K
ÿ

bPB

ż

b

|ρb ˆ∇bpEBT vq|2 db515

´∆2pL̃}∇pBTEvq}2L2pΩq ` L̃
K}∇pBTEvKq}2L2pΩqq.(55)516

517

3.2.4. Stability of the homogenous lattice. Now we need the stability estimates for the518

homogeneous lattice. Let519

(56) xH̄v, vy “ C̄
ÿ

bPB

ż

b

|ρb ¨∇bpEBT vq|2 db` C̄K
ÿ

bPB

ż

b

|ρb ˆ∇bpEBT vq|2 db.520

By Lemma 6.4 of [31], we have521

(57) xH̄v, vy ě γ̄}∇EBT v}2L2pΩq.522

where γ̄ :“ minp
3

4
c̄`

9

4
c̄K,

9

4
c̄`

3

4
c̄Kq, and c̄pKq “

3

detA
C̄pKq.523

Furthermore, by the inequality (79) for the extension operator E in the appendix, we can estimate524

the stability of atomistic Hessian (55) by,525

(58) xδ2E apyqv, vy ě γpyq}∇v}2L2pΩq.526

where527

(59) γpyq “
1

3
}B´T }´1

F γ̄ ´∆2}B}2F pL̃` L̃
Kq.528

3.2.5. Numerical Justification. Tracing back the derivation of the stability constant γ, the529

only free parameters are α, αK. Consequently, we can find the optimal γ by maximization with530

respect to α and αK.531

We justify our a posteriori estimate for the stability constant of the atomistic Hessian numerically.532

We apply the same EAM potential as in § 4.2 and take isotropic stretch S and shear loading γII by533

setting534

B “

ˆ

1` S γII
0 1` S

˙

¨ F0,535

where F09I minimizing the corresponding Cauchy-Born energy density W pF q. The numerical results536

are listed in the following tables, where λ stands for the smallest eigenvalue of atomistic Hessian, and537

γ represents the optimal estimate of the stability constant.538

From the numerical results, our estimates indeed give lower bound of the minimal eigenvalue of539

atomistic Hessian, however, the estimate may become negative when the deformation and number of540

vacancy sites increase.541

3.3. Main results. We present the main theorems for the a posteriori errors in H1 norm and542

energy in this section.543
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number of vacancies 0 1 2
λ 17.436 14.107 12.905
γ 5.284 2.206 1.451

Table 1: In this example, we test the stability for the reference configuration, namely, S “ γII “ 0.
The degrees of freedom of the atomistic model is about 3ˆ 104.

number of vacancies 0 1 2
λ 11.125 9.809 8.946
γ 3.159 0.468 -0.258

Table 2: In this example, we test the stability for the deformed configuration with S “ γII “ 0.03.
The degrees of freedom of the atomistic model is about 3ˆ 104.

3.3.1. A Posteriori Error Estimates in H1 norm. We will need the following quantitative544

version of the inverse function theorem in [20].545

Lemma 3.6. Let X be a Hilbert space, w0 P X, R, M ą 0, and E P C2pBXR pω0qq with Lipschitz546

continuous Hessian, }δ2Epxq ´ δ2Epyq}LpX,X˚q ď M}x´ y}X for x, y P BXR pω0q. Suppose, moreover,547

that there exists constants c, r ą 0, such that548

(60) xδ2Epw0qv, vy ě c}v}2X , , }δEpw0q}X˚ ď r, and 2Mrc´2 ă 1.549

Then there exists a unique w̄ P BX2rc´1pw0q with δEpw̄q “ 0 and550

xδ2Epw̄qv, vy ě p1´ 2Mrc´2qc}v}2X .551

Take X “ Uh, ω0 as the a/c solution yh of (28), and M as the Lipschitz constant of δ2E a. Combine552

the residual estimate in Theorem 3.3, stability estimate in Theorem 3.5, and Lemma 3.6, we have the553

following theorem for the a posteriori existence and error estimate.554

Theorem 3.7. Let yh be the a/c solution of (28), ηpyhq be the residual defined in (41), γpyhq be555

the stability constant defined in (59), and M be the Lipschitz constant of δ2E a. Under the assumption556

that γpyhq ą 0 and 2Mηpyhq ă γpyhq
2, there exists a unique y satisfying y ´ yB P U 1,2 which solves557

the atomistic variational problem (27), and satisfies the following error bound,558

(61) }∇Iayh ´∇y}L2 ď 2
ηpyhq

γpyhq
,559

and the strong stability condition,560

(62) xδ2Epyqv, vy ě
`

1´ 2
Mηpyhq

γpyhq2
˘

γpyhq}∇v}2L2 , @v P U 1,2.561

Remark 3.8. Alternatively, the a posteriori error estimate can be deduced by the following argu-562

ment in [35], but we need to assume the existence of the atomistic solution y and the closeness of y to563

Iayh in W 1,8. By mean value theorem, there exists θ P convty, Iayhu such that564

xδ2E apθqv, vy “ xδE apIayhq, vy ´ xδE
apyq, vy565

“ xδE apIayhq, vy566

ď ηpyhq}∇v}L2pΩq.(63)567568

Combining the coercivity of E a at Iayh,569

xδ2E apIayhqv, vy ě γpyhq}∇v}2L2 ,570
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and the Lipschitz continuity (Fréchet differentiability) of δ2E a, we obtain that571

xδ2E apθqv, vy ě xδ2E apIayhqv, vy ´M}y ´ Iayh}W 1,8}∇v}2L2572

ě pγpyhq ´M}y ´ Iayh}W 1,8q}∇v}2L2(64)573574

Let v “ y ´ Iayh in (64), using (63), we have575

(65) }∇y ´∇Iayh}L2 ď
2ηpyhq

γpyhq
576

if the closeness assumption }∇yh ´∇y}L8 ď
γpyhq

2M
holds true.577

3.3.2. A Posteriori Error Estimate for the Energy. Total energy is an important physical578

quantity to be approximated in applications. In this section, we will derive an estimate for the energy579

difference E apyq ´ E hpyhq. The energy difference can be split into the sum of E apyq ´ E apIayhq and580

E apIayhq ´ E hpyhq, thus,581

(66) |E apyq ´ E hpyhq| ď |E
apyq ´ E apIayhq| ` |E

apIayhq ´ E hpyhq|582

For the first part, since E a is twice differentiable along the segment tp1 ´ sqy ` sIayh|s P p0, 1qu,583

we obtain,584

|E apyq ´ E apIayhq| “ |

ż 1

0

xδE app1´ sqy ` sIayhq, y ´ yhyds|585

“ |

ż 1

0

xδE app1´ sqy ` sIayhq ´ δE
apyq, y ´ Iayhyds|586

ďM}Dy ´DIayh}
2
`2587

ďM}∇y ´∇Iayh}2L2 .(67)588589

which can be further estimated by Theorem 3.7, the constant M is the Lipschitz constant of δ2E a590

which is independent of yh.591

For the second part, let µEpyhq :“ E apIayhq ´ E hpyhq. We can rewrite E a in the site based form,592

E apIayhq “
ÿ

TPTa

1

6

ÿ

`PT
Ş

Λ

V`pIayhq.593

Moreover, given E h of the form (9), assuming for simplicity ωi
` “ 1, and T i

h is a few layers of atomistic594

micro-triangulation around the T a
h , which is actually the case for the implementation in [36], we can595

rewrite E h as follows,596

E hpyhq “
ÿ

TPT a
h

1

6

ÿ

`PT
Ş

Λa

V`pIayhq `
ÿ

TPT a
h

1

6

ÿ

`PT
Ş

Λi

V i
` pIayhq`597

ÿ

TPT i
h

Ş

T c
h

!

ÿ

`PT
Ş

Λi

1

6

ÿ

`PT

V i
` pIayhq ` p1´

#t` P T
Ş

Λiu

3
q|T |W p∇Iayhq

)

`598

ÿ

TPT c
h zT

i
h

ÿ

T 1PTa,T 1
Ş

T‰H

|T
č

T 1|W p∇Iayhq.599

600
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Hence µE can be expanded as,601

µEpyhq “
ÿ

TPT a
h

1

6

ÿ

`PT
Ş

Λi

`

V`pIayhq ´ V
i
` pIayhq

˘

`602

ÿ

TPT i
h

Ş

T c
h

!

ÿ

`PT
Ş

Λi

1

6

ÿ

`PT

V`pIayhq ´
ÿ

`PT
Ş

Λ

1

6

ÿ

`PT

V i
` pIayhq`603

p1´
#t` P T

Ş

Λiu

3
q|T |W p∇Iayhq

)

`604

ÿ

TPT c
h zT

i
h

ÿ

T 1PTa,T 1
Ş

T‰H

|T
Ş

T 1|

|T 1|
p
1

6

ÿ

`PT 1

V`pIayhq ´W p∇yhqq.(68)605

606

We note that the summand in the last term, which is summed over T P T c
h , is nonzero only if607

ωpT 1q
Ş

BT ‰ H, therefore can be rewritten as608

ÿ

TPT c
h

ÿ

T 1PTa,ωpT 1q
Ş

BT‰H

|T
Ş

T 1|

2|T 1|
p
1

3

ÿ

`PT

V pDIayhp`qq ´ V p∇Iayhρqq,609

noticing that V` “ V when T
Ş

Λa “ H.610

Hence we have the following theorem,611

Theorem 3.9. Given the same conditions in Theorem 3.7, the difference of the energy can be612

bounded by the following inequality,613

|E apyq ´ E hpyhq| ď CEpηpyhqq
2 ` |µEpyhq|.614

where CE “
4M

γpyhq2
, ηpyhq and µEpyhq are defined in (41) and (68) respectively.615

We denote the energy estimator by616

(69) ηEpyhq :“ CEpηpyhqq
2 ` |µEpyhq|.617

4. Adaptive Algorithms and Numerical Experiments. In this section, we propose an adap-618

tive mesh refinement algorithm based on the a posteriori error estimates in Theorem 3.7 and Theorem619

3.9. Numerical experiments show that our algorithm achieves an optimal convergence rate in terms of620

accuracy vs. the degrees of freedom, which is the same as the a priori error estimates.621

4.1. Adaptive mesh refinement algorithm.. Our goal is to design adaptive refinement algo-622

rithms by utilizing the residual based error estimators ηM , ηC , ηT in § 3.1 and µE in § 3.3.2. The623

algorithm follows the usual Solve-Estimate-Mark-Refine procedure as in [8, 48]. However, compared624

to adaptive mesh refinement algorithms for the numerical solution for continuous PDEs, the major625

differences are trifold, and to address those differences, we need new ingredients for the implementation626

of the adaptive algorithm.627

‚ The errors ηM , ηC and ηT depend on uh through stress tensors σh and σa which are not628

unique. Therefore, we have to minimize the error estimator with respect to all the admissible629

stress tensors, and we call this procedure ”stress tensor correction”. This will be addressed in630

§ 4.1.1.631

‚ The truncation error ηT is introduced by the truncation of an infinite lattice to a finite domain.632

If the size of the computation domain is fixed, we shall see the saturation of the numerical633

error when the degrees of freedom N keep increasing. Therefore, when ηT is dominant in the634

overall error η, we need to enlarge the computational domain in order to achieve the optimal635

convergence rate. This will be addressed in § 4.3.2.636
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‚ The modeling error ηM results from the inconsistency of the atomistic model and the contin-637

uum model at the interface and finite element edges. In particular, when the interface error is638

large, we need to enlarge the atomistic domain Ωa, and adjust the triangulation in the contin-639

uum domain such that the mesh in the continuum region aligns with the micro-triangulation640

Ta close to the interface, and the overall triangulation still maintains good quality. This will641

be addressed in Remark 4.3.642

4.1.1. Stress tensor correction. By Theorem 3.3 and Remark 3.4, the error estimators ηT , ηM ,643

and ηC depend on the stress tensors σh and σa, which are unique up to divergence free tensor fields.644

Therefore, we need to minimize ηpyhq “ ηT pyhq ` ηM pyhq ` ηCpyhq with respect to all the admissible645

stress tensors. Recall the ”stress tensor correction” of the residual estimate (42),646

(70) xδE apIayhq, vy ď min
caPN1pTaq2,chPN1pThq

2
η̃pσapIayhq `∇caJ, σhpyhq `∇chJq}∇v}L2 .647

In (70), we need to solve a nonlinear minimization problem with respect to ca and ch which are648

both defined over whole Ω, the dimension of ca is 2|Fh|, and the dimension of ch is 2|Fa|. The cost for649

the exact stress tensor correction is proportional to solving the original energy minimisation problem.650

Here, we introduce an approximate version of stress tensor correction, which is motivated by the651

explicit calculation in [36, Lemma 5.2] as well as the analysis of a/c stress tensor in [28, § 6.2.3]: a652

”good” a/c stress tensor can be chosen such that it equals to the atomistic stress tensor in the atomistic653

domain, and equals to the continuum stress tensor for uniform deformation. To be precise, we only654

need to apply the stress tensor correction to the modelling error ηM ; and in addition, we choose ca ” 0,655

and chpqf q “ 0, where qf is the midpoint of f P Fh, f
Ş

Λi “ H. Thus the only degrees of freedom to656

be determined are those chpqf q such that f
Ş

Λi ‰ H.657

We propose the following algorithm for approximate stress tensor correction:

Algorithm 1 Approximate stress tensor correction

1. Take σapIayhq and σhpyhq as the canonical forms in (19) and (21) respectively.
2. Denote qf as the midpoint of f P Fh. ch minimizes the following sum

(71)
ÿ

TPT i

|T |
“

σapIayh, T q ´
`

σhpIayh, T q `∇chJ
˘‰2

subject to the constraint that chpqf q “ 0, for f
Ş

Λi “ H.
3. Let σhpyhq “ σhpyhq `∇chJ, compute ηM , ηT and ηC with σapIayhq and σhpyhq.

658

Instead of minimizing the total error estimator η with respect to ca and ch as in (70), now we659

only need to minimize the modeling error ηM with respect to the degrees of freedom of σh adjacent660

to the interface. This dramatically reduced the computational cost of ”stress tensor correction”. In661

the implementation, the cost of stress tensor correction is only a small fraction of the total cost, but662

it greatly improves the accuracy.663

We numerically demonstrate the effect of the approximate stress tensor correction in Figure 2. We664

fix the computational domain in this example, therefore we expect the ”optimal” error will follow the665

N´1 asymptotics as the degrees of freedom N increase, and get saturated at the level of the truncation666

error. Figure 2a shows H1 errors with respect to degrees of freedom N . If the stress tensor correction667

is applied, the error follows the optimal N´1 asymptotics before the saturation is reached; if the stress668

tensor correction is not applied, the error is suboptimal. Figure 2b shows the error estimator η with669

respect to degrees of freedom N . The N´1 convergence of η is much more significant with correction;670

without correction η may even increase with respect to N .671

4.1.2. Local error estimator. We need to assign global estimators to local elements properly,672

then mark and subdivide those elements which contribute most to the estimator.673
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Fig. 2: Effect of approximate stress tensor correction. Divacancy example, Rc “ 1000, take τ1 “ 0.7
and τ2 “ 0.2 in Algorithm 2. Figure 2a: H1 error vs. DoF; Figure 2b: ηM ` ηC vs. DoF.

Recall the definition of ηM in (35), and after taking the stress tensor correction in Algorithm 1,674

we have675

pηM pyhqq
2 :“ pCTrq2

ÿ

TPTa

|T |
“

σapIayh, T q ´
ÿ

T 1PTh,T 1
Ş

T‰H

|T 1
Ş

T |

|T |
pσhpyh, T

1qq
‰2
.676

The contribution is 0 for those T P Ta located completely inside an element T 1 P Th. As a result, we677

need only take care of those T P Ta and T 1 P Th with T
Ş

BT 1 ‰ H. We first define678

ηM pT, T
1q :“ |T 1

č

T |

„

σapIayh, T q ´
|T 1

Ş

T |

|T |
pσhpyh, T

1qq

2

.679

for T P Ta, then let ηM pT
1q “

ř

TPTa,T
Ş

T 1‰H ηM pT, T
1q for T 1 P Th. Notice that pCTrq2

ř

TPTh
ηM pT q “680

η2
M .681

Analogously, we can define the local contribution of the truncation error ηT pT
1q for T 1 P Th, such682

that
ř

T 1PTh
ηT pT

1q “ η2
T . Please also refer to Remark 3.2.683

For the coarsening error, recall the definition (39),684

ηCpyhq :“
?

3CTrC 1Th
p
ÿ

fPFh

phf JσKq2q
1
2 ,685

we define ηCpT q as follows,686

ηCpT q “
?

3CTrC 1Th

ÿ

fPFh

Ş

TPTh

1

2
phf JσKf q2.687

For the energy estimator µE from section § 3.3.2, similar to the case of ηM , we can define the local688

contributions similarly as µEpT q such that
ř

T 1PTh
µ2
EpT

1q “ µ2
E .689

Once all the local estimators are assigned, we are ready to define the indicator ρT :690

(72) ρT “ pC
Trq2

ηM pT q

ηM
` pCTrq2

ηT pT q

ηT
` p
?

3CTrC 1Th
q2
ηCpT q

ηC
.691

Notice that the sum of local estimators is equal to the global estimator.692
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Meanwhile, for the energy based estimate, we have,693

(73) ρET “ CEpCTrq2
`

ηM pT q
2 ` ηT pT q

2
˘

` CEp
?

3CTrC 1Th
q2 pηCpT qq

2
` |µEpT q|694

The constants CTr, CE , C 1Th
in (72) and (73) are not known a priori, instead, we use their empirical695

estimates in the implementation.696

Algorithm 2 is the main algorithm for the adaptive mesh refinement, and Dörfler adaptive strategy697

[8] is used in the algorithm.698

Algorithm 2 A posteriori mesh refinement

Step 0 Prescible ΩR, Th, Nmax, ρtol, τ1 and τ2.
Step 1 Solve: Solve the a/c solution yh of (10) on the current mesh Th.
Step 2 Estimate: Carry out the stress tensor tensor correction step in Algorithm 1, and compute the

error indicator ρT for each T P Th. For fixed R, we do not need to include the contribution
from truncation error ηT in ρT . Set ρT “ 0 for T P Ta

Ş

Th. Compute the degrees of freedom
N and total error ρ “

ř

T ρT . Stop if N ą Nmax or ρ ă ρtol.
Step 3 Mark:

Step 3.1 : Choose a minimal subset M Ă Th such that

ÿ

TPM
ρT ě

1

2

ÿ

TPTh

ρT .

Step 3.2 : Find the interface elements Mi :“ tT PM : T
Ş

Λi ‰ Hu. Check if

(74)
ÿ

TPMi

ρT ě τ1
ÿ

TPM
ρT .

where tolerance 0 ă τ1 ă 1. If true, let M “MzMi.
Step 4 Refine: If (74) is true, expand interface Λi outward by one layer. Then, bisect all elements

T PM. Stop if ηT
ηM`ηC

ě τ2, otherwise, go to Step 1.

Remark 4.1. For the calculation with fixed computational domain, the numerical error will satu-699

rate at the level of truncation error. The stoping criteria can be modified as:700

Step 2: ... Compute the convergence rate β of the estimated total error ρ with respect to the701

degrees of freedom N . Stop if β ď τ2.702

Remark 4.2. It is possible to use different mark strategies, for example,703

Step 3.1 : Choose a minimal subset M, s.t.704

ρT ě meanpρq, @T PM.705

Step 3.2 We can find the interface elements which are within k layers of atomistic distance,706

Mk
i :“ tT PM

Ş

T c
h : distpT,Λiq ď ku. Choose K ě 1, find the first k ď K such that707

(75)
ÿ

TPMk
i

ρT ě τ1
ÿ

TPM
ρT ,708

with tolerance 0 ă τ1 ă 1. If such a k can be found, let M “MzMk
i . Then in step 3, expand interface709

Λi outward by k layers.710

Remark 4.3. After pushing the interface outward in Step 4, we have to ’remove’ those triangles in711

the continuum mesh which overlap with the new atomistic region. It will generate a gap between the712

atomistic region and the continuum region. We need to triangulate this gap, and adjust the positions713

of the nodes to improve the quality of the interfacial triangles. In our implementation, we adapted the714

Matlab package EasyMesh, a two-dimentional quality mesh generator to carry out this task [25].715
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Fig. 3: Snapshots of the expanding interface in Step 4 of Algorithm 2. (Top-left) initial mesh with
Ra “ 5; (Top-right) mesh with Ra “ 6: after removing the neighboring continuum nodes close to
the interface, move the interface outward by 1 layer ; (Bottom-left) generating new continuum nodes
(marked with green triangles) and adjusting their positions to maintain the quality of mesh; (Bottom-
right) final triangulations.

4.2. Model Problem. Recall the EAM potential defined in (5). Let716

φprq “ expp´2apr ´ 1qq ´ 2 expp´apr ´ 1qq, ψprq “ expp´brq717

718
F pρ̃q “ C

“

pρ̃´ ρ̃0q
2 ` pρ̃´ ρ̃0q

4
‰

719

with parameters a “ 4, b “ 3, c “ 10 and ρ̃0 “ 6 expp0.9bq, which is the same as the numerical720

experiments in the a priori analysis paper [37].721

To generate a defect, we remove k atoms from Λhom,722

Λdef
k :“ t´pk{2qe1, . . . , pk{2´ 1qe1qu, if k is even,723

Λdef
k :“ t´pk ´ 1q{2e1, . . . , pk ´ 1q{2e1qu, if k is odd,724725

and Λ “ ΛhomzΛdef
k . See Figure 4 for an illustration.726

For ` P Λ, consider the nearest neighbour interaction, N` :“ t`1 P Λ | 0 ă |`1 ´ `| ď 1u, and727

interaction range R` :“ t`1 ´ ` | `1 P N`u Ď taj , j “ 1, . . . , 6u. The defect core Ddef can be defined by728

Ddef “ tx : distpx,Λdef
k q ď 1u, Λ

Ş

Ddef is the first layer of atoms around Λdef
k .729

4.3. Di-vacancy Example. In this section, we numerically justify the performance of the pro-730

posed adaptive mesh refinement algorithm. We take the same di-vacancy example in [37], namely,731
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Fig. 4: Illustration of the atomistic lattice Λ with 3 vacancies surrounded by 5 atomistic layers.

setting k “ 2 for Λdef
k . We apply isotropic stretch S and shear γII by setting732

B “

ˆ

1` S γII
0 1` S

˙

¨ F0733

where F09I minimizing the Cauchy-Born energy density W, S “ γII “ 0.03. In our numerical exper-734

iments, the reference solution denoted as ur is solved by GRAC method with a sufficient large mesh735

where Ra “ 93 and R “ 17298.736

4.3.1. Fixed computation domain. In this subsection, we fix R “ 1000. The numerical results737

are shown in Figure 5 and Figure 6. The red dashed lines in both figures denote the truncation errors738

ηT and η2
T respectively. The figures show that when N is small, the modelling error and coarsening739

error dominates, our results coincide with the optimal a priori convergence rate (N´1 for H1 norm740

and N´2 for energy, respectively). When N increases, the truncation error becomes dominant, which741

results in a suboptimal convergence rate and finally saturates the overall error. These results indicate742

that for a fixed computational domain, we can only achieve optimal convergence rate up to a certain743

critical degree of freedom. A possible cure is to enlarge the computational domain in order to balance744

the truncation error with the modeling and coarsening errors, which motivates the next numerical745

experiments.746

4.3.2. Adaptive algorithm with automatic control on domain size. With the estimator747

ηT for the truncation error, we can modify the Algorithm 2 to automatically enlarge the computational748

domain if the truncation error is dominant in the total error ρ.749

Remark 4.4. In our current implementation, we first generate an initial graded triangulation on750

ΩRmax
in a way that it contains the triangulation of a sequence of domains ΩRk

such that R0 ă751

R1 ă ¨ ¨ ¨ ă Rmax. Therefore, when we need to enlarge the computational domain in Step 4 of the752

above algorithm, we simply combine the triangulation for the current domain ΩRk
and the initial753

triangulation of ΩRk`1
zΩRk

to generate the triangulation for ΩRk`1
.754

From the numerical results in Figures 7 - 8, we can see that with Algorithm 3, it is possible to755

change the domain size automatically, and maintain the optimal convergence rate without the error756

saturation phenomenon we observed for fixed size computations. The parameter τ3 can be used to tune757

the balance between truncation error and other error contributions. With a smaller τ3, the algorithm758

tends to enlarge the domain more frequently, while with a larger τ3, the algorithm tends to push759

outward the atomistic region and refine the coarse mesh more frequently. In the numerical results,760

we test two values τ3 “ 0.3 and τ3 “ 0.7. Although there are some small differences, the overall761

convergence behaviour looks similar and are comparable to the a priori results.762
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Fig. 5: Numerical results by Algorithm 2 and Remark 4.1 with R “ 1000, τ1 “ 0.7, τ2 “ 0.2. we
denote εH1 as the actual H1 error }∇uh´∇ur}L2 with uh solved by residual estimator driven algorithm,
εH1

E as the H1 error with solutions solved by energy estimate driven algorithm, εT the actual residual
truncation error.
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Fig. 6: Numerical results by Algorithm 2 and Remark 4.1 with R “ 1000, τ1 “ 0.7, τ2 “ 0.2. we
denote εE as the actual energy difference }E h ´ E r}L2 with uh solved by residual estimator driven
algorithm, εEE as the energy difference with solutions solved by energy estimate driven algorithm, εTE
the actual energy truncation error.
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Algorithm 3 A posteriori mesh refinement with size control.

Step 0 Prescible ΩR0
, Th, Nmax, ρtol, τ1, τ3 and Rmax.

Step 1 Solve: Solve the a/c solution uh,R of (10) on the current mesh Th,R.
Step 2 Estimate: carry out the stress tensor tensor correction step in Algorithm 1, and compute

the error indicator ρT for each T P Th, including the contribution from truncation error ηT .
Set ρT “ 0 for T P Ta

Ş

Th. Compute the degrees of freedom N , error estimator ρT and
ρ “

ř

T ρT . Stop if N ą Nmax or ρ ă ρtol or R ą Rmax.
Step 3 Mark:

Step 3.1 : Choose a minimal subset M Ă Th such that

ÿ

TPM
ρT ě

1

2

ÿ

TPTh

ρT .

Step 3.2 : We can find the interface elements which are within k layers of atomistic distance,
Mk

i :“ tT PM
Ş

T c
h : listpT,Λiq ď ku. Choose K ě 1, find the first k ď K such that

(76)
ÿ

TPMk
i

ρT ě τ1
ÿ

TPM
ρT ,

with tolerance 0 ă τ1 ă 1. If such a k can be found, let M “ MzMk
i . Then in step 3,

expand interface Λi outward by k layers.
Step 4 Refine: If (76) is true, expand interface Λi outward by one layer. If ηT ě τ3ρ, enlarge the

computational domain (details in Remark 4.4) . Bisect all elements T PM. Go to Step 1.
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Fig. 7: Numerical results by Algorithm 3 and Remark 4.4: H1 error vs. Degree of Freedom with
τ3 “ 0.3 and τ3 “ 0.7 or both residual estimate driven and energy estimate driven algorithms. The
aPriori curve shows the corresponding a priori convergence.
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with τ3 “ 0.3 and τ3 “ 0.7 for both residual estimate driven and energy estimate driven algorithms.
The aPriori curve shows the corresponding a priori convergence.
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5. Conclusion. In this paper, we derive rigorous a posteriori error estimates for a class of consis-763

tent (ghost force free) atomistic/continuum coupling schemes. Numerical results for the corresponding764

adaptive algorithms are comparable to optimal a priori analysis. This opens an avenue for further765

mathematical analysis and algorithmic developments for longer range interactions, higher dimensional766

problems, and general atomistic/continuum coupling algorithms.767

For general short range interactions longer than the nearest neighbour, the stress tensor can be768

defined using the localization formula and quasi-interplant as in the a priori analysis [28, 30, 33].769

The residual estimate can be carried out analogously as in this paper. However, such a stress tensor770

is not anymore piecewise constant, and may require complicated geometric operations to evaluate.771

Therefore, the numerical implementation is difficult and we are currently pursuing an alternative772

approach to define piecewise constant stress tensor field for general short range interactions.773

The extension to the case of the straight screw dislocation in 2D and point defect case in 3D is774

straightforward. More practical problems, for example, the study of dislocation nucleation and dislo-775

cation interaction by a/c coupling methods has attracted considerable attention from the early stage776

of a/c coupling methods [45, 39]. The difficulty is to deal with boundary condition and complicated777

geometry changes of the interface.778

For general atomistic/continuum coupling schemes, such as BQCE, BQCF and BGFC, the a priori779

analysis in [18, 15, 38] provide a general analytical framework and the stress tensor based formulation780

plays a key role in the analysis. Therefore, the a posteriori analysis for those coupling schemes can781

inherit this analytical framework and the stress tensor formulation. The stress tensor correction method782

and other techniques developed in this paper will be essential for the efficient implementation of the783

corresponding adaptive algorithms.784
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Appendix A. Extension to the vacancies.788

We need to extend v from Λ to Λhom which includes the vacancy sites. We first define the extension789

operator E on U by790

(77) Eu :“ argmin
vPU ,v“u on Λ

ΦBpvq :“ argmin
ÿ

bPB
|ρb ¨Dbv|

2, @u P U ,791

where B defined in (44) is the set of all nearest-neighbour interaction bonds in Λhom. Notice that for792

v P U , }∇v}L2 can be properly and uniquely defined by }∇Ev}L2 .793

It is known from [31, Proposition 4.1] that ΦBpvq is equivalent to }∇v}L2 such that,794

(78)
3

4
}∇v}2L2 ď ΦBpvq ď

9

4
}∇v}2L2795

Since A´1EAv “ Ev on Λ, by definition of Ev, we have ΦBpA
´1EAvq ě ΦBpEvq. Combining with796

the inequality }GH}F ď }G}F }H}F for the matrix Frobenius norm and (78), it holds that,797

}∇Ev}2L2 ď
4

3
ΦBpEvq798

ď
4

3
ΦBpA

´1EAvq799

ď 3}∇A´1EAv}2L2800

ď 3}A´1}F }∇EAv}2L2 .(79)801802
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