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Automating Output Size and Reuse Metrics 
in a Repository-Based Computer-Aided 

Software Engineering (CASE) Environment 
Rajiv D. Banker, Robert J. Kauffman, Charles Wright, and Dani Zweig 

Abstract-Measurement of software development productivity 
is needed in order to control software costs, but it is discour- 
agingly labor-intensive and expensive. Computer-aided software 
engineering (CASE) technologies-especially repository-based, 
integrated CASE-have the potential to support the automation 
of this measurement. In this paper, we discuss the conceptual ba- 
sis for the development of automated analyzers for function point 
and software reuse measurement for object-based CASE. Both 
analyzers take advantage of the existence of a representation of 
the application system that is stored within an object repository, 
and that contains the necessary information about the application 
system. We also discuss metrics for software reuse measurement, 
including reuse leverage, reuse value, and reuse classi3cation 
that are motivated by managerial requirements and the efforts, 
within industry and the IEEE, to standardize measurement. The 
functionality and the analytical capabilities of state-of-the-art au- 
tomated software metrics analyzers are illustrated in the context 
of an investment banking industry application that is similar to 
systems deployed at the New York City-based investment bank 
where these tools were developed and tested. 

Index Terms-Computer-aided software engineering (CASE), 
function point analysis, object-based development, programming 
productivity, repositories, reuse, software costs, software engi- 
neering economics, software metrics 

I. ~NTRODUCT~ON 

A. The Incentive and Opportunity to 

HE RECENT upsurge in interest concerning computer- T aided software engineering (CASE) technologies [59] 
provides managers with both an incentive and an opportunity 
to measure software development performance. The incentive 
is that documenting the productivity gains from CASE can 
help to justify (or, for some products, to discourage) the large 
investment that the technology often requires. One popular 
press observer of these developments has recently written: 

Automate Sofmtare Metrics 
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Like handcrafted fumiture, software has traditionally been 
customized for a task in a laborious process more akin 
to artistic work than to engineering. [But now], software 
is increasingly being written in the form of pre-fabricated 
pieces that can be reused in different combinations, much as 
plumbing systems can be tailored for each house yet still be 
built out of standard pipes, valves and joints.’ 
Many observers believe this is a “software industrial revolu- 

tion” in the making, a view that has been held in the computer 
science research community since the 1970s [38], [54]. The 
cost of participating in this revolution may be substantial, 
however, whereas the benefits have proven hard to verify [ 121, 
[471, [481. 

The opportunity is that of automating the collection of 
productivity data. Any firm with high software expenditures 
has a strong incentive to control and improve its software 
development productivity, and this requires measurement [ 171, 
[27], [39], [43], [50], [61]. But in traditional software shops, 
such measurement requires discouragingly expensive man- 
ual analysis of the software. CASE technologies, especially 
repository-based integrated CASE technologies, provide a 
means by which to automate a variety of software metrics 
that can help managers to gain better control of their software 
development operations.* 

Automation of the process of collecting key software met- 
rics is likely to be one of the next areas to receive attention 
from CASE tool vendors. Sofmtare Magazine expressed a 
similar view of the future by showcasing products from 
nearly 40 vendors that measure productivity within a CASE 
environment [12]. Very few of these, however, automate the 
collection of the software metrics needed for productivity 
analysis. The majority are project management tools that 
require a significant amount of input from the user to make 
them useful. The magnitude of this manual burden is precisely 
what has made productivity measurement so difficult to carry 
out in the past. 

In this paper, we examine the automation of two important 
metrics: 

1) function points: A measure of programmer output in 

2) sofmare reuse: A major determinant of programmer 
terms of software functionality. 

productivity. 

‘See 1561. 
2For an introduction to the “repository” concept, see [23], (291, 1361, and 
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Function point analysis is a widely accepted means of measur- 
ing output in management information systems (MIS) software 
development, but it is very labor-intensive, especially for large 
systems, which has limited its adoption. 

Software reuse allows organizations to take advantage of 
previous development efforts, rather than paying to create 
every system from scratch. Extensive reuse in the construction 
phase can increase productivity by an order of magnitude and 
more [4], because of the use and invocation of previously 
developed software modules. But the reader should recognize 
that reuse offers a philosophy for software development that 
extends to every phase, including reuse of abstract represen- 
tations of a system [42], software objects [44], [45], and 
reusable components [46], prototypes and partial systems [57], 
data and data models, program architecture and data structure 
designs [20], [37], and downstream life-cycle processes (such 
as implementation and test routines) [60]. In this way, software 
reuse offers the potential to create even greater long-term 
benefits, especially when efforts to reuse extend to include 
early life-cycle planning activities, enabling development of 
systems that share common architecture and common design 
elements [59]. In fact, it has been recognized that it is 
highly desirable to conduct software development projects that 
result in reusable objects, which can then be used widely 
by various development projects within a firm. Reuse, other 
than the explicit invocation of previously written modules, has 
proven difficult to identify, let alone measure. Software reuse 
analysis, like function point analysis, requires knowledge of 
the semantics of the software being analyzed. 

This paper focuses upon function point and software reuse 
measurement in the construction stage of software develop- 
ment. As we shall see, however, this measurement supports 
ex ante cost estimation for the entire development process, as 
well as providing expost insights into the level of productivity 
achieved in CASE development environments. To automate 
the computation of these metrics, we require the ability to 
automate the analysis of the content of the software being 
analyzed. We shall see that in addition to other benefits claimed 
for it, repository object-based development can provide this 
capability, primarily by encouraging the division of software 
into more easily analyzed units than the traditional procedure- 
oriented program. 

A prerequisite for gauging the strength of any “industrial 
revolution in the making” is the ability to measure such basic 
factors as output and productivity. Despite annual software 
costs rising into the hundreds of billions of dollars, and a 
general agreement that these costs must be controlled [8], 
[9], such measurement has proven too difficult and expensive 
for most organizations. We will examine the potential of 
modem software development tools not only to increase the 
productivity of the software development function, but to 
finally begin to provide management with an understanding 
of how to bring it under control. 

B.  Organization of the Paper 

In this paper, we discuss the foundations for the design 
and common architecture, and managerial application of two 

automated software metrics analyzers made possible by using 
a repository-based Integrated CASE Environment (ICE). These 
include a Function Point Analyzer (FPA) and a Sof iare  Reuse 
Analyzer (SRA). The remainder of the paper is organized as 
follows. Section I1 introduces the basic concepts necessary to 
understand our strategy for developing the automated software 
metrics facilities. It includes an overview of the function point 
analysis methodology; a discussion of why the methodology 
is useful, but costly and problematic to implement; a consid- 
eration of prior attempts to automate function point analysis; 
and an examination of the features of repository object-based 
CASE development environments that enable us to automate 
function point analysis. Section 111 presents the conceptual 
basis of the FPA. We make the argument that much of the 
information necessary for function point analysis is readily 
available in an application’s metamodel, and we show how 
the repository objects and the relationships between them 
can be mapped into function point analysis3 We present the 
architecture for FPA and then illustrate how it navigates the 
hierarchy of rules to conduct an exhaustive search of the user 
functionality built into an application. 

Section 1V presents the conceptual basis for the SRA. 
We discuss three classes of software reuse metrics that are 
prompted by recent efforts to standardize such measurement, 
explain the design of SRA, and describe the manner in 
which it navigates the application metamodel hierarchy to 
obtain the relevant information to instantiate the metrics. 
The concluding section addresses additional technical and 
managerial questions that were raised by our work, and the 
future research required to resolve them. It also summarizes 
the contributions of this work to practitioners and to research 
on software development productivity. The paper includes 
a stand-alone example of how the analyzers and six reuse 
metrics can be applied to an investment banking application 
called the Broker Sales Reporting System. 

11. AUTOMATING FUNCTION POINT ANALYSIS: PRELIMINARIES 

A. Function Point Analysis 

The magnitude of a software development project’s effort 
depends upon several factors, including the amount of infor- 
mation processing accomplished by the system, the quality 
and the extent of the input and output interfaces provided 
to meet the users’ needs, and environmental productivity 
factors ranging from the quality of the hardware used by the 
programmers to the sophistication of the users requesting the 
software [64]. Function point analysis, originally developed 
by Allan Albrecht of IBM, provides a summary measure 
of the functionality of a system, and is especially useful 
as a descriptor of MIS applications. This measure, modified 
by another that incorporates the influence of environmental 

3The term “metamodel” builds on the idea of “metadata,” i.e., those 
elements of a data dictionary that describe the keys, attribute order, formats, 
and rules applied to individual records and attributes in a database. A 
repository stores additional metadata conceming many other aspects of the 
total system of which the database is only a part ([23], p. 47). In this paper, we 
focus almost exclusively on the capability of a repository to store information 
concerning the relationship between objects that comprise a system. 
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productivity factors, provides an empirically tested basis for 
managers to estimate the resources required to build systems 
of various sizes [I], [2]. 

Function points are meant to provide a language- 
independent and implementation-independent measure of 
the functionality actually produced and delivered to the 
user. In this, they differ from code-output measures (such as 
source lines of code) that can reward verbose programming 
practices. Since its introduction in the late 1970s, function 
point analysis has evolved, with the help of the Intemational 
Function Point Users Group (IFPUG), into a well-accepted 
and operationally well-defined methodology that is used in 
many firms [18], [61].4 

Function points are computed by measuring the degree of 
functionality actually delivered to the user of the system, in 
terms of reports, inquiry screens, and so on. Function counts 
are determined by computing a weighted sum of the point 
scores that are assigned (on the basis of their complexity) to 
each External Input, External Output, Logical Intemal File, 
Extemal Interface, and Query that comprise the system. The 
weights depend in part upon the complexity of the given inputs 
and outputs, as determined by the number of data elements and 
relations involved. Function counts are further adjusted by a 
measure of the environmental complexity when a project is 
implemented. The mathematical definition of function points 
is shown below: 

designed, rather than as it was finally delivered. This can 
force the analyst to spend even more time analyzing the code 
to determine the extent to which the design documentation 
reflects the functionality that was actually produced. 

A third concem is that of calibrating the analyses of people 
who carry out the function point analysis. Our experience in 
a study of the productivity of CASE development suggested 
that even when well-trained individuals perform function point 
analysis for the same set of software projects, there are bound 
to be discrepancies that have to be resolved [4]. Individual 
differences in interpretation of documentation, knowledge of 
an application, and experience in conducting function point 
analysis can all drive these differences. Low and Jeffrey [40] 
examined the reliability of function point analysis in a more 
structured manner and found that significant training in the 
use of the complexity measures is necessary to ensure that the 
correct constructs are being measured. More recently, Kemerer 
[34] found evidence to support a more optimistic view. His 
empirical work showed that counts differ by no more than 
about plus or minus 10% between well-trained analysts. This 
level of agreement, again, requires a substantial manpower 
investment, first in training and subsequently in analysis. 

B .  ICE: A Repository Object-Based Integrated 
CASE Environment 

A large New York City-based investment bank made the 
initial commitment to design and develop a repository object- 
based integrated CASE environment at a cost of tens of 
millions of dollars over the course of three years. ICE was 
built by the firm as a response to the problems it faced in 
developing and maintaining technically complex systems. The 

FUNCTION POINTS = FUNCTION COUNTS 

1 14 

COMPLEXITYf) , 

where 

FUNCTION COUNTS = 

COMPLEXITY FACTORf = 

the sum of the instances 
of the five function types, 
including External Inputs, 
External Outputs, Logical 
Intemal Files, External 
Interfaces and Queries; 
a variable, f, associated 
with one of fourteen 
descriptors of the 
implementation complexity 
of a system. 

Two papers provide useful critiques of function point analy- 
sis, altemative definitions and the issues that arise in calculat- 
ing and using them in practice [34], [64]. The Appendix offers 
a more in-depth description of the mechanics of function point 
analysis, and includes a summary of the 14 complexity factors. 

One roadblock to collecting function point metrics for soft- 
ware applications is that their computation, usually performed 
manually, is very labor-intensive. In addition, such compu- 
tation requires the availability of consistently good system 
documentation. In practice, where design documentation exists 
at all, it too often describes the system as it was originally 

4For additional details on the implementation of function points that extends 
the approaches presented by Albrecht and Gaffney [2] and Zwanzig [70] ,  see 
Symons [63], who discusses function points with entity-type complexity rules. 

~~ 

firm’s computer operations were geographically distributed, 
and were required to perform effectively on a 24-hour basis. 

Similar to others in the investment banking industry, 
the firm had been experiencing rapidly mounting software 
costs that were expected to further rise as its trading 
activities expanded to provide global coverage. To achieve 
competitive performance in this environment required the 
firm’s developers to program applications that were shared 
by three hardware platforms (mainframe, minicomputer, and 
microcomputer), each programmed in a different language: 
COBOL, PL/I, and C++, respectively. A CASE tool was 
needed that would support the programming of systems 
running simultaneously on all three platforms, and reduce 
the firm’s reliance on three separate sets of highly skilled 
programmers. 

ICE applications are written in a 4GL that buffers program- 
mers from the complexity of the firm’s operating environment. 
ICE automatically translates the 4GL code into the languages 
appropriate for the target platforms, and communication pro- 
tocols for cooperative processing across platforms are han- 
dled without programmer intervention. Project managers and 
software developers whom we interviewed commented that 
development in this environment, with the strong emphasis on 
software reuse, and with much of the coding effort automated, 
tends to shift effort from the construction phase to the analysis 
and design phases. 
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ICE maintains a metamodel whose structure is derived from 
entity-relationship modeling [ 141, and ICE was especially con- 
structed to support the development of cooperative processing 
applications. The code is organized according to objects that 
play specific roles in the functions delivered by the application, 
and the various software functions can be allocated across 
hardware platforms in the most appropriate manner. This 
organization is also what makes it practical to automate the 
analysis of the code for the computation of function points. 

A feature of ICE, of special interest for the discussion 
that follows, is its object repository. This includes all of the 
definitions of the data and objects that make up the organi- 
zation’s business, and also all of the pieces of software that 
comprise its systems. In addition to the stronger control that it 
provides, the advantage associated with a single repository for 
all such objects is similar to that for having a single database 
for all data: a program, procedure, screen, or report needs to 
be written only once, no matter how many times it is used. 
Such reuse has the potential to decrease software development 
costs, and it forces developers to more carefully “engineer” 
an information and information systems architecture that will 
form a solid base for the firm’s business. The repository 
also makes the automation of software reuse measurement 
practical, because it maintains a record of each object and 
where it is used or reused. 

C. Definitions of Basic ICE Objects 

The ICE object repository stores information about the 
different kinds of entities or objects that form the basic build- 
ing blocks of ICE-developed applications: BUSINESS PRO- 
CESSES, RULE SETS, 3GL MODULES, SCREEN DEFINI- 
TIONS, FILES, DATA VIEWS, DATA ELEMENTS, DATA 
DOMAINS, REPORTS, and REPORT SECTIONS. It is useful 
to think of these objects as being similar to corresponding 3GL 
constructs. For example, a RULE SET is analogous to a 3GL 
procedure, and a SCREEN DEFINITION can be thought of as 
a window that provides a user interface. At the same time, it 
is worthwhile to keep in mind that the object definitions in the 
ICE environment are deliberately precise and rigid, with the 
result that an analysis of the metamodel gives us a great deal 
of semantic information about the application system without 
forcing us to analyze the actual code. We next consider each 
object type in more detail. 

A RULE SET contains most of the instructions that ob- 
servers unfamiliar with CASE tools would tend to think of 
as “the program.” Most of the “traffic control” resides there. 
A RULE SET can use other RULE SETS or 3GL MOD- 
ULES, invoke REPORTS, which in tum invoke REPORT 
SECTIONS, access FILES, and communicate with SCREEN 
DEFINITIONS. (The 4GL used by ICE has a specialized set of 
verbs to describe the various interactions among object types.) 

A 3GL MODULE is a precompiled procedure, originally 
written in a specific 3GL. Although the 4GL language used 
by ICE developers is very small and general, it provides 
the 10% of the data handling and computational capabil- 
ities that constitute over 90% of the functionality of an 
information system. It is left to 3GL MODULES to imple- 
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Business 
Function 
(system i level) 

(Subsystem 

Set B Set C -- 
Fig. 1. A repository-based application metamodel. A BUSINESS FUNC- 
TION is represented in ICE by a menu of BUSINESS PROCESSES. An 
application consists of all of the objects called (directly or indirectly) by 
a given BUSINESS PROCESS. The first step in analyzing a system is to 
identify these objects, by iterativelytracing the calling relationships stored in 
the metamodel. A BUSINESS PROCESS will call one or more RULE SETS. 
Each RULE SET, in turn, may call other RULE SETS, 3GL MODULES, or 
other ICE objects (Fig. 2). Note that the use of an object by an application 
system does not preclude its reuse by another application. 

ment more specialized capabilities. In investment banking 
operations, highly quantitative options pricing and other val- 
uation procedures for derivative instruments exist on the 
shelf in optimized 3GL code at most firms. Such proce- 
dures are used intact as 3GL MODULES, rather than being 
recoded. 

A SCREEN DEFINITION is the logical representation of 
an on-screen image. A RULE SET can communicate with a 
given SCREEN DEFINITION, meaning that data are passed 
back and forth between them. The user-interface capabilities 
of a SCREEN DEFINITION are built into ICE, and do not 
have to be considered by the developer. This tends to speed 
the development process for screens in ICE. By comparison, 
the creation of screens delivered by IBM 3270 terminals using 
traditional development methods is more labor-intensive by a 
full order of magnitude [41. 

A DATA VIEW consists of a set of DATA ELEMENTS, 
data objects that have been defined in the object repository. A 
DATA VIEW can be thought of as a logical data record. The 
communication of all data between ICE objects is mediated by 
DATA VIEWS. For example, data are passed from a RULE 
SET’S DATA VIEW to a SCREEN DEFINITION’S DATA 
VIEW and back. Data for a 3GL MODULE or a REPORT 
must similarly be passed through a DATA VIEW. 

A REPORT means much the same thing in ICE as it 
does in other development environments. More specifically, a 
REPORT is the internal logical representation of the physical 
report. REPORTS consist of one or more REPORT SEC- 
TIONS, each with its own layout. 

Each of these ICE objects is reusable, and good practice in 
the context of ICE development is to reuse them as much 
as possible. Placing all of the objects associated with an 
application in the object repository has two intended effects: 
It prevents a programmer from circumventing the discipline 
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Fig. 2. ICE repository objects. This figure is an expansion of RULE SET A from Fig. 1 .  There is a well-defined set of relationships 
allowed. Each object resides in the repository, and has a descriptive entry in a database table that also resides there. In addition, the 
repository contains other tables with entries for each relationship between two objects. A RULE SET may also use preexisting 3GL 
MODULES. The repository contains no information about the processing performed by these modules. Any functionality that they 
provide the user, via REPORTS, FILES, or SCREENS, however, must be mediated by an ICE object. 

of database and object management, and it makes all of the 
objects of one application available for reuse by any other 
application that is stored in the rep~si tory.~ 

D. From ICE Repository Objects to ICE 
Application Metamodels 

An ICE application system consists of ICE repository ob- 
jects, such as RULE SETS and SCREEN DEFINITIONS, 
communicating with each other in a structured manner. This 
is illustrated in Fig. 1. A single application is invoked by a 
menu item that calls a high-level BUSINESS PROCESS. This 
high-level BUSINESS PROCESS in turn refines into other 
RULE SETS, which may in their own tum use other RIJLE 
SETS or 3GL MODULES. A RULE SET may uccess a DATA 
VIEW through which it can communicate with a SCREEN 
DEFINITION, or create a REPORT. The DATA VIEW, in 
rum, will be defined by one or more DATA ELEMENTS. A 
RULE SET or 3GL MODULE may also uccess a FILE.6 

These relationships, like the objects themselves, reside in 
the object repository. Every such relationship is represented 
by a DB2 database entry, and, collectively, this database 

'Veryard has noted that considerable effort must still be expended to make 
code reuse work effectively: 

[Reusable] code may be more difficult to design and test, and there is 
always a temptation for the designer to develop something new, rather 
than take the trouble to investigate and implement something that already 
exists. 

See [68, p. 2291. 
'The verbs in the ICE 4GL language that we have already mentioned 

include use. m w ,  communicate. creme. include. and ac'c'ess. The reader now 
should have a feel for how the nouns and verbs go together. without focusing 
on details of the syntax that ICE enforces. 

of relationships constitutes the application metumodel-the 
abstract structural map of the application system as shown 
in Fig. 2. 

We can use this general metamodel to identify the objects 
associated with any application system. Because the meta- 
model is hierarchical, following the chain of relationships will 
reliably lead us to all the objects that may be accessed or 
invoked by a given object. Traversal of the hierarchy of RULE 
SETS that comprise an application, or sets of applications, 
is a very powerful capability that is exploited in the design 
and development of automated software metrics facilities 
for ICE. Clearly, any attempt to automate the collection of 
software metrics in ICE begins with a major advantage over 
similar efforts in third-generation environments. Much of the 
information needed to calculate a variety of software metrics 
(e.g., software reuse, complexity, function points) is already 
contained in usable form in the metamodel. This information 
would have to be deduced from a detailed (and probably 
manual) analysis of the source code developed in a third- 
generation environment. 

111. FPA: A FUNCTION POINT ANALYZER FOR ICE 

ICE satisfies two important prerequisites for the automation 
of function point analysis. First, the object repository and its 
application metamodels allow us to automate the identification 
of all software belonging to a given system. In traditional 
environments, this task must be accomplished on the basis 
of documentation, which is rarely complete or up-to-date, 
and software naming conventions that, even when they are 
followed, rarely identify the use of software by multiple 
applications. 
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FUNCTION TYPE 

Extemal inputs 

External interfaces 
Extemal queries 
Internal files 

External outputs 
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FUNCTION COMPLEXITY SCORES (c) 

Simple Average Complex 

3 4 6 
4 5 7 
4 5 7 
4 5 6 or 7 
7 I O  15 

output 
Type A P P L I CAT1 0 N BO U N DA RY 

Fig. 3. Mapping from ICE objects to function counts. Function point analysis measures the functionality that a system delivers 
to the user in t e m s  of data transfers into or out of that system (External Inputs, Extemal Outputs, Queries, External Interfaces), 
and in terms of the data stores (Logical Intemal Files) used. A 3GL program can contain functionality of all five classes. An ICE 
object, however, is severely constrained in the functionality that it can represent, to the point where a system’s function count can 
be computed by identifying and classifying its objects. See Table 1. 

Second, the design of ICE’S object-based 4GL is such that 
a precise mapping may be defined between each object and 
its associated functionality. In traditional environments, the 
only way to perform the mapping between programs and 
functionality is to manually figure out what each program is 
doing, again with the aid of such documentation as may exist. 

A .  Mapping Function Point Concepts to ICE Objects 

Of the five function types used in the computation of func- 
tion points, four measure data flows that either enter or leave 
the boundary of an application. These include External Inputs, 
External Outputs, Extemal Interfaces, and Queries. Logical 
Internal Files constitute the fifth function type; they measure 
data stores intemal to the application. ICE decomposes object 
and entity-relationship definitions into specific functional roles, 
and there is a well-defined mapping from ICE objects or 
relationships to function counts. This is illustrated in Fig. 3, 
which also provides a conceptual representation of what we 
mean by the “application boundary.” 

External Inputs: A SCREEN with an output DATA VIEW 
(i.e., a SCREEN that sends data back to the invoking RULE 
SET) is an External Input. A FILE access is an input if 
the FILE is external to the system. The complexity of the 

TABLE I 
FUNCTION POINT ANALYSIS FUNCTION COMPLEXITY MATRIX 

Extemal Input is determined by examining the number of 
DATA VIEWS and ELEMENTS or, in the case of a FILE 
access, the number of keys instead of DATA VIEWS. 

External Output: A SCREEN with an input DATA VIEW 
(i.e., a SCREEN that receives data from the RULE SET that 
calls it) is an External Output, as is a REPORT or an output to 
an external FILE. Again, the complexity of the External Output 
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TABLE I1 
REPOSITORY OBJECTS AND THE COMPUTATION OF FUNCTION COUNTS 

BROKER SALES OBJECT NAMES FUNCTIONALITY COUNT USED COUNT OBJECT TYPES 

RULE SETS 

On-line reporting 
Batch reporting 

On-line update 
On-line inquiry 
Sales retrieval 

1 
Simple INPUT 3 1 3 
Simple EXTERNAL 

INTERFACE 1 1 1 
1 
2 
3 

Sales summary 3 
3GL MODULES Calculate commission 3 

Individual sales 1 
Summary sales 1 

REPORTS 

Transaction detail Average output 5 1 5 
REPORT SECTIONS Exception reporting Simple output 4 2 8 

Detail sales 3 average QUERIES 5 2 30 
Summary sales 
Inquiry and update SCREEN 

DEFINITIONS 

3 average QUERIES 5 2 30 
Average INPUT 4 1 4 
Average QUERY 5 1 5 
Average OUTPUTS S 2 I O  

DOMAINS Transaction types Simple INTERNAL FILE 7 1 1 

Transaction detail 

FILES 

Average INTERNAL FILE 10 4 40 
Average INPUT 4 4 16 
Average EXTERNAL 

INTERFACE 7 4 28 

TOTAL FUNCTION COUNT 198 

Nofe: For every screen that displays tabular data, ICE automatically generates a graphic display screen and a HELP screen as well. 
The Function Point Analyzer identifies all of the repository objects in the application system and determines how many times each is used. 

The Detail Sales Screen, for example, is used twice: in response to an Online Inquiry and in response to an Online Update. In the latter case, 
the Online Update RULE SET reuses the Online Inquiry RULE SET and all of the objects (including the Detail Sales Screen) that i f  uses. 

The Analyzer then determines the function types associated with each object. An application’s functionality depends upon its data stores 
and upon the flows of data (reports, queries, or updates) across its boundary. Thus, almost all of its function counts will be associated 
with REPORT SECTIONS, SCREENS, or FILES. In this example, there is also some functionality associated with a RULE SET that has 
accessed a FILE belonging to a different application system. 

is determined by examining the number of DATA VIEWS and 
ELEMENTS or, in the case of a FILE access, the number of 
keys instead of DATA VIEWS. 

Queries: A SCREEN that allows a user to access data, 
but not to update it (this can be determined by comparing 
the FIELDS used in its input and output VIEWS), repre- 
sents a Query. (Queries have lower function counts than 
the input-output combination of update-capable screens.) The 
complexity of a query is determined by examining the number 
of DATA VIEWS and ELEMENTS. 

Logical Internal Files: A Logical Internal File is defined in 
the following manner: A FILE is internal to an application if 
some RULE SETS and 3GL MODULES that access the FILE 
are also internal to the application. (FPA checks which RULE 
SETS or 3GL MODULES access the FILE and examines 
whether they are subordinate to the high-level RULE SET 
or BUSINESS PROCESS that defines the application). The 
complexity of a Logical h e m a l  File is determined by the 
number of keys and DATA ELEMENTS that it is defined to 
possess. 

FPA also counts DATA DOMAINS, a special case of FILES 
with ICE. DATA DOMAINS are used by an application 

to validate or verify the values that a user inputs and are 
analogous to sets. 

External Interfaces: A FILE that is accessed by a RULE 
SET or a 3GL MODULE that is not part of the application 
represents an External Interface, as well as either an External 
Input or an External Output. The complexity of the interface 
is determined by the number of DATA ELEMENTS and keys. 

Each function type gives rise to a number of function counts 
that depend upon its type and complexity. The function count 
of a system is the sum of the function counts of its component 
function types. See, Table 1. 

In most third-generation languages, a single program may 
easily give rise to any or all of the five function types, possibly 
multiple times. The only way to determine the functionality 
that it represents is to read and understand it. Each ICE object, 
by contrast, fills a limited role. That role, as we have seen, may 
be determined by an examination of the metamodel and of the 
data definitions associated with the object. 

B .  Computing Function Points in FPA 

The Function Point Analyzer (FPA) has three main compo- 
nents that execute the function point analysis methodology: 
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OBJECT IDENTIFIER ............................... 
Ent i ty  

Relat ionship 
Table 

an Object Identifier, a Function Counter, and a Complexity 
Factor Counter. These components are shown in Fig. 4. 

The Object Identifier traverses the metamodel in order 
to identify all of the objects used in an application that 
have to be evaluated for functionality. It starts with 
a FUNCTION, PROCESS, or high-level RULE SET 
chosen by the project manager that defines the application 
being analyzed, and navigates the hierarchy downward 
until all relevant objects have been found. 
The Function Counter performs the mapping described in 
the previous section from objects and their relationships, 
to function types and complexities, to function counts. 
The Complexity Factor Counter computes environmental 
complexity, which is used in function point analysis as an 
adjustment factor to allow for the overall complexity of 
the task being implemented and the environment within 
which it is being implemented. A point score is assigned 
to each of 14 complexity factors, and the total of these 
scores is the complexity factor. 

FPA determines the 14 complexity factors from function 
point analysis through a combination of objective, automated 
measures, and online inputs provided by project managers 
familiar with the technical aspects of implementation. In the 
current implementation of FPA, the objective measures are 
computed in parallel with managers' inputs, which take only 
a few minutes. When they have been sufficiently validated 

Ident i fy  Object 
. Objects t o  ~ Repository 

- Meta-Model I Analyze 

through use of FPA, the corresponding manual inputs will be 
replaced entirely, where possible. Each complexity factor has a 
separate input response screen that displays a definition of the 
complexity factor. See Fig. 5. This can help a project manager 
who may not be familiar with function point analysis to give 
accurate and consistent responses. 

The sequence of computation, then, is as follows. 
1) The Object Identifier traverses the metamodel in order 

to identify the objects and relations that may represent 
functionality. 

2 )  The Function Counter computes and sums the function 
count scores associated with those objects and relations. 

3) The Complexity Factor Counter computes the environ- 
mental complexity of the application on the basis of 
user inputs, and generates an adjustment factor for the 
function count. The maximum adjustment, positive or 
negative, is 35%. 

4) Function points are computed as the product of function 
counts and the environmental complexity adjustment 
factor. (Refer to the Appendix.) 

Thus, an automated function point analysis for a given 
application system would result in the collection of all data 
needed to compute function counts and make the environ- 
mental complexity adjustment. The output can be stored to 
a historical database for future use by project, department, 
and senior information system managers. (An illustration of 

_-__-_____________-- --------- 8 -_--_____ __-__--__-__-___-_-_ 
8 

__________________-________ -_ 8 _ _  
Object 

Function 
Table 

Function 
D i f f i c u l t y  

Determine 
Function Type 

Instances 

Count - Weighting 
Determine 

Function 
Scores 

Database 
Calculate Project Manager 

Function VP, IS Development 
Points (FPS) . Chief Information Of f i cer  

I 

I 

I Repository Query 

! Manager Inputs - Table 
Determine 

Complexity 
Scores 
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COMPLEXITY FACTOR 

DISTRIBUTED I"CTI0NS 

COMPLEXITY SCORE 

Complexity Factor 2 

This complexity factor measures the degree an application 
stores data in a distributed manner or distributes the 
processing among CPUs. Applications which involve multiple 
platforms (mainframe, minicomputer and microcomputer) would 
receive a higher complexity score than for a mainframe-based 
application. 

Please select the complexity factor score which most closely 
approximates the extent of cooperative processing: 

0: Data is stored and processing occurs on a single 

1: Data is stored on a single platform, but processing 

2: Data is stored and processing occurs on two platforms. 

3: Data is stored on one platform, but processing occurs 

4: Data is stored on two platforms, but processing occurs 

5: Data is stored and processing occurs on three 

machine only. 

occurs on two platforms. 

on three or more platforms. 

on three or more platforms. 

or more platforms. 

GO 
(to next 1 HELP I 

Fig. 5. Function point analysis complexity measures: An input screen. Each of the 14 complexity factors of the function point 
methodology has its own input screen. Specific, objective descriptions, tailored to the organization's computing environment are 
given to anchor the scoring of the programmer or manager entering the data. Since some of the factors require human judgment, 
user input is still used in some cases. Other complexity factors, however, such as the one above that measures the extent of 
distributed (or cooperative) processing, can be automated entirely, once the operational definition for this complexity factor has 
been implemented in terms of multiplatform processing and data flows using ICE, and validated by managers. At this time, such 
values are provided as modifiable defaults. 

how FPA works in the context of the Broker Sales Reporting 
System is presented in Sidebar 1, in Figs. 5 and 6, and in 
Tables I through IV.) 

Iv. SRA: A SOITWARE REUSE ANALYZER FOR ICE 

Software reuse is known to be a major source of productivity 
gains and cost reduction in software development operations 
131, 1431, 1491, 1601. A study conducted at the Missile Systems 
Division of the Raytheon Company found that more than 60% 
of procedural code was repeated in multiple applications [9], 
and that reuse levels in nonmanufacturing and nonengineer- 
ing business applications (where less technical specificity is 
required) may be even greater. Considering the high costs 
of software development pervasively reported in the popular 
press, reuse represents a source of savings that managers are 
increasingly interested in tapping. 

Because of the difficulties associated with identifying reuse 
in 3GL and 4GL environments, efforts to implement and 
manage successful reuse programs have been stymied in many 
organizations [ 3  11, [41]. Although certain types of explicit 
reuse (e.g., reuse of data definition files) have been easy to 
identify, most reuse in these environments is buried within 
programs where it is not easily identified without considerable 
manual effort. 

An integrated, object-based CASE environment provides 
two major aids to the implementation and measurement of 

Data communications requirements I 1 
Distributed processing requirements 
Response time or performance required 
Heavily used configuration 
High transaction rates 
On-line data entry 
End-user efficiency 
On-line update 
Complex processing or computations 
Application designed for software reuse 
Application designed for ease of installatior 

2 
1 
1 
2 
2 

3 
1 

I 2 

1 :  
Application designed for ease of operation 
Application designed for multiple sites 
A lication desi ned to facilitate chan es 
TOTAL SCORE 

Adjustment factor: 0.94 

The difficulty of developing an application depends not only on its 
magnitude (Function Counts) but also on the complexity of the tasks it 
performs. To adjust for this complexity, scores from 0 (no influence) to 5 
(difficult) are assigned for each of 14 factors. The resulting adjustment factor 
can modify the Function Count by up to 35%) (plus or minus). 

reuse. First, the code exists at a level of granularity more 
conducive to the implementation of software reuse. Although 
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with little modification, were the programmer aware of their 
existence. An object-based system may be designed so that 
each such routine is a unique object. This makes reuse oppor- 
tunities considerably easier to identify and to exploit. Second, 

Number of objects 
Number Of function types 

~ ~ ~ ~ ~ ~ ~ d ~ u o s ~ ~ ~ n t  factor 
Total function points 
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17 
32 

I98 
0.94 
186 

I994 

I I 

Fig. 6. The Broker Sales Reporting System: System layout. The Broker Sales Reporting System consists of those repository objects 
that are invoked by the Broker Sales Reporting Process, and of the relationships between those objects. The PROCESS refines into 
two RULE SETS, one for online processing, and one for batch processing. Since the two RULE SETS generate similar outputs, 
they have a number of other repository objects in common. Each such object is stored only once in the repository, and reused as 
necessary. Each use will be instantiated in the metamodel as an entry in the table of relationships. 

instance of reuse becomes readily identifiable; it is simply the 
repeated invocation of an object within the repository. 

To provide managers with information on software reuse, 
we designed and developed a facility within ICE called the 
Sofhlare Reuse Analyzer (SRA). SRA analyzes an existing 
software application, reporting the levels of reuse for the 
various elements comprising the application. Like FPA, SRA 
identifies all of the relevant objects for a given analysis by 
systematically navigating the hierarchy of calling relationships 
within the repository. 

A. Measurement of Sofmare Reuse 

number of logical source statements (LSS) or physical source 
statements (PSS) incorporated or ported unmodified into an 
application system. New software, then, may be measured by 
the number of LSS or PSS that were created or modified 
for the application system. We have adapted this taxonomy 
for ICE: A preexisting object is considered to be reused if 
it is incorporated unmodified into an application system that 
is designed in accordance with another application system.’ 

’Pamas conceptualized the manner in which an operating system or a 
program carries out its processes by distinguishing between two primary 
operations upon modules, “invokes” and “uses.” “Uses” requires the actual 
execution of a software object in order for the operation to conclude; “invokes” 

According to the IEEE Computer Society’s recent is meant to indicate a conditional call to a software object. Pamas further 
argues that it is possible to formally specify the operation of a software 
application in terms of a module hierarchy that is loop-free while maintaining 
a program structure (more formally called a “uses hierarchy”) that encourages 

dards document, Standard for Sofmare Metrics 
(#lo45 - 1992) [61], reused software may be measured by the 
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In ICE terms, such reuse is implemented simply by adding a 
new relationship to the metamodel, thus calling a previously 
written object. Once all of the objects within an application 
have been identified, SRA computes a number of managerially 
useful reuse metrics that are based upon counts of new objects 
and reused objects in an application system. 

A number of studies have observed that the potential for 
reuse in software development extends far beyond the reuse 
of source lines of code. For example, Jones [32] suggested the 
following kinds of reuse in software development operations: 
data, architecture, designs, programs, and common subsystems 
and modules. Kemighan [35] examined the same issues in the 
context of the UNIX operating system and identified potential 
reuse at the code library, programming language, program, and 
system levels. Bollinger and Pfleeger [ 101 add documentation, 
test data, and intangibles such as specialized leaming to this 
list. The focus of this paper is limited to reuse of coded 
software objects, though ICE stores information about the 

Percent within an application as follows: 

NEW OBJECT PERCENT 
NUMBER OF NEW OBJECTS BUILT * - - 

TOTAL NUMBER OF OBJECTS USED 

To illustrate this metric, let us consider a system consisting 
of 400 objects, of which 100 had to be programmed from 
scratch. The New Object Percent is 100/400 * 100% = 25%, 
meaning that for every four objects within the system, only 
one had to actually be built for that system.” Knowing the 
extent to which new software must be developed across a 
firm’s applications provides management with the opportunity 
to attempt to mandate what levels are desirable and manage 
software development activities to achieve them. 

We may say that the New Object Percent is 25%, or, 
equivalently, that the average object is used four times.12We 
refer to this metric as Reuse Leverage, which we formally 
define as follows: 

REUSE LEVERAGE functional and technical design of a system as well.* 

TOTAL NUMBER OF OBJECTS USED 
NUMBER OF NEW OBJECTS BUILT ’ 

As Hall [28] has pointed out, metrics based on counts of 
- instances of reuse may be deficient in addressing many of the - 

managerial questions concerning reuse: 
[The] developer needs to ascertain what sort of reuse is These measures of reuse can be applied at several levels 
meant. Is it the number of times the code is incorporated 
into other code? The number of times the code is executed? 
A combination, the number of times the incorporating code 
is executed? A figure of merit reflecting the value or utility 
or saving rather than being a simple count of uses?9 
In the process of designing SRA, we identified three primary 

types of issues that its software reuse metrics would need to 
addre ss . 

What objects are being reused? 
How effective is a particular system or environment in 
promoting software reuse? 
What is the impact of this reuse on productivity and 
development costs?1° 

As a result, we present metrics to address all three kinds of 
questions: reuse leverage metrics, reuse classification metrics, 
and reuse value metrics, respectively. 

Leverage Metrics: New Object Percent measures the lever- 
age achieved through reuse. It is the proportion of the objects 
within a system that actually had to be written for the system. 
(The rest of the objects represent instances of reuse, and hence 
cost savings attributable to reuse.) We define New Object 
software reuse and avoids the trap of highly interdependent system parts [53],  
[54]. In ICE, reuse is the inclusion of a previously defined object within 
an application system’s “uses hierarchy.” The reader who wants to obtain 
additional familiarity with the principles of system decomposition should refer 
to [51] and [52].  For a broader treatment of the issues of reusability and reuse, 
see the surveys by Tracz (671, Hooper and Chester [30], Frakes et d. 1241, 
and Norman et al. 1481. The latter two references were presented as panel 
discussions at the 13th Inr. Conf. on Sofruwe Eng. in May 1991. 

‘One of the major benefits of object-oriented design is that the reuse of an 
object can imply the reuse of elements of the system’s design, as well as its 
coding, to a far greater degree than is generally true for procedure-oriented 
design [ 111. 

’See [B,  p. 411. 
‘“For discussions of the use and value of economics-based approaches to the 

evaluation of software development performance, see Banker and Kauffman 
[41, Boehm [XI ,  Kang and Levy [33], and Levy [39]. Gaffney and Durek’s 
[25],  [26] analysis of the cost impact of reusable software also suggests a 
strong rationale for creating such metrics. 

-~ 

of analysis. In computing separate reuse leverage factors for 
different object types, for example, we might find that the 
summary New Object Percentage of 25% aggregates a level of 
40% for RULE SETS and 15% for SCREEN DEFINITIONS. 
Because RULE SETS take far more time than SCREEN 
DEFINITIONS to write, the aggregate measure in this example 
underestimates the benefits of reuse. 

Classification Metrics: For most purposes, we include in 
our computation of software reuse any object that is found in 
the repository, rather than rewritten from scratch. For some 
managerial purposes, however, we will wish to distinguish 
internal reuse from external reuse. Reuse is intemal if an 
object created for a system is used multiple times within the 
system. (For additional background on the concept of intemal 
reuse, the reader should refer to the work of Cruickshank 
and Gaffney [16], who were first to make this distinction 
in the literature.) It is extemal if an object from a different 
system is used one or more times within the new system. 
ICE considers an object to be owned by the system for which 
it was originally created. Moreover, the SRA has access to 
that information. (Almost all of the reuse displayed in Figs. 
7 and 8 is intemal.) Although both kinds of reuse are of 
equal value, different managerial policies may be required to 
encourage them. Strictly speaking, extemal reuse guarantees 
the developer that the object has been tested elsewhere prior 
to being made more widely available in the repository. 

The degree of intemal reuse will probably depend upon the 
size of the team developing a given application, and upon the 
quality of the communications within that team. The degree 

I ’  Note that we have diverged from our initial definition in that a preexisting 
object that is invoked without modification is considered to constitute an 
instance of reuse, regardless of whether it originated in a different system or 
was just written for the current system and then used more than once. This 
distinction is dealt with in the next section. 

’*Although this metric has less desirable analytical qualities, our experience 
has been that managers often find it easier to understand. 
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Fig. 7. A subset of the Broker Sales Reporting System. 

of external reuse, on the other hand, may depend more upon 
the quality of the indexing system used to help programmers 
to identify existing objects that they might be able to reuse 
161, [21], [ 5 5 ] .  When reuse metrics are being computed for 
all of the objects within the repository, by definition, all reuse 
is intemal. 

Reuse classification mrtrics allow us to assess and compare 
system reuse by classifying a system's objects by source. Some 
examples are shown as 

EXTERNAL REUSE PCT 
NUMBER OF OBJECTS OWNED 

BY OTHER SYSTEMS 
TOTAL NUMBER OF OBJECTS USED 

* lCJOO/O - - 

INTERNAL REUSE PCT 
= 100% - NEW OBJECT PCT 

- EXTERNAL REUSE PCT 

Internal Reuse Percent, here, is interpreted as the proportion of 
occurrences of objects written for an application (not counting 
the first occurrence of each object), compared to the total 
number of objects used in the application. These metrics can 
be modified as in the preceding section to reflect differences 
in the relative costs of developing the objects. 

Value Merrics: We also wish to measure the cost implica- 
tions of reuse. The other metrics that we have discussed value 
all instances of reuse equally, and do not consider the fact 
that some objects may represent considerably greater costs, or 
considerably more functionality, than others. Reuse 1,alue can 
be determined by using two general approaches. 

The Object Reuse Standard Cost Method computes a reuse 
value by estimating the cost saving attributable to reuse. A 
standard cost is assigned to each object type, based on actual 
site experience, and the number of reuse instances for each 
object type is multiplied by the appropriate standard cost. (In 
practice, different standard costs can be estimated for objects 
of low, average, and high complexity.) The computation can 

be accomplished as a byproduct of the reuse leverage and 
reuse classification analyses, and it requires no additional 
automation, other than reference to a table of standard costs, 
which may differ from firm to firm. 

This method can be applied to a single application or to 
the entire repository. Analysis yields the proportion of the 
total software costs that have been avoided through reuse, 
calculated as follows: 

REUSE VALUE 
E::, OBJECT STD COSTj 

C:=, OBJECT STD COSTj 
= I -  

where 

OBJECT STD COSTj = ,standard (average cost) in 
person days for building 
object type j; 

J = total number of occurrences of 
objects in an application 
metamodel hierarchy; 

J" = total number of unique objects 
built for this application. 

This metric differs from the similar one proposed by 
Gaffney and Durek [26] in that it does not consider reuse 
costs. In the ICE environment, the intent is to reuse software 
objects without any modification. Reusing objects without 
modification is not always possible, however. Sometimes 
there is a near functionality match, resulting in the reuse 
of the existing object to template a new one. The value of 
this "hidden reuse" is not included in this metric. Gaffney 
and Durek estimate that it  costs from 3% to 20% of a code 
object's construction cost to incorporate it into an application, 
even when the object is not modified.I3 

I3For additional details, see (261. There is also a search cost associated 
with reuse. Programmers must identify appropriate objects, and then spend 
enough time studying them to confirm that they are appropriate for reuse. 
The reader should refer to Dunn and Knight [ 191 and Fischer, Henninger, and 
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Fig. 8. Expanded hierarchy for a subset of the Broker Sales Reporting System. This figure displays the same subset as it would appear 
in the absence of object reuse. Several of the objects would have to be rewritten many times. Reuse Leverage is the ratio of the number 
of objects used (Fig. 8) to the number of unique objects actually written for this application (Fig. 7). The 3GL MODULE (Calculate 
Broker Commission) is exrer-nul to this application; it was originally written for a different application, and reused by the programmers 
of this one. Therefore, the Software Reuse Analyzer will not include it in the count of unique objects written for this application. 

The Function Point Reuse Standard Cost Method measures 
the proportion of the application's function points that is 
attributable to reuse. A value can be derived from this figure 
by applying a single standard cost per function point. This 
approach is primarily of interest at higher managerial levels 
than that of the project manager. 

In ICE, as was seen in our discussion of the Function Point 
Analyzer, though development effort may depend upon the 
number and complexity of the objects in the repository, the 
functionality of the system (as measured by function points) 
depends upon the relationships in the metamodel. Every time 
we add a new call to an object that is already in use, we are 
adding a computable number of function points to the system, 
without writing any new objects. We can represent the value of 
function point reuse by determining the total costs associated 
with building all of the function points in an application (either 
from real project costs or from organization-wide standard 
costs for building a function point), and then determining the 
proportion that results from reuse. The associated reuse value 
metric is shown below: 

5 FP, 
REUSE VALUE = 1 - 

c FP, 
j=l  

where 

Redmiles 1221 for useful, current perspectives on the problem of searching for 
reusable software. For additional background on the MITRE Corporation and 
the Software Productivity Consortium's research program on the economics 
of software reuse, see [IS]. [ 161, 1251. 
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FPj = 

J =  

J' = 

the number of function points associated 
with relation j; 
the total number of relations in an application 
metamodel hierarchy; 
the total number of unique objects (and hence, 
the total number of relations which are 
first-time calls to those objects, 
rather than instances of reuse) 
built for this application, 

Since function points are the basis for ICE productivity 
measurement, this reuse value metric gives us a measure of the 
proportion of system functionality, and hence of developers' 
output and productivity, which is attributable to reuse. Unlike 
the object reuse standard cost value metric, it has not yet been 
implemented in SRA. 

B .  SRA Architecture 

The operations of the Software Reuse Analyzer parallel 
those of the Function Point Analyzer. First, SRA identifies 
the objects used by a given application in the same way that 
the FPA does. The repository contains a complete metamodel 
describing the relationships between application objects, and 
SRA uses it to trace all of the objects that are called, directly 
or indirectly, by the application under analysis. As with FPA, 
the scope of the analysis is determined by the user at the 
time of execution. It can include the entire contents of the 
repository, a small or large set of application systems, or even 
a subset of a single system. The ability to start anywhere 
in the hierarchy provides SRA with a great deal of power 
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TABLE V 
INSTANCES OF REUSE 

Object Required Objects Written Total Used Complexity Person-Days Total Person-Days Broker Sales Repository 
Object Name 

Reporting process 1 1 Simple 2 2 
On-line reporting rule 1 I Simple 2 2 
Batch reporting rule 1 I Simple 2 2 
On-line update rule 1 1 Average 4 4 
On-line inquiry rule I 2 Simple 2 4 
Sales retrieval rule I 3 Average 4 12 

Transaction detail file 1 4 Simple 3 12 
Transaction type domain 1 1 Simple 1 1 
Compute commission EXT 3 Complex (7) 21 

Sales summary rule 1 3 Simple 2 6 

TOTALS 9 20 22 66 
The repository contains enough information for the automated Software Reuse Analyzer to classify each object as Simple, 

Average, or Complex, on the basis of estimation heuristics used by ICE developers. (This is not the same classification used 
by the Function Point Analyzer.) These heuristics also enable the Analyzer to assign a programming-time estimate to each 
object, based on its type and complexity. Thus, we can estimate the programming time required, and the programming time 
that would have been required in the absence of software reuse. 

for addressing managerial concerns about reuse. For example, 
reuse may be analyzed for a specific type of application, 
for a given project team, or for a given manager. It also 
facilitates research into what factors contribute to increased 
reuse. 

Second, once the set of objects has been identified, SRA 
classifies the objects. The repository contains information not 
only to identify the objects called by a given object but also 
to identify the source of each object. If a given object was 
originally written for a different system (i.e., one beyond the 
scope of the current analysis), then it is an instance of external 
reuse. If it was written for the system being analyzed, then the 
first time that it is encountered by the analyzer, it is classified 
as newly written software, and subsequent encounters are 
classified as instances of intemal reuse. Finally, SRA computes 
multiple reuse metrics for management. (An illustration of how 
SRA computes the software reuse metrics in the context of the 
Broker Sales Reporting System is presented in Sidebar 2,  in 
Figs. 7 and 8, and in Tables V and VI.) 

V. CONCLUSION 
We have discussed the conceptual basis for two automated 

software analyzers: a Function Point Analyzer and a Software 
Reuse Analyzer. In the process of thinking through the con- 
ceptual design problems and testing the analyzers, we were 
able to come to an improved understanding of the nature 
of the productivity gains attributable to CASE tools. Such 
productivity gains are typically thought of as the result of 
being able to produce the desired software more quickly and 
more cheaply. In fact, our analysis reveals that much of the 
potential gain is represented by the production of functionality, 
which, without the improved tools, might well not exist. 

ICE automatically provides many capabilities that would 
require considerable programmer resources in a traditional 
programming environment, such as the automation of interplat- 
form communications, the automatic generation of "HELP' 
messages for every field on a screen, and the automatic 

TABLE VI 
SORWARE REUSE METRICS 

Leverage Metrics: 
Total number of objects used 
Number of unique objects written 
New Object Percent (9/20) 
Reuse Leverage (2019) 
Value Metrics: 
Total person-days of objects used 
Person-days required for objects written 
Object reuse value (1-(22/66)) 

20 
9 

45 % 
2.2 

66 
22 

67 % 
Function point reuse value 
Classification Metrics: Oh'ects Person-Da s 
Unique objects written 

Reuse of external objects 15% 32% 
Total number of ob'ects used 20 100% 66 100% 

On the average, each object is used 2.2 times. We see from the reuse 
value metric, however. that without reuse, the project would have taken 
approximately three times as long to write. The simple levera~e metric 
underestimates the benefits of reuse in this case, because it does not distinguish 
that the more expensive objects are receiving a disproportionate amount of 
reuse. 

Reuse of internal objects 40% 35% 

translation of any table to graphical format (an especially 
useful capability for traders who use on-line real-time trader 
workstations in investment banking firms). 

In many cases, designers in a 3GL environment would 
probably choose to do without these capabilities, rather than 
expend the cost and effort needed to implement them without 
the appropriate CASE support. Thus, the comparisons that are 
frequently cited between the cost of producing a system by 
using a given CASE technology and the cost that traditionally 
would have been incurred may be misleading in the productiv- 
ity advantage that they appear to indicate for the CASE tools. 
At the same time, they may tend to overlook the superior 
functionality and user-friendliness that may be expected to 
accompany CASE deve10pment.I~ 

I4This raises a related issue. The function types that are assigned the highest 
weights in function point analysis are those that are most difficult to implement 
in a 3GL. But often these are not difficult at all, with CASE support. Function 
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A .  Contributions 

This paper had multiple objectives. We wished to report 
on our automation of function point and software reuse met- 
rics-automation that has not been possible in traditional 
programming environments. We wished to generalize from our 
experience, to identify the features of the CASE environment 
that make this automation possible. We wished to report on 
the implications that this research has for our understanding 
of software productivity in an integrated CASE environment. 

The conceptual work that supported the design of the 
Function Point Analyzer and the Software Reuse Analyzer rep- 
resents an effort that we expect to see replicated in automated 
software metrics facilities that take advantage of specific fea- 
tures of other integrated CASE tool environments. The present 
implementations were made possible by two key features of 
the repository object-based integrated CASE environment. The 
first of these features is the repository itself, which contains 
not only all of the software and data used by the applications 
but also an indexing system (in this case, the metamodel) that 
allows us to identify the software and files belonging to each 
application, as well as the key relationships between them that 
result in application functionality. It is conceptually possible 
for this information to be maintained (within a repository or 
otherwise) by a nonintegrated CASE tool, but we consider it 
improbable that the integrity of the information could or would 
be maintained in such circumstances. The second feature is the 
repository object-based CASE environment and its 4GL. The 
organization of the software into objects of limited and clearly 
defined functionality has enabled us to compute function points 
and to identify reuse without having to actually analyze and 
understand the code itself. 

We discussed three classes of metrics for assessing software 
reuse: leverage metrics, value metrics, and classification met- 
r i a .  The first two of these metrics match the efficiency and 
effectiveness dimensions of standard performance evaluation 
approaches. These measures help managers to distinguish 
between aggregate levels ofreuse that are achieved in projects 
or by areas of the firm’s software development operations, as 
well as reuse of individual objects that are especially costly 
to build. Moreover, we have suggested that a variety of 
metrics that triangulate on the key management problems are 
of interest here: A unitary measure of software reuse lacks the 
power to answer the questions that we found to be important 
to managers. 

We also showed how traversing a hierarchical metamodel of 
a repository object-based system enables us to identify objects 
used by a given system or subsystem, and define reuse that is 
internal to the hierarchy (for example, software reused within 
a program or an application) or that is extemal to it. Initial 
analysis that we have conducted at our research site suggests 
that this classification is important to managers wishing to 
encourage software reuse. It appears that internal reuse will 

points may he useful. then, in answering the question, “What would this 
system have cost to develop without CASE’?” But a recalibrated measure may 
be required in order to estimate costs within a given CASE environment. 
See Banker, Kauffman, and Kumar [SI for a discussion of a new approach 
called o h j ~ t p o i n t  uw/ys i s  that addresses this issue for an object-based CASE 
environment. 

proliferate where the technology supports it: Programmers 
routinely reuse software from one part of an application in 
another. Software that is extemal to the system, however, tends 
to be written by other programmers, and different technical 
support and organizational incentives are needed in order to 
motivate programmers to seek out extemal reuse opportunities 
[61. 

Clearly, these questions are only the starting point for a 
rich, new management agenda to better understand and control 
CASE-based development [67]. Yet we are already left with 
some answers that we did not have before we began this 
research. We have learned that the data collection and analysis 
needed in order to control software costs can be automated. 
We have identified features of CASE systems that support 
such automation, and we have begun to understand the issues 
involved in measuring output and reuse in such environments 
[71. 

B. Future Research on Productivity and Sofmare Metrics 

Our research raises questions about the continued usefulness 
of function points-a measure designed and calibrated for 
use in traditional 3GL environments. Are they still useful as 
predictors of programming costs within an integrated CASE 
environment? Are they useful as a means of exercising man- 
agerial control in such an environment? Can they be used to 
predict staffing requirements or future maintenance require- 
ments? Could they be made more useful by recalibrating and 
fine-tuning them for new conditions? 

In a similar vein, our development of the Software Reuse 
Analyzer gave us an improved understanding of software 
reuse. Our tests of SRA confirmed that commercial application 
systems built by using CASE offer tremendous scope for 
software reuse. If the average object is used five times, this 
can mean an up to 80% reduction in the cost of programming 
(though the costs of incorporating an existing software object 
into a new application do not disappear), and we have observed 
such reuse levels for some systems built by using ICE. Initial 
analysis suggests, however, that even here only a fraction of 
the potential for reuse is being tapped. Programmers tend to 
reuse only software with which they are personally familiar, 
so that relatively low levels of external reuse are observed. 

We are now in the process of formulating research to deal 
with the questions raised by these observations, questions 
that have been examined elsewhere, for example, in the 
context of the U.S. Department of Defense’s Joint Integrated 
Avionics Working Group (JIAWG) on software reuse [ S I ,  
the U.S. Army Information Systems Software Development 
Center’s RAPID Center Library (RCL) software reuse library 
for Ada [69], Magnavox’s U.S. Army Advanced Field Artillery 
Tactical Data System (AFATDS) project [13] and GTE Data 
Services’ software asset management program [62], and other 
efforts reviewed by Hooper and Chester [30] and Tracz [66]. 
The questions that have been raised include the following: 
How can software reuse be supported, encouraged, and moti- 
vated? What aspects of the software are conducive to reuse and 
most likely to pay off in the long term? What programming and 
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managerial practices provide the proper incentives for software 
reuse? 

The automated report generation capabilities of the FPA 
and SRA enable us to pursue research questions that were 
simply beyond the scope of prior research in terms of cost and 
availability of data. What can we learn about software develop- 
ment productivity in this environment? Do productivity gains 
change with CASE or application-specific experience? With 
the passage of dme and the accretion of maintenance changes? 
What are the features of CASE tools that best encourage 
productivity? Which ones slow it down? 

The questions raised here are the basic questions that soft- 
ware development managers will have to answer: What works? 
What does not work? How well does a given software solution 
work? How can it be made to work better? The availability 
of appropriate metrics makes it possible for managers to start 
answering these questions. 
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APPENDIX 
THE FUNCTION POINT ANALYSIS PROCEDURE 

STEP I :  Identification of Function Types 

function types. 
Identify each functionality unit, and classify it into five user 

External Outputs are items of business information pro- 
cessed by the computer for the end user. 
External Inputs are data items sent by the user to the 
computer for processing, or to make additions, changes, 
or deletions. 
Queries are simple outputs; they are direct inquiries into 
a database or master file that look for specific data, use 
simple keys, require immediate response, and perform no 
update functions. 
Logical Internal Files are data stored for an application 
as logically viewed by the user. 
External Interface Files are data stored elsewhere by 
another application, but used by the one under evaluation. 

This step yields a count for each of the five different function 
types. 

STEP 2: Classification of Simple, Average, 
and Complex Function Types 

The individual counts by function type are further classified 
into three complexity levels (Simple, Average, Complex), 
depending on the number of data elements contained in each 
function type instance and on the number of files referenced. 
Each function complexity subtype is weighted with numbers 
reflecting the relative effort required to construct the function. 
For example, according to Albrecht's weighting scheme, a 
Simple Input Type would be weighted by 3, whereas a Com- 
plex Input Type would be weighted by 4. Additional details 
about the FUNCTION COMPLEXITY SCORES follow: 

FUNCTION FUNCTION COMPLEXITY SCORES (c) 
TYPE (tJ Simple Average Complex 

Inputs 3 4 6 

Interfaces 5 7 I O  
Queries 3 4 6 
Files I 10 15 

outputs 4 5 7 

FUNCTION COUNTS (FC) summarizes the weighted 
counts for the five function types as follows: 

5 5 FUNCTION TYPEt* 
t= l  c=l 

FUNCTION COMPLEXITY SCORE,. 

STEP 3: Adjusting FUNCTION COUNTS by 
TECHNICAL COMPLEXITY FACTOR 

The adjustment factor reflects application and environmental 
complexity, expressed as the degree of influence of 14 charac- 
teristics (f) listed below. Each characteristic is rated on a scale 
of 0 to 5 (COMPLEXITY FACTOR), and then all scores are 
summed. The TECHNICAL COMPLEXITY FACTOR (TCF) 
= 0.65 + (.01* Cf=ltoll C O M P L E X I T Y F A C T O R f ) .  
The 14 factors are shown below: 

1. Data communications 
2. Distributed functions 
3 .  Performance 
4. Heavily used 

configuration 
5.  Tranaction rate 
6. On-line data entry 
7. End user efficiency 

On-line update 
Complex processing 
Reuse 
Installation ease 

Operational ease 
Multiple sites 
Facilities changes 

Finally, FUNCTION POINTS (FP) are calculated as FC * TCF. 
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SIDEBAR 1 
THE BROKER SALES REPORTING SYSTEM: INTRODUCTION 

The Broker Sales Reporting System is a small (simplified) ICE application system that illustrates the concepts presented 
in this article. The system tracks and reports the sales activity of brokers in a small investment firm. The application has 
both online and batch capabilities designed to meet the needs of middle and senior management. Senior management is 
provided with summarized reports and inquiries. Middle management is provided with detailed reports and inquiries 
concerning the performance of individual brokers. 

SIDEBAR 2 

THE SOFTWARE REUSE ANALYZER 

The operation of the Software Reuse Analyzer will be illustrated for a subset of the Broker Sales Reporting System. By 
measuring software reuse one can measure the savings which may be realized by coding each object once and reusing it as 
necessary (Fig. 7). instead of having to rewrite the code every time it  is needed (Fig. 8). A simple ratio of object counts 
yields the leverage merrics. NEW OBJECT PCT and REUSE LEVERAGE. The REUSE VALUE metric estimates the 

savings attributable to reuse, by considering not only the number of reused objects, but also the function points that they 
deliver. These can be equated with software development costs, 

In principle, an integrated CASE system could be designed to capture actual costs for each object, as it is produced. This 
has not yet been implemented for ICE. Rather, a set of heuristics was developed, on the basis of interviews with software 
managers, for estimating the cost of an object (in days) based on its type and its complexity. The complexity is measured on 
a three-point scale (Simple, Average or Complex-but not the same scale that is used for function point analysis) which is 
simple enough to automate. (These heuristics are in actual use by managers for project cost estimation; see Banker, 
Kauffman and Kumar [SI for a preliminary indication of their robustness.) 

The Software Reuse Analyzer distinguishes between internal reuse - the reuse of objects written for the current task-and 
external reuse-the reuse of objects previously written for different applications. We have observed relatively little reuse of 
code written by other programming teams, for other application systems. This suggests that special support may be required 
to encourage programmers to seek out opportunities for external reuse. Without that support, much of the potential of 
software reuse goes unexploited. 
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