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Abstract—Estimating performance models parameters of cloud
systems presents several challenges due to the distributed nature
of the applications, the chains of interactions of requests with
architectural nodes, and the parallelism and coordination mech-
anisms implemented within these systems.

In this work, we present a new inference algorithm for model
parameters, called state divergence (SD) algorithm, to accurately
estimate resource demands in a complex cloud application.
Differently from existing approaches, SD attempts to minimize
the divergence between observed and modeled marginal state
probabilities for individual nodes within an application, therefore
requiring the availability of probabilistic measures from both the
system and the underpinning model.

Validation against a case study using the Apache Cassandra
NoSQL database and random experiments show that SD can ac-
curately predict demands and improve system behavior modeling
and prediction.

Index Terms—Service demands, inference, queueing, cloud,
NoSQL database

I. INTRODUCTION

Over the last decade, models to predict performance be-
havior of cloud systems have been increasingly used to drive
automated resource management [1]. A common problem aris-
ing in performance model estimation is the accurate inference
of service demands, which are the average computational
requirements placed by different types of requests within a
system. Existing estimation algorithms obtain demands from
steady-state metrics such as throughput, response times, and
resource utilization. However, existing techniques can have
erratic performance and it is difficult to identify a method
that is best in all cases [2]. The most commonly used demand
estimation methods accept in input mean performance metrics,
thus not fully exploiting during the inference process of a large
part of the information available within a measured dataset.

In this work, we instead propose a demand estimation
method that requires to collect marginal state probabilities
for the number of requests processed by individual nodes of
a cloud system. While probabilistic methods have appeared
in recent work [3], our proposal differs as we wish to carry
out a more advanced probabilistic analysis that takes into
account the execution workflow of a request, in order to more
accurately estimate demand at various stages of operation. We

assume that each job is tagged with a class of service at a given
time. Workflows are then described in terms of a sequence of
class-switching steps for jobs that visits one or more resources
in the system. That is, upon moving from a node to another,
a job can switch its class so to represent a different phase of
execution.

Class-switching has received a limited degree of attention in
prior work on demand estimation, possibly with the exception
of [4] which considers it in the context of a single multi-server
resource. However, workflows arise commonly in distributed
systems composed by multiple resources, which is the case
we consider in this work. For example, a job that visits
multiple times the same node, requesting different execution
requirements at each visit, may be modelled by assuming that
the job switches class in-between visits. Distributed NoSQL
databases such as Apache Cassandra provide an example, in
which class-switching can be used to express a workflow of
execution through multiple nodes in order to retrieve the data
needed by a query for its completion [5].

Despite their practical importance, class-switching models
can be difficult to deal with due to state-space explosion,
which is more rapid than in standard multiclass models. In
order to increase their tractability, we consider class-switching
in the context of product-form queueing network theory [6],
which allows one to exactly transform a model with class-
switching into a multiclass model without class-switching [7],
[8]. Despite this equivalence result, we notice that in the
presence of load-dependence there appear to be no exact
formulas available to perform this mapping for computing
marginal state probabilities, a gap that we also overcome in
this work.

Leveraging the proposed methods to obtain marginal prob-
abilities in the presence of class-switching, we propose a new
demand estimation approach, based on information-theoretic
divergence measures, called State Divergence (SD) estimation.
SD seeks to minimize the divergence between marginal state
probabilities and their corresponding empirical estimates, in
order to produce accurate estimates for the demands. Because
marginals capture each job class, without the aggregation
implicit in the transformations from class-switching models
to multiclass models without class-switching, it can explicitly
capture the actual mix of requests in execution at a resource



Fig. 1: Marginal probability difference between Cassandra and
Simulation.

more accurately than using the aggregated model. The ratio-
nale for this method is that, by minimizing state divergence,
one hopes to obtain model parameters that accurately capture
the stationary behaviour of the system, as reflected by occu-
pancy in a fraction of its observable states, more accurately
than by looking only at its output performance metrics, such
as throughput, response times, or CPU utilization.

We validate the SD estimation algorithm through several
randomly generated models and with a case study conducted
using the Apache Cassandra NoSQL database [9]. Our results
demonstrate that SD can significantly reduce errors in per-
formance prediction compared to state-of-the-art algorithms
which do not explicitly account for class-switching. The
obtained demands are able to match the system state while
reproducing a more realistic behavior in the model compared
to state-of-the-art estimation algorithms.

The rest of the paper is organized as follows: in Section II
and III we give a motivating example and review popular de-
mand estimation algorithms, respectively. Section IV describes
the reference model and some novel probabilistic formulas
we have developed to analyze systems with class-switching.
The SD algorithm is then developed in Section V, where we
also present several possible divergence measures that can be
used with our method. In Section VI and Section VII, we give
experimental results on Apache Cassandra and random model
instances. Finally, Section VIII, gives conclusions and outlines
future work.

II. MOTIVATION EXAMPLE

Over the years, several inference algorithms have been
developed to parameterize performance models of cloud sys-
tems [2]. For the purpose of this section, we focus our attention
on the complete information (CI) algorithm [10]. We consider
this algorithm estimates the demand taking, as input, samples
of the arrival rate and execution time of the system request.
This algorithm because supports multi-threading, multi-class
and class-switching.

To better understand and illustrate the limitation of an
existing method such as CI when the class-switch is in use,
we want to analyse the difference between the marginal state

probabilities of a real system and the performance model
parameterized using the service demands obtained by CI. For
the purpose of this experiment, we use a Cassandra cluster
composed of three nodes, deployed on Microsoft Azure. As
workload generator, we run YCSB [11] with 10 clients that
continuously perform read queries to the database with a
consistency level ONE.

Figure 1 compares the two marginal state probabilities. The
horizontal axis shows the system state of a particular Cassan-
dra node, given as the number of requests of three classes in
that node. On the vertical axis, we show the probability that
the system is in the corresponding state. The two models have
very similar mean performance metrics such as throughput,
response time and CPU utilization with the maximum error
across the three metrics below 12%. Except for the first
state, the other are significantly different. To understand
the similarity of these two probabilities, we calculate their
divergence using the Kullback-Leibler measure. This measure
quantifies similarity between two probabilities distributions,
see Section V-B. Closer the returned value is to 0, the more
similar the two probabilities are. However, if the value is above
1, the algorithm suggests that the two probabilities are not very
similar. In this case, the algorithm returns a value of 2.41,
suggesting that even if the predicted performance metrics are
close to the real system ones, the underpinning state dynamics
in the performance model does not need to resemble the real
system dynamics. Our goal in the rest of the paper is to
propose a method that penalizes the estimation of demands
that result in high divergence scores between predicted and
measured state probabilities.

III. RELATED WORK

Demand estimation is one of the most challenging steps
for performance model parametrization. Existing techniques
are based mostly on the statistical inference of indirect mea-
surements such as throughput, response time and resource
utilization.

Linear regression is one of the most popular statistical meth-
ods for the service demand inference. The regression method
applied to service demand estimation has been presented, for
the first time, by Bard and Shatzoff in 1978 to characterise
the resource consumption of some specific functions of an
operating system [12]. Then, the method has been extended
in [13] to estimate the CPU demand for a single-thread
application using multiple classes. However, this method
can fail or produce wrong results if the observation time is
too small, with outliers or if the variance across the samples
is limited [13] .

Machine learning algorithms have also been exploited in
demand estimation. One of the first and most used technique is
based on the Kalman filter [2], [14]. Another machine learning
techniques for demand inference includes clustering [15],
which starting from observation data composed by timestamps,
throughput and utilization, can recognize deviations over time
of demands, such as those resulting from hardware upgrades.
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Notation Description
M Number of nodes in the model.

K Number of queueing stations.

R Number of job classes.

C Number of job chains.

Nr Number of jobs in class r, N =
∑

r Nr

θkr Service demand of class r at node k.

σr Think time of class-r, σr =
∑M

k=K+1 Θkr

ci Number of servers at node i

sir Service time at node i for jobs in class r

eir Visit ratio at station i for jobs in class r

TABLE I: Summary of main notation for the model input
parameters

Recently, [16] propose the QMLE algorithm, a technique
based on the maximum likelihood estimation, that uses mean
queue length values, rather than response times, to perform
demand estimation.

Demand estimation methods based on optimization have
also been investigated. They usually require in input response
time or CPU utilization datasets [17]. Optimization is then
used to estimate the demands in [18] with a load-dependent
model using quadratic programming techniques.

Despite their extensive validation on parameterization of
models with isolated classes, none of the above methods has
to our knowledge been validated in the presence of class-
switching. Moreover, differently from the other works pre-
sented here, the minimization problem we consider here looks
at the divergence between the probability state distribution of
the real system and the one considered from the model. Mean
performance metrics are included in constraints, but not as part
of the objective function.

IV. REFERENCE MODEL

We focus on distributed systems that may be described by a
network of M resources, cyclically visited by jobs belonging
to R job classes. Under specific assumptions given by the
BCMP theorem, these models admit, up to a normalising con-
stant, a closed-form solution for their equilibrium distribution,
from which marginal probability expressions can be explicitly
derived. Model parameters for BCMP networks are listed in
Table I.

Let π(n) denote the equilibrium probability for state
n = (n1, . . . ,nR) in a BCMP queueing network, where
ni = (ni1, . . . , niR) is the set of jobs of the R classes
running at station i, and we require

∑
n∈S π(n) = 1, where

S = {n ∈ NMR|nkr ≥ 0,
∑M

k=1 nkr = Nr} is the model
state space.

We focus here on closed models where the scheduling policy
for the target station is processor sharing (PS), although others
may be considered with similar expressions [6]. We assume
that PS node i has ci ≥ 1 servers, such that when the node has
up to ci running jobs they run without contention. Note that
infinite server nodes may be seen as a special case of multi-
server nodes where ci = +∞. In this case, the product-form

formula for the steady-state probability of this model is given
by

π(n) =
1

GΘ(N)

M∏
k=1

nk!

R∏
r=1

θnkr

kr

nkr! ·
∏nk

u=1 min(u, ck)
n ∈ S

(1)
where the factorials capture the ordering of jobs within the
PS node and the product of min(u, ci) functions describes
load-dependence due to the multi-server nodes. Assuming that
the number of server ci is known for a given model, in the
SD approach we see the service demand as the problem of
assigning the values of the demands θkr so that (1) is as close
as possible to the empirically-observed system states, for some
subset of states.

From (1), the normalizing constant may be determined by
requiring that state probabilities sum to one, which leads to
the explicit formula

GΘ(N) =
∑
n∈S

K∏
i=1

ni!

M∏
k=1

R∏
r=1

θnkr

kr

nkr! ·
∏nk

u=1 min(u, ci)
(2)

However, computing GΘ(N) using direct summation over the
state space S is usually infeasible unless the model is small,
because the number of states generated by the model grows as
O(NMR), where N is the total number of jobs in the model.
To solve this problem, several approaches have been proposed
using exact [19] or approximate methods [20] when ci = 1.

A. Class-switching models

The BCMP theorem permits within the described class of
models also to allow class-switching, whereby jobs departing
from a node in class r can arrive in the destination node in
class s 6= r. However, under class-switching the number of
jobs in each class is no longer constant over time, implying
that the underpinning state space is much larger than in regular
multiclass networks without class switching. To address this
issue, under class-switching the original R job classes can
be partitioned into C ≤ R disjoint chains [7] , defined
by the strongly connected components of the class-switching
probability matrix. In other words, chains are defined such that
a job within chain c can become over time any of the classes
in that chain, but cannot become of a class belonging to any
other chain h 6= c.

To do so, we first need to calculate the number of visits
(eir) to each station and class of the original network and then
compute the corresponding number of visits for each chain q
at every node i in the aggregate model (êiq) as

êiq =

∑
c∈Cq

eic∑
c∈Cq

e1c
(3)

where we assume that station i = 1 is the reference station
for the computation of the system throughput for each class.

Thanks to this transformation, the class-switching model
can now be solved as a standard multiclass model with job
populations equal to the chain population. However, due to
this transformation, the information regarding the service time
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of the different classes at a station is lost by the aggregation.
Let q now represent the class in the new model associated to
the original chain. The service demand for class q at station i
needs to be computed as [8]

θ̂iq =
∑
r∈Cq

αirθir (4)

where αi is a scale factor defined as

αir =
eir∑

c∈Cq
eic

(5)

The aggregate demands θ̂iq are stored in matrix Θ̂. The
population of chain q is set to N̂q =

∑
c∈Cq

Nc.

B. Marginal probabilities

In the next sections, we shall often compute the marginal
probability that a set of jobs ni = (ni1, ni2, . . . , niR) resides
at station i. However, because the model is solved by aggregat-
ing classes into chains, the underpinning state space describes
the state of station i as n̂i = (ni1, ni2, . . . , niC), where C is
the number of chains, making it difficult to recover per-class
metrics.

In [7, p. 110], the authors observe that probability of a
particular mix of jobs n = (n1, . . . , nR) being active in the
system is the ratio of the normalizing constant of a closed
model with fixed class populations n divided by the normal-
izing constant of the model with class-switching. Because the
factors fi(ni) in the product-form solution can themselves be
regarded as normalizing constants for degenerate models with
a single station and population ni, one readily concludes that
the mix probability derived in [7] can be used to establish the
per-class population at a node in the aggregated model. This
leads to the expression

π(ni) =
ni!∏ni

u=1 min(u, ci)

R∏
r=1

θnir
ir

nir!

G−i
Θ̂
(N̂ − n̂i)

GΘ̂(N̂)
(6)

where G−i
Θ̂

is the normalizing constant for the subnetwork
composed by all stations except station i, and n̂i is obtained
from ni by summing classes that belong to the same chain.
Note that both GΘ̂ and G−i

Θ̂
are defined for the aggregate

model, and thus are computed using the aggregate population
vector N̂ and the matrix of the aggregate demands Θ̂.

To the best of our knowledge, (6) has not appeared before
in the literature. This expression paves the way to define
a method for estimating service demands in class-switching
models, which is presented in the next section.

V. ESTIMATION ALGORITHM

In this section, we describe our algorithm for demand
estimation. Differently from other algorithms that look into
aggregated performance metrics such as system throughput,
system response time or CPU utilization (as described in
Section III), the SD algorithm minimizes the divergence be-
tween the state probability distribution of the real system from
the one generated by the model under test. The algorithm is
defined in the following section and then we present some

divergence measures that can be used to compare the two state
probability distributions.

A. SD Algorithm

SD requires a performance model, provided by the user, of
the system under test (SUT). To reduce the execution time
of the method, we consider in this work only models that
comply with the BCMP theorem, as described in Section IV
and denote this model by M ≡ M (N ,Θ). However, the SD
algorithm is in principle applicable to any other model from
which the state probability distribution can be computed fast
enough to apply computational optimization methods.

Let ns = (ns
1, . . . ,n

s
M ) denote the s-th state sample

(s = 1, . . . , S) obtained from the SUT and defined such that
ns

i = (nsi1, . . . , n
s
iR) is the state of station i. The principle

underlying SD is to minimize the divergence between observed
and predicted marginal state probabilities π(ns

i ) for the SUT,
for all stations i and samples s. We denote the empirical
and model-based marginal probability distributions with P
and Q, respectively. That is, P consists of all the marginal
probabilities π(ns

i ) for every node i and state sample ns

obtained from measurements on the SUT; similarly, Q consists
of the corresponding marginal probabilities computed using
the model M (N ,Θ).

A conceptual difficulty arising upon optimizing state diver-
gences is that this metric does not explicitly consider mean
performance metrics, even though these are the typical metrics
used once the model is fully parametrized. We propose to
address this issue by constraining the divergence minimization
to return predictions for mean performance metrics within a
tolerance. The performance metrics considered include the
system throughput (X), system response time (R) and the
resource utilization (U ). To differentiate the real and model-
based values, we shall denote the former for example as X̃
and the latter as X .

Let D∗(P,Q) ≥ 0 be a generic non-negative f-divergence
function used to compare the two probability distributions.
Based on the previous considerations, we define the SD
optimization problem as follows:

SD : min
Θ

D∗(P,Q)

subject to |X̃ −X| ≤ δ · X̃
|R̃−R| ≤ δ · R̃
|Ũ − U | ≤ δ · Ũ
0 ≤ θir ≤ R̃

(7)

where all the variables of the demand vector (Θ) have, as
upper bound, the average response time measured on the real
system during the experiment. On the other hand, δ ≥ 0 is a
tolerance on the maximum relative error on the model mean
performance predictions.

Different f-divergence measures can be used with this
optimization problem. In the following section, we present the
most popular algorithms and their properties.
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B. Divergence measures

In this section, different f-divergence measures are pre-
sented, namely Bhattacharyya, Hellinger, Jensen Shannon and
KullbackLeibler.

1) Bhattacharyya and Hellinger distance functions: The
Bhattacharyya (BC) distance is a classical distance function
[21] and it is used in several fields. It is defined as

DBC(P ||Q) = − logBC (8)

where BC is the Bhattacharyya coefficient that for discrete
distribution is defined as

BC =
∑
x∈X

√
P (x)Q(x) (9)

Since the sum of all the probabilities is 1, the Bhattacharyya
coefficient lies between 0 ≤ BC ≤ 1. Due to the logarithm,
the Bhattacharyya distance DBC is consequently defined be-
tween 0 ≤ DBC ≤ ∞. So, the Bhattacharyya measure is
symmetric, unbounded and returns always positive values.

The Bhattacharyya coefficient (BC) is also used to define
the Hellinger distance (HE). HE is defined as [22]

DHE(P ||Q) =
√
1−BC (10)

It lies between 0 ≤ DHE ≤ 1 and it is a linear function,
differently from the Bhattacharyya that has a logarithm behav-
iors.

2) KullbackLeibler and Jensen Shannon divergence: It is
an asymmetric function, so output of the function of P and Q
is not equal to the results of Q and P .

Since we use this metric in a discrete space to measure the
divergence between two marginal probabilities, here we con-
sider only the KullbackLeibler divergence discrete formulas.
It is defined as

DKL(P ||Q) =
∑
x∈X

P (x) · log P (x)
Q(x)

(11)

In other words, the closer the KL divergence value is to 0 the
more similar the two probability distributions are. On the other
hand, if the value is greater or equal to 1, several differences
between the two probability distributions are present.

The Jensen-Shannon (JS) divergence is based on the Kull-
backLeibler measure. It differs from the latter for being a
symmetric function, bounded within a finite range. The JS
divergence is defined as

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M) (12)

where M is the average between the two distributions and
it is defined as

M(P ||Q) =
1

2
(P +Q) (13)

The Jensen Shannon divergence is bounded between 0 ≤
DJS ≤ 1

Fig. 2: Simplified Cassandra model. The model contains 2
infinite servers one representing the workload generator (YCSB) and
one the network delay (NET). Each Cassandra node is represented
by a queue (Cass*) and a class-switch to change the class of the
requests to redirect them depending on the phase of its execution. An
additional class-switch, called local-remote, it is necessary to convert
part of the local requests in remote requests.

Class Description
local-pars Local request operations.
remote-pars Remote request parsing operations.
remote-ID It can represent a remote ending operations (remote-

end) or data request(remote-incoming).

TABLE II: Description of the classes used for in simplified
Cassandra model

VI. EVALUATION

A. Cassandra Simplified Model

In this section, we illustrate the Cassandra model used for
evaluating the SD algorithm. This is a simplified version of
the model presented in [5]. With the aim to reduce the model
complexity and the system state space, we have developed a
model able to support only the Consistency Level ONE. We
represent with a single queue each Cassandra node, as shown
in Figure 2. Each Cassandra node uses the processor sharing
(PS) scheduling policy. All the other stations used in [5], such
as the networks and disk queues, have been grouped in a
single infinite queue (or infinite server), called ’Net’ positioned
right after the workload generator. In addition, the workload
generator has also been modelled as an infinite server.

To reduce the number of classes in the model, we aggregate
together the remote-end and the remote-incoming classes in the
remote-ID class as reported in Table II. The model differentiate
the demands to use in each case based on the Cassandra ID.
In fact, if this class is executed on the same ID node as the
station, the remote-end operation is performed otherwise, this
class represents a remote-incoming.

B. Experiment settings

In order to evaluate the SD method, we have collected an
empirical trace from a Cassandra ring deployed on Microsoft
Azure. As the validation is done for illustrative purposes,
a small cluster composed by 3 Cassandra Virtual Machines
(VMs) has been set up. However, the results are not expected
to significantly depend on the number of nodes. Details of the
testbed are reported in Table III.
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TABLE III: Testbed details.

Resource Description
Cloud provider Microsoft Azure (IaaS).
VM type Standard D2s v3.
CPU 2 vCPUs.
Memory 8 GBs.
Disk size OS 30GB, Data 80GB.
Disk type Premium (SSD).
Cassandra nodes 3 (version Apache Cassandra 3.11).
YCSB nodes 1 (version YCSB 0.12.0).
YCSB workload Workload C (100% read).

We warm up the system running for 10 minutes the cluster
with the predefined number of clients. Keeping the workload
generator running, we start to record all the Cassandra traffic
communication of the target node with the YCSB and with the
other clients using tcpdump tool [23]. Different time lengths
for sniffing traffic have been tested and we decided to use one
minute since the marginal probability is stable. We develop
some Python scripts to analyse the recorded traffic. Looking
the source and destination of the connections, the scripts
are able to detect the state of the system at each stage and
so construct the marginal probability of the system for the
recorded period of time.

C. Minimization algorithm settings

We have first tested the SD demand estimation approach
using four different algorithms for the optimization of the
underpinning non-linear program, namely Fmincon, Glob-
alSearch (GS), MultiStart (MS) and Genetic Algorithm (GA),
which are all available in MATLAB version R2018b.

For our evaluation, we have used for all the algorithms
the same objective function, non-linear constraints and bound
[1−10, RTsystem] for all the decisions variables (i.e., service
demands), where RTsystem is the average response time ob-
served by the workload generator. In the case of the Fmincon
algorithm, by default the starting point for all the variables are
taken randomly inside the range. Since these can influence the
final results, we set all them to half of the system response
time value. Regarding the non-linear constraints, we limit the
evaluation only to the overall system throughput to make sure
that the set of testing demands has a relative error (δ) of less
than 20% from the real one.

The Cassandra queueing model uses 5 random variables
representing the demand due to the network delay and the
demands for the four classes of the model (local, remote-
pars, remote-end and remote-incoming), which are identical
at all nodes. By default, the NC solver available in the LINE
solver [24], [25] is used to analyze and retrieve performance
and marginal probabilities of the model under test, using an
implementation of the expressions in Section IV-B that we
have added to the solver as part of the present paper. The two
probability distributions are then compared using one of the
divergence measures presented in Section V-B.

Concerning the workload generator, its demand is estimated
considering the CPU time that YCSB spent into the system
divided by the number of requests generated in that period of
time.

D. Sensitivity analysis

In this subsection, we performance a sensitivity analysis of
our results with respect to the state space size sampled from
the real system and the choice of divergence measures.

State Space: Since it is very expensive, or even intractable,
to compute marginal probabilities for the complete state space,
we have decided to limit the number of states to a maximum
of k states. That is, we obtain marginal probabilities from
the system for k states only. All the remaining states are
aggregated into a single unobserved state to complete the state
probability distribution. We evaluate the SD algorithm using
k = {3, 15, 30}; we shall equivalently refer to these three
cases as K3, K15, K30. The states to include into the sample
space are selected based on the k value. The state selection is
performed by dividing the probability distribution into three
sections (high, medium, low) and take an equal number of
states from each group. However, these three sections are
applied to the state with the highest probability only because
the marginal state probability trend decreases quite quickly.

Divergence measures: In this section of the sensitivity anal-
ysis, we present the results of a set of experiments necessary
to select the right combination of optimization and divergence
measure able to provide stable results at the end of the SD
algorithm execution. Ideally, this combination needs to provide
an algorithm that it is reliable, so able to explore all the space
generated by this model, and able to reduce the performance
error of the algorithm increasing the state space used. We
expect this behaviour since more information are used by the
algorithm, more robust and accurate results should be provided
since the divergence measure is performed on the marginal
probability.

We start our investigation by checking which optimiza-
tion algorithm performs better in this context. We take into
consideration the case with 10 clients. To have a broader
view, we compare these algorithms using 3 different sample
space sizes (K3,K15,K30) and dividing the comparison of
the optimization algorithms in two groups. We first compare
Fmincon against the GA.

Due to space constraints, the comparison between Fmincon
and GA is not presented here. However, the results show
that the derivative-based algorithm outperforms GA in any
of the analysed situations. In most of the cases, the dif-
ference between the two algorithms is in the order of one
or more magnitudes. Since the derivative-based algorithm
outperforms over the genetic one, we evaluate if more robust
derivative optimization algorithms such as GS and MS are able
to perform better. Figure 3 shows that these algorithms reduce
further the throughput error and, in few cases, the errors are
negligible. Considering now the divergence measure we notice
that the HE measure using these two optimization algorithms
presents the property that we are looking for the SD algorithm.
In fact, increasing the searching space, it reduces the error
gradually. Moreover, when we use GS with HE and K30
as state space, the algorithm reaches a negligible throughput
error.
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(a) BC (b) HE (c) JS (d) KL

Fig. 3: Divergence comparison with 10 clients and using Largest strategy with GS and MS.

(a) K30 - Throughput (b) K30 - Response Time

Fig. 4: Predicted throughput and response time performance
using K = 30.

Fig. 5: State probability distribution for the model with K30
state and 10 clients.

For these reasons, we have decided to consider HE as
the main divergence measure. Differently, as optimization
algorithm, both the GS and MS can be used. However, in some
cases, we still considering the Fmincon optimization algorithm
because it is significantly faster than the GS or MS.

E. Cassandra Demand Estimation

We started to test the SD algorithm against different state
space sizes and we notice that, as the size increases, the model
prediction accuracy increases as well, which is expected. Fig-
ure 4 illustrates the throughput and response time prediction
with K30. In this case, the SD algorithm using GS and
MS accurately predicts system performance. The maximum
percentage of error achieved with a highly loaded system is
around 6.7% for the GS and 20% for the MS.

δ = 0.2 δ = 0.5 δ = 0.7 δ = 1 Without

Fmincon

K3 215.21% 207.85% 194.50% 241.95% 54.10%
K15 237.82% 213.45% 206.21% 255.92% 6.12%
K30 334.69% 271.73% 240.30% 303.68% 3.27%
K50 490.13% 432.53% 317.74% 427.76% 1.12%

GS

K3 72.39% 66.57% 64.53% 74.69% 54.23%
K15 33.22% 25.54% 11.06% 11.24% 5.90%
K30 33.98% 30.08% 18.56% 23.91% 3.96%
K50 61.52% 48.13% 26.40% 31.91% 1.03%

MS

K3 50.36% 49.94% 51.80% 50.99% 53.44%
K15 7.11% 5.16% 5.69% 6.30% 5.96%
K30 4.42% 2.40% 3.58% 3.34% 3.48%
K50 1.76% 0.78% 0.95% 0.71% 1.06%

TABLE IV: Average percentage of error of the founded
demands with SD algorithm using the random models.

We also analyze the model response time prediction with
K30 for the GS and MS algorithms. The results are shown in
Figure 4b. For GS, the average system response time is close
to the real one with an average error of around 14%. Similar
is also the MS average error of 17%.

To show further benefits of the SD algorithm, we report
in Figure 5 the state probability comparison between the real
system and the model with 10 clients using K30 as sampled
state space. It is possible to see that, differently from the one
figure presented in Section II, the two distributions are very
similar one each other and the distance value, using the HE
measure, is 0.0938. This underlines that the set of demands
returned by the SD algorithm is able not only to predict
the performance metric of the system, but also to generate
demands that correctly capture the real system dynamics.

VII. RANDOM MODELS

To further investigate the robustness and performance of
SD, we run a set of random experiments able to sensitivity of
the result to different demands, δ parameter value, and method
execution times.

To perform these experiments, we have created 100 sets
of random demands, each one containing four demands, one
for each service class, in the range between 0.00001 to 0.1.
Each set of demands is then set into the model presented in
Section VI-A to calculate the marginal state probability of the
model and average performance metrics such as throughput,
response time and CPU utilization of one node. These metrics
are obtained by analyzing the model using the formulas
presented in Section IV-B. For each random model, we then
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run the SD algorithm using different values of δ, chosen in the
set (0.2, 0.5, 0.7, 1), with and without non-linear constraints,
different sample state space sizes (K3, K15, K30, K50), and
with Fmincon, GS and MS searching algorithms. We run the
random models with HE and 10 clients. In these experiments,
we keep in consideration the Fmincon as reference point for
the other algorithms but we do not consider this algorithm
robust enough to be used for real demands estimation as it
has been demonstrated in the previous section.

Table IV presents the mean percentage of error collected
between the real and the found demands using different algo-
rithms, search space and δ. It is clear that the MS algorithm
outperforms the other two algorithms. In particular, for all
the sampled state spaces bigger than K3 and under varying
δ values, the algorithms are able to find with a very low
percentage of error the real set demands. Even in the case with
K3 the algorithm is able to find good demands compared to
the other algorithms using the same state space. However, the
absence of state information makes difficult for the algorithm
to find better demands.

It is also interesting to see the case where the non-linear
constrains are included in the search algorithms. In this
situation, the algorithms are able to perform similarly to each
other and the difference in performance is dictated only by
the sampled state space size. Based on these results we have
tested if, without non-linear constraints, the demand inference
in Cassandra can improve as well or reduce the execution time.
However, we noticed that the optimization algorithms returns,
in this condition, higher final divergence values and in some
case they are not able to converge. For this reason, we do not
advise to use this method for a production system.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new algorithm, called
SD, that is able to infer the demands in distributed cloud
applications. The SD algorithm differs from state-of-the-art
approaches mainly for two reasons: firstly, it uses the marginal
probability of the real system to perform the inference of
the demands rather than average metrics as done in most
algorithms. Secondly, users need to provide to the algorithm a
representative queueing network model of the system, allowing
to capture the entire workflows of the requests.

Through a case study using the Apache Cassandra NoSQL
database, we have shown that the SD algorithm is able to
identify a set of demands able to not only match the average
metrics performance, but also the system behavior represented
by the marginal probability of the analyzed system.

Further validation has been conducted on a set of random
models where the demands have been generated within a
specific range. In this case, we have demonstrated that in
absence of system noise, the SD algorithm is able to perform
well and incur a small error around 2%.

Future work may further investigate the SD algorithm
with other different types of applications and other families
of queueing network models. In addition, one may analyze
weather a hybrid solution composed by a two-steps algorithm

(a preliminary search and a full search) can reduce the average
error and its execution time.
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