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Abstract

A local model of the dielectric response of a metal predicts that singular surfaces, such as sharp-

edged structures, have a continuous absorption spectrum and extreme concentration of energy at

the singularity. Here we show that nonlocality drastically alters this picture: the spectrum is now

discrete and energy concentration, though still substantial, is greatly reduced.
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I. INTRODUCTION

In the past decade, rapid development in nanofabrication has prompted great interest in

plasmonic systems which collect and concentrate light into subwavelength volumes1, enabling

for instance broadband absorption of light on gold surfaces2,3. Among these systems, singular

plasmonic structures, such as narrow gaps and sharp edges4–15, can even concentrate the

field down to the Coulomb screening length where electron-electron interaction should be

considered16–20. The hydrodynamical model21–23 takes this interaction into account and

successfully explains nonlocal effects in the gap of a dimer24–26.

In our recent work27,28, we proposed and studied singular metasurfaces within a local

description where the optical response of metals is described by a ω-dependent permittivity

such as the Drude model, ε(ω) = ε∞ −
ω2
p

ω(ω+iΓ)
. However, the local model assumes that the

electron gas is a continuum taking no account of the Fermi surface and the finite density of

electrons. In our singular metasurface, the SPPs will propagate to the singularities, where

electrons accumulate and reach infinite density, which leads to divergences of the electric

field. However, the infinite density is not physical because of the discrete nature of the

electron gas, which determines the screening length (δC ∼ 0.1 nm, for noble metals)29 and

prevents the electron density from blowing up. In this work, we take this nonlocal effect

into account for singular metasurfaces where the scale of the singularity could go below the

screening length. Our results show that the singular metasurface is very sensitive to the

nonlocal effects of the electron gas and that nonlocality in the metal has to be considered

for an accurate description of our singular system. We discuss how singular metasurfaces

could be used to reveal nonlocal effects.

II. DISPERSION RELATION

Fig. 1(a) is a schematic of our singular metasurface: a periodic array of grooves on a

metal surface with sharp edges illuminated by a plane wave. In the presence of nonlocality,

we have both transverse and longitudinal modes in the metal. For the transverse mode, the

dielectric function is modeled with classical Drude permittivity with ε∞ = 1, ωp = 8.95 eV/~

and Γ = 65.8 meV/~30, while for the longitudinal mode, the dielectric function is described

within the hydrodynamic model as εL(ω,k) = ε∞ −
ω2
p

ω(ω+iΓ)−β2|k|2
21, where β is the nonlocal
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parameter, measuring the degree of nonlocality. The decay length of the longitudinal mode

is δ = β√
ω2
p−ω2

≈ β
ωp

when the frequency is well below the plasmon frequency. In the presence

of nonlocality, the surface charge becomes a volume charge with a decay length δ inside the

metal surface, which is depicted as an electron density layer (purple layer) on top of the

metasurface with period T shown in Fig. 1(a). The existence of this layer smooths the

singularity and has remarkable effects on the far field spectrum.

The complex boundary of a singular metasurface complicates the calculation, so we shall

map this singular surface into a slab array with period d (see Fig. 1(b)), where the thickness

of the slabs is d3 and the thickness of the dielectric region is d1 +d2
28. In the slab frame, the

transverse electric permittivity remains the same since it is k-independent and conformal

mapping conserves the permittivity in the x − y plane. However, the dependence of the

longitudinal permittivity on the k vector complicates the problem because k is not invari-

ant under conformal mapping. Therefore, the longitudinal permittivity in the slab frame

becomes coordinate dependent, and is written as

εzL(ω,k, z) = εz
′

L (ω,

∣∣∣∣ dzdz′
∣∣∣∣k)

= ε∞ −
ω2
p

ω(ω + iΓ)− β2d2|k|2
T 2

∣∣sinh
(
2π z

d

)∣∣2
= ε∞ −

ω2
p

ω(ω + iΓ)− β2
eff (z)|k|2

(1)

where the primed complex coordinate z
′

= x
′
+ iy

′
is for the metasurface frame, while the

unprimed coordinate z = x+ iy is for the slab frame. The effective nonlocal parameter βeff

in the slab frame, βeff (z) = βd
T

∣∣sinh
(
2π z

d

)∣∣, indicates that the decay length is smaller near

the origin and increases when x → ±∞ (see Fig. 1(b)), i.e. the permittivity is more and

more nonlocal along the slab.

We start by calculating the SPP dispersion in the slab frame. Plane waves (incident,

reflected and transmitted waves) in the metasurface frame are modeled as monopole sources

in the slab frame and a non-retarded approximation is taken28. These three sorts of waves

excite the SPPs along the slab. To determine the coefficients of this SPP mode, the tangential

component of the magnetic and electric fields (Hz and Ex in our coordinate system) should

be matched at the interface between metal and air. However, imposing the continuity of

Hz and Ex is not sufficient as there exists an additional longitudinal mode. To solve this

indeterminacy, an additional boundary condition, the continuity of Ey, is imposed at the
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FIG. 1. Schematic of nonlocality in the singular metasurface. (a) The screening length of a

noble metal (Gold in this paper) smooths the singularity; (b) The decay length of the longitudinal

mode is coordinate dependent, due to the k-dependence of the longitudinal permittivity εL; (c)

Dispersion relation at x = 0 in the slab frame; (d) The coordinate-dependence of k2
px on x for the

anti-symmetric mode at ω = 0.6ωp, where the red point marks the turning point for the SPP wave.

interface between metal and air, where Ey is the electric field component normal to the

interface. This continuity comes from the assumption that electrons can not escape from

the metal so the normal component of the current density J (see Appendix D) vanishes at the

surface of the metal volume in the hydrodynamic model. In the case of air/metal interface,

the vanishing normal component of J implies the continuity of the normal component of

electric field (Ey in our case). By imposing these boundary conditions, we can calculate

the mode in the slab frame. Since βeff is a function of the slab frame coordinate, kx varies
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along the slab. To make an analytic solution possible for this inhomogeneity, the WKB

approximation is introduced. The WKB approximation, which has been successfully used in

plasmonic systems24,25,31, applies when the phase of the SPP wave changes more quickly than

its amplitude. With the above additional boundary condition and the WKB approximation,

the SPP mode and the corresponding dispersion relation are determined. The dispersion

relation for anti-symmetric mode is

(ε− 1)
√
k2x(e
√
k2x(d1+d2) + 1)(e

√
k2xd3 + 1)

eκd3 − 1

κ(eκd3 + 1)
+ ((ε− 1)(e

√
k2x(d1+d2) − e

√
k2xd3 ) + (ε+ 1)(e

√
k2xd − 1)) = 0 (2)

while the dispersion relation for the symmetric mode is given by

(ε− 1)
√
k2x(e
√
k2x(d1+d2) − 1)(e

√
k2xd3 − 1)

eκd3 + 1

κ(eκd3 − 1)
− ((ε− 1)(e

√
k2x(d1+d2) − e

√
k2xd3 )− (ε+ 1)(e

√
k2xd − 1)) = 0 (3)

where κ =

√
k2
x +

ω2
p

β2d2

T2 |sinh(2π z
d)|

2
ε
ε−1

and kpx stands for the plasmon pole. The symmetry

of the SPP mode is defined by the parity of Ex(y) in the slab frame: The odd(even) func-

tion corresponds to the anti-symmetric(symmetric) mode. The dispersion relation at the

center of the slab kpx(ω, x = 0) is presented in Fig. 1(c), together with the local result for

comparison28. For the local case, both anti-symmetric and symmetric modes asymptotically

approach ω = ωsp. In contrast, within the nonlocal description, this SPP mode asymptoti-

cally approaches the longitudinal bulk mode ω =
√
β2k2 + ω2

p. In the large k limit, ω ≈ βk,

resulting in a linear dispersion relation, see Fig. 1(c). In the following, we will focus on the

anti-symmetric band which can be excited by a normally incident plane wave. For this anti-

symmetric mode, the profile of k2
px on the interface of the slab at a representative frequency

within the band ω = 0.6ωp is shown in Fig. 1(d), where the point when k2
px = 0 is called

a ”turning point”32. At the turning point, the SPP wave is reflected and the two turning

points (x = −L/2, x = L/2) confine SPP waves to form a Fabry-Perot resonant cavity with

width L.

III. FAR FIELD SPECTRUM

With the mode profile in the slab frame (see Appendix A-C for detailed calculations), we

can calculate the power flow at x = 0 and model this power flow as the energy consumption

by an effective surface conductivity, which has been previously introduced as flat surface
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FIG. 2. Reflection spectrum of a groove system with T = 10 nm under normal incidence with

different nonlocal parameter β: (a) β = 1.27× 106 m/s; (b) β = 1.27× 105 m/s; (c) β = 1.27× 104

m/s; (d) β = 1.27 m/s. The blue solid line corresponds to analytic calculation while the red dashed

line to Comsol simulation, which are compared with a calculation without nonlocality (gray line).
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model28. This surface conductivity gives us the reflection spectrum. In all the following

calculations, the parameter d3 = 0.9d is used, fixing the shape of the metasurface.

In Fig. 2 we show how nonlocality greatly affects the optical response of singular metasur-

faces. Here we present the reflection spectrum of a groove metasurface with period T = 10

nm for different nonlocal parameters β. In Fig. 2(a), a realistic value of β = 1.27 × 106

m/s is used23. The theoretical calculation (blue solid line) agrees very well with the simula-

tion results (red dashed line) from the commercial finite element method solver COMSOL

MULTIPHYSICS (see Appendix D for detailed setting up), which are also compared with a

local calculation (gray line). It is clear that the spectrum becomes discrete when nonlocality

is introduced. To further clarify the effect of nonlocality on the spectrum, we conduct a

series of calculations with different β. When β is 10 times smaller (β = 1.27 × 105 m/s),

more resonances appear in the spectrum, shown in Fig. 2(b), in which the analytic result

also agrees well with numerics. We can reduce β further to 1.27 × 104 m/s (Fig. 2(c)),

and even to 1.27 m/s(Fig. 2(d)) where Comsol simulations do not converge. The nonlocal

spectrum supports more and more peaks as β is reduced. In the limit β → 0, the spectrum

will become continuous. The origin of the spectrum discretization is that nonlocality blunts

the singularity. The resonance condition for different peaks is∫ L/2

−L/2
kpx(x)dx+ φ = 2nπ (4)

where n is an integer and φ is the phase change at the turning point which is discussed

in Appendix B. The finite range of integration yields a finite number of resonances. As

β decreases, the turning point is further from the origin and the k integration is larger,

thereby allowing for more peaks and appreciably changing the spectrum. In a nutshell,

this microscopic feature of nonlocality greatly affects the optical response of the singular

metasurface.

Next, we study the effect of the other length scale of the problem, the metasurface period,

while keeping a realistic nonlocal parameter (β = 1.27×106 m/s). In Fig. 3(a) we reproduce

the reflection spectrum for 10 nm period where we have already seen an excellent agreement

with full electrodynamics simulations as in this regime the quasi-static approximation is well

satisfied. When the period is increased to 50 nm (Fig. 3(b)), more resonances are excited

and at the same time the spectrum moves to lower frequencies. The reason for this is that

when the period is increased the length scale where nonlocality is relevant is effectively
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smaller. Hence, increasing the period has a similar effect to reducing β since these are the

two length scales which compete in this problem.

Then we further increase the period to 100 nm, where the quasi-static approximation

is not expected to be accurate. However, there is still a good agreement between our

theory and simulations. In particular, the linewidth is not broadened in comparison with

T = 10 nm and T = 50 nm, except for the low order resonance peaks whose linewidth

gets broadened slightly. This is a remarkable difference from localized plasmonic structures

of sizes comparable to the period considered here, where radiative broadening is important

and a theory beyond quasi-statics is needed to accurately describe these systems24. Different

from localized plasmonic structures, the periodic singular metasurface does not have a strong

radiative broadening because by increasing the period we have less periods within overall

length. The first resonance peak which has the highest broadening forms a stronger dipole

moment, so its broadening is larger than the higher order peaks whose electron distribution

is more homogeneous.

Broadband absorption on singular gold surfaces has been experimentally observed2. In

this work, a gold surface with ultra narrow convex grooves of periods∼ 250 nm was fabricated

and absorption of light over a broad frequency band was shown. The adiabatic nanofocusing

of SPs on these grooves is akin to the SP propagation towards the singularities in our singular

metasurfaces, such that both structures show broad bands of absorption. However, we note

that the size of the singular features in this experiment is still far more than 1 nm, and much

larger than the screening length. At this length scale, the discretization of the spectrum

due to nonlocality may not be observed, with much narrower gaps being necessary for this

purpose.

IV. NEAR FIELD PROFILE

After studying the far field spectrum, we turn to the near field profile in the presence

of nonlocality. Fig. 4 illustrates the electric field profile of the metasurface, in which the

first and the second column depict the electric field (Ex and Ey) distribution in one period

(−T/2 < y < T/2). Also, the electric field En (the component normal to the interface,

which dominates for the anti-symmetric mode) along the surface is presented in the last

two columns with different scales in the y-axis. Fig. 4(a) shows the electric field profile
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FIG. 3. Reflection spectrum of a groove system with β = 1.27× 106 m/s under normal incidence

with different period T : (a) T = 10 nm; (b) T = 50 nm; (c) T = 100 nm. The blue solid line

corresponds to analytic calculation while the red dashed line to Comsol simulation.

for the second resonance peak in the reflection spectrum of Fig. 2(a) (period T = 10

nm, β = 1.27 × 106 m/s), at a frequency of ω = 0.7ωp. From this field profile, we see

that the electric field is continuous across the interface because the hydrodynamic model

assumes no surface charge at the boundary between air and metal. On the contrary, the

existence of a surface charge in the local description makes the normal component of electric

field discontinuous. On the other hand, the field near the singularity is not as localized as

the field in the local case. This is because the smearing of the singularity introduced by

nonlocality results in a weaker compression of the plasmon wavelength as it travels towards

the singularity. This effect causes a strong reduction of the field enhancement in the vicinity

of singularity. In fact, while the electric field diverges at the singularity in the local case, it

has a value of approximately 70 when nonlocality is taken into account, as shown by the plot
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FIG. 4. Electric field profile for a groove system under normal incidence: (a) β = 1.27× 106 m/s

and T = 10 nm; (b) β = 1.27 × 105 m/s and T = 10 nm; (c) β = 1.27 × 106 m/s and T = 100

nm. The first two columns are field contour plot for Ex and Ey, the last two columns are normal

component of electric filed on the interface of metasurface shown with different scales in y-axis.

of the field at the interface. In addition, the agreement between analytical and numerical

results is excellent except near the singularity. This discrepancy between theory and Comsol

is due to the WKB approximation, which does not work well when the k-vector is small.

To further unveil the effect of nonlocality on the field enhancement, in Fig. 4(b) we
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consider a metasurface with the same period as in Fig. 4(a) but with a smaller nonlocal

parameter (β = 1.27 × 105 m/s). We plot the fields of the fifth resonance peak in Fig.

2(b), at the same frequency ω = 0.7ωp as Fig. 4(a). Comparing to the case with a realistic

description of nonlocality (panel (a)), the field in this case shows more oscillations and

presents a sharper change at the metal surface, looking more alike to the local situation. In

addition, the plot of the field along the interface demonstrates how the field enhancement

strongly increases as compared to panel (a), which is consistent with a divergent field in the

limit of β → 0.

Finally, we also consider the near field profiles for a metasurface with a long period

(T = 100 nm) and nonlocal metal (realistic β). The field profile for the fifth-order resonance

in the metasurface (the fifth peak in spectrum in Fig. 3(c), ω = 0.7ωp), is shown in Fig.

4(c). Similar to decreasing the value of β for a fixed period, keeping β and increasing

the period effectively reduces the length scale of nonlocality. Hence, the fields have more

oscillations and do not smooth out over the air/metal interface but present jumps. Besides,

the electric field is larger than that for the 10 nm case in Fig. 4(a), since the effectively

reduced nonlocal length scale implies that the plasmons have more time to travel towards the

singularity while their wavelength is compressed, and confinement increases. Hence, higher

field enhancements are to be found in metasurfaces of larger periods, which are surprisingly

unaffected by radiative broadening.

V. CONCLUSIONS

In this paper we have explored the consequences of nonlocality for surfaces in the form

of metasurfaces containing sharp edge singularities. Local theory predicts that external

radiation will excite a continuous spectrum of modes with infinite energy density at the

singularity. However, nonlocality forbids infinite concentration of charge at the surface with

dramatic consequences for the spectra which are now discrete, and for the energy density

which is no longer singular, although it takes a large value at the structural singularity. In

effect nonlocality blunts sharp edges. This result suggests a way of measuring nonlocality,

particularly by observing the mode spacing in the discrete spectrum it implies. When the

metasurface period is very short compared to the free space wavelength of light, magnetism

plays little part in the modes which are almost entirely electrostatic. In a local theory
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the spectrum is scale invariant hence the period of the metasurface does not affect the

spectrum. This ceases to be true when nonlocality introduces a length scale in the form

of the screening length. As a result, there is a balance between the nonlocal parameter, β,

and the metasurface period: by increasing the period we can compensate for nonlocality at

least until the period approaches the free space wavelength. Another point we noted was

the insensitivity of radiative damping of the modes to the metasurface period. The charge

currents generated by a mode couple weakly to external radiation and increasing the period

might be expected to increase this coupling. For an isolated resonant particle this is indeed

the case and radiative damping increases dramatically once the particle is much bigger than

about 100 nm. In contrast, for a given length of metasurface, increasing the period means

including less periods in the overall length hence the small effect.
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Appendix A: Field in the slab frame

Since the conformal mapping conserves the spectrum of the system, we carry out our
analytic calculation in the slab frame where the geometry is simpler. In the slab frame, we
can write the field in each region by taking the quasi-static approximation as

Hz(kx, y) =


(1− r)aa e

−|kx||y|

|kx|
+ (1 + r)assgn(kx) e

−|kx||y|

sgn(y)|kx|
+ b+e−|kx|y + b−e|kx|y , −d2 < y < d1

−t k
′
0x
k0x

aa
e
−|kx||y+ d

2
|

|kx|
− tassgn(kx) e

−|kx||y+ d
2
|

sgn(y+ d
2
)|kx|

+ c+e−|kx|y + c−e|kx|y , −(d2 + d3) < y < −d2
(A1)

ϕ(kx, y) =

 0, −d2 < y < d1

sgn(kx)
ωε0ε

(d+e
−κy − d−eκy), −(d2 + d3) < y < −d2

(A2)

where Hz contributes to the transverse mode, and ϕ to the longitudinal mode. Besides, the

anti-symmetric source magnitude is aa = −ik0xT
4π

H0, while the symmetric one is as = k0yT

4π
H0.
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The electric components can be obtained by

Ex(kx, y) =
i

ωε

∂Hz

∂y
− ∂ϕ

∂x

Ey(kx, y) = − i

ωε

∂Hz

∂x
− ∂ϕ

∂y

. (A3)

Then by using the continuity of Hz, Ex and Ey at interface between metal and air, we

can calculate the coefficients (b±, c± and d±) for the SPP mode in k-space. The anti-

symmetric excitation gives us a mode with anti-symmetry, the dispersion relation for which

is given in Eq. 2. In contrast, the symmetric excitation gives a symmetric mode, whose

dispersion relation is given by Eq. 3. For the anti-symmetric mode studied in this paper,

the field distribution in real space (Hz(x, y) and ϕ(x, y)) can be obtained by taking a Fourier

transformation of the field in k-space(Hz(kx, y) and ϕ(kx, y)). The field distribution in real

space can be written as

Ha
z (x, y) =



i2πaa(Γa+e
−
√
k2pxy + Γa−e

√
k2pxy)

× (ei
∫ |x|
0 kpx(x′)dx′ + e−i

∫ |x|
0 kpx(x′)dx′+i(φ0+φ))

1

1− ei(φ0+φ)

, −d2 < y < d1

i2πaa(Λa+e
−
√
k2pxy + Λa−e

√
k2pxy)

× (ei
∫ |x|
0 kpx(x′)dx′ + e−i

∫ |x|
0 kpx(x′)dx′+i(φ0+φ))

1

1− ei(φ0+φ)

, −(d2 + d3) < y < −d2

(A4)

ϕa(x, y) =


0, −d2 < y < d1

i2πaasgn(kpx)sgn(x)

ωε0ε
(Ωa+e

−κpy − Ωa−e
κpy)

× (ei
∫ |x|
0 kpx(x′)dx′ − e−i

∫ |x|
0 kpx(x′)dx′+i(φ0+φ))

1

1− ei(φ0+φ)

, −(d2 + d3) < y < −d2

(A5)

where φ0 =
∫ L/2
−L/2 kpx(x

′)dx′ and φ is the phase change at the singularity which will be

discussed in the next subsection.

Appendix B: Phase change at the singularity

The WKB approximation fails near the turning point as k is small32. Therefore, we

cannot use k from the dispersion relation based on WKB to calculate the phase change

φ. Instead, the phase change at the tip is calculated in the metasurface frame. The result

in Fig. 5(a) shows that the k-vector near the tip saturates as the width of the cavity δ

decreases. The phase change φ of this cavity array can be obtained by matching the field
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FIG. 5. k-vector and phase change φ at the singularity in the metasurface frame: (a) Dispersion

relation (h = T/2 is the period of this cavity array) and (b) Phase change near the singularity for

the cavity with different width δ (0.001 nm, 0.01 nm and 0.1 nm).

at the terminus28,33,34. The calculated results show that both k-vector and phase change

saturate near the singularity. Therefore, we use this value of the phase φ in the calculation.

Appendix C: Reflection spectrum

In order to calculate the reflection, we need to calculate the absorption in the slab frame.

Our trick is to evaluate the power flow at the excitation point (x = 0) by

Pabs = 2

∫ d1

−(d2+d3)

Sxdy (C1)

where Sx = 1
2
Re[E∗yHz]. The absorption by the slab is modeled as a real surface conductivity

σer. Then using Kramers-Kronig relation28,29,35,36, a causal complex surface conductivity
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σe = σer + iσei gives the reflection spectrum of singular metasurface by

r =

√
ε− 1 + σe

σe0√
ε+ 1 + σe

σe0

. (C2)

Appendix D: Comsol modelling

All of our numerical simulations are based on the RF and PDE modules in Comsol22,37,

where the hydrodynamic system of equations in the metal are implemented as

∇×∇× E = k2
0E + iωµ0J

β2∇(∇ · J) + ω(ω + iΓ)J = iωω2
pε0E

(D1)

where the J is the current density for the electron. When β → 0, we arrive at classical

Drude local-response function ε(ω) = 1 − ω2
p/(ω(ω + iΓ)). By solving the above coupled

equations, the response of our singular metasurface can be obtained.
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