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Abstract—Radio waves carry both energy and information si-
multaneously. Nevertheless, Radio-Frequency (RF) transmissions
of these quantities have traditionally been treated separately.
Currently, the community is experiencing a paradigm shift in
wireless network design, namely unifying wireless transmission
of information and power so as to make the best use of the RF
spectrum and radiation as well as the network infrastructure
for the dual purpose of communicating and energizing. In
this paper, we review and discuss recent progress in laying
the foundations of the envisioned dual purpose networks by
establishing a signal theory and design for Wireless Information
and Power Transmission (WIPT) and identifying the fundamental
tradeoff between conveying information and power wirelessly.
We start with an overview of WIPT challenges and technologies,
namely Simultaneous Wireless Information and Power Trans-
fer (SWIPT), Wirelessly Powered Communication Networks
(WPCNs), and Wirelessly Powered Backscatter Communication
(WPBC). We then characterize energy harvesters and show how
WIPT signal and system designs crucially revolve around the
underlying energy harvester model. To that end, we highlight
three different energy harvester models, namely one linear model
and two nonlinear models, and show how WIPT designs differ
for each of them in single-user and multi-user deployments.
Topics discussed include rate-energy region characterization,
transmitter and receiver architectures, waveform design, modula-
tion, beamforming and input distribution optimizations, resource
allocation, and RF spectrum use. We discuss and check the
validity of the different energy harvester models and the resulting
signal theory and design based on circuit simulations, prototyping
and experimentation. We also point out numerous directions that
are promising for future research.
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I. I NTRODUCTION

W IRELESS communications via Radio-Frequency (RF)
radiation has been around for more than a century

and has significantly shaped our society in the past 40 years.
Wireless is however not limited to communications. Wireless
powering of devices using near-field Inductive Power Transfer
has become a reality with several commercially available
products and standards. However, its range is severely limited
(less than one meter). On the other hand, far-field Wireless
Power Transfer (WPT) via RF (as in wireless communication)
could be used over longer ranges. It has long been regarded
as a possibility for energizing low-power devices but it is
only recently that it has become recognized as feasible due to
reductions in the power requirements of electronics and smart
devices [1], [2]. Indeed, in 20 years from now, according to
Koomey’s law [3], the amount of energy needed for a given
computing task will fall by a factor of 10000 compared to
what it is now, thus further continuing the trend towards low-
power devices. Moreover, the world will see the emergence of
trillions of Internet-of-Things (IoT) devices. This explosion of
low-power devices calls for a re-thinking of wireless network
design.

Recent research advocates that the future of wireless net-
working goes beyond conventional communication-centric
transmission. In the same way as wireless (via RF) has dis-
rupted mobile communications for the last 40 years, wireless
(via RF) will disrupt the delivery of mobile power. However,
current wireless networks have been designed for communica-
tion purposes only. While mobile communication has become
a relatively mature technology, currently evolving towards its
fifth generation, the development of mobile power is in its
infancy and has not even reached its first generation. Today,
not a single standard on far-field WPT exists. Wireless power
will bring numerous new opportunities: no wires, no contacts,
no batteries, genuine mobility and a perpetual, predictable,
dedicated, on-demand, and reliable energy supply as opposed
to intermittent ambient energy-harvesting technologies (e.g.
solar, thermal, vibration). This is highly relevant in future
networks with ubiquitous and autonomous low-power and
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energy limited devices, device-to-device communications, and
the IoT with massive connections.

Interestingly, although radio waves carry both energy and
information simultaneously, RF transmission of these quanti-
ties have traditionally been treated separately. Imagine instead
a wireless network, e.g. WiFi, in which information and
energy flow together through the wireless medium. Wireless
communication, or Wireless Information Transfer (WIT), and
WPT would then refer to two extreme strategies, respectively,
targeting communication-only and power-only. A unified de-
sign of Wireless Information and Power Transmission (WIPT)
would on the other hand have the ability to softly evolve
and compromise in between those two extremes to make
the best use of the RF spectrum/radiation and the network
infrastructure to communicate and energize. This will enable
trillions of low-power devices to be connected and powered
anywhere, anytime, and on the move.

The integration of wireless power and wireless commu-
nications brings new challenges and opportunities, and calls
for a paradigm shift in wireless network design. As a result,
numerous new research problems need to be addressed that
cover a wide range of disciplines including communication
theory, information theory, circuit theory, RF design, signal
processing, protocol design, optimization, prototyping,and
experimentation.

A. Overview of WIPT Challenges and Technologies

WIT and WPT are fundamental building blocks of WIPT
and the design of efficient WIPT networks fundamentally
relies on the ability to design efficient WIT and WPT. In
the last 40 years, WIT has seen significant advances in RF
theory and signal theory. Traditional research on WPT in the
last few decades has focused extensively on RF theories and
techniques concerning the energy receiver with the design of
efficient RF, circuit, antenna, rectifier, and power management
unit solutions [4]–[6], but recently a new and complementary
line of research on communications and signal design for WPT
has emerged in the communication literature [7]. Moreover,
there has been a growing interest in bridging RF, signal, and
system designs in order to bring those two communities closer
together and to get a better understanding of the fundamental
building blocks of an efficient WPT network architecture [8].

The engineering requirements and design challenges of the
envisioned network are numerous: 1)Range: Delivery of wire-
less power at distances of 5-100 meters (m) for indoor/outdoor
charging of low-power devices; 2)Efficiency: Boosting the
end-to-end power transfer efficiency (up to a fraction of a
percent/a few percent), or equivalently the DC power level at
the output of the rectenna(s) for a given transmit power; 3)
Non-line of sight (NLoS): Support of Line of sight (LoS) and
NLoS to widen the practical applications of WIPT networks;
4) Mobility support: Support of mobile receivers, at least
for those at pedestrian speed; 5)Ubiquitous accessibility:
Support of ubiquitous power accessibility within the network
coverage area; 6)Safety and health: Resolving the safety
and health issues of RF systems and compliance with the
regulations; 7)Energy consumption: Limitation of the energy

consumption of energy-constrained RF powered devices; 8)
Seamless integration of wireless communication and wireless
power: Interoperability between wireless communication and
wireless power via a unified WIPT.

Solutions to tackle challenges 1)-7) are being researched and
have been discussed extensively in [6]–[10]. They cover a wide
range of areas spanning sensors, devices, RF, communication,
signal and system designs for WPT. This survey article targets
challenge 8) by reviewing the fundamentals of WIPT signal
and system designs. In WPT and WIT, the emphasis of the
system design is to exclusively deliver energy and informa-
tion, respectively. On the contrary, in WIPT, both energy
and information are to be delivered. A WIPT system should
therefore be designed such that the RF radiation and the RF
spectrum are exploited in the most efficient manner to deliver
both information and energy. Such a system design requires
the characterization of the fundamental tradeoff between how
much information and how much energy can be delivered in
a wireless network and how signals should be designed to
achieve the best possible tradeoff between them.

As illustrated in Fig. 1, WIPT can be categorized into three
different types:

• Simultaneous Wireless Information and Power Transfer
(SWIPT): Energy and information are simultaneously
transferred in the downlink from one or multiple ac-
cess points to one or multiple receivers. The Energy
Receiver(s) (ER) and Information Receiver(s) (IR) can
be co-located or separated. In SWIPT with separated
receivers, ER and IR are different devices, the former
being a low-power device being charged, the latter be-
ing a device receiving data. In SWIPT with co-located
receivers, each receiver is a single low-power device that
is simultaneously being charged and receiving data.

• Wirelessly Powered Communication Networks (WPCNs):
Energy is transferred in the downlink and information
is transferred in the uplink. The receiver is a low-power
device that harvests energy in the downlink and uses it
to send data in the uplink.

• Wirelessly Powered Backscatter Communication (WPBC):
Energy is transferred in the downlink and information is
transferred in the uplink but backscatter modulation at
a tag is used to reflect and modulate the incoming RF
signal for communication with a reader. Since tags do not
require oscillators to generate carrier signals, backscatter
communications benefit from orders-of-magnitude lower
power consumption than conventional radio communica-
tions.

Moreover, a network could also include a mixture of the
above three types of transmissions with multiple co-located
and/or separated Energy Transmitter(s) (ET) and Information
Transmitter(s) (IT).

B. Objectives and Organization

This paper reviews and summarizes recent advances and
contributions in the area of WIPT. The main objective of
this article is to give a systematic treatment of signal theory
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Fig. 1. Different WIPT architectures.

and design for WIPT and use it to characterize the funda-
mental tradeoff between conveying information and energy
in a wireless network. This tradeoff is commonly referred
to as rate-energy (R-E) tradeoff. Various review papers on
WIPT have appeared in past years [11]–[21]. Emphasis was
put at that time on characterizing the R-E tradeoff under
the assumption of a very simplelinear modelof the energy
harvester. Interestingly, the importance of the energy harvester
model for WIPT design was never raised and the validity of
this linear model never questioned in that WIPT literature.
In recent years, there has been an increasing interest in the
WIPT literature to depart from the linear model. However
what we know about WIPT design from those review papers is
fundamentally rooted in the underlying linear model. It turns
out that WIPT design radically changes once we change the
energy harvester model and adopt more realisticnonlinear
modelsof the energy harvester.

Hence, in contrast to those existing tutorial and review
papers, we here aim at showing how crucial the energy
harvester model is to WIPT signal and system designs and how
WIPT signal and system designs revolve around the underlying
energy harvester model. To that end, we highlight three dif-
ferent energy harvester models, namely onelinear modeland
two nonlinear models, and show how WIPT designs differ for
each of them. In particular, we show how the modeling of the
energy harvester can have tremendous influence on the design
of the Physical (PHY) and Medium Access Control (MAC)
layers of WIPT networks. We rigorously review how the
different models can favor different waveforms, modulations,
input distributions, beamforming, transceiver architectures,
and resource allocation strategies as well as a different use of
the RF spectrum. We first consider single-user (point-to-point)
WIPT and then extend to multi-user scenarios. We discuss
the validity of the different energy harvester models and the
resulting signal and system designs through experimentation
and prototyping. Finally, we point out directions that are
promising for future research.

The rest of this article is organized as follows. In the next
subsection, we first give some insights into the crucial roleof
energy harvester modeling and its impact onto signal designs.
We then jump into the core parts of the paper. Section II
introduces three models for the energy harvester (rectenna),
namely the diode linear model, the diode nonlinear model,
and the saturation nonlinear model. Section III is dedicated to
the study of the fundamental tradeoff between rate and energy
in single-user (point-to-point) WIPT for each of the three
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Fig. 2. The block diagram of a generic WPT system [7].

rectenna models. Special emphasis is given to how deeply
the rectenna model influences the R-E tradeoff and WIPT
signal and system design. Section IV extends the discussion
to multi-user WIPT. Section V discusses recent prototyping
and experimentation efforts to validate the signal theory and
designs. Section VI concludes the paper.

Throughout the paper, a special emphasis is put on SWIPT
as it can be seen as the most involved and disruptive scenario,
where wireless communications and wireless power are closely
intertwined. Nevertheless, the analysis and ideas reviewed in
the paper can also find applications in WPCN and WPBC, as
pointed out throughout the manuscript.

C. The Crucial Role of Energy Harvester Modeling

In order to motivate the importance of the energy harvester
modeling, recall first the block diagram of a generic WPT
system illustrated in Fig. 2. The end-to-end power transfer
efficiencye can be decomposed as

e =
P r
dc

P t
dc

=
P t
rf

P t
dc

︸︷︷︸

e1

P r
rf

P t
rf

︸︷︷︸

e2

P r
dc

P r
rf

︸︷︷︸

e3

, (1)

wheree1, e2, ande3 denote the DC-to-RF, RF-to-RF, and RF-
to-DC power conversion/transmission efficiency, respectively.

A natural approach to come up with an efficient WPT
architecture would be to concatenate techniques designed
specifically to maximizee1, e2, and e3. One could there-
fore use an efficient Power Amplifier (PA), smart channel-
adaptive signals, and an efficient rectenna to maximizee1,
e2, ande3, respectively. Doing so, the RF and signal designs
are completely decoupled. WPT/WIPT RF designers would
deal with efficient PA and rectenna designs and WPT/WIPT
signal designers focus on maximizinge2 assuminge1 ande3
constant, i.e., assuminge1 and e3 are not a function of the
transmit/received signals but only a function of the PA and
rectenna designs, respectively. Though not explicitly stated this
way, this is the design philosophy adopted in the early works
on SWIPT, WPCN and WPBC, see e.g. [11]–[18], [22]–[40].
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SWIPT was first considered in [22]. The tradeoff between
information rate and delivered energy, the so-called R-E re-
gion, was characterized for point-to-point discrete channels,
and a Gaussian channel subject to an amplitude constraint on
the input. SWIPT was then studied in a frequency-selective
Gaussian channel under an average power constraint in [23].
In [24], the term SWIPT was first coined and SWIPT was
investigated for multi-user MIMO systems, where practical
receivers to realize both RF energy harvesting and information
decoding were proposed. Since then, SWIPT has attracted
significant interests in the communication literature withworks
covering a wide range of topics, among others MIMO broad-
casting [25], [26], architecture [27], [28], interferencechannel
[29]–[31], broadband system [32]–[34], relaying [35], [36]. In
parallel, much attention has been drawn to WPCN [37], [38]
and WPBC [39], [40].

Interestingly, while the above literature addresses compli-
cated scenarios with multiple transmitters and receivers and
complicated R-E tradeoff characterizations, results are based
on the assumptions thate1 and e3 are constant. Indeed, the
DC-to-RF conversion efficiencye1 has been assumed equal
to unity and the energy harvester has been abstracted using
a linear relationship stating that the output DC power of the
energy harvester is equal to its input RF power multiplied
by a constant RF-to-DC conversion efficiencye3 [7]. Such a
linear modelfor the energy harvester has the benefit of being
analytically easily tractable.

Another approach to designing efficient WPT and WIPT
architectures has emerged more recently and relies on observa-
tions made in the RF literature that the RF-to-DC conversion
efficiency e3 is not a constant but anonlinear function of
the input signal (power and shape) [8], [41]–[45]. Assuming
e3 constant is indeed over-simplified and is not validated by
circuit simulations and measurements. This observation has
as consequence that the maximization ofe is not achieved
by maximizinge1, e2 and e3 independently from each other,
and therefore, simply concatenating an efficient PA, ane2-
maximizing signal, and an efficient rectenna [8]. Efficiencies
e1, e2 and e3 are indeed coupled with each other due to
the energy harvester nonlinearity [7], [46], [47]. The RF-to-
DC conversion efficiencye3 is not only a function of the
rectenna design but also of its input signal shape and power
and therefore a function of the transmit signal (beamformer,
waveform, modulation, power allocation) and the wireless
channel state. Similarly,e2 depends on the transmit signal
and the channel state and so doese1, since it is a function
of the transmit signal Peak-to-Average Power Ratio (PAPR).
Hence, signal design not only influencese2 but alsoe1 and
e3 in general settings. Being able to predict the influence
of the signal design one1 and e3 requires the development
of nonlinear modelsfor the PA and the energy harvester,
respectively. Of particular interest in this paper is the modeling
of the energy harvester and the influence of the signal design
on e2 ande3.

Notations:In this paper, scalars are denoted by italic letters.
Boldface lower- and upper-case letters denote vectors and
matrices, respectively.CM×N denotes the space ofM × N
complex matrices.j denotes the imaginary unit, i.e.,j2 = −1.

Fig. 3. Examples of single series, voltage doubler, and diodebridge rectifiers,
designed for an average RF input power of -20dBm at 5.18GHz.vs is the
voltage source of the antenna [48]. R1 models the antenna impedance. C1 and
L1 form the matching network. D1, D2, D3, and D4 refer to the Schottky
diodes. C2 and R2 form the low-pass filter with R2 being the output load.

E[·] denotes statistical expectation andℜ{·} represents the
real part of a complex number.IM denotes anM × M
identity matrix and0 denotes an all-zero vector/matrix.|.|
and ‖.‖ refer to the absolute value of a scalar and the 2-
norm of a vector. For an arbitrary-size matrixA, its complex
conjugate, transpose, Hermitian transpose, and Frobeniusnorm
are respectively denoted asA∗, AT , AH , and‖A‖F . [A]im
denotes the(i,m)th element of matrixA. For a square Her-
mitian matrixS, Tr(S) denotes its trace, whileλmax(S) and
vmax(S) denote its largest eigenvalue and the corresponding
eigenvector, respectively. In the context of random variables,
i.i.d. stands for independent and identically distributed. The
distribution of a Circularly Symmetric Complex Gaussian
(CSCG) random variable with zero-mean and varianceσ2

is denoted byCN (0, σ2); hence with the real/imaginary part
distributed asN (0, σ2/2). ∼ stands for “distributed as”. We
use the notation sinc(t) = sin(πt)

πt .

II. A NALYTICAL MODELS FOR THERECTENNA

The energy receiver in Fig. 2 consists of an energy harvester
comprising a rectenna (antenna and rectifier) and a power man-
agement unit (PMU). Since the quasi-totality of electronics
requires a DC power source, a rectifier is required to convert
RF to DC. The recovered DC power then either powers a
low-power device directly, or is stored in a battery or a super-
capacitor for higher power low duty-cycle operations. It can
also be managed by a DC-to-DC converter as part of the PMU
before being stored. In the sequel, we will not discuss the
PMU but only the rectenna models. We first start by giving a
short overview of rectennas before jumping into the rectenna
models.
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Diode breakdown region

Fig. 4. Harvested DC powerP r
dc

vs average input powerP r
rf

and RF-to-DC
conversion efficiencye3 with a single-series rectifier obtained from circuit
simulations [52]. The input signal is a continuous wave at 5.18 GHz and
rectifier designed for -20dBm input power.

A. Rectenna Behavior

A rectenna harvests electromagnetic energy, then rectifies
and filters it using a low pass filter. Various rectifier technolo-
gies (including the popular Schottky diodes, CMOS, active
rectification, spindiode, backward tunnel diodes) and topolo-
gies (with single and multiple diode rectifier) exist [4]–[6].
Examples of single series, voltage doubler and diode bridge
rectifiers consisting of 1, 2 and 4 Schottky diodes respectively
are illustrated in Fig. 3 [48]. In its simplest form, the single
series rectifier is made of a matching network (to match the
antenna impedance to the rectifier input impedance) followed
by a single diode and a low-pass filter, as illustrated by the
circuit at the top in Fig. 3.

Assuming P t
rf=1 Watt (W), 5-dBi Tx/Rx antenna gain,

a continuous wave (CW) at 915MHz,e3 of state-of-the-art
rectifiers is 50% at 1m, 25% at 10m and about 5% at 30m [2].
Hence,e3 (and e2 as well) decreases as the range increases.
Viewed differently, this implies thate3 decreases as the input
powerP r

rf to the rectifier decreases. Indeed,e3 of state-of-the-
art rectifiers drops from 80% atP r

rf =10 mW to 40% at 100
µW, 20% at 10µW and 2% at 1µW [2], [5]. This is due to the
rectifier sensitivity with the diode not being easily turnedon at
low input power. For typical input powers between 1µW and 1
mW, low barrier Schottky diodes remain the most competitive
and popular technology [5], [6]. A single diode is commonly
preferred at low power (1-500µW) because the amount of
input power required to switch on the rectifier is minimized.
Multiple diodes (voltage doubler/diode bridge/charge pump)
are on the other hand favoured at higher input power, typically
above 500µW [4], [6]. Topologies using multiple rectifying
devices each one optimized for a different range of input power
levels also exist and can enlarge the operating range versus
input power variations [49]. This can be achieved using e.g.a
single-diode rectifier at low input power and multiple diodes
rectifier at higher power.

Fig. 4 illustrates the dependency ofe3 to the average signal
power at the input of the rectifier. Using circuit simulations
and a single-series rectifier similar to the one at the top of
Fig. 3, we plot the DC powerP r

dc harvested at the load as a
function of the input powerP r

rf to the rectifier when a CW

(i.e. a single sinewave) signal is used for excitation [52].We
also display the RF-to-DC conversion efficiencye3 = P r

dc/P
r
rf .

This circuit was designed for 10µW input power but as we can
see it can operate typically between 1µW and 1mW. Clearly,
the RF-to-DC conversion efficiencye3 is not a constant, but
depends on the input power level. It is about 2% at 1µW,
15% at 10µW and 35% at 100µW, which is inline with the
values reported from the literature in the previous paragraph.
Beyond 1mW input power, the output DC power saturates
and e3 suddenly significantly drops, i.e., the rectifier enters
the diode breakdown region. Indeed, the diode SMS-7630
becomes reverse biased at 2 Volts (V), corresponding to an
input power of about 1mW. To operate beyond 1mW, a rectifier
with multiple diodes (similarly to the ones in Fig. 3) would be
preferred so as to avoid the saturation problem [4], [6], [49].

The above discussion illustrates the dependency ofe3 on
the rectifier design and the average received signal power
level P r

rf . Actually e3 is also a function of the rectifier’s input
signal shape and not only power. This was first highlighted in
[41], [42], wherein the authors proposed the use of a multisine
waveform instead of a continuous wave (single sinewave) to
provide a higher charge pump efficiency and thus to increase
the range of RFID readers. A multisine is characterized by a
high PAPR, and the envelope of the transmitted RF signal is
designed so that there are large peaks, while the average power
is kept the same as in the continuous wave case. Consider
indeed multiple in-phase sinewaves (with equal magnitudes)
at frequenciesfn = f0 + n∆f , n = 0, . . . , N − 1, as the
voltage source of the rectenna. As the number of tonesN
increases, the time domain waveform appears as a sequence
of pulses with a period equal to1/∆f illustrated by the red
curve in Fig. 5. The signal power is therefore concentrated
into a series of high energy pulses, each of which triggers
the diode that then conducts and helps charging the output
capacitor. Once a pulse has passed, the diode stops conducting
and the capacitor is discharging, as illustrated by the bluecurve
in Fig. 5. The larger the number of tonesN , the larger is
the magnitude of the pulses and therefore the larger is the
output voltage at the time of discharge. Since peaks of high
power drive the rectenna with a much higher efficiency than
the average low level input, they contribute more to the output
DC voltage, and the rectifier sensitivity, range and RF-to-
DC conversion efficiencye3 increase. A more systematic way
to design and optimize multisine waveforms for WPT was
proposed in [46]. Though limited to deterministic multisine
signals, the discussion illustrates a key starting point ofthe
paper, namely the fact that the RF-to-DC conversion efficiency
e3 is influenced by the input signal shape and power to the
rectifier.

Modeling the dependency ofe3 on the input signal shape
and power is very challenging. This is so because RF-based
energy harvesting circuits consist of various components such
as resistors, capacitors, and diodes that introduce various non-
linearities [5], [6], [50], [51]. This ultimately makes rectenna
modeling and analysis an important and challenging research
area [6], [50], [51]. Moreover the practical implementation
of rectenna is hard and subject to several losses due to
threshold and reverse-breakdown voltages, devices parasitics,
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Fig. 5. Example of the multisine waveform (red) used as a voltage source
vs at the input of the rectenna and the rectified output voltagevout (blue).
See also Fig. 6 for an illustration of a rectenna and the correspondingvs and
vout.

impedance matching, and harmonic generation [5]. In the
sequel, we introduce various models for the rectenna. The
first two models, the so-calleddiode linear modeland diode
nonlinear model, are driven by the physics of the diode and
relate the output DC current/power to the input signal through
the diode current-voltage (I-V) characteristics [46]. Thediode
linear model is a particular case of the diode nonlinear model
and is obtained by ignoring the diode nonlinearity [27]. The
third model, the so-calledsaturation nonlinear model, models
the saturation of the output DC power at large RF input power
due to the diode breakdown. In contrast to the first two models,
the third model is circuit-specific and obtained via curve fitting
based on measured data [47].

It is important to note that more complicated models can be
found in the RF literature, where one could for instance derive
mathematical (differential) equations to describe the exact
input-output characteristic of an RF-based energy harvesting
circuit based on its schematic such as in Fig. 3. However,
RF-based energy harvesting circuits may consist of vari-
ous multistage rectifying circuits. This leads to complicated
analytical expressions which are intractable for signal and
resource allocation algorithm design. More importantly, such
an approach may rely on specific implementation details of
energy harvesting circuits and the corresponding mathematical
expressions may differ significantly across different types
of energy harvesting circuits. In contrast, the three models
described in the sequel are driven by a tradeoff between
accuracy and tractability. They may appear oversimplified
from an RF perspective but the goal here is to extract the
key elements of the energy harvester that influences signal
and resource allocation design and enables insights for signal
and system designs.

B. The Antenna Model

A lossless antenna is modeled as a voltage sourcevs(t)
followed by a series resistance1 Rant (Fig. 6 left hand side).
Let Zin = Rin + jXin denote the input impedance of the
rectifier and the matching network. Letyrf(t) also denote
the RF signal impinging on the receive antenna. Assuming
perfect matching (Rin = Rant, Xin = 0), the available RF
powerP r

rf is transferred to the rectifier and absorbed byRin,

1Assumed real for simplicity. A more general model can be found in [48].

Rinvin

Rant

~ vs RLvin ~ 
C 

vd

vout

non-linear 

device 

low-pass 

filter and load 

ioutid

Fig. 6. Antenna equivalent circuit (left) and a single dioderectifier (right)
[46]. The rectifier comprises a non-linear device (diode) anda low-pass filter
(consisting of a capacitor C and a load RL ).

so thatP r
rf = E

[
yrf(t)

2
]
= E

[
vin(t)

2
]
/Rin, vin(t) = vs(t)/2,

and vin(t)= yrf(t)
√
Rin = yrf(t)

√
Rant. We also assume that

the antenna noise is too small to be harvested.

C. The Diode Linear and Nonlinear Models

Let us now abstract the rectifiers in Fig. 3 into the simplified
representation in Fig. 6 (right hand side). We consider for sim-
plicity a rectifier composed of a single series diode followed
by a low-pass filter with a load. We consider this setup as it
is the simplest rectifier configuration. Nevertheless the model
presented in this subsection is not limited to a single series
diode but also holds for more general rectifiers with many
diodes as shown in [48].

Denote the voltage drop across the diode asvd(t) =
vin(t)− vout(t) wherevin(t) is the input voltage to the diode
and vout(t) is the output voltage across the load resistor. A
tractable behavioral diode model is obtained by Taylor series
expansion of the diode characteristic function

id(t) = is
(
e

vd(t)

nvt − 1
)
, (2)

with the reverse bias saturation currentis, the thermal voltage
vt, the ideality factorn assumed to be equal to1.05, around
a quiescent operating pointvd(t) = a. We have

id(t) =

∞∑

i=0

k′i (vd(t)− a)
i
, (3)

wherek′0 = is
(
e

a
nvt − 1

)
and k′i = is

e
a

nvt

i!(nvt)
i , i = 1, . . . ,∞.

Choosing2 a = E[vd(t)] = −vout, we can writeid(t) =
∑∞

i=0 k
′
ivin(t)

i =
∑∞

i=0 k
′
iR

i/2
antyrf(t)

i.
The DC current delivered to the load and the harvested DC

power are then given by

iout = E[id(t)], P r
dc = i2outRL, (4)

respectively. Note that the operatorE[·] has the effect of
taking the DC component of the diode currentid(t) but also
averaging over the potential randomness carried by the input
signalyrf(t). Indeed, in WIPT applications,yrf(t) commonly
carries information and is therefore changing at every symbol
period due to the randomness of the input symbols it carries.

2We here assume a steady-state response and an ideal rectification. Namely
the low pass filter is ideal such thatvout(t) is at constant DC levelvout (we
drop the dependency ont). Similarly the output current is also at constant
DC level iout.
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This randomness due to modulation impacts the diode current
id(t) and the amount of harvested energy, which is captured
in the model by taking an expectation over the distribution of
the input symbols [52].

In order to make the signal design tractable and get further
insights, we truncate the Taylor expansion at thenth

o order.
This leads to

iout ≈
no∑

i even

k′iR
i/2
antE

[
yrf(t)

i
]

(5)

whereno is an even integer withno ≥ 2. The diode nonlinear
model truncates the Taylor expansion at theno > 2 order
but retains the fundamental nonlinear behavior of the diode
while the diode linear model truncates at the second order
term (no = 2). Note that the rectifier characteristicsk′i
are a function ofa = −vout = −RLiout and therefore
a function of iout, which makes it difficult to expressiout
explicitly as a function ofyrf(t) based on (5). Fortunately,
it is shown in [46] that from a transmit signal optimization
perspective, maximizingiout in (5) (subject to an RF transmit
power constraint), and thereforeP r

dc in (4), is equivalent to
maximizing the quantity

zdc =

no∑

i even,i≥2

kiE
[
yrf(t)

i
]

(6)

whereki =
isR

i/2
ant

i!(nvt)
i . Parameterski and zdc are now indepen-

dent of the quiescent operating pointa. Readers are referred
to [46], [48], [52] for more details on this model.

The diodelinear model is obtained by truncating at order 2
such thatzdc = k2E

[
yrf(t)

2
]
. Under the linear model, since

k2 is a constant independent of the input signal, the best
transmit strategy for maximizingzdc, subject to a transmit
RF power constraint, is equivalent to the one that maximizes
the average input powerP r

rf = E
[
yrf(t)

2
]

to the rectenna
[46]. In other words, the diode linear model assumes that the
RF-to-DC conversion efficiencye3 of the rectifier is a constant
independent ofyrf(t) [7]. The diode linear model can therefore
equivalently be written asP r

dc = e3P
r
rf with 0 ≤ e3 ≤ 1 a

constant independent of the rectifier’s input signal power and
shape.

This is the energy harvester model first introduced in [53]
and adopted in the early works on WIPT [27]. It has since
then been used extensively throughout the WIPT literature,
with among others [11]–[18], [22]–[40]. Such a model holds
whenever the higher order terms are found negligible. This
occurs in the very low input power,P r

rf , regime or equivalently
whenever the voltage drop across is the diode is small as
illustrated by region R1 in Fig. 7. Such a regime is commonly
denoted as the square-law regime of the diode in the RF
literature [4]. According to [54], such a regime occurs forP r

rf

below -20dBm with a continuous wave (CW) input signal.
When the input signal is a multisine, the higher order terms
become increasingly important as the number of sinewaves
increases. This has as a consequence that the square-law
regime (where the diode linear model is valid) is shifted
towards a lower range of average input power, namely below
-30dBm [7], [46], [55]. Recall nevertheless that power levels

Fig. 7. Diode I − V characteristic showing the three regions of diode
operation [4]. R1 and R2 correspond to the diode operation ofthe diode
linear model and the diode nonlinear model, respectively. R3 corresponds to
the region where the diode acts as a resistor.

below -30dBm are very low for operating state-of-the-art
rectifiers since the Schottky diode is not easily turned on.

The diodenonlinear model is obtained by truncating to
a higher order term withno ≥ 4 [46], [57]. Choosing
no = 4 for simplicity, zdc = k2E

[
yrf(t)

2
]
+k4E

[
yrf(t)

4
]

and
the nonlinearity is characterized through the presence of the
fourth-order termE

[
yrf(t)

4
]
. Such a model holds whenever

the higher order terms are found non-negligible. This occurs in
region R2 in Fig. 7. Region R2 is often called transition region
in the RF literature [4]. The transition region ranges from−20
to 0 dBm average input power, when a CW input signal is
considered. When using a multisine input signal, the transition
region shifts to a lower range of average input powers, e.g.
[−30,−10]dBm, as given in [55]. Generally speaking, the
diode behavior is known in the RF literature to be highly
nonlinear in the low power regime of -30dBm to 0dBm, as
discussed in [8] and references therein.

For the diode nonlinear model, finding the best transmit
strategy so as to maximizezdc, subject to an RF transmit
power constraint, does not lead to the same solution as the
one that maximizesE

[
yrf(t)

2
]
. This model accounts for the

dependence of the RF-to-DC conversion efficiencye3 of the
rectifier on the input signal (waveform shape, power, and
modulation format) [7], [46]. The diode nonlinear model is
a simple form of a memoryless polynomial model that has
been widely adopted and validated in the RF literature [4],
[43], [56]. It has since then been used in various signal design
literature for WPT [48], [58]–[60], SWIPT [52], [61]–[69] and
WPBC [70], [71].

Remark 1:As noted in [46], the Taylor series expansion
around a quiescent pointa is a small-signal model that is
valid only for the nonlinear operating region of the diode. If
the input voltage amplitude becomes large, the diode will be
driven into the large-signal operating region where the diode
behavior is dominated by the diode series resistance and the
I-V relationship is linear as illustrated by region R3 in Fig. 7
[4].
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D. The Saturation Nonlinear Model

The saturation nonlinear model characterizes another source
of nonlinearity in the rectenna that originates from the sat-
uration of the output DC power beyond a certain input RF
power due to the diode breakdown3. As illustrated in Fig. 4,
e3 sharply decreases once the rectifier operates in the diode
breakdown region4. The diode breakdown occurs when the
diode is reversed biased with a voltage across the diode being
larger than the diode breakdown voltage VBR, as illustrated in
Fig. 7. At such a voltage, the breakdown is characterized by a
sudden increase of the current flowing in the opposite direction
(hence the negative sign of the current in Fig. 7 around the
breakdown voltage). This can occur typically when the input
power to the rectifier is too large for the power regime it has
been designed for.

The saturation nonlinear model is a tractable parametric
model proposed in [47], and is applicable to SWIPT systems
for a given pre-defined signal waveform and only based on the
average received RF powerP r

rf . Unlike the diode nonlinear
model discussed in the previous subsection that is based on
the physics of the diode, the nonlinear parametric saturation
model is fit to measurement results obtained from practical
RF-based energy harvesting circuits (excited using the pre-
defined signal waveform) via curve fitting. Specifically, the
total harvested power at an energy harvesting receiver,P r

dc, is
modeled as:

P r
dc =

[Ψdc − PSatΩ]

1− Ω
, Ω =

1

1 + exp(ab)
, (7)

whereΨdc =
PSat

1 + exp
(

− a(P r
rf − b)

) (8)

is a sigmoid (logistic) function which has the received RF
power, P r

rf , as input. ConstantPSat denotes the maximal
harvested power at the energy harvesting receiver when the
energy harvesting circuit is driven tosaturation due to an
exceedingly large input RF power. Constantsa andb capture
the joint effects of resistance, capacitance, and circuit sensi-
tivity. In particular,a reflects the nonlinear charging rate (e.g.
the steepness of the curve) with respect to the input power
and b determines the minimum turn-on voltage of the energy
harvesting circuit.

This model isolates the resource allocation algorithm for
practical SWIPT systems from the specific implementation
details of the energy harvesting circuit and signal waveform
distribution. In practice, for a given waveform of the adopted
RF signal, parametersa, b, andPSat of the model in (7) can
be obtained by applying a standard curve fitting algorithm to
measurement results of a given energy harvesting hardware
circuit. In Fig. 8, we show two examples for the curve fitting
for the saturation nonlinear energy harvesting model. For
the upper and lower subfigure in Fig. 8 (a) and (b), the

3Though the term “diode” is not highlighted in “saturation nonlinear model”
in contrast to the previous two models, we need to keep in mind that saturation
also originates from the diode behavior.

4Operating diodes in the breakdown region is not the purpose of a rectifier
and should be avoided as much as possible. A rectifier is designed in such
a way that current flows in only one direction, not in both directions as it
would occur in the breakdown region.

5 10 15 20 25 30

Received RF power (mW)

5

10

15

20

25

H
ar

ve
st

ed
 p

ow
er

 (
m

W
)

Measurement data
Saturation nonlinear model
Conventional linear model

0 0.2 0.4 0.6 0.8 1 1.2

Received RF power (mW)

0

0.05

0.1

0.15

0.2

H
ar

ve
st

ed
 p

ow
er

 (
m

W
)

Measurement data
Saturation nonlinear model
Conventional linear model

(a) Linear scale.

10-1 100 101

Received RF power (mW)

10-1

100

101

H
ar

ve
st

ed
 p

ow
er

 (
m

W
)

Measurement data
Saturation nonlinear model
Conventional linear model

10-2 10-1 100

Received RF power (mW)

10-3

10-2

10-1

H
ar

ve
st

ed
 p

ow
er

 (
m

W
)

Measurement data
Saturation nonlinear model
Conventional linear model

(b) Logarithmic scale.

Fig. 8. A comparison between the harvested power for the proposed model
in (7) and measurement data obtained for two different practical energy
harvesting circuits with a continuous wave (CW) as input signal. Fig (a) and
(b) contain the same information but using two different scales, namely linear
scales for (a) and logarithmic scales for (b). The measurement data of the
upper and lower subfigure (for both (a) and (b)) have been taken from [50] and
[51], respectively, showing the different dynamic ranges inharvested energy
of practical energy harvesting circuits. The parametersa, b, andPSat in (7)
are calculated with a standard curve fitting tool. The RF-to-DC conversion
efficiency of the energy harvesting receiver for the linear energy harvesting
model is set toe3 = 0.8 ande3 = 0.3 in the conventional linear model for
the upper and lower subfigure, respectively.

parameters are{PSat = 10.73 mW, b = 0.2308, a = 5.365}
and {PSat = 0.1071 mW, b = 0.6614, a = 0.8963}, for
input powers in the mW and10−4 W range, respectively.
As can be observed, in the high power regime (P r

rf ≥ −10
dBm= 10−1 mW), the parametric nonlinear model closely
matches the experimental results provided in [50] and [51] for
the wireless power harvested by a practical energy harvesting
circuit. Fig. 8 also illustrates the inability of the conventional
(diode) linear model to capture the nonlinear characteristics
of practical energy harvesting circuits in the high received RF
power regime. In the low power regime, both the conventional
(diode) linear model and the saturation nonlinear model expe-



9

rience some discrepancies. The saturation nonlinear modelhas
been widely adopted in the literature for resource allocation
algorithm design, e.g. [72]– [78].

E. Comparisons of The Rectenna Models

Table I provides a comparison of the three models. Further
comparisons between the diode linear and nonlinear models
can be found in [7], [46], [52]. In particular, it was observed
from circuit simulations that the diode nonlinear model more
accurately characterizes the rectenna behavior in the practical
low power regime. For more discussions on the similarities
and differences between the diode nonlienar model and the
saturation nonlinear models, the readers are referred to Remark
5 in [52].

F. Extension and Future Work

In the following, we review some interesting future research
directions. The challenge is finding accurate but tractable
models for the energy harvesters that can be used for signal
and system design. Software-based models of the energy
harvester exist but are insufficiently fast and not insightful to
derive new signal design and optimization. Nonetheless, they
are very handy when it comes to validating analytical models.
On the other hand, simple models such as the linear model
can be over-simplified and do not reflect the rectenna behavior
accurately enough. The nonlinear models described above try
to keep some level of tractability while also improving upon
the accuracy compared to the linear model. Nevertheless, much
remains to be done in designing rectenna model that are
suited to signal and system designs. We here mention a few
interesting research avenues.

First, we may think of developing a combined diode and
saturation nonlinear model so as to tackle both sources of
nonlinearity at once and cope with a wider range of input
power.

Second, we may want to provide alternative or enhanced
models for the diode and saturation nonlinearities or for
the general energy harvester. Some alternative models have
emerged in [69], [79]–[83]. In view of Fig. 8(b), more works
are also needed to better capture the harvester behavior in
the low-power regime. Moreover, those models are always
assuming CW input signals. It would also be beneficial to
design new signals using the diode nonlinear model, validate it
through circuit simulations, and then fit data using some curve
fitting tool mechanism. Preliminary results have appeared in
[83]. The resulting model could then be used for system
level evaluations and would capture the dependence on input
signal shape and power. Following such an approach, it was
interestingly shown in [83] that fading is beneficial to increase
the harvested DC power thanks to the rectifier nonlinearity.
This motivates the design of transmit diversity techniquesfor
multi-antenna WPT to induce fast fluctuations of the wireless
channel. Aside nonlinearity, the sensitivity is another important
characteristic of the energy harvester in the low-power regime
that needs to be further investigated [84], [85].

Third, we may need to consider other sources of nonlinear-
ity in the energy harvester, such as the impedance mismatch

and the rectifier output harmonics. Modeling accurately the
impedance mismatch due to variation in the input signal power
(accounting for fading) and shape is a challenge. Unfortu-
nately, due to the dynamic nature of the wireless channel,
the input power and signal change dynamically, implying that
impedance matching cannot always be guaranteed.

Fourth, nonlinearities were considered at the receiver side
but also exist at the transmitter side. Modeling PA nonlinear-
ities jointly with the EH nonlinearity would result in more
efficient WPT and WIPT signal designs. One way forward
studied in [46] consists in designing transmit signal to max-
imize the harvested DC power subject to an average power
constraint and transmit PAPR constraints. Such a design leads
to a new tradeoff since low PAPR signals are preferred at the
transmitter but high PAPR signals at the input of the energy
harvester.

Fifth, the design and modeling of energy harvester for other
frequency bands, e.g. millimeter-wave band, is also of high
interests. At those frequencies, the diode linear model was
also shown not to accurately model the rectification behavior
of the diode [86].

III. S INGLE-USERWIPT

In this section, we first introduce the signal model used
throughout the manuscript. We then discuss various receiver
architectures and formulate the R-E region maximization prob-
lem. The core part of the section is dedicated to characterizing
the R-E region (and the corresponding signal design strategies)
for the three energy harvester models.

A. Signal and System Model

We consider a single-user point-to-point MIMO SWIPT
system in a general multipath environment. This setup is
referred to as “SWIPT with co-located receivers” in Fig. 1.
The transmitter is equipped withMt antennas that transmit
information and power simultaneously to a receiver equipped
with Mr receive antennas. We consider the general setup of
a multi-subband transmission (with a single subband being
a special case) employingN orthogonal subbands where the
nth subband has carrier frequencyfn and all subbands employ
equal bandwidthfw, n = 0, ..., N −1. The carrier frequencies
are evenly spaced such thatfn = f0 + n∆f with the inter-
carrier frequency spacing∆f (with fw ≤ ∆f ).

The SWIPT signal transmitted on antennam, xrf,m(t),
is a multi-carrier modulated waveform with frequenciesfn,
n = 0, ..., N − 1, carrying independent information symbols
on subbandn = 0, ..., N − 1. The transmit SWIPT signal at
time t on antennam = 1, ...,Mt is given by

xrf,m(t) =
√
2ℜ
{

N−1∑

n=0

xm,n(t)e
j2πfnt

}

(9)

with the baseband equivalent signalxm,n(t) given by

xm,n(t) =

∞∑

k=−∞

xm,n,k sinc(fwt− k) (10)

where xm,n,k denotes the complex-valued information and
power carrying symbol at time indexk, modeled as a random
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TABLE I
COMPARISONS OF THE RECTENNA MODELS.

Diode Linear Model Diode Nonlinear Model Saturation Nonlinear Model

Operation
Regime

Characterizes the diode behavior at very
low power (below -30dBm)

Characterizes the diode behavior at low
power (-30dBm to 0dBm)

Characterizes the diode/rectenna behav-
ior at high power in/around the diode
breakdown region (above 0dBm)

e3 Constant Function of the rectifier input signal
power and shape

Function of the rectifier input signal
power and shape

Philosophy Driven by simplicity Driven by the physics of the rectenna Curve fitting based on measured data
Beamforming Suitable for beamforming design Suitable for beamforming design Suitable for beamforming design
Modulation and
Waveform

Does not reflect dependence on input
signal power and shape. Cannot be used
for modulation and waveform design.

Does reflect dependence on input sig-
nal power and shape. Can be used for
modulation and waveform design.

Fitted to a given pre-defined signal.
Cannot be used for modulation and
waveform design.

Resource Allo-
cation (RA)

Suitable for RA optimization Suitable for RA optimization Suitable for RA optimization

Impact Neutral Diode nonlinearity is beneficial Saturation is detrimental. Avoidable by
proper (adaptive) rectifier design.

Rectenna Valid for rectifiers with single diode and
multiple diodes

Parameters are circuit-specific

Applications For system-level performance evalua-
tions

For PHY layer signal design and per-
formance evaluations

For system-level performance evalua-
tions

variable generated in an i.i.d. fashion.xm,n(t) has bandwidth
[−fw/2, fw/2].

The transmit SWIPT signal propagates through a multipath
channel, characterized byL paths. Letτl andαl be the delay
and amplitude gain of thelth path, respectively. Further, denote
by ζi,m,n,l the phase shift of thelth path between transmit
antennam and receive antennai for subbandn. The signal
received at antennai (i = 1, ...,Mr) from transmit antennam
can be expressed as

yrf,i,m(t)=
√
2ℜ
{

L−1∑

l=0

N−1∑

n=0

αlxm,n(t− τl)

ej2πfn(t−τl)+ζi,m,n,l

}

,

≈
√
2ℜ
{

N−1∑

n=0

hi,m,nxm,n(t)e
j2πfnt

}

. (11)

We have assumedmaxl 6=l′ |τl − τl′ | < 1/fw so that, for each
subband,xn,m(t) are narrowband signals, thusxm,n(t−τl) =

xm,n(t), ∀l. Variable hi,m,n =
∑L−1

l=0 αle
j(−2πfnτl+ζi,m,n,l)

is the baseband channel frequency response between transmit
antennam and receive antennai at frequencyfn.

The total signal and noise received at antennai is the
superposition of the signals received from allMt transmit
antennas, i.e.,

yrf,i(t) =
√
2ℜ
{

N−1∑

n=0

hi,nxn(t)e
j2πfnt

}

+ wA,i(t), (12)

wherewA,i(t) is the antenna noise,hi,n,
[
hi,1,n, ..., hi,Mt,n

]

denotes the channel vector from theMt transmit antennas
to receive antennai and xn(t) ,

[
x1,n(t), ..., xMt,n(t)

]T

denotes the signals transmitted by theMt antennas in subband
n. Next, the processing depends on the exact SWIPT receiver
architecture. Nevertheless, a commonality exists among all
considered types of receivers. Namely, from an energy per-
spective,yrf,i(t) (or a fraction of it) is conveyed to an ER,
where energy is harvested directly from the RF-domain signal.
From an information perspective,yrf,i(t) (or a fraction of it) is

conveyed to an IR, where it is first downconverted and filtered
to produce the baseband signal for subbandn

yi,n(t) = hi,nxn(t) + wi,n(t), (13)

wherewi,n(t) is the downconverted received filtered noise,
accounting for both the antenna and the RF-to-baseband
processing noise. Sampling with a sampling frequencyfw to
produce the sampled outputs at time instantsk (multiples of
the sampling period), we can write the baseband system model
as follows

yi,n,k = hi,nxn,k + wi,n,k (14)

with xn,k ,
[
x1,n,k, ..., xMt,n,k

]T
. Due to the assumption of

i.i.d. channel inputs and the discrete memoryless channel,we
can drop the time indexk and simply write

yi,n = hi,nxn + wi,n. (15)

We modelwi,n as an i.i.d. and CSCG random variable with
varianceσ2, i.e., wi,n ∼ CN (0, σ2), whereσ2 = σ2

A + σ2
P

is the total Additive White Gaussian Noise (AWGN) power
originating from the antenna (σ2

A) and the RF-to-baseband
processing (σ2

P ).
After stacking the observations from all receive antennas,

we obtain

yn = Hnxn +wn, (16)

whereyn,
[
y1,n, ..., yMr,n

]T
, wn,

[
w1,n, ..., wMr,n

]T
, and

Hn ,
[
hH
1,n, · · · ,hH

Mr,n

]H ∈ C
Mr×Mt denotes the MIMO

channel matrix from theMt transmit antennas to theMr

receive antennas at subbandn.
Ignoring the noise power, the total RF power received by

all Mr antennas of the receiver can be expressed as

P r
rf =

Mr∑

i=1

E
[
yrf,i(t)

2
]
=

Mr∑

i=1

N−1∑

n=0

E
[
|hi,nxn(t)|2

]

=
N−1∑

n=0

Tr
(
HH

n HnQn

)
, (17)
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(a) Ideal Receiver

(b) TS Receiver

(c) PS Receiver

Fig. 9. Three receiver architectures for SWIPT: (a) Ideal receiver (using the
same signal for both the ID and EH receivers); (b) TS receiver (switching the
signal to either ID or EH receiver); and (c) PS receiver (splitting a portion of
the signal to ID receiver and the rest to EH receiver).

where the positive semidefinite input covariance matrixQn at
subbandn is defined asQn , E

[
xn(t)x

H
n (t)

]
∈ C

Mt×Mt .
The total average transmit power is expressed as

P t
rf =

Mt∑

m=1

E[xrf,m(t)2] =

N−1∑

n=0

Tr(Qn) = Tr(Q), (18)

with Q = diag{Q0, ...,QN−1}. For convenience, we also
define Pn = Tr(Qn) as the transmit power in subbandn.
Throughout the manuscript, we will assume that the total
average transmit power is subject to the constraintP t

rf ≤ P .
Finally, we assume perfect Channel State Information at the

Transmitter (CSIT) and perfect Channel State Information at
the Receiver (CSIR).

B. Receiver Architectures

Various architectures for the integrated information and
energy receivers in Fig. 1 have been proposed.

An Ideal Receiver(Fig. 9(a)) is assumed to be able to
decode information and harvest energy from the same signal
yrf,i(t) [22], [23]; however, this cannot so far be realized
by practical circuits. With such an architecture,yrf,i(t) is
conveyed to the energy harvester (EH) and also simultaneously
RF-to-baseband downconverted and conveyed to the informa-
tion decoder (ID). Different R-E tradeoffs could be realized
by varying the design of the transmit signals to favor rate or
energy.

A Time Switching (TS) Receiver(Fig. 9(b)) consists of
co-located ID and EH receivers, where the ID receiver is a
conventional baseband information decoder; the EH receiver’s
structure follows that in e.g. Fig. 3 [24], [27], [29]. In this
case, the transmitter divides the transmission block into two
orthogonal time slots, one for transferring power and the other
for transmitting data. At each time slot, the transmitter could
optimize its transmit waveforms for either energy transferor
information transmission. Accordingly, the receiver switches
its operation periodically between harvesting energy and de-
coding information in the two time slots. Then, different R-E
tradeoffs could be realized by varying the length of the energy
transfer time slot, jointly with the transmit signals.

In aPower Splitting (PS) Receiver(Fig. 9(c)), the EH and ID
receiver components are the same as those of a TS receiver.
The transmitter optimizes the transmitted signals jointlyfor
information and energy transfer and the PS receiver splits
the received signal into two streams, where one stream with
PS ratio 0 ≤ ρ ≤ 1 is used for EH, and the other with
power ratio 1 − ρ is used for ID [24], [27], [28]. Hence,
assuming perfect matching (as in Section II-B), the input
voltage signals

√
ρRantyrf(t) and

√

(1− ρ)Rantyrf(t) are
respectively conveyed to the EH and the ID. Different R-E
tradeoffs are realized by adjusting the value ofρ jointly with
the transmit signals.

C. Rate-Energy Region and Problem Formulation

The focus of this paper is the characterization of the
Rate-Energy (R-E) tradeoff and the corresponding signaling
strategies for the various receiver architectures for the linear
and nonlinear EH models. We define the R-E regionCR−E

as the set of all pairs of rateR and energyE such that
simultaneously the receiver can communicate at rateR and
harvested energyE. The R-E region in general is obtained
through a collection of input distributionsp(x0, ...,xN−1) that
satisfies the average transmit power constraintTr (Q) ≤ P .
Mathematically, we can write

CR−E(P ),
⋃

p(x0,...,xN−1):

Tr(Q)≤P

{

(R,E) : R ≤
N−1∑

n=0

I (xn,yn) ,

E ≤ P r
dc (x0, ...,xN−1)

}

(19)

where I (xn,yn) refers to the mutual information between
the channel inputxn and the channel outputyn on subbandn
andP r

dc, function ofx0, ...,xN−1, refers to (4) and (7) for the
(linear and nonlinear) diode model and the saturation nonlinear
model, respectively. For the diode models, sinceP r

dc directly
relates to the currentiout and thereforezdc (defined in (6)), it
is more convenient to define the R-E region in terms ofzdc,
such that inequalityE ≤ P r

dc in (19) is replaced byE ≤ zdc.
In order to characterize the R-E region, one solution is to

obtain the capacity (supremization of the mutual information
over all possible distributionsp(x0, ...,xN−1) of the input)
of a complex AWGN channel subject to an average power
constraintTr (Q) ≤ P and a receiver delivered/harvested
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energy constraintP r
dc(x0, ...,xN−1) ≥ Ē, for different values

of Ē ≥ 0. Namely,

sup
p(x0,...,xN−1)

N−1∑

n=0

I(xn;yn) (20)

subject to Tr (Q) ≤ P, (21)

P r
dc(x0, ...,xN−1) ≥ Ē, (22)

where Ē is interpreted as the minimum required or target
harvested energy. Here again, for the diode models, it is more
convenient to formulate Problem (20)-(22) in terms ofzdc
metric such that constraintP r

dc(x0, ...,xN−1) ≥ Ē simply
writes aszdc(x0, ...,xN−1) ≥ Ē.

In the rest of this paper, we focus on the case when the
power of the processing noise is much larger than that of the
antenna noise, i.e.,σ2

P ≫ σ2
A, such thatσ2 = σ2

A+σ2
P ≈ σ2

P .
As explained in [24], the above setting results in the worst-
case R-E region for the practical PS receiver. This can be
inferred by considering the other extreme case ofσ2

A ≫ σ2
P

and henceσ2 ≈ σ2
A. In this case, it can be easily shown

that the achievable rate for the ID receiver is independent of
the PS ratio, and thus the optimal strategy for PS is to use
an infinitesimally small split power of the received signal for
ID and the remaining for EH, which achieves the same box-
like R-E region (see Fig. 10) as the ideal receiver [24]. As a
result, we mainly consider the R-E region for the worst case
of σ2

P ≫ σ2
A, which serves as a performance lower bound for

practical PS receivers.

D. Rate-Energy Tradeoff with The Diode Linear Model

In this subsection, we study the R-E tradeoff for the diode
linear model starting with the simplest case of a SISO single-
subband transmission. We then extend the results to multi-
subband transmission and multi-antenna transmission, before
drawing some general conclusions about SWIPT signal and
architecture design for the diode linear model.

1) Single-Subband Transmission:Let us first assume a
SISO (Mt = Mr = 1) single-subband (N = 1) transmission
and the ideal receiver. The system model in (15) simplifies
to y = hx + w and the delivered power can be expressed
as zdc(x) = k2E

[
yrf(t)

2
]

= k2(|h|2E
[
|x|2
]
+ σ2) ≈

k2|h|2E
[
|x|2
]
, where we assumed that the noise is negligible

for energy harvesting. Problem (20)-(22) can then be written
as

sup
p(x)

I(x; y) (23)

subject to E
[
|x|2
]
≤ P, (24)

E
[
|x|2
]
≥ Ē/(k2|h|2). (25)

Following [22], [87], the optimal input distribution5 is CSCG
with average transmit powerP t

rf = P , namelyx ∼ CN (0, P ),
and there is no tradeoff between rate and energy, as noticed

5We here consider an average power constraint only. Under average power
and amplitude constraints, the optimal capacity achieving distribution is
discrete with a finite number of mass points for the amplitude andcontinuous
uniform over[0, 2π) for the phase [22], [88], [89].
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Fig. 10. Comparison of R-E tradeoffs of different SWIPT receivers with
the diode linear model. The parameters are set as follows:k2 = 0.5, the
channel power is|h|2 = 12, the transmit power isP = 10, the noise power
is σ2 = 3.

in [23]. In other words, the R-E regionCL,Ideal
R−E is a rectangle

characterized by (26) illustrated in Fig. 10.

For the TS and PS receivers, CSCG input is again optimal
for the diode linear model. TS leads to a triangular R-E region
CL,TS

R−E characterized by (27) whereτ is the fraction of time
used for energy harvesting. PS leads to a concave-shape R-
E regionCL,PS

R−E characterized by (28) whereρ is the PS ratio.
Hence, in the single-subband case with the diode linear model,
the tradeoff between rate and energy is actually induced by the
receiver architecture, not by the transmit signal.

Comparing the three considered regions, we observe that
CL,TS

R−E ⊆ CL,PS
R−E ⊆ CL,Ideal

R−E . Hence, a TS receiver is outperformed
by a PS receiver, and they are both outperformed by the ideal
receiver. This is further illustrated in Fig. 10.

2) Multi-Subband Transmission:Let us now consider the
SISO multi-subband transmission such that (15) becomesyn =
hnxn + wn in subbandn. This was first investigated in [23]
for the ideal receiver. Following [23], the use of independent
CSCG inputs in each subband, i.e.,xn ∼ CN (0, Pn), is
optimal and the R-E tradeoff results from the power allocation
across subbands. Indeed, while the maximization of energy
∑N−1

n=0 |hn|2 Pn subject to an average sum power constraint
∑N−1

n=0 Pn ≤ P favors allocating all power to a single sub-
band, namely the one corresponding to the strongest channel
maxn∈{0,...,N−1} |hn|, the maximization of rate subject to an
average sum power constraint in general allocates power to
multiple subchannels following the standard water-filling(WF)
solution [87]. Hence, there exists a non-trivial tradeoff between
rate and energy in the multi-subband case and the best power
allocation can be formulated as the solution of the optimization
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CL,Ideal
R−E =

{

(R,E) : R≤ log2

(

1+
|h|2P

σ2

)

, E≤k2|h|
2P

}

. (26)

CL,TS
R−E =

⋃

0≤τ≤1

{

(R,E) : R≤(1− τ) log2

(

1 +
|h|2P

σ2

)

, E≤τk2|h|
2P

}

. (27)

CL,PS
R−E =

⋃

0≤ρ≤1

{

(R,E) : R≤ log2

(

1 +
(1− ρ)|h|2P

(1− ρ)σ2

A + σ2

P

)

, E≤ρk2|h|
2P

}

. (28)

problem

max
{P0,...,PN−1}

N−1∑

n=0

log2

(

1 +
|hn|2 Pn

σ2

)

(29)

subject to

N−1∑

n=0

Pn ≤ P, (30)

N−1∑

n=0

|hn|2 Pn ≥ Ē/k2, (31)

which yields a modified WF solution [23]. Specifically, let
λ⋆ andβ⋆ denote the optimal dual variables corresponding to
the transmit sum-power constraint (30) and the total harvested
power constraint (31). Then, the optimal transmit power allo-
cation is given by [23]

P ⋆
n = max

(
1

λ⋆ − β⋆|hn|2
− σ2

|hn|2
, 0

)

, (32)

∀n ∈ {0, ..., N−1}. It can be observed that if the energy
harvesting constraint (31) is not active, i.e.,β⋆ = 0, (32)
reduces to the conventional WF power allocation with a
constant water-level for all subbands. However, when the
energy harvesting constraint is tight, i.e.,β⋆ > 0, the water-
level is higher on subbands with stronger channel power. This
indicates that due to the energy harvesting constraint, the
power allocation among subbands is more greedy (i.e., more
power is assigned to stronger subbands) than the conventional
WF power allocation.

The TS architecture relies on time-sharing between conven-
tional WF (for rate maximization) and transmission on the
strongest subband (for energy maximization). In the PS archi-
tecture, the PS ratio (same for all the subbands) and the power
allocations across subbands can be jointly optimized [33].
Similarly to the single-subband case,CL,TS

R−E ⊆ CL,PS
R−E ⊆ CL,Ideal

R−E
also holds for the multi-subband case. In fact, this result can
be obtained from [24], which considers the general MIMO
system modely = Hx + w (see next subsection for more
details). As shown in [24], for arbitrary MIMO channel matrix
H, under the so-called uniform power splitting (UPS) scheme,
in which the PS ratios in each dimension ofy are identical,
the corresponding R-E region is always no smaller than that
achieved by applying TS in each dimension ofy. As a result,
in a multi-subband SISO system,CL,TS

R−E ⊆ CL,PS
R−E follows

directly by restrictingH in [24] to an N -by-N diagonal
channel.

Hence, in the multi-subband case for the diode linear model,
a tradeoff between rate and energy is induced by the power
allocation strategy at the transmitter additionally to thetradeoff

already induced by the receiver architecture (as in the single-
subband case).

3) Multi-Antenna Transmission:Let us now consider a
MIMO transmission and assume a single subband for sim-
plicity such that (16) becomesy = Hx+w. Similarly to the
SISO case, following [90], the maximization of the mutual
information subject to average transmit power and received
power constraints is achieved by CSCG inputs. Problem (20)-
(22) becomes

max
Q

log2 det
(
I+HQHH

)
(33)

subject to Tr (Q) ≤ P, (34)

Tr
(
HQHH

)
≥ Ē/k2. (35)

In the above problem formulation, we assume that each
receive antenna is equipped with an energy harvester and the
constraintk2Tr

(
HQHH

)
≥ Ē reflects that the total harvested

energy across all rectennas should be larger thanĒ. The
choice of the input covarianceQ leads to a non-trivial R-
E tradeoff [24]. Let us write the eigenvalue decomposition
HHH = VHΓHVH

H. The harvested energy is maximized
by choosing the covariance matrix asQ = Pv1v

H
1 where

v1 = vmax(H
HH) denotes the eigenvector corresponding

to the dominant eigenvalue ofHHH. Rate maximization
on the other hand is obtained through multiple eigenmode
transmission (spatial multiplexing) along the eigenvectors of
HHH and with a power allocation across eigenmodes based
on the conventional MIMO WF solution [90], i.e., leading
to a covariance matrix of the formQ = VHΛVH

H with
the diagonal matrixΛ obtained from the standard WF power
allocation solution. The optimal solution of the R-E region
maximization problem (33)-(35) can also be expressed in form
of a multiple eigenmode transmission withQ⋆ = VHΣVH

H,
where the diagonal matrixΣ is obtained from a modified WF
power allocation [24]. As explained in Section III-D2, the
above optimal precoder design with the modified WF power
allocation is more general than the optimal power allocation
for the multi-subband SISO system considered in [23], since
the channel model in [23] is a special case of that considered
in [24] with H being diagonal.

The TS architecture relies on time-sharing between the
conventional eigenmode transmission (for rate maximization)
and aligning one energy beam towards the eigenvector cor-
responding to the strongest eigenvalue ofH (for energy
maximization) [24]. In contrast, with the PS architecture,the
transmit precoder and PS ratios of receive antennas can be
jointly optimized to obtain various points on the boundary of
the achievable R-E region. Moreover, as mentioned in Section
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III-D2, a low-complexity UPS scheme is considered in [24]
under which the PS ratios are identical for all receive antennas.
Let CL,UPS

R−E denote the corresponding R-E region. Then, it
follows from [24] thatCL,TS

R−E ⊆ CL,UPS
R−E ⊆ CL,PS

R−E ⊆ CL,Ideal
R−E .

Note that in the MISO setup (Mr = 1), y = hx+w, Q⋆ =
P h̄H h̄ with h̄ = h/ ‖h‖ and the optimal covariance matrix
for energy and rate maximization coincide. The transmitter
simply performs conventional Maximum Ratio Transmission
(MRT), x = h̄Hx with x ∼ CN (0, P ), which maximizes
both energy and rate. Hence, there is no R-E tradeoff and
the R-E regionC Ideal

R−E is a rectangle characterized by (26) with
|h|2 replaced by‖h‖2, and therefore enlarged compared to the
SISO case thanks to the beamforming gain. Similarly, for the
TS and PS receivers, the R-E regions are given by (27) and
(28), respectively, with|h|2 replaced by‖h‖2.

Remark 2:Note that while CSCG is optimal for the ideal,
TS, and PS receivers in single-subband, multi-subband and
multi-antenna transmissions for maximizing the R-E region
under the diode linear model, from an energy maximization-
only perspective, any input distribution with an average power
P would be optimal. In particular a continuous wave (CW)
would do as well as a CSCG input while modulated and
unmodulated waveforms are equally suitable from an energy
maximization perspective under the diode linear model. Hence,
in TS, the R-E region can also be achieved by time sharing
with CSCG inputs during the information transmission phase
and with CW during the power transmission phase.

Observation 1:The use of the diode linear model leads to
three important observations.First, the strategy that maximizes
P r
rf maximizesP r

dc. Second, CSCG inputs are sufficient and
optimal to achieve the R-E region boundaries.Third, CL,TS

R−E ⊆
CL,PS

R−E ⊆ CL,Ideal
R−E .

E. Rate-Energy Tradeoff with The Diode Nonlinear Model

The first systematic signal designs for WPT accounting for
the diode nonlinearity appeared in [46], [57]. Uniquely, this
nonlinearity was shown to be beneficial for system perfor-
mance and be exploitable (along with a beamforming gain
and a channel frequency diversity gain) through suitable signal
designs. It was observed that signals designed accounting for
the diode nonlinearity are more efficient than those designed
based on the diode linear model. Interestingly, while the
diode linear model favours narrowband transmission with
all the power allocated to a single subband (as in Section
III-D2), the diode nonlinear model favours a power allocation
over multiple subbands and those with stronger frequency-
domain channel gains are allocated more power. The optimum
power allocation strategy results from a compromise between
exploiting the diode nonlinearity and the channel frequency
diversity.

The works [46], [57] assumed deterministic multisine wave-
forms. Designing SWIPT requires the transmit signals to carry
information and therefore to be subject to some randomness.
This raises an interesting question: How do modulated signals
perform in comparison to deterministic signals for energy
transfer? Recall from Remark 2 that modulated and unmod-
ulated inputs are equally suitable for energy maximization

according to the diode linear model. Interestingly, it was
shown in [52] that modulation using CSCG inputs leads
to a higher harvested energy at the output of the rectifier
compared to an unmodulated input, despite exhibiting the same
average power at the input to the rectenna. This gain comes
from the large fourth order moment offered by CSCG inputs,
which is exploited by the rectifier nonlinearity and modeled
by the fourth order term inzdc. Indeed with CSCG inputs
x ∼ CN (0, P ), E

[
|x|4
]
= 2P 2, which is twice as large as

what is achieved with unmodulated CW inputs with the same
average power [52].

This highlights that the signal theory and design for SWIPT,
such as modulation, waveform, and input distribution, are
actually influenced by the diode nonlinearity. This motivates
the design of SWIPT signals that intelligently exploit the diode
nonlinearity.

1) Single-Subband Transmission:Assuming a SISO trans-
mission and the ideal receiver, Problem (20)-(22) becomes

sup
p(x)

I(x; y) (36)

subject to E
[
|x|2
]
≤ P, (37)

k2E
[
yrf(t)

2
]
+ k4E

[
yrf(t)

4
]
≥ Ē. (38)

As shown in [65], a baseband equivalent forzdc (left hand
side of (38)) is not only a function ofE

[
|x|2
]

as with the
diode linear model but also a function ofE

[
|x|4
]
, E [ℜ{x}α],

E [ℑ{x}α] with α = 1, 2, 3, 4.
Interestingly, the presence of the higher moments of the

input distribution has a significant impact on the choice of
the input distributionp(x). In [65], assuming general non-
zero mean Gaussian inputsℜ{x} ∼N (µr, Pr) andℑ{x} ∼
N (µi, Pi) with Pr+Pi ≤ P , it is found that the supremum in
Problem (36)-(38) is achieved withPr + Pi = P and by zero
mean asymmetric Gaussian inputs. CSCG input obtained by
equally distributing power between the real and the imaginary
dimensions, i.e.,ℜ{x}∼N (0, P/2) andℑ{x}∼N (0, P/2)
is optimal for rate maximization. However, as the harvested
power constraintĒ increases, the input distribution becomes
asymmetric with the power allocated to the real partPr

increasing and the one to the imaginary partPi = P − Pr

decreasing (or inversely) up to a point where the rate is
minimized and the energy is maximized by allocating the
transmit power to only one dimension, e.g.ℜ{x}∼N (0, P ).
This is because allocating power to one dimension leads to a
higher fourth moment. Indeed,E

[
x4
]
= 3P 2 for x ∼ N (0, P )

in contrast toE
[
|x|4
]
= 2P 2 with x ∼ CN (0, P ). The R-E

region obtained with asymmetric Gaussian inputs is illustrated
in Fig. 11.

Hence, in contrast with the diode linear model, a R-E
tradeoff exists in SISO single-subband transmission with an
ideal receiver for the diode nonlinear model. The tradeoff is
induced by the presence of the fourth moment of the received
signalyrf(t) in zdc. Moreover, the R-E region achieved by the
diode nonlinear model-motivated input distribution leadsto an
enlarged R-E region compared to that achieved by the diode
linear model-motivated input distribution. In other words, the
diode nonlinearity is beneficial to SWIPT system performance
if properly exploited.



15

0 5 10 15
0

2

4

6

8

Fig. 11. R-E region with asymmetric Gaussian inputs in single-subband
transmission (P = 1, σ2 = 10−4, k2 = 0.17, k4 = 19.145) [65]. By
evolving from point D to point A, the input distribution becomes more
asymmetric and the harvested energy increases. The dashed line corresponds
to the R-E region for the diode linear model. Note that the energy unit isµA
because the energy metric used iszdc, which is a contribution to the output
current.

Relaxing the constraints on Gaussian inputs, it is remark-
ably shown in [68] that the capacity of an AWGN channel
under transmit average power and receiver delivered power
constraints as characterized by Problem (36)-(38) is actually
the same as the capacity of an AWGN channel under an
average power constraint, i.e., characterized by Problem (36)-
(37) without constraint (38). In other words, the capacity
of an AWGN channel is independent of the value of the
delivered power constraint̄E and the R-E regionCNL,Ideal

R−E is
an unbounded rectangle characterized by

CNL,Ideal
R−E =

{

(R,E) : R≤ log2

(

1 +
|h|2P
σ2

)

, E≤∞
}

.

(39)
However, depending on the transmit average power and the
receiver delivered power constraints, the capacity can be either
achieved or arbitrarily approached, as illustrated in Fig.12.

Let EG denote the harvested energy with the inputx ∼
CN (0, P ). For Ē ≤ EG, the capacity is achieved via the
unique inputx ∼ CN (0, P ). For Ē > EG, the capacity
is approached by using time sharing between distributions
with high amount of information, e.g. CSCG inputs, and
distributions with high amount of power, reminiscent of flash
signaling, exhibiting a low probability of high amplitude
signals. Writing the complex input asx = rejθ with its phase
θ uniformly distributed over[0, 2π), an example of such a flash
signaling distribution is given by the following probability
mass function

pr(r) =

{

1− 1
l2 , r = 0,

1
l2 , r = l

√
P ,

(40)

with l ≥ 1. We can easily verify thatE
[
|x|2
]
= E

[
r2
]
= P ,

hence satisfying the average power constraint. By increasing
l, r = l

√
P increases andpr(l

√
P ) decreases, therefore

exhibiting a low probability of high amplitude signals. Such
a distribution is characterized by the fact that there is always
an L such that forl ≥ L, the delivered power constraint is

1 1.5 2 2.5 3

0.4
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Fig. 12. R-E region with optimal inputs in single-subband transmission
(P = 5, σ2 = 2) [68]. Note that the energy unit isµA because the energy
metric used iszdc, which is a contribution to the output current.

satisfied.
The benefits of departing from Gaussian inputs originate

from the diode nonlinearity that favors the use of distributions
that boosts the higher order moment statistics of the channel
input x. Indeed,E

[
|x|4
]
= l2P 2 for the input distribution

in (40). Choosingl >
√
3 makes the fourth order moment

higher than the2P 2 and3P 2 obtained respectively with real
Gaussian and CSCG inputs.

The above discussion has deep consequences for the choice
of the receiver architecture. Though the results were obtained
assuming an ideal receiver, the capacity was shown to be
achieved/approached with time sharing. Hence this implies
that under the diode nonlinear model, a TS receiver is actually
sufficient to approach the capacity. Actually, the optimal R-E
regions achieved by the TS, PS, and ideal receivers are the
same, i.e.CNL,TS

R−E = CNL,PS
R−E = CNL,Ideal

R−E . This also results in
the fact thatCL,TS

R−E ⊆ CL,PS
R−E ⊆ CL,Ideal

R−E ⊆ CNL,TS
R−E = CNL,PS

R−E =

CNL,Ideal
R−E , which again highlights that the diode nonlinearity is

beneficial to SWIPT system performance if properly exploited.
Nevertheless, in practice, the optimal distribution (resulting
from the use of flash signaling) leads to high amplitude signals
which may not be practical6. Given two fixed distributions, one
having high information content and the other having high
power content, an ideal receiver would lead to a larger R-E
region than a PS receiver, which itself has a larger R-E region
than a TS receiver.

The above discussion is illustrated in Fig. 12, where the
solid line illustrates the capacity achievable byx ∼ CN (0, P )
and the dashed line illustrates the capacity that can be ap-
proached arbitrarily using time sharing between distributions
with high amount of information and distributions with high
amount of power. Comparison is also made with the R-E
region achieved with asymmetric Gaussian inputs.

Remark 3: It is important to recall that the above obser-
vations hold as long as the conditions expressed in Remark

6This also calls for introducing an additional amplitude constraint in
Problem (36)-(38). It was shown in [68] that under average power, amplitude,
and nonlinear delivered power constraints, the optimal capacity achieving
distributions are discrete with a finite number of mass points for the amplitude
and continuous uniform for the phase.
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1 are valid. If the signal amplitude becomes very large, the
diode is forced into its resistive zone as described in [4]
(where the I-V characteristic is linear), making the Taylor
series expansion model no longer applicable7. This implies
that the unbounded rectangular R-E region in Fig. 12 cannot
be achieved in practice. Nevertheless, the insights obtained
from Fig. 12 still hold and time sharing between CSCG inputs
and the distribution in (40) should enlarge the R-E region as
l increases up to a certain limit.

2) Multi-Subband Transmission:For multi-subband trans-
mission, the capacity achieving input distribution remains
an open problem. Nevertheless, it has been shown in [52],
[61] that the use of non-zero mean Gaussian inputs leads
to an enlarged R-E region compared to CSCG inputs. The
superiority of non-zero mean inputs over zero mean inputs
can be explained by the fact that modulated and unmodulated
multi-carrier waveforms are not equally suitable for wireless
power delivery. Indeed a multi-carrier unmodulated waveform,
e.g. multisine, is more efficient in exploiting the diode non-
linearity and therefore boostingzdc compared to a multi-
carrier modulated waveform with CSCG inputs. It was indeed
shown in [46], [52] from analysis and circuit simulations
that zdc scales linearly withN for an unmodulated multisine
waveform because all carriers are in phase, which enables the
excitation of the rectifier (and the turning on of the diode) in
a periodic manner by sending high energy pulses every1/∆f .
On the other hand, a modulated waveform leads to azdc that
scales at most logarithmically withN due to the independent
CSCG randomness (and therefore random fluctuations of the
amplitudes and phases) of the information-carrying symbols
across subbands.

Non-zero mean Gaussian inputs lead to a SWIPT archi-
tecture relying on the superposition of two waveforms at the
transmitter: a power waveform comprising a deterministic (un-
modulated) multisine and an information waveform compris-
ing multi-carrier modulated (with CSCG inputs) waveforms.
The complex-valued information-power symbol on subbandn
can then be explicitly written asxn = xP,n + xI,n with xP,n

representing the deterministic power symbol of the multisine
waveform on subbandn andxI,n ∼ CN (0, PI,n) representing
the CSCG distributed information symbol of the modulated
waveform on subbandn. Hence,xn is non-zero mean and|xn|
is Ricean distributed with a K-factor on subbandn denoted
and given byKn = PP,n/PI,n with PP,n = |xP,n|2.

SincexP,n is deterministic, the differential entropies ofxn

and xI,n are identical (because translation does not change
the differential entropy) and the achievable rate is equal to
I=
∑N−1

n=0 log2
(
1 + |hn|2PI,n/σ

2
)

independent ofxP,n. This
rate is achievable with and without waveform cancellation.In
the former case, after down-conversion from RF-to-baseband
(BB) and Analog-to-Digital Conversion (ADC), the contribu-
tion of the power waveform is subtracted from the received
signal. In the latter case, a power waveform cancellation
operation is not needed and the baseband receiver decodes
the translated version of the symbols.

7The same is true for the multisine waveform in WPT with an increasing
number of sinewaves [46].

In [52], the characterization of an achievable R-E region
was conducted by performing an energy maximization subject
to a rate constraint

max
{xP,n,PI,n}∀n

k2E
[
yrf(t)

2
]
+ k4E

[
yrf(t)

4
]

(41)

subject to
N−1∑

n=0

PP,n + PI,n ≤ P, (42)

N−1∑

n=0

log2

(

1 +
|hn|2PI,n

σ2

)

≥ R̄, (43)

where R̄ denotes the minimum required rate. A similar
problem can be formulated for the PS receiver where the
optimization is conducted jointly over the PS ratioρ and the
input variablesxP,n andPI,n.

The phases ofxP,n can easily be found in closed form,
while the magnitude/power termsPP,n andPI,n for the power
and information symbols are found as a solution of a Reversed
Geometric Program [52]. The minimum energy and maximum
rate is obtained by allocating no power (though energy is still
harvested from the information symbols) to the deterministic
power symbols, i.e.PP,n = 0 ∀n, and allocating power across
subbands to the information symbols according to the standard
WF solution. Hence,xn ∼ CN (0, Pn) is CSCG andKn = 0,
∀n, at this extreme point. The other extreme point of the
region corresponds to the maximum energy and minimum rate
that is obtained by allocating no power to the information
symbols, i.e.,PI,n = 0, ∀n, and all power to the power
symbols according to the optimal multisine waveform power
allocation strategy of [46]. Hence,xn = xP,n is deterministic
andKn = ∞, ∀n, at this other extreme point. For other points
on the R-E region boundary, the K-factor in each subband
softly evolves between 0 and∞ as we aim at lower rate and
higher energy. Hence, in contrast to the diode linear model,
we note that the diode nonlinearity does not only change the
power allocation strategy across subbands but also the input
distribution in each subband.

Fig. 13 illustrates the above discussion for a PS receiver and
the significant enlargement of the R-E region by using non-
zero mean inputs over CSCG, or equivalently by superposing a
deterministic multisine waveform onto a modulated waveform
(with CSCG symbols). This drastically contrasts with the
conclusions obtained with the diode linear model. Recall
indeed from Remark 2 that, for the diode linear model, the
input distribution does not impact the amount of harvested
energy and there is no benefit in using a multisine waveform
on top of the modulated waveform since both are equally
suitable from an energy harvesting perspective. With the diode
linear model, the use of non-zero mean inputs would have not
provided any R-E region enhancement over the use of CSCG
inputs. The R-E region enhancement in Fig. 13 also illustrates
the gain obtained by accounting for the diode nonlinearity for
SWIPT signal and system design. Here, again,CL,TS

R−E ⊆ CNL,TS
R−E ,

CL,PS
R−E ⊆ CNL,PS

R−E , CL,Ideal
R−E ⊆ CNL,Ideal

R−E .
Another interesting observation from Fig. 13 is the

concavity-convexity of the R-E region boundary with non-
zero mean inputs, which contrasts with the concavity of the



17

0 1 2 3 4 5 6
Rate [bits/s/Hz]

0

5

10

15

20

25

30
E

ne
rg

y 
[

A
]

Non-zero mean Gaussian inputs
CSCG inputs

K-factor=0

Time sharing

K-factor=0

WIT with WF, =0

Time sharing

K-factor increasing

K-factor=
WPT, =1

Fig. 13. R-E region forN = 16 with a PS receiver and non-zero mean
Gaussian inputs in multi-subband transmission [52]. The average received
power at the input the rectifier is fixed to -20 dBm and the SNR (defined as
P/σ2) is fixed to 20 dB in each subband. The rate has been normalized w.r.t.
the bandwidthNfw. Hence, the x-axis refers to a per-subband rate. Note
that the energy unit isµA because the energy metric used iszdc, which is a
contribution to the output current.

region boundary for the CSCG inputs. We indeed note from
Fig. 13 that the non-zero mean Gaussian inputs curve presents
an inflection point, with the boundary being convex at low rate
and concave at high rate. This has the consequence that TS can
outperform PS for the diode nonlinear model, as illustratedin
the figure. It is shown in [52] that for a sufficiently largeN
(e.g. N = 16), TS is preferred at low SNR and PS at high
SNR, but in general the largest convex hull is obtained by a
combination of PS and TS.

Assuming Gaussian inputs, it is also interesting to note the
apparent difference in input distribution for single-subband and
multi-subband transmissions, namely single-subband favors
asymmetric inputs while multi-subband favors non-zero mean
inputs. A unified framework of SWIPT signaling based on
non-zero mean and asymmetric Gaussian distributions was
recently developed in [62]. It was shown that, in a general
multi-subband system and under the diode nonlinear model,
the combination of non-zero mean and asymmetric inputs can
further enlarge the R-E region.

The above discussion relies on Gaussian inputs. Moving one
step closer to real-world digital communication system, wecan
leverage the diode nonlinear model and the above observations
on SWIPT input distribution and waveform design to design
SWIPT modulation based on finite constellations. In [63],
the modulation of information symbols onto a multi-carrier
energy-carrying waveform, resulting in a unified SWIPT mod-
ulated waveform, was studied. The authors adapted PSK
modulation to SWIPT requirements and showed the benefits of
departing from conventional symmetric PSK modulation and
adopt asymmetric PSK modulation, where all constellations
points have the same magnitude but are uniformly distributed
over [−δ, δ] with δ ≤ π. By changing δ and optimizing
the probability mass function of the constellation points,an
asymmetric distribution of the constellation points was shown
to enable a larger R-E region compared to that obtained with
conventional symmetric PSK constellations.

3) Multi-Antenna Transmission:In a MISO setupyn =
hnxn +wn, it can be shown for general multi-band transmis-
sion that MRT in each subband is optimal [52]. Hence, the
optimal input symbol vector can be written asxn = h̄H

n xn

with h̄n = hn/
∥
∥h̄n

∥
∥ and xn designed according to the

optimal input distribution of a SISO transmission for the diode
nonlinear model.

The MIMO setup remains an interesting open problem.
For multi-band MIMO transmission, one challenge is that
the maximization of the energy at theMr receivers results
in a coupled optimization of the frequency and the spatial
domains, i.e., decoupling the spatial and frequency domain
by first designing the spatial beamformer in each subband
and then designing the power allocation across subbands is
suboptimal contrary to the MISO case [58].

Observation 2:The use of the diode nonlinear model leads
to four important observations.First, the strategy that max-
imizes P r

rf does notmaximize P r
dc. Second, CSCG inputs

cannot achieve the optimal R-E region boundaries.Third,
CNL,TS

R−E 6⊆ CNL,PS
R−E . Fourth, CL,TS

R−E ⊆ CNL,TS
R−E , CL,PS

R−E ⊆ CNL,PS
R−E ,

CL,Ideal
R−E ⊆ CNL,Ideal

R−E , i.e. the diode nonlinearity is beneficial to
overall system performance.

Comparing with Observation 1, we note that the diode non-
linear model has a deep impact on SWIPT design. It changes
the input distribution and therefore the basic characteristics
of the PHY and MAC layers such as modulation, waveform,
spectrum use, and resource allocation as well as the receiver
architecture. Though the beamforming designs for the diode
linear and nonlinear models are identical for the point-to-point
MISO system, namely both employ MRT, different designs are
needed for MIMO systems. The importance of accounting for
this diode nonlinearity in the designs and evaluations of WPT
and SWIPT was first highlighted in [46] and [52], respectively.

F. Rate-Energy Tradeoff with The Saturation Nonlinear Model

In this subsection, we study the R-E tradeoff for the
saturation nonlinear model from the resource allocation point
of view, i.e., how the saturation nonlinearity of energy har-
vesting circuits affects resource allocation. To facilitate the
presentation, we assume that the information signal is CSCG
distributed and the use of an ideal receiver. This assumes
that parametersa, b and PSat of the saturation nonlinear
model should be calculated for CSCG input signals8. First,

8Since the saturation nonlinear model assumes a predefined waveform (with
parametersa, b andPSat fitted based on measurements obtained with that
waveform), it may not be possible to explicitly define the capacity, as any
change in the input distribution (and therefore waveform) would lead to
changes in the model parametersa, b and PSat. Nevertheless, what can
be done is to model the saturation nonlinearity alternatively using output
outage probability (OOP) constraints, which expresses theprobability that
the amplitude of the received signal outside a given intervalis smaller than
a threshold, as conducted in [69]. This enables to capture the saturation
effect independently of the input signal. The capacity under average power
constraintsand (OOP) constraints remains an open problem. For the low
power range, CSCG is conjectured to be optimal, however for the higher
delivery power range, CSCG is not. Nevertheless, it is unknown yet whether
the optimal input distribution is made of an infinite number of mass points or
finite or even, whether it is continuous. On the other hand, the capacity under
average power and amplitude constraintsand (OOP) constraints is studied in
[69]. It is shown that the amplitude of the optimal input is discrete with a
finite number of mass points.
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we consider the case of single-subband transmission.

1) Single-Subband Transmission:Let us write x ∼
CN (0, P t

rf) with P t
rf = E

[
|x|2
]
. The optimal power alloca-

tion design for single-carrier transmission in SWIPT can be
formulated as the following optimization problem

max
P t

rf

log2

(

1 +
|h|2 P t

rf

σ2

)

(44)

subject to P t
rf ≤ P, (45)

P r
dc ≥ Ē. (46)

The solution to the optimization problem in (44) is trivial
and the optimal power allocation is attained whenP t

rf = P .
Intuitively, for a given input signal distribution, the optimal
strategy for maximizing the achievable rate with CSCG inputs
and the total harvested power is to improve the received signal
strength at the energy harvesting receiver as much as possible.
This result actually aligns with that for the diode linear model
and there is no tradeoff between rate and energy, i.e., the R-E
region is again a rectangle similar to that of Fig. 10. However,
the optimization problem based on the diode linear model in
(23)-(25) is always feasible for a sufficiently large maximum
transmit power budgetP . In contrast, if Ē > PSat for the
saturation nonlinear model, the problem becomes infeasible,
even ifP → ∞.

2) Multi-Subband Transmission:Here, we study the power
allocation problem for multi-carrier transmission. The optimal
power allocation design can be formulated as the following
optimization problem

max
{P0,...,PN−1}

N−1∑

n=0

log2

(

1 +
|hn|2 Pn

σ2

)

(47)

subject to

N−1∑

n=0

Pn ≤ P, (48)

[

PSat

1+exp(−a(
∑N−1

n=0 |hn|
2Pn−b))

− PSatΩ

]

1− Ω
≥ Ē,

(49)

wherePn is the power allocated to subbandn. In general,
(49) is a convex constraint and the optimization problem in
(47) can be solved efficiently via numerical convex program
solvers. However, in order to draw the connection between
the problem formulations adopting the diode linear model and
the saturation nonlinear model, we transform the optimization
problem in (47) into the following equivalent problem

max
{P0,...,PN−1,β}

N−1∑

n=0

log2

(

1 +
|hn|2 Pn

σ2

)

(50)

subject to

N−1∑

n=0

Pn ≤ P, (51)

N−1∑

n=0

|hn|2 Pn ≥ β, (52)

[
PSat

1+exp(−a(β−b)) − PSatΩ
]

1− Ω
≥ Ē, (53)

whereβ is an auxiliary optimization variable representing the
maximal received power at the receiver. Note that the con-
straint in (52) is satisfied with equality at the optimal solution.
By comparing the problem formulations in (50) and (29), both
problems have almost identical structures, e.g. (29)-(31)versus
(50)-(52), except that there is an extra constraint, i.e., (53).
Therefore, similar to the case of the diode linear model, one
would expect that there exists a non-trivial tradeoff between
information transmission and energy transfer. Specifically, for
the saturation nonlinear model, the amount of harvested DC
power is maximized when the received power at the rectenna
input is also maximized. Since (52) is an affine function with
respect toPn, the optimal power allocation to maximize the
harvested DC power is to allocateP to the subband with the
best channel gain, i.e.,maxn∈{0,...,N−1} |hn|. Note that this
observation is the same as the diode linear model. However,
if the subbands are grouped into multiple chunks utilizing
different energy harvesting circuits, then the power will be
allocated over multiple chunks to avoid putting all the power
to a chunk where the corresponding energy harvesting circuits
are already saturated. On the other hand, to maximize the rate
of the SWIPT system, standard WF solution can be adopted.
Hence, (50) can be solved by a modified WF solution similar
to the one described in Section III-D2 for the diode linear
model. Yet, the water level of the optimal power allocation for
Problem (50) is controlled by the dual variable associated with
constraint (53), taking into account the saturation nonlinearity
of the energy harvesting circuit. Furthermore, since the prob-
lem formulation can be transformed to an equivalent model
using the diode linear model plus one additional constraint,
the results of PS outperforming TS for the diode linear model
should also hold for the saturation nonlinear model, thoughno
works have been reported on the topic to verify such a claim.

3) Multi-Antenna Transmission:Consider a MIMO system
with an ideal receiver for the saturation nonlinear model. The
optimal resource allocation policy can be obtained by solving
the following optimization problem

max
Q∈H

NT ,β
log2 det

(
I+HQHH

)
(54)

subject to Tr (Q) ≤ P, (55)

Tr
(
HQHH

)
≥ β, (56)

[
PSat

1+exp(−a(β−b)) − PSatΩ
]

1− Ω
≥ Ē. (57)
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The problem formulation in (54)-(57) is similar to (33)-
(35), except that the auxiliary optimization variableβ is
introduced in (57) taking into account the nonlinearity of the
energy harvester for power allocation. Therefore, with a slight
modification, the generalized multiple eigenmode transmission
of subsection III-D3, introduced in [24], remains optimal.
Besides, the tradeoff between rate and energy for the saturation
nonlinear model is similar to that for the diode linear model.

Observation 3:The use of the saturation nonlinear model
leads to four important observations.First, the optimization
problem adopting the saturation nonlinear model can be trans-
formed into an equivalent optimization problem adopting the
diode linear model with one additional constraint, e.g. equation
(57). This implies that the saturation nonlinearity is detrimental
to overall system performance.Second, the strategy that max-
imizesP r

rf also maximizesP r
dc (similarly to the diode linear

model).Third, PS is expected to outperform TS (similarly to
the diode linear model).Fourth, as a consequence of footnote8,
CSCG inputs cannot in general achieve the optimal R-E
region boundaries in the presence of the saturation nonlinearity
(similarly to the diode nonlinear model).

G. Extension and Future Work

The above discussions highlight how significantly the signal
design depends on the underlying energy harvester model.
Several interesting research avenues arise.

First, in Sections III-D, III-E, and III-F and the related
literature, perfect CSIT and CSIR are assumed. Acquiring
CSIT is a challenge due to the limited energy available at
the terminals. To that end, various CSI acquisition techniques
have been developed for WPT and SWIPT assuming the diode
linear model in [7], [91]–[95] and [96], respectively. However,
little is known about how to design CSI acquisition strategies
for the nonlinear models. A promising attempt was made
in [59] where codebooks of waveform precoders (spanning
jointly the space and frequency domains) were designed for
the diode nonlinear model using a framework reminiscent of
the generalized Lloyd’s algorithm. It was shown that the diode
nonlinear model-based waveform design with limited feedback
outperforms the diode linear model-based waveform design
relying on perfect CSIT. This also leads to interesting new
challenges for CSIT acquisition for SWIPT with the nonlinear
energy harvester models.

Second, the diode nonlinearity leads to a re-thinking of the
optimal input distribution, modulation, and waveform. SWIPT
with practical modulations based on finite constellations has
been studied in [97]–[100] for the diode linear model. The
design of practical and efficient modulations and waveforms
for SWIPT with nonlinear energy harvester models remains
virtually untouched. As a consequence of the diode nonlin-
earity, asymmetric PSK constellations have appeared in [63]
and were shown to outperform conventional symmetric PSK
constellations. Nevertheless the extension to more general
non-constant modulus modulations should provide additional
performance benefits. Moreover, considering the benefits of
non-zero inputs in multi-subband transmission, constellations
with a non-zero offset are also an attractive option. In all cases,

the shaping of the complex constellation points will have to
be revisited and optimized in order to maximize some R-E
or error probability-energy metrics. In general, as the required
energy Ē increases, the optimal design of the constellation
would shift away from the classical QAM design.

Third, changes in modulation design for SWIPT would also
lead to some changes in error-correcting code design. Hence,
coding for optimized SWIPT constellations will need to be re-
visited. This should not be confused with [101], [102] that are
motivated by the underflow/overflow of batteries, not by the
diode nonlinearity. WIPT design for short packets and finite
length coding is also of interest, though currently its analysis
has been limited to the diode linear model [103].

Fourth, characterizing the optimal input distributions for
the diode nonlinear model and the saturation nonlinear model
remains largely open problems. Though some works have
recently appeared in [65], [66], [68], [69], efforts have been
limited to the single-subband single-antenna settings. Exten-
sions to multi-subband and multi-antenna (MIMO) settings
remain completely open problems. Note that in such setups,
both the input distribution and the power allocation across
subbands/eigenmodes will differ from conventional CSCG and
WF strategies used for the diode linear model.

Fifth, the design of secure SWIPT will need to be revisited
in light of the nonlinearity. Designs of secure SWIPT have
appeared in [104]–[110] and [77], [111] for the linear diode
model and the saturation nonlinear model, respectively. How-
ever, no work exists on secure SWIPT for the diode nonlinear
model.

Sixth, the signal design should also be re-visited for WPCN
and WPBC since the nonlinearity will have significant impact
on the modulation, waveform, and resource allocation designs
for those systems as well. For instance, WPBC was considered
in [70] and it was shown that multisine waveforms can be
designed to account for the diode nonlinearity to enhance
the SNR at the reader and the harvested energy at the tag.
An SNR-energy tradeoff exists in WPBC because SNR maxi-
mization at the reader and energy maximization at the tag do
not lead to the same waveform design and power allocation
strategy.

Finally, it would be worth connecting the above findings
and advances to other fields and applications subject to
nonlinearity such as intermodulation distortion, opticalchan-
nels, magnetic recording, PA saturation on OFDM. In optical
communications (and other applications) the nonlinearityis
commonly compensated and transmission is performed using
constellations approximating the zero-mean Gaussian distribu-
tion optimum for AWGN channels (e.g. ring constellations)
[112]. The information theoretic limits of optical channels
are studied by modelling the nonlinear optical communication
channel as a linear channel with a multiplicative noise or using
a finite-memory model with additive noise [112], [113]. On
the contrary, in SWIPT, the diode nonlinearity is exploited
in the signal design and in the characterization of the R-E
region, therefore leading to non-zero mean Gaussian inputs
and enlarged region compared to that obtained with zero-mean
inputs.
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Fig. 14. A multi-user SWIPT downlink model with a transmitter,K = 2
information receivers, andJ = 2 energy harvesting receivers.

IV. M ULTI -USERWIPT

WIPT systems exploit the broadcast nature of wireless
channels, which opens the possibility of one-to-many charging.
Hence, it is important to study the impact of linear and
nonlinear energy harvesting from a multi-user perspective.
With this in mind, in this section, we consider a downlink
multi-user SWIPT system consisting of a transmitter equipped
with Mt antennas as well asK single-antenna IRs andJ
single-antenna ERs, as illustrated in Fig. 14. This setup isalso
denoted as “SWIPT with separated information and energy
receivers” in Fig. 1. In contrast to single-user WIPT, in multi-
user SWIPT, how to deal with the co-channel interference due
to the simultaneous transmissions to multiple users is a critical
issue. Unlike traditional wireless communications where the
interference is treated as an undesired phenomenon for WIT,
it can be exploited for wireless energy harvesting [29], [115],
which reveals an interesting new research on interference
management in WIPT systems.

A. Rate-Energy Tradeoff with The Linear Model

We start with the diode linear model in the above multi-user
SWIPT system. Under this setup, the transmitter broadcasts a
signalx ∈ C

Mt×1 to all the users. Generally speaking,x is
comprised ofK information beams (one for each IR) andJ
energy beams (one for each ER), i.e.,

x =

K∑

k=1

pks
ID
k +

J∑

j=1

vjs
EH
j , (58)

where sIDk ∈ CN (0, 1) and pk ∈ C
MT×1 denote the

information-bearing signal and the corresponding energy
beamforming vector for thekth IR, respectively, andsEH

j ∈
CN (0, 1) andvj ∈ C

Mt×1 denote the energy-carrying signal
and the corresponding energy beamforming vector for thejth
ER, respectively. Then, the received signals at thekth IR and

the jth ER are respectively expressed as

yIDk = hkx+ wID
k

= hk

K∑

i=1

pis
ID
i + hk

J∑

j=1

vjs
EH
j + wID

k , ∀k, (59)

yEH
j = gjx+ wEH

j

= gj

K∑

k=1

pks
ID
k + gj

J∑

i=1

vis
EH
i + wEH

j , ∀j, (60)

wherehk ∈ C
1×Mt and gj ∈ C

1×Mt denote the channels
from the transmitter to thekth IR and thejth ER, respectively,
and wID

k ∼ CN (0, σ2) and wEH
j ∼ CN (0, σ2) denote the

Gaussian noise at thekth IR and jth ER, respectively. We
assume for simplicity that the noise powersσ2 are identical
at all receivers. It is also assumed that the noise does not
contribute to the harvested energy.

It is worth noting that the information-bearing signalssIDk ’s
must be random, but the energy signalssEH

j ’s can be pseudo-
random since they do not contain any information9. As a
result, it is theoretically possible to cancel the interference
caused by the energy signals10 if they are pre-stored at the IR
side. Reference [25] studies both the cases that the interference
caused by the energy signals can or cannot be canceled by the
information receivers. Interestingly, it is shown in [25] that to
achieve the optimal R-E tradeoff, no dedicated energy signals
should be used in the case that the energy signals cannot be
canceled by the IRs, i.e.,vj = 0, ∀j; while no more than one
energy signal is sufficient in the other case that the energy
signals can be canceled by the IRs11.

In the rest of this section, we mainly focus on the case
when the interference caused by the energy signals cannot be
canceled by the IRs. In this case, sincevj = 0, ∀j, under the
optimal solution [25], the received signals at the information
and energy receivers given in (59) and (60) respectively reduce
to

yIDk = hk

K∑

i=1

pis
ID
i + wID

k , ∀k, (61)

yEH
j = gj

K∑

k=1

pks
ID
k + wEH

j , ∀j. (62)

Under the above model, for IRk, its signal-to-interference-
plus-noise ratio (SINR) to decode the messagesIDk is

γk =
pH
k Hkpk

∑

j 6=k p
H
j Hkpj + σ2

, ∀k, (63)

9This is a consequence of the diode linear model as explained inRemark
2. For the diode nonlinear model, the choice of the energy signal, modulated
or deterministic and its distribution, would have an influence on the ultimate
performance, similarly to the single-user SWIPT in Section III-E.

10Recall that such an interference cancellation of the energysignal was also
used in Section III-E2 for single-user SWIPT.

11Note that this is again a consequence of the diode linear model. For
the diode nonlinear model, it was indeed shown in [52] that, inthe event
where the energy signal is not eliminated (and therefore treated as noise) by
the communication receiver, the energy signal is still usefuland does help
enlarging the R-E region.
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where Hk = hH
k hk. Moreover, for ER j, its harvested

DC power for the diode linear model is proportional to
∑K

k=1 ‖gjpk‖2, ∀j.
To achieve the optimal R-E tradeoff, the information beams

pk ’s can be jointly optimized to maximize the sum-energy
harvested by theJ ERs subject to the transmit power constraint
as well as each IR’s SINR constraint, i.e.,

max
{pk}

J∑

j=1

K∑

k=1

‖gjpk‖2 (64)

subject to
K∑

k=1

‖pk‖2 ≤ P, (65)

pH
k Hkpk

∑

j 6=k p
H
j Hkpj + σ2

≥ Γ̄k, ∀k, (66)

whereP denotes the total power available at the transmitter,
and Γ̄k denotes the SINR target of thekth IR.

The optimal beamforming solution to the above problem
can be obtained by either the semidefinite relaxation (SDR)
technique or the uplink-downlink duality technique, as further
detailed in [25]. As an alternative beamforming design, [26]
investigates a more practical design where the beamforming
vectors are initialized using the well established zero-forcing
beamforming (ZFBF) and a simple algorithm is proposed to
successively update the beamformers so as to maximize the
total harvested energy subject to SINR constraints at the IRs.

Besides the above setup, there are other studies under
the general broadcast SWIPT model with separated infor-
mation/energy receivers. For example, the capacity regionof
the IRs subject to each ER’s energy harvesting constraint is
characterized in [116], in which the interference caused by
the energy signals is assumed to be perfectly canceled by
the IRs, while the transmitter uses the optimal dirty paper
coding-based non-linear precoding strategy for information
transmission. Moreover, the linear beamforming design for
achieving the optimal tradeoff between the secrecy rate of the
IRs and energy harvested by the ERs is studied in [104] and
[105], in which the ERs are treated as potential eavesdroppers.
Precoder designs for the general multi-user MIMO SWIPT
with multiple antennas at the transmitter, IRs and ERs have
been studied in [114]. In contrast to previous precoder designs
that focused on maximizing the information rate, [114] derives
a simple solution using a weighted minimum mean squared
error (WMMSE) criterion. Finally, robust beamforming under
the assumption of imperfect CSIT to maximize the worst-case
harvested energy at the ER while guaranteeing a target rate at
the IR has been studied in [117].

Furthermore, it is worth noting that in addition to the case
of separated information/energy receivers, various othermulti-
user SWIPT settings are also studied in the literature. For
example, [118] investigates a multi-user broadcast model in
which each user adopts the PS strategy for splitting a portion of
its received signal for information decoding and the remaining
portion for energy harvesting, i.e., the so-called co-located
information and energy receiver. In this setting, the transmit
beamforming and the receive PS ratios are jointly designed to

achieve the optimal R-E tradeoff. Further, an OFDM-based
multi-user broadcast SWIPT system is considered in [33],
in which the subchannel allocation, as well as the transmit
power and receive PS ratio at each subchannel are jointly
optimized to achieve the best R-E tradeoff. It was shown that
PS always outperforms TS in the general multi-user multi-
subband SWIPT transmissions.

Moveover, the multi-user SWIPT system is also studied in
the interference channel setting, where multiple transmitters
send independent messages to their corresponding receivers,
and at the same time cooperatively transmit power wirelessly
to the receivers. Specifically, [29] and [30] consider a multi-
user SWIPT system under the MIMO interference channel
setup with TS receivers, where the interference caused by
the energy signals is assumed unknown at the information
receivers and thus cannot be canceled. Given that the TS
strategy is adopted by each receiver (either in information
decoding or in energy harvesting mode at any time instant),
the precoding designs of all transmitters are jointly optimized
in terms of R-E tradeoff. In contrast, [119] exploits the fact
that despite the lack of coordination between the transmitters
for coordinated information transmission, energy beamforming
can be performed across all the transmitters since the energy
signals are pseudo-random and thus can be pre-stored at all
the transmitters as well as all the receivers for interference
cancellation. Under this setup, the joint optimization of trans-
mit precoding and receiver TS strategy is revisited in [119],
where a new transmitter-side PS approach is proposed. Some
subsequent works on precoder optimization for SWIPT multi-
antenna interference channel have appeared in [31], [120]–
[123], with also additional considerations for limited feedback
[31].

Other important multi-user scenarios include multicasting
[124] and multiple access channel [125], [126]. Furthermore,
SWIPT systems are also investigated in multi-user cooperative
communications under various different setups, such as with
TS- and/or PS-based half-duplex relaying [35], [36], [127],
as well as full-duplex relays with simultaneous information
transmission and energy harvesting [128], [129]. Other re-
laying setups include SWIPT in relay system with multiple
antennas at all nodes [130], relay interference channels [131],
interference-aided energy harvesting relay [132] and relay
selection [133].

Finally, stochastic geometry has been used to analyze the
performance of various large-scale SWIPT networks in mi-
crowave and millimeter-wave bands [134]–[139].

Observation 4:The observations made for the diode linear
model in single-user SWIPT carry over to the multi-user
SWIPT. First, the strategy that maximizes the total received
RF power (across all users) maximizes the total harvested
DC power.Second, CSCG inputs for the information-bearing
signal and (pseudo-random) CSCG inputs for the energy-
bearing signal, if needed, are sufficient to achieve the R-E
region boundaries.Third, PS outperforms TS.

B. Rate-Energy Tradeoff with The Nonlinear Models

In this subsection, we study the multi-user SWIPT system
described by (61) and (62), but with a nonlinear energy
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harvesting model. In this case, the SINR for decodingsIDk
at thekth IR is still expressed as (63). However, by adopting
the saturation nonlinear model, the total harvested power at
the jth ER is given by

P r
dcj =

[Ψdcj −PSatjΩj ]

1− Ωj
, Ωj =

1

1 + exp(ajbj)
, (67)

Ψdcj =
PSatj

1 + exp
(

− aj(P r
rfj

−bj)
) , and (68)

P r
rfj =

K∑

k=1

Tr
(

pkp
H
k gH

j gj

)

(69)

is the received RF power at ERj.
The sum-power maximization problem given in (64) for the

diode linear model is thus modified to

max
{pk}

J∑

j=1

P r
dcj (70)

subject to (65), (66). (71)

Note that it is challenging to solve the optimization prob-
lem in (70) since the objective function is in the form of
sum-of-ratios. In [47], the authors have proposed a series
of transformations to transform the objective function into
an equivalent objective function in subtractive form, which
enables the design of an efficient iterative optimal resource
allocation algorithm. In each iteration, a rank-constrained
semidefinite program (SDP) is solved optimally by SDP
relaxation. Note that the optimal solution to the problem
in (70) is beamforming. However, the optimal beamforming
solution structure for the diode linear model is different from
that of the saturation nonlinear model. In an extreme case,
when the channels of theJ energy harvesting receivers are
orthogonal to each other, i.e.,gig

H
j = 0, ∀i 6= j, andΓ̄k = 0,

the optimal beamforming for the diode linear model will
perform MRT and allocate all transmit power in the direction
of maxj∈{1,...,J} ‖gj‖. However, for the saturation nonlinear
model, the optimal beamforming design is the transmission
via the maximum eigenmode of matrix

∑J
j=1 βjg

H
j gj . In

particular,βj ≥ 0 are dual variables related to the constraints
of the received power at each ER, cf. eq (10) in [47], which act
as weights for determining the beamforming direction. In fact,
the value ofβj becomes smaller when thejth ER enters the
saturation region. In other words, the dual variables prevent
the transmitter from allocating exceedingly large powers in
the directions of receivers whose energy harvesting circuits
are already saturated.

In Fig. 15, we show the R-E tradeoff region of the con-
sidered downlink multi-user SWIPT system. We assume that
there areK = 1 IR andJ = 5 ERs. We adopt the same simu-
lation parameters as in [47]. For comparison, we also show the
performance of a baseline scheme in Fig. 15. For the baseline
scheme, the resource allocation algorithm is optimized for
maximization of the total system harvested power according
to the diode linear model subject to constraints (65), (66).
Then, the baseline scheme is applied for resource allocation
in the SWIPT system with the saturation nonlinear model. As
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Fig. 15. A comparison of R-E region achieved by resource allocation
algorithms designed based on the saturation nonlinear model and the diode
linear model, respectively.

can be observed, the baseline scheme designed for the diode
linear model can only achieve a strictly smaller R-E region
due to the resource allocation mismatch. In fact, the baseline
scheme does not utilize the system resources efficiently since
it causes saturation at some ERs and under-utilization at
others. Also, it can be observed that increasing the number
of transmit antennas can increase the R-E region significantly.
This is because additional transmit antennas equipped at the
transmitter provide extra spatial degrees of freedom which
facilitate a more flexible resource allocation.

When it comes to the diode nonlinear model, no works
currently exist on multi-user SWIPT though it is expected
that all observations made in single-user SWIPT do carry over
to the multi-user SWIPT. In particular, reference [68], though
based on a point-to-point system model with an ideal receiver,
is actually also applicable to a scenario with two separate
receivers, namely one IR and one ER.

Observation 5:The observations made for thesaturation
nonlinear modelin single-user SWIPT do not all carry over to
the multi-user SWIPT. Indeed, the strategy that maximizes the
total received RF power (across all users) does not maximize
the total harvested DC power (in contrast to the single-user
case and to the diode linear model). Depending on the system
operation regime, the beamforming direction is steered gen-
erally towards a different direction compared to the problem
formulation adopting the diode linear model. The observations
made for thediode nonlinear modelin single-user SWIPT are
expected to carry over to multi-user SWIPT.

C. Extension and Future Work

The use of the diode linear model in multi-user SWIPT
design has been extensively studied. Research is on the other
hand at its infancy when it comes to multi-user SWIPT design
for the nonlinear models. A number of promising research
avenues are discussed below.

First, no works exist on multi-user SWIPT for the diode
nonlinear model. Similarly to the point-to-point case, the
diode nonlinear model will also lead to new input distribution,
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modulation, and waveform designs in the multi-user SWIPT
setup. A first interesting avenue would be the design of multi-
user SWIPT waveforms for the broadcast and interference
channels. To that end, a good starting point might be the multi-
user WPT waveform optimization framework in [58] and the
superposed SWIPT waveforms of [52] so as to design and
optimize multi-user SWIPT waveforms. The benefits of non-
zero Gaussian inputs in multi-user SWIPT systems could then
be assessed. Another interesting research avenue is the study of
the fundamental limits of broadcast and interference channels
for the diode nonlinear models so as to extend the results of
[65], [68] to multi-user communications.

Second, in view of the significant changes brought by non-
linearity, it is of interest to re-think the SWIPT architectures
for broadcast, multiple access, interference, and relay channels
with and without secrecy constraints. The performance analy-
sis of large SWIPT networks with nonlinear energy harvester
models is also of interest.

Third, the diode nonlinearity is expected to have significant
impacts on other forms of multi-user WIPT such as WPCN
and WPBC. A recent work in [71] has investigated the impact
of the diode nonlinearity on multi-user waveform design for
WPBC. In contrast to point-to-point WPBC, multi-user WPBC
is subject to multi-user interference and the transmit waveform
needs to be optimized so as to maximize the SINR at the
reader and the energy harvested at each tag, while exploiting
the benefits of the diode nonlinearity, the channel frequency
diversity gain, and the multi-user diversity gain.

Fourth, the multi-user system SWIPT model discussed
above, as per (63), assumes linearly-precoded multi-user trans-
mission with any residual multi-user interference fully treated
as noise. A more general and powerful transmission framework
would consist in partially decoding interference and partially
treating interference as noise through rate-splitting [140].
Such a rate-splitting strategy has been shown to outperform
conventional linear precoding in a wide range of network loads
(underloaded and overloaded regimes) and user deployments
(with a diversity of channel directions, channel strengthsand
qualities of Channel State Information at the Transmitter)
[141], [142]. The use of rate-splitting for multi-user SWIPTfor
both the linear and nonlinear energy harvester models remains
an uncharted research area.

V. PROTOTYPING, EXPERIMENTATION, AND VALIDATION

Demonstrating the feasibility and validating the aforemen-
tioned signal theory and design through prototyping and
experimentation remains a largely open challenge. It requires
the implementation of a closed-loop WPT/WIPT architecture
with a real-time over-the-air transmission based on a frame
structure switching between a channel acquisition phase and
wireless power and information transfer phase. The channel
acquisition needs to be done at the millisecond level (similarly
to CSI acquisition in communication). Different blocks need
to be built, namely channel estimation, modulation, channel-
adaptive waveform and beamforming, rectenna and SWIPT
receiver. The first prototype and early results of a closed-
loop WPT architecture based on dynamic channel acquisi-
tion were reported in [143], with further enhancements in
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Fig. 16. Effect of input distribution in single-subband transmission on
harvested DC power [52], [144] (CW refers to continuous wave, CN to CSCG
input, and N to real Gaussian input).

[83], [144], for channel-adaptive waveform and modulation
optimization and in [147], [148] for channel-adaptive beam-
forming optimization, conducted at Imperial College London
and Sungkyunkwan University, respectively. Importantly,the
channel acquisition needs very low circuit power consumption
at the receiver. This is because the net energy harvested at a
sensor node should be sufficient to sustain its energy neutral
operation, as demonstrated in [147], [148].

In the sequel, we illustrate some experimental results in the
low-power regime and show that they validate the diode non-
linear model-based signal theory and design. We then discuss
the use of multi-antenna beamforming to further increase the
harvested DC power.

A. Single-Subband Transmission

Using the circuit simulator of [46], [48], [52] and the
prototype of [143], [144], Fig. 16 illustrates circuit simulations
and experimentation of the amount of harvested energy using
three different input distribution when the average received
power at the input of the rectenna isP r

rf = −20 dBm:
a continuous wave (CW) with average input powerP r

rf , a
CSCG (CN) input∼ CN (0, P r

rf) and a real Gaussian (N)
∼ N (0, P r

rf). We note that the circuit simulations and the
experimentation both show thatPdc,N ≥ Pdc,CN ≥ Pdc,CW,
namely that a higher DC power can be harvested from a real
Gaussian input compared to a CSCG input and a CW. This
confirms the conclusions drawn from the theoretical analysis
of the diode nonlinear model in Section III-E. Moreover, recall
that according to the linear diode model, a continuous wave,
a CSCG and a real Gaussian with the same average RF power
P r
rf should yield the same DC powerP r

dc at the output of the
rectifier. Clearly, this is not the case from Fig. 16. Hence, those
simulations and measurements also invalidate Remark 2 and
the second observation in Observation 1 for the diode linear
model. Recent circuit simulation and experimental resultsof
the flash-signaling developed in Section III-E have appeared
in [68] and [144], respectively. Other recent measurement
campaigns studying the effect of conventional QAM and PSK
modulation on harvested energy and data rate have appeared
in [145].
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B. Multi-Subband Transmission

Making use of the prototype in [143], [144], Fig. 17
illustrates the measured DC power levels at the output of
the rectenna with three different transmit multisine waveforms
with N sinewaves uniformly spaced within a 10 MHz band-
width (∆f = B/N with B = 10MHz). A SISO setup is
considered with the transmitter and receiver separated by about
5 m. The transmit power was set to 33 dBm and measured RF
power at the input of the rectenna varied from -18 to -25 dBm.
A non-adaptive in-phase multisine with uniform power alloca-
tion and two channel-adaptive multisine waveforms designed
based on the diode linear and nonlinear models are adopted.
The diode linear model-based design allocates all transmit
power to the sinewave corresponding to the largest frequency-
domain channel so as to maximizee2 (see Section III-D2).
Doing so, the diode linear model-based design maximizes the
input powerP r

rf to the rectifier. On the other hand, the diode
nonlinear model-based design allocates power non-uniformly
to all sinewaves (see Section III-E) so as to benefit from
the diode nonlinearity and the channel frequency diversity
to maximize e2e3 [46]. The diode nonlinear model-based
design does not maximizeP r

rf , but rather maximizesP r
dc

accounting for the rectifier nonlinearity. HenceP r
rf achieved

by the diode nonlinear model-based design is lower than that
obtained with the diode linear model-based design. Never-
theless, comparing the two adaptive waveforms in Fig. 17,
we note the diode nonlinear model-based design leads to
significantly larger output DC powerP r

dc than the diode linear
model-based design. We also note that the channel-adaptive
waveform provides significant gains over non-adaptive designs
if the diode nonlinearity is properly accounted for in the
waveform design. These measurements confirm the importance
and the benefits of accounting for the diode nonlinearity in
WPT/WIPT system design and validate the theoretical analysis
for the diode nonlinear model in Section III-E and [46], [48].
In particular, measurements validate the first observationof
Observation 2, namely that the strategy that maximizesP r

rf

does not necessarily maximizeP r
dc. This also invalidates the

first observation of Observation 1. Finally, it is also important
to note that multipath and channel frequency selectivity was
also shown using theoretical analysis and circuit simulations
in [46] to have a significant impact on waveform design and
harvested energy. Measurements in [143], [144] and [146] have
independently confirmed those observations.

C. Multi-Antenna Transmission

Recently, a real-life multi-antenna wireless powered sensor
network (WPSN) testbed has been reported in [147]. A receive
power-based channel estimation and energy beamforming al-
gorithm [150] for high RF power transfer efficiency and
an adaptive duty cycle control algorithm for energy neutral
operation at a sensor node have been implemented. Extensive
experiments have been conducted to validate the feasibility of
the multi-antenna WPSN and show the high performance of
the proposed algorithms. To distribute RF power to multiple
sensor nodes and keep them alive for perpetual operation, a
real-life multi-node multi-antenna WPSN testbed has been im-
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Fig. 17. Measurement of harvested DC power of multisine waveform [144].

plemented in [148]. A joint beam-splitting and energy neutral
control algorithm was designed by means of the Lyapunov
optimization technique [151]. Experiments validate that the
proposed algorithm can successfully keep all sensor nodes
alive by optimally splitting energy beams towards multiple
sensor nodes while maximizing the sum utility of the WPSN.
To overcome the fundamental limit of RF power transfer and to
enable deployment of battery-less sensors, a large-scale multi-
antenna WPSN testbed was implemented at the Engineering
Research Center of Sungkyunkwan University (ERC@SKKU).
The following experiments were conducted: 1) beam-tracking,
2) beam-splitting, 3) energy neutral operation, 4) power trans-
fer efficiency test (YouTube: https://youtu.be/qP9fZQX1sDk).
In the end-to-end power transfer efficiency test, it was demon-
strated that as the number of antennas grows, not only the total
energy, but also the RF power transfer efficiency scales up,
as shown in Figs. 18 and 19. This can be easily understood
from Section II-B, where the RF-to-DC conversion efficiency
e3 of state-of-the-art rectifiers was shown to increase as the
average input powerP r

rf increases. The experimental results
validate the benefit of multi-antenna beamforming and can
be instrumental for the design and deployment of wireless-
powered IoT sensors.

More recently, distributed RF power transfer system de-
signs were reported in [149] to overcome the low end-to-
end power transfer efficiency. The corresponding experimental
results confirm the theory [7] and showed that using spatially
distributed power beacons, each with a single antenna, can be
advantageous in terms of the coverage probability over a single
power beacon with many co-located antennas. Other recent
prototyping efforts of multi-antenna closed-loop WPT with
channel estimation and beamforming using software defined
radios have appeared in [95].

D. Extension and Future Work

Prototyping and experimentation of wireless power-based
systems remains an important and much needed research area.
Starting with WPT, some preliminary experimentation setups
validating the benefits of designing signals (e.g. modulation,
waveform, beamforming) specifically suited to maximize the
harvested DC power are on-going as discussed in previ-
ous sections. Further experimental studies are nevertheless
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Fig. 18. Receive power versus number of antennas for a CW energy signal
at 920 MHz and a transmit power of 79 mW per antenna.

Fig. 19. End-to-end power transfer efficiency versus number of antennas for
a CW energy signal at 920 MHz and a transmit power of 79 mW per antenna.

highly needed. A first research avenue that requires immediate
attention is the experimental validation of the benefits of
the new modulation formats discussed in Section III-E [68],
[144]. Another promising area would be experimenting the
performance benefits of combining all those different signals
experimented separately in Sections V-A, V-B and V-C [144].
That would offer the joint benefit of the beamforming gain and
the modulation/waveform gain. Hybrid design of the energy
harvesters using a reconfigurable rectifier, which combines
serial and parallel configurations of multiple energy harvesting
circuits, may also be needed so as to further extend the range
of applications. The serial configuration can improvee3 for
low RF input power, whereas the parallel one aims to increase
e3 for high RF input power [152]. Moreover, the prototyping
and experimentation of multi-user WPT and validating the cor-
responding signal designs remains an important and uncharted
research area.

When it comes to SWIPT, prototyping and experimentation
is at an infancy stage with no experimental setup currently
available to validate the R-E regions and the corresponding

signal designs discussed in all previous sections. Circuitsim-
ulations have been used so far to validate some of the emerging
SWIPT signal designs [46], [48], [52], [63]. Some efforts are
nevertheless on-going. Recently, a new transceiver architecture
for dual mode SWIPT alternating between single-subband and
multi-subband transmissions has been implemented, where the
power management module monitors the harvested power and
the power consumed by the information decoder with the
aim of guaranteeing an energy neutral operation [153], [154].
Experiments demonstrated that adaptive mode switching for
dual mode operation improves the R-E tradeoff, compared to
the conventional SWIPT. In [155], an integrated dual-purpose
hardware to decode data and harvest energy is developed
and the tradeoff between power and data reception quality
is investigated. It is shown that the hardware can behave as
a rectifier, depending on the information symbol rate and the
cutoff frequency of the rectifier low-pass filter.

VI. CONCLUSIONS

This article has provided a tutorial overview of various
energy harvester models and the corresponding signal and
system designs for WIPT. The key conclusion of the paper
is to highlight that WIPT signal and system designs crucially
revolve around the underlying energy harvester model. Three
different energy harvester models have been presented, namely
the conventional linear model, the diode nonlinear model
and the saturation nonlinear model. Starting with single-user
WIPT, we have shown how the rate-energy region differs for
the three different models and have derived the corresponding
transmitter and receiver architecture, waveform design, modu-
lation, beamforming and input distribution optimizations, and
resource allocation strategies. In particular, we have shown
that the fundamentals of PHY and MAC layer designs radically
change in WIPT compared to existing communication systems
because of the energy harvester nonlinearity. Moreover, some
of those nonlinearities, such as the diode nonlinearity charac-
terized by the diode nonlinear model, are actually beneficial
to system performance and can be exploited to further enlarge
the rate-energy region. We then turned our attention to multi-
user WIPT and highlighted how the observations made for
single-user extend to multi-user deployments. The validity
of the different energy harvester models and the resulting
signal designs were discussed and demonstrated using circuit
simulations, prototyping, and experimentation. Throughout the
manuscript, we have also provided extensive discussions on
promising research avenues. It is hoped that the techniques
presented in this article will help inspiring future research in
this exciting new area and pave the way for designing and
implementing efficient WIPT systems in the future.
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