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Abstract—We study an energy harvesting wireless sensor nods
which harvests energy and senses and transmits data. Both data
and energy are represented as discrete quantitities using the
previously introduced in ”Energy Packet Network” paradigm.
For each ata packet, the sensor requires and consumes Ke

energy packets for sensing and storage and Kt energy packets for
transmission. Assuming random processes for sensing and energy
harvesting, we obtain a two-dimensional random walk model
and reduce its complexity using companion matrices and matrix
algebra techniques. The resulting solution allows us to obtain,
in steady-state, all the metrics of interest such as the backlog of
energy and data in the sensor. We also consider the case when
M sensors operate in proximity and create some interference for
each other.

Index Terms—Wireless Sensors; Energy Harvesting; Energy
Packets; Data Packets; Random Walk; Markov Chains; Com-
panion Matrices.

I. INTRODUCTION AND PREVIOUS WORK

A wireless sensor network consists of several sensor nodes,
typically a small device that may have magnetic, thermal,
optical, chemical and mechanical sensors to get measurement.
They includes three basic components: a sensing subsystem for
data gathering from the physical surrounding environment, a
processing subsystem for local data processing and storage,
and a wireless communication subsystem for data receiving
and transmission [1]. A WSN typically consists of a number
of sensor nodes few tens to thousands. WSNs can be used
in many different areas such as [2]: military [3], [4], natu-
ral disasters [5], biomedical health monitoring [6], [7], and
hazardous environment exploration and seismic sensing [8].
WSNs show some differences from traditional network with
respect to its source and design needs. Source needs can be
considered as communication range, amount of energy, limited
storages or buffers and limited processing mechanism for each
node. Design needs basically depend on the application and the
environment for which WSN is used. The environment is also
one of the most important parameter, in order to determine
the size of WSNs and the network topology. For example,
while a few nodes could be enough for indoor environments,
much more nodes could be needed for outdoor environments
to provide reliable operation with sensed data.

Finite battery capacity is one of the major limitations of
wireless sensor nodes, since nodes only be able to operate
as long as there is an unfinished battery. This finite lifetime
causes interruption of the applications and regularly change
of batteries. Use of large batteries for longer lifetimes could

be a solution, but we will need to concern about increased
size, weight and cost. An alternative technique addressing the
problem of finite operation time of a sensor node is energy
harvesting.

Energy can be harvested from the environment from solar
and other forms of light and electromagnetic sources, thermal,
vibrational, piezoelectric, and used as electrical energy in
sensors and computing or communication systems powered
in this manner [9], [10], [11], [12], especially in remote
sensing and security applications [12], [13]. When energy is
harvested, the manner in which it is exploited and scheduled
for consumption must take into account both the harvesting
process and the usage needs [14], [15].

Earlier work [16] introduced the idea that energy storage
and usage can be represented through discrete mathematical
models, where an “energy packet” is an abstraction that
exploits the analogy between the random arrival of harvested
energy and the random arrival of packets in data networks.
Similarly it exploits the notion of an energy packet buffer (i.e.
a battery or capacitor), similar to a data buffer or queue of
work in a computer system. Recent papers [17], [18], [19] have
exploited this paradigm to study energy harvesting wireless
sensors with energy losses and leakage. In [20], the case where
the energy required for one data packet transmission is exactly
K > 1 energy packets was considered, assuming that energy
is used only for packet transmission but also for not for packet
processing and other sensor node electronics, while [21] has
studied the model where a data packet transmission requires
exactly two energy packets: one for processing and one for
packet transmission, or Ke = Kt = 1, in the notation of the
present paper.

Here we generalise the approach to arbitraryKe and Kt

values. The motivation is the that the node electronics and
the transmitter may have to vary the power levels they use to
deal with the speed of processing or the transmission power
to overcome errors. This generalisation then leads us to a two-
dimensional random walk model which is harder to solve in
terms of closed form formulas.

II. MATHEMATICAL MODEL

In the mathematical model we use, data (from sensing) and
energy (from energy harvesting) packets arrive from the envi-
ronment at random according to two distinct and independent
Poisson processes, at average rates λ and Λ, respectively. Data
packets are stored in a finite capacity buffer of size B, while



the energy store (battery or capacitor) has a limited capacity
of E energy packets. Since the processing and transmission of
a packet occurs very fast, we can assume that the time taken
for packet processing and transmission is negligible compared
to the rates of data collection and energy harvesting which
depend on external physical processes and transducers.

In a sensor node, the harvested energy is consumed for node
electronics (sensing-processing-storing processes) and packet
transmission. We assume that Ke > 1 and Kt > 1 energy
packets required for node electronics and data transmission,
respectively. Therefore, whenever a sensor node has less than
Ke amount of energy packet, data can not be sensed and
stored, and whenever there is more than Ke amount of energy,
data is sensed and stored and also it could be transmitted
immediately if the remaining energy packet number is greater
or equal to Kt.

N(t) and M(t) are respectively, the number of data and
energy packets in the sensor node at time t ≥ 0, so that state
of the system can be represented by pair of (N(t),M(t)). Let
us write p(n,m, t) = Prob[N(t) = n,M(t) = m]. From the
above remark, we need only consider p(n,m, t) for the state
space S of pairs of integers (n,m) ∈ S such that:

S = {(0, 0), (n, 0), (0,m), (l, k) : 1 ≤ n ≤ B, 1 ≤ m ≤ E,
1 ≤ l < B, 1 ≤ k < K}, where K = Ke +Kt.

In [21], the energy expended per packet for node electronics
and data transmission are equal and are provided by a single
energy packet, resulting in a one-dimensional Markov chain.
However, when we consider the general case for Ke and Kt

where they can take arbitrary values, system is no longer
modeled as 1D Markov chain but 2D Markov chain in Figure
1, which makes the analysis harder. Since the energy consump-
tion for many sensor node applications is mainly dominated
by data transmission subsystem [22], we assume Kt > Ke for
the current system model. According to defined system model

we can write following global balance equations:

p(0, 0)[Λ] = Λp(1,K − 1) + λp(0,K),

p(0,m)[Λ] = Λp(0,m− 1) +

λp(0,m+K)1[E ≥ m+K],

1 ≤m < Ke

p(0,m)[Λ + λ] = Λp(0,m− 1) +

λp(0,m+K)1[E ≥ m+K],

Ke ≤m < E

p(0, E)[λ] = Λp(0, E − 1),

p(n, 0)[Λ] = Λp(n+ 1,K − 1) + λp(n− 1,Ke),

1 ≤ n < B

p(n,m))[Λ] = Λp(n,m− 1) + λp(n− 1,m+Ke),

1 ≤ n < B, 1 ≤m < Ke

p(n,m)[Λ + λ] = Λp(n,m− 1) + λp(n− 1,m+Ke),

1 ≤ n < B, Ke ≤m < K−Ke

p(n,m)[Λ + λ] = Λp(n,m− 1),

1 ≤ n < B, K−Ke ≤m < K

p(B,m)[Λ] = Λp(B,m− 1) + λp(B − 1,m+Ke),

Ke ≤m < K−Ke

p(B,m)[Λ] = Λ p(B,m− 1),

K−Ke ≤m < K

p(B, 0)[Λ] = λ p(B − 1,Ke).

Finding a closed-form solutions for stationary probability dis-
tributions and other quantities by using these balance equations
is elusive, so that we need to use different approaches for this
system model.

We can use the traditional approach where we define
generator matrix Q to find the stationary probabilities. Q is an
nxn matrix of n states Markov chain. In our system model,
it can be easily observed that n = E + BK + 1. Expressing
the stationary probability of each state πi as a row vector π
we can write this as a matrix equation πQ = 0

The πi are unknown and are the values we wish to find.
Since πi is a probability distribution we also know that
the normalisation condition holds:

∑
xi∈S πi = 1. Thus,

with these n + 1 equations (global balance equations and
normalisation condition) we can solve to find the n unknowns.

In our system, in order to find quantities of interests, we
need to deal with E+BK+2 equations, so that the complexity
of the solution increases dramatically with increasing data and
energy buffer sizes. To deal with the further complexity of the
solution, we require spending more time and energy. Thus,
apart from the traditional approach, we use a different solution
method decreasing the solution complexity.

A. Solution with Companion Matrices

For the sake of solution simplicity, we start representing
sensor states as Sj , such that:

Sj = p(n,m) : j = nK −m+ E.
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Fig. 1: Two-dimensional Markov chain state diagram representation of the system

We also consider each row of the two-dimensional Markov
chain in Figure 1 as a vector Vi where 0 ≤ i ≤ B, so that we
will have:

V0 = [SE , SE−1, · · · , S1, S0],

V1 = [SE+K , SE+K−1, · · · , SE+2, SE+1],

V2 = [SE+2K , SE+2K−1, · · · , SE+2+K , SE+1+K ],

...
VB = [SE+BK , · · · , SE+2+BK−K , SE+1+BK−K ].

Besides the fact that complicated state transition behaviors
among the states, once we carefully observe the diagram in
Figure 1, it could be realized that every row, except the first
and the last one, has exact same state transition behaviors.
Therefore, we might have some recurrence relations which
might reduce the number of total equations and the system
complexity. Figure 2 shows the state representation of ith

row of the two-dimensional state diagram or vector Vi where
0 < i < B. We observe in Figure 2 that for vector Vi, there
are 3 different transition behaviors among the states so that
we can subdivide the vector into 3 separate regions by which
we can write following equations:
• For Region1, 0 ≤ m < Ke:

SN+1 = SN − (
λ

Λ
) SN−K−Ke , (1)

• For Region2, Ke ≤ m < Kt:

SN+1 = SN + (
λ

Λ
) (SN − SN−K−Ke

), (2)

• For Region3, Kt ≤ m < K :

SN+1 = (1 +
λ

Λ
) SN . (3)

Note that the (1) and (2) are linearly recursive sequence of
order K + Ke + 1 whose minimum value is 8. We know
that there is no solution in radicals to the general polynomial
equations of degree 5 and more by Abel&Ruffini theorem [23].
Thus, it is not easy to solve these equations and express a
closed-form solution for stationary probability distributions.
However, we may use companion matrices of each equation
to express transitions among states. To provide consistency
among the companion matrices, we will consider each one
as a square matrix with dimension K + Ke + 1. Once we
consider the vector V1, we can write state transitions by using
companion matrices as follows:


SE+2

SE+1

...
SE+2−K−Ke

 =


(1 + λ

Λ ) 0 . . . 0 0
1 0 . . . 0 0
...

...
. . .

... 0
0 0 . . . 1 0




SE+1

SE
...

SE+1−K−Ke


or equivalently:

−−−→
SE+2 = C3

−−−→
SE+1.
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Fig. 2: State diagram representation of the vector Vi

Other state vectors in Region3 can also be expressed iteratively
as following:

−−−→
SE+3 = C3

−−−→
SE+2 = C2

3

−−−→
SE+1,

−−−→
SE+4 = C3

−−−→
SE+3 = C3

3

−−−→
SE+1,

...
−−−−−−→
SE+Ke+1 = C3

−−−−→
SE+Ke

= CKe
3

−−−→
SE+1.

Similarly, for Region2:
−−−−−−→
SE+Ke+2 = C2

−−−−−−→
SE+Ke+1 = C2 C

Ke
3

−−−→
SE+1,

−−−−−−→
SE+Ke+3 = C2

−−−−−−→
SE+Ke+2 = C2

2 C
Ke
3

−−−→
SE+1,

...
−−−−−−→
SE+Kt+1 = C2

−−−−−−→
SE+Kt−1 = CKt−Ke

2 CKe
3

−−−→
SE+1,

and for Region1:
−−−−−−→
SE+Kt+2 = C1

−−−−−−→
SE+Kt+1 = C1 C2 C

Ke
3

−−−→
SE+1,

−−−−−−→
SE+Kt+3 = C1

−−−−−−→
SE+Kt+2 = C2

1 C
2
2 C

Ke
3

−−−→
SE+1,

...
−−−→
SE+K = C1

−−−−−→
SE+K−1 = CKe−1

1 CKt−Ke
2 CKe

3

−−−→
SE+1,

−−−−−→
SE+K+1 = C1

−−−→
SE+K = CKe

1 CKt−Ke
2 CKe

3

−−−→
SE+1,

where

C1 =


1 0 . . . 0 − λ

Λ
1 0 . . . 0 0
...

...
. . .

...
0 0 . . . 1 0

 , C2 =


(1 + λ

Λ
) 0 . . . 0 − λ

Λ
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


We showed that we can express all the state vectors in V1

in terms of
−−−→
SE+1 and companion matrices. In fact, the same

procedure can be followed for the other row vectors and any
state vector

−→
SN : SN ∈ Vi, 0 < i < B can be expressed as:

−→
SN =


C3

α CbN−E−1
K c −−−→SE+1 0 ≤ α ≤ Ke

C2
α−Ke C3

Ke CbN−E−1
K c −−−→SE+1 Ke < α ≤ Kt

C1
α−Kt C2

Kt−Ke C3
Ke CbN−E−1

K c −−−→SE+1 Kt < α < K

(4)

where b·c is a function that returns the largest integer less than
or equal to its argument, C is the multiplication of companion
matrices, i.e., C = CKe

1 CKt−Ke
2 CKe

3 , and the parameter

α = (N−E+K−1) (mod K). Thus, we are able to express
the state vectors

−→
SN : SN ∈ Vi, 0 < i < B with respect to

companion matrices and the state vector
−−−→
SE+1.

After studying on the majority of the vectors, we can now
consider V0 and write following characteristic equations:
• For 0 < N ≤ E −K + 1:

SN = (
λ

Λ
)(1 +

λ

Λ
)N−1S0 (5)

• For E −K + 1 < N ≤ E −Ke:

SN+1 = (1 +
λ

Λ
)SN −

λ

Λ
SN−K (6)

• For E −Ke < N ≤ E:

SN+1 = SN −
λ

Λ
SN−K (7)

Thus, we can express
−−−→
SK+1 by companion matrix from

equation (6):


SK+1

SK
...

S1−Ke

 =


(1 + λ

Λ ) 0 . . . 0 − λ
Λ

1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0



SK
SK−1

...
S−Ke


where the states {Sj : j < 0} are redundant, i.e., probability
of these states is zero, and they are used to provide consistency
among dimensions of companion matrices.

Thus, we may keep the iteration and express other state
vectors as follows:

−−−→
SK+1 = C2

−→
SK ,

−−−→
SK+2 = C2

−−−→
SK+1 = C2

2

−→
SK ,

...
−−−−−−→
SE−Ke+1 = C2

−−−−→
SE−Ke

= C
E+1−(K+Ke)
2

−→
SK .

and
−−−−−−→
SE−Ke+2 = C1

−−−−−−→
SE−Ke+1 = C1 C

E+1−(K+Ke)
2

−→
SK ,

−−−−−−→
SE−Ke+3 = C1

−−−−−−→
SE−Ke+2 = C2

1 C
E+1−(K+Ke)
2

−→
SK ,

...
−−−→
SE+1 = C1

−→
SE = CKe

1 C
E+1−(K+Ke)
2

−→
SK .



We may also express
−→
SK by using (5) as:

−→
SK =



SK
SK−1

...
S2

S1

S0

S−1

...
S−Ke


=
λ

Λ
S0



(1 + λ
Λ )K−1

(1 + λ
Λ )K−2

...
(1 + λ

Λ )
1
Λ
λ
0
...
0


= (

λ

Λ
)S0
−→γ

Thus, we may write:

−→
SN =

{
C2

N−K ( λΛ )S0
−→γ K ≤ N ≤ E −Ke + 1

C1
N−ς1 C2

ς2 ( λΛ )S0
−→γ E −Ke + 1 < N ≤ E + 1

(8)

where ς1 = E −Ke + 1 and ς2 = ς1 −K.

We also may replace
−−−→
SE+1 in (4) and rewrite it as:

−→
SN =


C3

α Cb
N−E−1

K cC ′ 0 ≤ α ≤ Ke

C2
α−Ke C3

Ke Cb
N−E−1

K cC ′ Ke < α ≤ Kt

C1
α−Kt C2

Kt−Ke C3
Ke Cb

N−E−1
K cC ′ Kt < α < K

(9)

where C ′ = CKe
1 C

E+1−(K+Ke)
2 ( λΛ )S0

−→γ .

Also, we may write following characteristic equations for
the states in VB :
• For BK + E −K + 1 ≤ N ≤ BK + E −Kt:

SN+1 = SN (10)

• For BK + E −Kt < N < BK + E:

SN+1 = SN −
λ

Λ
SN−K−Ke

(11)

Therefore, we may write followings:
−−−−−−−−−→
SBK+E−Kt+1 = · · · =

−−−−−−−−−→
SBK+E+1−K

and
−−−−−−−−−→
SBK+E−Kt+2 = C1

−−−−−−−−−→
SBK+E+1−K ,

−−−−−−−−−→
SBK+E−Kt+3 = C2

1

−−−−−−−−−→
SBK+E+1−K ,

...
−−−−−→
SBK+E = CKt−1

1

−−−−−−−−−→
SBK+E+1−K .

We can express the state vector
−−−−−−−−−→
SBK+E+1−K from (9) as,

−−−−−−−−−→
SBK+E+1−K = CB−1C ′

Therefore, we may write
−→
SN : SN ∈ VB :

−→
SN =

CB−1C′ BK + E1−K ≤ N ≤ BK + E + 1−Kt

C1
N−(BK+E−Kt+1)CB−1C′ BK + E −Kt + 1 < N ≤ BK + E

(12)

Thus, we can express any state vector
−→
SN : {SN : 0 ≤ N ≤

BK + E} as a function of companion matrices C1, C2, C3,
required energy packet amounts Kt and Ke, the vector −→γ , and
the state S0 by combining equations (8), (9), (12). We also
know that the normalisation condition holds

∑BK+E
i=0 Si = 1,

so that we can find stationary probability distribution of S0

and of all the other states in the system.

B. A Numerical Example

Since the rate of energy is in power units, the average total
power consumed by the sensor node is:

ξ = (1− S0)Λ, (13)

where the reduction S0Λ is due to the lost energy packets
when the battery or capacitor is full. On the other hand, the
average radiated power is:

φ = κξ, (14)

where κ = Kt

K .
When we assume that there are M identical sensors operat-

ing at the same power level [21] and using BPSK transmission,
the probability that a bit is received correctly is given by:

Q(

√
ηKt

ηκξζ (M − 1) + ηξζ (M−M
′

M )1[M > M ′] +N
), (15)

where the denominator stands for interference, plus the noise
power level denoted by N . Also, η is the reduction of
transmitted power that is received at the receiver, ζ is a factor
representing the effect of side-band frequency channels among
the M ′ separate frequency channels and it is typiaccly much
smaller than 1, and Q(x) = 1

2 [1− erf( x√
2
)].

When we assume a simple system with parameters Kt =
3,Ke = 2, E = 10, B = 3,Λ = 10, λ = 2, we have 8 × 8
companion matrices. Once we follow the solution procedure,
we can calculate S0 = 0.1592. We can observe the effect of
the number of sensor nodes on the receiver error probability
in Figure 3 with the hypothetical parameters η = 0.5, ζ =
0.02, M ′ = 50, N = 1.

III. CONCLUSIONS

This paper analyses wireless sensor nodes that harvest
energy and sense data from the environment, and store and
transmit data in the form of discrete packets, and also use a
discrete representation of energy. It is assumed that a data
packet can be sensed, processed and stored by the node
only when there are at least Ke energy packets available in
the node. Also, these Ke energy packets will be effectively
expended each time a data packet is successfully received by
the node. Otherwise, the data will not be received and the
sensed data will go unnoticed and it will be lost.

On the other hand, in order to transmit a data packet the
node requires an additional number of Kt energy packets,
where we assume that Kt > Ke. Again all of the Kt

energy packets will be consumed for one transmission. Thus



Fig. 3: Transmission error probability vs number of sensor
nodes

the successful sensing and transmission of one data packet
requires the consumption of a total of K = KE +Kt energy
packets. In our model, both the processing and transmission
of a packet are assumed to occur very rapidly, if enough
energy is available so that an arriving data packet is instan-
taneously stored if the amount of energy available is more
than Ke but less than K, while it will be both stored and
transmitted when the amount of energy available is at least
K. Under these assumptions, we construct a two-dimensional
continuous time Markov chain to represent the behaviour
of the system. We then propose a solution method for this
model that uses companion matrices and linear algebra to
reduce its computational complexity. We also exploit certain
regularity properties of the matrix structure resulting in effi-
cient numerical computation of all the metrics of interest. In
particular we can obtain the steady-state distribution of the
backlog of data and energy packets, the system throughput
in terms of successfully transmitted packets and the possible
loss of energy when the energy storage device is full and
energy is harvested. The analysis also allows us to include the
effect of a communication environment where, in addition to
noise, multiple wireless sensor nodes may interfere with each
other resulting in increased data errors and reduced effective
throughput. Future work will address more practical system
where non-transmitted data may be lost due to time-outs, and
energy may be lost through leakage. We also plan to consider
related multi-hop and networked systems.
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