
Subscriber access provided by Imperial College London | Library

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the
course of their duties.

Article

Obesity and cage environment modulate metabolism in the Zucker rat: a
multiple biological matrix approach to characterising metabolic phenomena

Hannah J. Lees, Jonathan R Swann, Simon Poucher,
Elaine Holmes, Ian D. Wilson, and Jeremy K. Nicholson

J. Proteome Res., Just Accepted Manuscript • DOI: 10.1021/acs.jproteome.9b00040 • Publication Date (Web): 02 Apr 2019

Downloaded from http://pubs.acs.org on April 11, 2019

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.



1

Obesity and cage environment modulate metabolism in the Zucker rat: a 

multiple biological matrix approach to characterising metabolic phenomena.

Hannah J. Lees1*, Jonathan R. Swann1, Simon Poucher2, Elaine Holmes1, Ian D. 

Wilson1 and Jeremy K. Nicholson1

Author affiliations:

1Section of Computational and Systems Medicine, Department of Surgery and 

Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom.

2AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG

*Corresponding Author. Email: lees.hannah@gmail.com

Abstract

Obesity and its co-morbidities are increasing worldwide imposing a heavy 

socioeconomic burden. The effects of obesity on the metabolic profiles of tissues 

(liver, kidney, pancreas), urine and the systemic circulation were investigated in the 

Zucker rat model using 1H NMR spectroscopy coupled to multivariate statistical 

analysis. The metabolic profiles of the obese (fa/fa) animals were clearly 

differentiated from the two phenotypically lean phenotypes, ((+/+) and (fa/+)) within 
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each biological compartment studied, and across all matrices combined. No 

significant differences were observed between the metabolic profiles of the 

genotypically distinct lean strains. Obese Zucker rats were characterized by higher 

relative concentrations of blood lipid species, cross-compartmental amino acids 

(particularly BCAAs), urinary and liver metabolites relating to the TCA cycle and 

glucose metabolism; and lower amounts of urinary gut microbial-host co-metabolites, 

and inter-matrix metabolites associated with creatine metabolism. Further to this, the 

obese Zucker rat metabotype was defined by significant metabolic alterations relating 

to disruptions in the metabolism of choline across all compartments analyzed. The 

cage environment was found to have a significant effect on urinary metabolites related 

to gut-microbial metabolism, with additional cage-microenvironment trends also 

observed in liver, kidney and pancreas. This study emphasises the value in 

metabotyping multiple biological matrices simultaneously to gain a better 

understanding of systemic perturbations in metabolism, and also underscores the need 

for control or evaluation of cage environment when designing and interpreting data 

from metabonomic studies in animal models.

Keywords: Zucker rat, cage effect, metabolic profiling, NMR spectroscopy

Introduction

Despite the growing global prevalence of obesity and related disorders encompassed 

by metabolic syndrome 1-3, many of the metabolic characteristics of obesity are poorly 

understood. Several genetic and environmental factors have been attributed as causal 
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in obesogenesis, yet questions regarding the mechanistic significance of the metabolic 

characteristics of obesity remain unanswered. In addition to host-related metabolism, 

the gut microbiota have been proposed to play a role in the development of obesity, 

dyslipidaemia and type 2 diabetes Mellitus (T2DM) but it is unclear as to the extent 

and nature of the contribution of the intestinal microbiota 4-5. 

The Zucker rat is a widely used model for studying obesity and T2DM, as animals 

homozygous for the fa allele, a recessive missense point mutation in the leptin 

receptor, display significantly diminished sensitivity to leptin. As a result, these 

animals develop hyperleptinaemia, obesity, hyperphagia, hyperinsulinaemia, 

hyperlipidaemia, insulin-resistance and hyperglycaemia; sharing many classic signs of 

human metabolic syndrome 6. As such, the Zucker rat may represent a useful tool to 

further understand the etiopathology of metabolic syndrome in humans.

The composition of blood and urine represents the sum of simultaneous metabolic 

processes and interactions occurring between various tissues and cell types in an 

animal. Thus, metabolic phenotyping of biofluids provides a snapshot of systemic 

metabolism, with profiling of blood and urine supplying complementary information. 

In addition, analysis of tissue samples can give valuable insights into the origin of the 

metabolic variation observed in biofluids and expand our understanding of the 

mechanistic processes associated with obesogenesis. The liver, as the organ 

responsible for very-low-density lipoprotein (VLDL) synthesis, is a key tissue in 

understanding the development of dyslipidaemia in the Zucker rat, with evidence of 

the dysregulation of lipid metabolism manifested in the blood. Furthermore, T2DM is 
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4

associated with renal complications whilst the disruption of pancreatic function is 

central to the pathology of diabetes 7-8. 

Here, we used a 1H NMR spectroscopy-based metabolic phenotyping approach to 

comprehensively characterize the global biochemical consequences of obesity and the 

metabolic syndrome across a total of five biological compartments (urine, blood, 

liver, kidney and pancreas). In animal experiments, individuals are often group 

housed and in many cases they are co-housed in treatment groups. Since small 

differences in the local environment can influence the phenotype of animals, the 

biological focus of the experiment can be confounded by study design 9-11. In the 

current study tissues and biofluids were harvested from 14-week-old male obese 

(fa/fa), and homozygous lean (+/+) and heterozygous lean (fa/+), Zucker rats, with an 

animal husbandry arrangement designed to explore the effect of both obesity and cage 

microenvironment on the metabolic phenotype.

Materials and methods

Animal housing and sample collection 

Male Zucker (fa/fa, n = 6) obese, lean (+/+, n = 7) and heterozygous lean (fa/+, n = 5) 

rats from the AstraZeneca colony were bred on site (Alderley Park, Cheshire, UK) 

from fa/+ parents, and housed in a conventional animal room in Techniplast P2000 

cages on a 12h:12h light: dark cycle at standard room temperature and humidity. Pups 

were reared with their mothers until they were weaned and then housed as littermates 

in six cages, each containing one rat from each genotype (n = 3 per cage), apart from 

cage two, which was found to contain an obese and two (+/+) rats, following 
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5

genotype verification. The housing arrangement described here was used in order to 

minimize cage effects seen in our previous study12 that may have resulted from the 

co-housing of different strains separately rather than genotypic effects on the gut 

microbiota. Each of the six cages had different parents. Food (SDS breeding diet RM-

3) and water were available ad libitum throughout the study. At weekly intervals, 

from 5 to 14 weeks of age, the animals were transferred to a procedures room and 

weighed (weight data shown in supplementary Figure S1). Urine was collected at 14 

weeks of age by placing the animals individually in metabolism cages, for no more 

than 2 hours.  Urine was stored at -20 °C, until analysis. The rats had access to food 

and water whilst in the metabolism cages. At 14 weeks of age animals were rendered 

insentient by inhalation of a 5:1 mixture of CO2:O2 and a blood sample was taken by 

cardiac puncture into lithium heparin blood syringes and centrifuged at 2400 g for 10 

minutes. The plasma was then removed and stored at -20 °C until analysis. Liver, 

kidney and pancreas tissues were removed and snap frozen in liquid nitrogen. 

Samples were stored at -40 °C prior to analysis. Euthanasia was confirmed by cervical 

dislocation. All animal work was carried out in accordance with the U.K. Home 

Office Animals (Scientific Procedures) Act 1986 under a Project Licence approved by 

the AstraZeneca Ethical Review Committee.  The specific protocols described in this 

paper were also reviewed and approved by the local Departmental Review to ensure 

that they adhered to the principals of minimising animal suffering. 

1H NMR spectroscopy of tissues, plasma and urine

Plasma samples were thawed at room temperature and mixed by vortexing, then 100 

μL was combined with 450 μL of saline solution (0.9% NaCl w/v, in H2O:D2O 8:2). 

Urine samples were prepared by combining 400 μL of urine with 200 μL of phosphate 
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6

buffer (pH 7.4), prepared in 8:2 H2O:D2O, containing 1mM 3-trimethylsilyl-1-

[2,2,3,3,-2H4] propionate (TSP) as a chemical shift reference and 3 mM of sodium 

azide as a bacteriostatic agent. The mixture was vortexed and centrifuged at 16000 g 

for 10 minutes, before 500 μL or 550 μL of the supernatant was transferred to a 5 mm 

outer diameter NMR tube, for plasma and urine samples, respectively. 

Aqueous extracts were prepared from liver, kidney and pancreatic tissue by 

combining tissue (~60 mg) with 600 μL ice-cold CHCl3:MeOH (2:1 V/V) in a 2 ml 

Eppendorf tube. For each tissue, samples were removed from the same anatomical 

location for each animal; for the kidney this incorporated both the medulla and cortex. 

Samples were immediately homogenized using a TissueLyser from Qiagen (West 

Sussex, UK), with one 5 mm stainless steel bead per sample, for 8 minutes at 25 Hz. 

The homogenate was combined with 600 μL H2O, vortexed to mix, and left on ice for 

10 minutes. Samples were centrifuged at 16000 g for 10 minutes and the upper 

aqueous layer of supernatant was collected. To increase metabolite recovery, a second 

extraction was performed on the sample; the sample pellet was resuspended in 600 μL 

ice-cold CHCl3:MeOH (2:1 V/V), vortexed, and left on ice for 10 minutes, before 

centrifugation at 16000 g for 10 minutes. The aqueous layer of supernatant was again 

collected and combined with the first aqueous extraction 13. Solvents were removed 

from the aqueous extract by speed vacuum concentration using an Eppendorf 

Concentrator plus. Samples were stored at -40 °C until the day of 1H NMR analysis. 

On the day of analysis, 700 μL of D2O:H2O (9:1 V/V), containing 1 mM TSP as a 

chemical shift reference, were added to each sample, and vortexed to ensure 

reconstitution. Samples were centrifuged at 16000 g for 10 minutes, before 550 μL of 

the supernatant was transferred to a 5 mm outer diameter NMR tube.
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Plasma 1H NMR spectra were acquired using a 600 MHz Bruker Avance III-600 

spectrometer (Rheinstetten, Germany) with a 5 mm TCI probe and CryoProbe system 

operating at 600.13 MHz 1H frequency. The plasma spectra were acquired using the 

Carr-Purcell-Meiboom-Gill (CPMG) spin-echo sequence (RD-90°-(t-180°-t)n- 

acquire FID)13, with irradiation of the water peak during the RD, in order to attenuate 

the broad signals from proteins, lipoproteins and other high molecular weight 

compounds 14-15. The 90° pulse length was adjusted for each sample individually.

 1H NMR spectra of urine and aqueous tissue extracts were acquired using a 600 MHz 

Bruker Avance DRX600 spectrometer (Rheinstetten, Germany) with a 5 mm BBI 

probe and TXI probe for liver and kidney, pancreas and urine samples, respectively. A 

standard one-dimensional pulse sequence was used: RD-90°-t-90°-tm-90°-acquire free 

induction decay (FID) [t = 3 μs]. The water resonance was selectively irradiated 

during the relaxation delay (RD) of 2 s and again during the mixing time (tm) of 100 

ms. The 90° pulse length was adjusted to 15.25 μs for urine, 10.68 μs for liver tissue 

extracts, and 10.88 μs for kidney and pancreas. For acquisition of both plasma and 

tissue spectra, the temperature was kept constant at 300 K, the field frequency was 

locked on D2O solvent and 128 scans were recorded into 64k data points. 

Acquired 1H NMR spectra were manually corrected for phase and baseline 

distortions; plasma 1H chemical shifts were referenced internally to the -glucose H1 

resonance at δ 5.233, whereas urine and aqueous tissue extracts were referenced to the 

internal standard, TSP, at δ 0.0, using TOPSPIN (version 3.1, Bruker BioSpin). The 

spectra were exported into MATLAB (MathWorks) and digitised using a script 
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developed in-house (https://csmsoftware.github.io/docs/impacts/index.html). The 

spectral regions containing resonances from water [δ 4.6-5.2] and TSP were excised 

prior to statistical analysis. The aqueous pancreas extracts of five samples contained 

lipid resonances; these spectral regions were set to zero integral in all sample spectra. 

All spectra were aligned 16 and the tissue spectra normalized to the probabilistic 

quotient to partially compensate for differences in total sample volumes of tissue 

extracts 17. Molecules were assigned with the aid of a combination of two-

dimensional homonuclear NMR spectroscopy (J-resolved spectroscopy, correlation 

spectroscopy, total correlation spectroscopy), statistical total correlation 

spectroscopy18 and an in house database built from authentic standards.

Data analysis strategy

Multivariate statistical analysis

The spectral data were imported into SIMCA 12.0 (Umetrics 2009); PCA was used as 

an initial unsupervised multivariate statistical method to gain an overview of the inter-

sample variation and to identify outliers 19. OPLS and OPLS-DA were used to detect 

the maximal differences in metabolic profiles between the three differing genotypes. 

Supervised models were constructed in MATLAB using a procedure developed in-

house 20, using 1H NMR spectral data as the descriptor matrix and genotype as the 

response variable (Y predictor). Pairwise OPLS-DA models were constructed for the 

plasma and each tissue, comparing the samples from each of the three genotypes. 

Seven-fold cross validation was used to obtain cross-validated scores. The 

significance of the predictive value of each supervised model was validated by 

permutation testing, wherein the Y matrix of the model was permuted 1000 times, 

using a script in MATLAB 21. 
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Univariate statistical analysis

Univariate statistical analysis was performed using R and Python. The loadings plot 

of each OPLS-DA model was used to select which molecules to subject to two-way 

ANOVA; the Benjamini-Hochberg false discovery rate (FDR)-corrected significant 

correlation coefficient cut-off was calculated for each model, and regions with an r2 

above this value were selected for further analysis. Representative integral regions for 

each metabolite were compared using a two-way ANOVA with genotype and cage as 

factors. A Levene’s test was used to assess equality of variances and the data 

transformed where necessary. A Tukey’s range test was used for post-hoc analysis. 

Finally, to address the issue of multiple comparisons, for each metabolic 

compartment, the spectra were binned into ~3000 bins, and a two-way ANOVA 

performed on each bin with p-values adjusted using the Benjamini-Hochberg 

correction. 

Multi-compartment clustering analysis

Unsupervised hierarchical clustering analysis (HCA) was performed to compare all 

animals across all the biological matrices analyzed and determine any patterns of 

correlation between metabolites. Metabolites were selected for inclusion using the key 

discriminatory metabolites identified through pairwise OPLS-DA genotypic 

comparison models and the metabolites associated with significant cage-related 

variation, ascertained using two-way ANOVA. Integral data were first standardised as 

z-scores, such that the mean was 0 and the SD was 1 for each metabolite. Spearman's 

rank correlation for similarity measurement and Ward's linkage for clustering were 
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10

used for the unsupervised HCA. The functions hclust and heatmap.2 were used to 

generate the HCA and heatmap in R.

Results 

Adiposity alters the urinary metabolite profile

PCA of the urine spectra indicated a clear phenotypic trend and the presence of a 

metabolic outlier, the fa/fa rat from cage 1 (F1), Figure 1A. The predictive ability of 

the OPLS-DA model comparing homozygous animals was hindered by the influence 

of the F1 animal (Q2Y = 0.41, supplementary Figure S2) with the exclusion of this 

animal illustrating this effect (resultant improvement in prediction Q2Y = 0.73, Figure 

1F). The OPLS-DA comparison of obese and heterozygous lean animals yielded a 

model with poorer predictive ability (Q2Y = 0.21, supplementary Figure S3), which 

showed even greater improvement upon removal of the F1 animal (Q2Y = 0.78, 

supplementary Figure S4). OPLS-DA loadings plots comparing obese and lean 

animals identified the key discriminatory metabolites to be hippurate, 3-indoxyl 

sulphate, phenylacetylglycine (PAG), methylamine, creatinine, 4-guanidinobutanoic 

acid and N-acetyl glycoprotein, which were all increased in lean, relative to obese 

animals, and trigonelline, 2-oxoglutarate, formate, fumarate, glucoronate and 

hypotaurine, which were all higher in the urine from obese rats (Figure 1F). A 

summary of the metabolite differences in the obese animals relative to the lean 

animals can be found in Table 1.

Comparison of the two lean genotypes using OPLS-DA resulted in a model that failed 

permutation testing, reflecting limited systematic variation between these two groups.
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11

Adiposity modulates the systemic metabolic phenotype

Phenotype was the strongest source of variance in the PCA model constructed from 

the plasma metabolic profiles (Figure 1B). Greater amounts of lipid and branched 

chain amino acids (BCAAs) were observed in the plasma from obese animals, 

underlying the variation described by the first principal component. The obese animal 

from cage one was an outlier in this model, due to much higher concentrations of 

plasma lipid species, and thus the sample was excluded from the supervised 

discriminant analysis to aid interpretation of results. 
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Figure 1: PCA scores plots of all genotypes (A-E) and OPLS-DA coefficient loadings plots comparing homozygous lean and obese Zucker 

rats (F-J) for each biological matrix. Model statistics: A: 3 principal components, Y= 0.35, R2 = 0.77; B: 2 principal components, Q2Y = 

0.97, R2 = 0.98; C: 2 principal components, Q2Y = 0.81, R2 = 0.86; D: 5 principal components, Q2Y = 0.80, R2 = 0.93; E: 2 principal 

components, Q2Y = 0.77, R2 = 0.84; F: Q2Y = 0.73, R2 = 0.86, 1 predictive, 0 orthogonal components; G: Q2Y = 0.8, R2 = 0.89, 1 predictive, 

1 orthogonal component; H: Q2Y = 0.78, R2 = 0.90, 1 predictive, 0 orthogonal components; I: Q2Y = 0.69, R2 = 0.92, 1 predictive, 0 

orthogonal components; J: Q2Y = 0.49, R2 = 0.97, 1 predictive, 0 orthogonal components. The strain of the animal is indicated by colour and 

the numbers shown indicate the cage number (A-E). 2-OG, 2-oxoglutarate; 3-HIB, 3-hydroxyisobutyrate; 3-HPPA, m-

hydroxyphenylpropionate; 3-IS, 3-Indoxyl sulphate; 3,5-ADP, adenosine 3',5'-diphosphate; 4-GA, 4-guanidinobutanoic acid; DMA, 

dimethylamine; DMG, dimethylglycine; GABA, gamma amino butyric acid; GPC, glycerophosphorylcholine; Ile, isoleucine; Leu, leucine ; 

OAG, O-acetyl glycoprotein; PAG, phenylacetylglycine; ppm, parts per million; UDP , uridine diphosphate; Val, valine.

OPLS-DA models with good predictive ability (Q2Y = 0.8) were obtained by 

comparing the obese plasma metabolic profiles with those from the homozygous (+/+) 

lean genotypes (Figure 1G). The most significant discriminatory metabolites were 

found to be increased lipid species, including unsaturated lipids, and resonances from 

lipoproteins (VLDL and LDL); glycerol; glycerophosphocholine (GPC); 3-

hydroxyisobutyrate (3-HIB); and the branched-chain amino acids (BCAAs), valine 

and isoleucine; in the obese (fa/fa) samples compared to the lean samples. The OPLS-

DA model comparing the heterozygous lean and obese plasma profiles also had good 

predictive ability (Q2Y = 0.67) and can be found in the supplementary information 

(Figure S5).

No separation was observed between the (fa/+) and (+/+) strains in the PCA scores 

plot, indicating that genotype did not affect the plasma metabolic signatures of the 

lean animals. This was confirmed by the poor predictive performance of the OPLS-

DA model built on these plasma metabotypes, which failed permutation testing. 
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Table 1. Summary of two-way ANOVA results for all biological matrices
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Colour of matrix indicates the genotype observed to have the highest relative concentration (fa/fa, blue; +/+, green, fa/+, red). 

Abbreviations: s, singlet; d, doublet; dd, double of doublets; t, triplet; bs, broad singlet; m, multiplet; q, quartet. Statistical significance of 

genotypic comparisons derived from the Tukey’s range test post-hoc analysis is indicated: *p < 0.05, **p < 0.01, ***p < 0.001, **** < 

0.0001; biological matrix is shown in bold where significance passes FDR. Statistical significance for post-hoc analyses of cage variation 

can be found in figure 2.

Altered hepatic metabolism associated with obesity

As with the plasma, PCA analysis identified phenotype as the strongest source of 

variation in the liver metabolic profiles, described by principal component (PC) 1 

(Figure 1C), with no obvious genotype-associated distinction between the lean strains. 

Pairwise OPLS-DA comparisons of the obese hepatic profiles with either the 

homozygous or heterozygous lean profiles returned models with strong predictive 

ability (Q2Y = 0.78 and 0.70, respectively). Samples from obese animals were 

characterized by higher concentrations of lactate, alanine, hypotaurine, 

phosphocholine, glycogen, glucose and adenosine 3', 5'-diphosphate (3,5-ADP), and 

lower concentrations of glutamine, O-acetylglycoproteins, creatine, choline, betaine, 

inosine and uridine diphospate (UDP), compared to their lean equivalents (Figure 1H 

(fa/fa versus +/+); Supplementary Figure S6 (fa/+, fa/fa)). 

Renal metabolic characteristics of obesity

The PCA model constructed from the renal metabolic phenotypes identified an obese 

animal (cage five) as an outlier. The sample occupied a metabolic space separate from 

both the obese and lean metabolite phenotypes in the PCA scores, with similarities to 

both metabolic phenotypes, and also a greater relative concentration of 

phosphocholine compared to all the other samples (Figure 1D). This sample was 

excluded from subsequent supervised multivariate analyses, to aid interpretation of 

phenotypic variation. Despite slight genotypic clustering of the lean samples in the 
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PCA scores, further supervised comparison of the two lean genotypes found no 

predictable variation between the two groups, as judged by permutation testing, 

indicating a negligible effect of genotype on the lean kidney metabolite profile. 

Pairwise OPLS-DA comparisons of the obese renal metabolic profiles with those of 

the homozygous (+/+) animals (Figure 1I; Q2Y = 0.69) identified clear metabolic 

differences. Obese-derived kidney tissue was observed to contain greater amounts of 

BCAAs (valine, isoleucine and leucine), phenylalanine, acetate, allantoin and 

dimethylamine (DMA) compared to their lean counterparts and lower alanine, 

betaine, glycine, uridine, inosine, guanosine and gamma-aminobutyric acid (GABA). 

The model comparing obese and heterozygous lean animals had poor predictive 

ability (supplementary Figure S7; Q2Y = 0.37), which may reflect greater variability 

in the heterozygous, compared to homozygous, kidney samples. 

Obesity associated pancreatic metabolic signature

PCA demonstrated a clear pattern of phenotypic clustering, despite differences within 

the lean samples being the strongest source of variation (Figure 1E). An OPLS-DA 

model with moderate predictive ability was obtained comparing the obese pancreatic 

metabolic profiles with those of the homozygous lean animals (Q2Y = 0.49). 

Pancreatic tissue from the obese animals was found to contain higher amounts of 

valine, isoleucine, alanine, acetate and phenylalanine than that of lean animals, and 

lower amounts of aspartate, creatine, betaine, glutamine and tyrosine (Figure 1J). 
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The OPLS-model constructed comparing the obese with the heterozygous lean animal 

pancreatic profiles was not found to be robust, failing permutation testing. As with the 

kidney analysis, this result may reflect higher variability in the heterozygous samples. 

No predictive systematic variation between the two lean genotypes was detected using 

OPLS-DA.

Cage environment impacts urine and tissue metabolite profiles

Two-way ANOVA was employed to evaluate the effect of both genotype and cage on 

the relative metabolite abundances measured, with significant cage-associated 

differences observed in urine for the host-gut microbial co-metabolites m-

hydroxyphenylpropionate (3-HPPA) and hippurate, and trends in dimethylglycine and 

trigonelline measurements. Cage-associated trends were also observed for all three 

tissue extracts, with effects observed in hepatic alanine, choline, 3,5-ADP and 

succinate; renal glycine, choline, and acetate; and pancreatic tyrosine (Figure 2). A 

summary of the results of the two-way ANOVA analyses can be found in Table 1.

Page 17 of 42

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18

Figure 2: Boxplots of metabolites observed to have significant cage-associated variation in urine (A), liver (B) and kidney (C) samples. 

Results from pairwise comparisons performed using the Tukey’s range test post-hoc analysis is indicated: *p < 0.05, **p < 0.01, ***p < 

0.001, **** < 0.0001. The colour of each data point represents the genotype of the animal (fa/fa, blue; +/+, green, fa/+, red).

Multi-compartmental impact of obesity on metabolism

The unsupervised HCA performed demonstrated clear cross-matrix phenotypic trends, 

with no genotypic clustering evident within the lean phenotype (Figure 3). 

Additionally, the outlier obese animal, identified in both urine and blood OPLS-DA 

models (F1), was clearly described by the cluster analysis. Obese Zucker rats were 
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characterized by higher relative concentrations of blood lipids, as well as cross-

compartmental amino acids, particularly BCAAs, and metabolites relating to the TCA 

cycle and glucose metabolism. The obese animals were also characterized by lower 

amounts of urinary metabolites of gut microbial-host co-metabolic origin, and inter-

matrix metabolites pertaining to creatine metabolism. 

Figure 3: Dendrogram generated from HCA of z-score standardized metabolite integrals. Z-scores are shown as a heatmap; shades of red and 

blue represent higher and lower values, respectively, compared with the mean. Columns represent each individual animal (numbered 1-18), 

coloured according to the genotype of the animal (fa/fa, blue; +/+, green, fa/+, red). Each row represents a metabolite from a single 

biological matrix, with the biological matrix indicated and colour-coded on the left, and the related metabolic pathway/pathology indicated 
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by colour coding on the right. 3-HPPA, m-hydroxyphenylpropionate; 3,5-ADP, adenosine 3',5'-diphosphate; GABA, gamma amino butyric 

acid; GPC, glycerophosphorylcholine; PAG, phenylacetylglycine.

Discussion

Using a 1H NMR spectroscopy-based metabolic phenotyping approach, the 

biochemical perturbations associated with obesity have been investigated by 

characterization of the metabolic profiles of urine, plasma and organs known to be 

affected by obesity. As expected, obesity resulted in modulations in lipid and energy 

metabolism, with alterations in choline, amino acid, creatine, nucleoside and 

microbial-host co-metabolism also observed. In addition, the cage environment was 

found to have a significant influence on certain urinary metabolites predominantly 

relating to gut-microbial metabolism, with cage-microenvironment trends also 

observed in liver, kidney and pancreas.

A significantly greater excretion of 2-oxoglurate and fumarate, and a non-significant 

trend of higher urinary citrate, was observed in the obese Zucker rats compared to 

their homozygous lean equivalents, suggesting up-regulation of the TCA cycle. This 

is consistent with previous investigations of leptin mutation-derived rodent models of 

obesity 12, 22-24.

The leptin receptor mutation present in the obese Zucker rat causes hyperphagia, with 

obese rats consuming approximately 30-50% more food than their lean littermates 25-

28. However, there is evidence to suggest that hyperphagia is not the sole cause of 

hyperlipidaemia and hepatic fat deposition in this rodent model, and that obesity in 

this model is due to an abnormal pattern of energy utilization, with a lower rate of 
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protein deposition and heat production, and a higher rate of fat deposition 29-30. Thus, 

it is likely that the differences in caloric intake, as well as in energy expenditure and 

utilization, between the obese and lean rats, influenced the differences in TCA cycle 

intermediates observed here.

In addition to phenotypic variation associated with urinary TCA cycle metabolites, the 

obese animals had higher urinary formate, relative to the lean animals. Formate, the 

simplest carboxylic acid, is an intermediate of several metabolic processes, playing a 

key role in one-carbon metabolism 31. As a by-product of microbial dietary fiber 

fermentation in the gut, and a metabolite utilized in bacterial cross-feeding, 

differences in formate excretion observed here could reflect variation in the functional 

activities of the intestinal microbiota 32-35. 

The observation of increased hepatic glycogen in the obese animals is indicative of 

dysregulated glucose metabolism, and together with the findings relating to hepatic 

glucose, lactate and alanine, most likely relates to the development of insulin 

resistance in the obese rats 36. While the obese Zucker rat has been widely used as a 

model of genetic obesity, it has not generally been used as a model of T2DM; studies 

have shown the animals to be relatively normoglycemic or only marginally 

hyperglycemic 36-37, but with abnormal glucose tolerance 38-39. However, obese 

Zucker rats are hyperinsulinemic 40 and show significant hepatic as well as peripheral 

insulin resistance 41, which is established by approximately 7-13 weeks of age 38, 42-43.

Several metabolic differences between obese and lean animals were indicative of 

altered glucose catabolism and storage in the obese animals, including increased 
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hepatic glucose, glycogen and lactate, urinary glucuronate, and hepatic and pancreatic 

alanine. Abnormal hepatic carbohydrate metabolism has previously been observed in 

the obese Zucker rat 44, with increased hepatic glucose produced from non-

carbohydrate sources. Increased hepatic glucose has been observed in non-insulin 

dependent diabetes mellitus patients, with more than 80% of the increased hepatic 

glucose attributed to increased gluconeogenesis 45. 

Hepatic lactate and alanine were significantly higher in the obese rats, compared to 

the lean, and clustered together in the HCA performed. These findings are consistent 

with previous analyses of the obese Zucker liver 46-47, a hyperlipidemic hamster model 

48 and in a high-fat feeding-induced mouse model of insulin resistance 49. 

Additionally, increased hepatic hyperpolarized [1-13C]lactate and [1-13C]alanine 

signals, following injection of  [1-13C]pyruvate, have been detected in Zucker diabetic 

fatty (ZDF) rats in vivo, relative to wild type animals 50. Increased hepatic glycolysis 

in the obese animals may explain the greater abundance of lactate in their liver 51-52. 

However, both glucokinase and phosphoenolpyruvate carboxykinase, key enzymes 

that regulate hepatic gluconeogenesis, have been shown to have significantly higher 

activity in obese Zucker rats, compared to their lean counterparts 53. As such, these 

altered hepatic metabolites may reflect both increased gluconeogenesis, as lactate and 

alanine are used in the liver as precursors for glucose synthesis 54, and glycolysis 55 in 

the obese animals. Additionally, adipocytes are a significant source of lactate release 

56, and therefore the higher abundance of adipose tissue in the obese rats may have 

contributed to the higher tissue lactate observed. 
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Higher hepatic glycogen was also seen in the obese rats; there is conflicting evidence 

regarding glycogen metabolism in the Zucker rat, with findings of both higher 44, 47, 57-

58 or similar 51, 59 glycogen content in obese Zucker rat livers in vivo and in vitro, 

compared to controls. Similarly, findings regarding the rates of hepatic glycogen 

synthesis in the Zucker rat are somewhat contradictory, with higher rates in 

hepatocytes from fasted obese, compared with lean Zucker rats demonstrated 51, yet 

evidence of a reduced postprandial rate of glycogen synthesis has been seen in obese 

rats in vivo, compared to controls 60, and in hepatocytes 61. 

Significantly higher quantities of circulating glycerophosphocholine and hepatic 

phosphocholine were observed in the obese Zucker animals compared to the lean 

animals with significantly lower hepatic choline also seen in these animals. Both are 

important intermediates in the synthesis and metabolism of phosphatidylcholine, an 

essential component in hepatic VLDL secretion and lipid metabolism 62-64. Moreover, 

the plasma obtained from obese rats was found to contain significantly higher 

amounts of VLDL, as well as LDL, glycerol, and various lipid species. This is 

indicative of increased lipolysis and hepatic overproduction of lipoproteins in these 

animals 65-69 and is consistent with previous studies 12, 47, 70-72. The combination of 

hyperphagia 25-28 and significantly altered energy metabolism and usage in the obese 

Zucker rat is thought to contribute to many of the hallmark characteristics of this 

animal model: hepatic triglyceride accumulation, significantly elevated concentrations 

of plasma triglyceride 26, 28, 47, 72-73, and elevated secretion of very low-density 

lipoprotein (VLDL) 67. 
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Decreased betaine observed in the obese liver, kidney and pancreas, and a lower 

urinary excretion of methylamine, may be a consequence of this increased demand for 

VLDL-mediated hepatic triglyceride export. Lipoproteins require a phospholipid 

outer layer; in rat plasma the most significant phospholipid is phosphatidylcholine 74. 

Phosphatidylcholine can be synthesized from phosphatidylethanolamine, or via the 

‘Kennedy’ pathway, from choline. The latter route accounts for approximately 70% of 

hepatic phosphatidylcholine synthesis 75. Betaine is the product of choline oxidation 

and plays an important role in choline metabolism as a methyl donor in the conversion 

of homocysteine to methionine, producing dimethylglycine via the enzyme betaine-

homocysteine-methyltransferase (BHMT). This reaction takes place primarily in the 

liver and kidneys, and secondarily in the pancreas 76-79 (see Figure 4). Hence, the 

increased demand for VLDL to transport excess triglycerides out of the liver increases 

the consumption of choline to synthesize phosphatidylcholine, with downstream 

consequences for betaine abundance. Similarly, reduced urinary methylamine in the 

obese animals, consistent with previous studies in ob/ob 24 and db/db 80 mice,

 may reflect a reduced availability of choline for catabolism either endogenously 81 or 

via gut microbial metabolism 82.

Phenotypic differences were observed in urinary 3-indoxyl sulfate, hippurate and 

PAG, with all metabolites significantly lower in the urine of the obese animals, 

relative to the lean. These metabolites clustered together in the HCA, indicating close 

correlation. As these are microbial-derived products 83-89, these differences imply 

dysregulation in the activity of the gut microbiota.
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Figure 4: Summary of key metabolic markers characterising the obese Zucker rat in all biological matrices analyzed. Red boxes indicate 

higher relative concentrations; green indicates lower relative concentrations, observed in the obese, compared to lean rats. ADP, 

adenosine diphosphate; AGAT, arginine:glycine amidinotransferase; ATP, adenosine triphosphate; BCAA, branched chain amino acid; 

BHMT, betaine homocysteine methyltransferase; CDP, cytidine diphosphate; CK, creatine kinase; CMP, cytidine monophosphate; CoA, 

coenzyme A; DMA, dimethylamine; DMG, dimethylglycine; GAMT, guanidinoacetate N-methyltransferase; GPC, glycerophosphocholine; 

LDL, low-density lipoprotein; PAG, phenylacetylglycine; PEMT, phosphatidylethanolamine N-methyltransferase; TCA, tricarboxylic acid; 

VLDL, very low-density lipoprotein.

Previous studies of Zucker rats have found results consistent with our findings 

regarding excretion of hippurate 12 and  indoxyl sulfate and PAG 90. Additionally, 

hippurate has been shown to be lower in urine from obese individuals 91, and higher in 

diet-restricted dogs 92. Furthermore, an inverse relationship between BMI and urinary 
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phenylacetylglutamine and hippurate has been demonstrated 93, and variation in 

baseline urinary hippurate has been shown to be predictive of obesity risk 94. 

Diet has been shown to alter the microbial metabolism of plant phenolic precursors, 

resulting in changes in the concentration of hippurate excreted 95. However, as the 

composition of the diet was kept the same for all animals throughout the current 

study, it seems most probable that the phenotype-related variation in hippurate, PAG 

and indoxyl sulphate observed, reflects variation in the composition or functional 

activities of the intestinal microbiota. However, our previous analysis of the fecal 

microbial composition of these animals using 16S rRNA sequencing found no 

significant phenotypic variance in the relative abundances of phyla or families of 

bacteria 10. Together, these data suggest a difference in the biochemical output of the 

microbiota in these obese animals compared to their lean counterparts, despite no 

observable differences in the composition of their fecal microbiota at the genus level.

Elevated concentrations of BCAAs (leucine, isoleucine and valine) were seen in the 

plasma, kidney and pancreatic extracts of obese animals, compared to their lean 

equivalents, and were found to cluster according to tissue in the HCA performed, 

indicating close correlation. Additionally, 3-hydroxyisobutyrate (3-HIB), a catabolic 

intermediate of valine, was found to be higher in the plasma of the obese, compared to 

lean rats.

Higher blood concentrations of BCAAs have long been associated with the 

progression of obesity 96-102. Additionally, the strong association between increased 

blood BCAA concentrations and the development of insulin resistance has been 
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confirmed by multiple studies 103-113. Rats fed a high fat diet supplemented with 

BCAAs have been shown to develop insulin resistance to the same degree as rats fed 

a HF diet alone, despite reduced food intake and weight gain 103. Further to this, obese 

Zucker rats fed an isonitrogenous diet in which BCAA content was lowered by 45%, 

showed improved whole-animal insulin sensitivity, muscle glucose uptake and 

glycogen synthesis. Additionally, the rats on this low-BCAA diet had a lower 

respiratory exchange ratio, consistent with increased reliance on fatty acid oxidation 

114. Interactions between adipose tissue, BCAA metabolism, and glucose regulation 

have been proposed 115. Adipose tissue has been shown to modulate circulating 

BCCA levels 116, and alterations in BCAA catabolizing enzymes have been observed 

in the liver and adipose tissue of rodent models of obesity, and also in the adipose 

tissue of morbidly obese subjects, following bariatric surgery and associated weight 

loss 102. Therefore, the altered tissue and blood concentrations of BCAA observed in 

the obese Zucker rats here may reflect the influence of altered liver and adipose-

tissue-derived catabolism of BCAAs in these animals.

In addition to these findings regarding BCAAs, elevated plasma 3-HIB has been 

observed previously in subjects with type I diabetes 117 and db/db mice 118, compared 

to controls. More recently, investigators found significantly increased 3-HIB in the 

skeletal muscle of db/db mice and in muscle biopsies from people with diabetes. The 

authors showed that mice administered 3-HIB, accumulated triglycerides and 

diglycerides in their skeletal muscle and also developed systemic intolerance to a 

glucose load and insulin resistance, suggesting that 3-HIB acts as a paracrine 

regulator of trans-endothelial fatty acid flux, linking dysregulated BCAA metabolism 

with accumulation of lipids in skeletal muscle 119.
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Phenylalanine was observed to be present in relatively higher concentrations in 

extracts of the obese kidney and pancreas, whilst pancreatic tyrosine was observed to 

be lower in obese pancreatic tissue, relative to the lean animals. As with BCAAs, 

elevated serum phenylalanine has been associated with obesity 120 and insulin 

regulation 99, 121. Phenylalanine metabolism is largely associated with the liver, but 

minor activity of phenylalanine hydroxylase (PAH), which catalyses the conversion 

of phenylalanine to tyrosine, has been shown in rat kidney 122, and there is also 

evidence for the contribution of the pancreas in phenylalanine metabolism 123-124. 

Thus, the results here could reflect a reduction in pancreatic PAH activity, leading to 

accumulation of phenylalanine and reduced tyrosine concentrations in the obese 

pancreas.

The obese Zucker rats were found to have lower hepatic and pancreatic creatine and 

urinary creatinine, with glycine also found to be significantly lower in the kidney 

tissue of the obese rats, compared to the lean animals. A generalized decline in 

hepatic function has been previously hypothesized to underlie the reduced amount of 

creatine in the obese Zucker rat liver 46. Altered choline and SAM metabolism in the 

obese Zucker rat, as already discussed, may have also contributed to the phenotypic 

variation in tissue creatine concentrations. The enzyme guanidinoacetate 

methyltransferase (GAMT) requires SAM in order to methylate guanidinoacetate to 

produce creatine and S-adenosylhomocysteine (SAH) in the liver and pancreas 125, 

and thus disturbances in SAM pathways in the obese Zucker rat may have contributed 

to the phenotypic differences in creatine observed. 
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Creatine is primarily used as an energy source in muscle. The lower creatine and 

glycine content of the obese tissues may simply reflect the reduced muscle mass of 

the obese animals compared to the lean animals, due to reduced physical activity 126. 

Creatine and creatine phosphate function as an ATP/ADP ratio buffer in tissues with 

high and variable energy usage (e.g. skeletal muscle) via the enzyme creatine kinase 

127. Elevated urinary creatinine observed in the lean animal samples, compared to the 

obese, is further evidence of the increased muscle tissue in the lean animals due to 

spontaneous conversion of creatine and creatine phosphate to creatinine 125, 128-129, 

with urinary creatinine having been previously positively correlated with lean body 

mass130. 

Several metabolites were found to have a significant cage-associated variation. This 

was most pronounced in the urinary metabolites related to gut microbial-host co-

metabolism, with trends in other metabolites in liver, kidney and pancreas tissue also 

evident. This study was designed to attenuate the potential influence of cage 

environment on host metabolism and fecal bacteria profiles to illuminate the 

metabolic variation associated with genotype. This was based on the previous results 

of Waldram et al. where each genotype was housed in isolation and clear metabolic 

and microbial differences were observed between the groups 12. 

The trend in gut microbial-associated metabolites is consistent with our previous 

analysis of the fecal microbiomes of these rats, which found that cage environment 

had a significant influence on the composition of the fecal microbiota 10. Here, we 

found that the excretion of hippurate and 3-HPPA was inversely related to each other 
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and that the preference of excretion for either metabolite was consistent within each 

cage.  

The cage environment has proved influential during recolonization, following 

cessation of antibiotic treatment, with a cage-dependent effect observed in both 

fluorescence in situ hybridization analysis of the microbiota, and 1H NMR analysis of 

urine metabolite profiles 11. However, the present study differs significantly from this 

example, in that the animals were already ‘colonized’ when they were selectively 

housed together at five weeks of age. Additionally, the obese and lean animals from 

within the same cage shared the same mother. After birth, the intestine is initially 

colonized by microbial sources such as the birth canal and faecal material 131-132, and 

this, together with the initial housing microenvironment, coprophagic behaviour of the 

animals 133, host genotype, and diet, will have impacted the development of the 

intestinal microbiota of the animals, as demonstrated by previous investigators 9. The 

trends observed in variation among both urinary and tissue metabolites, due to cage 

environment, underscore the potential impact of cage environment on the metabolism 

of the host and microbiota, and emphasize the need for control or evaluation of this 

variable when interpreting results from metabonomic studies.

Conclusions 

These results clearly demonstrate the significant impact that the obese phenotype has 

on all the biological matrices analyzed, reflecting the tissue-specific and systemic 

impact of obesity. This includes a broad disruption to amino acid, glucose and energy 

metabolism, which may contribute to the onset of insulin resistance, dysregulation of 
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lipid metabolism and transport as well as alterations to choline metabolism and host 

exposure to gut microbial products. This study emphasises the value in metabolic 

fingerprinting of multiple biological matrices in concert, in order to illuminate the 

origins of the altered metabolism captured by biofluids. In addition, these results 

clearly demonstrate and further reinforce the conclusion that the cage environment 

must be considered as an influential variable in metabonomic studies, especially in the 

context of host-gut microbial co-metabolites.

Supporting Information:

The following supporting information is available free of charge at ACS website 

http://pubs.acs.org

Figure S1: Body weights for each strain at each week including pre-study (at four 

weeks of age); Figure S2: OPLS-DA coefficient loadings plot comparing urine from 

homozygous lean and obese Zucker rats, including the outlier obese animal from cage 

1; Figure S3: OPLS-DA coefficient loadings plot comparing urine from heterozygous 

lean and obese Zucker rats, including the outlier obese animal from cage 1; Figure S4: 

OPLS-DA coefficient loadings plot comparing urine from heterozygous lean and 

obese Zucker rats, excluding the outlier obese animal from cage 1; Figure S5: OPLS-

DA coefficient loadings plot comparing plasma from heterozygous lean and obese 

Zucker rats, excluding the outlier obese animal from cage 1; Figure S6: OPLS-DA 

coefficient loadings plot comparing liver samples from heterozygous lean and obese 

Zucker rats; Figure S7: OPLS-DA coefficient loadings plot comparing kidney 

samples from heterozygous lean and obese Zucker rats.
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