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We study a mechanism design problem where an indivisible good is auctioned to multiple bidders, for each

of whom it has a private value that is unknown to the seller and the other bidders. The agents perceive the

ensemble of all bidder values as a random vector governed by an ambiguous probability distribution, which

belongs to a commonly known ambiguity set. The seller aims to design a revenue maximizing mechanism that

is not only immunized against the ambiguity of the bidder values but also against the uncertainty about the

bidders’ attitude towards ambiguity. We argue that the seller achieves this goal by maximizing the worst-case

expected revenue across all value distributions in the ambiguity set and by positing that the bidders have

Knightian preferences. For ambiguity sets containing all distributions supported on a hypercube, we show

that the Vickrey auction is the unique mechanism that is optimal, efficient and Pareto robustly optimal. If

the bidders’ values are additionally known to be independent, then the revenue of the (unknown) optimal

mechanism does not exceed that of a second price auction with only one additional bidder. For ambiguity

sets under which the bidders’ values are dependent and characterized through moment bounds, on the other

hand, we provide a new class of randomized mechanisms, the highest-bidder-lotteries, whose revenues cannot

be matched by any second price auction with a constant number of additional bidders. Moreover, we show

that the optimal highest-bidder-lottery is a 2-approximation of the (unknown) optimal mechanism, whereas

the best second price auction fails to provide any constant-factor approximation guarantee.
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1. Introduction

When traders from the Ottoman Empire first brought tulip bulbs to Holland in the seventeenth

century, the combination of a limited supply and a rapidly increasing popularity led to highly

non-stationary and volatile prices. Faced with the challenge of selling scarce items with a largely

unknown demand, the flower exchange invented the Dutch auction, in which an artificially high ask-

ing price is gradually decreased until the first participant is willing to accept the trade. Nowadays,

auctions are routinely used in economic transactions that are characterized by demand uncertainty,

ranging from the sale of financial instruments (e.g., U.S. Treasury bills), antiques, collectibles and

commodities (e.g., radio spectra, electricity and carbon emissions) to livestock and holidays.

Despite their long history, the scientific study of auctions only started in the sixties of the

last century when the then emerging discipline of mechanism design began to model auctions as

incomplete information games between rational but self-interested agents. In the most basic such

game, a seller wishes to auction a single product to multiple bidders. Each bidder is fully aware

of the value that he attaches to the good, whereas the other bidders and the seller only know

the probability distribution from which this value has been drawn. This information structure is

referred to as the private value setting. The seller aims to design a mechanism that allocates the

good and charges the bidders based on a single-shot or iterative bidding process so as to maximize

her expected revenues (optimal mechanism design), sometimes under the additional constraint

that the resulting allocation should maximize the overall welfare (efficient mechanism design).

The bidders, in turn, seek to submit bids that maximize their expected utility arising from the

difference of the value obtained from receiving the good (if they do so) and the charges incurred.

In the private value setting outlined above, the bidders’ values for the good are typically modeled

as independent random variables. Under this assumption, Vickrey (1961) argues that the second

price auction without reserve price, which allocates the good to the highest bidder and charges him

the value of the second highest bid, generates maximum revenues among all efficient mechanisms.

Myerson (1981) proves that in the same setting, the second price auction maximizes the seller’s

revenues if it is augmented with a suitable reserve price. In this case, however, efficiency is typically

lost since the good resides with the seller whenever the highest bid falls short of the reserve price.

Cremer and McLean (1988) show that if the bidders’ values are described by correlated random

variables, then second price auctions no longer maximize the seller’s revenues, and the seller can

extract all surplus by combining an auction with a menu of side bets with the bidders. For a review

of the mechanism design literature, we refer to Klemperer (1999) and Krishna (2009).

Traditionally, the mechanism design literature models the bidders’ values as a random vector

that is governed by a probability distribution which is known precisely by all participants. Although

this assumption greatly facilitates the analysis, the existence and common knowledge of such a
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distribution may be difficult to justify in settings where the demand is poorly understood, which

arguably form the auctions’ raison d’être. The literature on robust mechanism design addresses

this concern by assuming that the bidders’ willingness to pay is only known to be governed by some

probability distribution from within an ambiguity set. In this setting, the agents take decisions that

maximize their expected utility under the most adverse value distribution in the ambiguity set.

The early literature on robust mechanism design has studied the impact of ambiguity on tradi-

tional auction schemes. Salo and Weber (1995) show that the experimentally observed deviations

from the theoretically optimal bidding strategy in a first price auction can be explained by the

presence of ambiguity as well as ambiguity averse decision-making on behalf of the agents. In a sim-

ilar study, Chen et al. (2007) show that the presence of ambiguity leads to lower bids in first price

auctions. Lo (1998) and Ozdenoren (2002) derive the optimal bidding strategy for an ambiguity

averse bidder in a first price auction, and they show that in contrast to the traditional theory, first

price and second price auctions yield different revenues in the presence of ambiguity. Chiesa et al.

(2015) study a variant of the private value setting where the bidders are unsure about both their

own value and the other bidders’ values for the auctioned good, and they show that the Vickrey

mechanism maximizes the worst-case social welfare in this setting.

More recently, the robust mechanism design literature has focused on characterizing revenue

maximizing auctions for different variants of the mechanism design problem under ambiguity. Bose

et al. (2006) show that full insurance mechanisms, which either make the seller or the bidders indif-

ferent between the possible bids of the (other) bidders, maximize the seller’s worst-case revenues

in several variants of the optimal auction design problem under ambiguity. Bodoh-Creed (2012)

generalizes a well-known payoff equivalence result to ambiguous auctions, and he uses it to provide

further intuition about the optimality of full insurance mechanisms. Bose and Daripa (2009) show

that for certain classes of ε-contamination ambiguity sets, the seller can extract almost all surplus

by a variant of the Dutch auction.

Bose et al. (2006), Bose and Daripa (2009) and Bodoh-Creed (2012) all model the bidders’ values

as independent random variables, and they assume that the agents exhibit maxmin preferences, that

is, the agents judge actions in view of their expected utility under the worst probability distribution

in the ambiguity set. In contrast, Lopomo et al. (2014) consider agents that exhibit Knightian

preferences, that is, an action A is preferred over an action B only if A yields a weakly higher

expected utility than B under every probability distribution in the ambiguity set. They derive

necessary and sufficient conditions for full surplus extraction under ambiguity in a mechanism

design problem where a principal interacts with a single agent. In a similar spirit, Koçyiğit et al.

(2018) study a single-item auction where the bidders’ values are private and ambiguous, and the

agents exhibit Knightian preferences. The authors show that second price auctions are no longer
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optimal in this setting, and they develop a numerical solution scheme for determining the optimal

mechanism under the premise that the ambiguity set consists of two distributions.

Bandi and Bertsimas (2014) point out that the mechanism design problem is amenable to a

formulation as a robust optimization problem (Ben-Tal et al. 2009, Bertsimas et al. 2011). To this

end, they model the bidders’ values as a deterministic vector that is chosen adversely from an

uncertainty set. They show that in this setting, the second price auction with item and bidder

dependent reserve prices is optimal for multi-item auctions with budget constrained buyers. They

also show that the optimal reserve prices can be calculated through an optimization problem.

In this paper, we study the single-item auction design problem under ambiguity, where we follow

the approach of Lopomo et al. (2014) and assume that the agents exhibit Knightian preferences.

We show that this assumption not only protects the seller against the ambiguity of the bidders’

values, but it also immunizes her against the bidders’ attitude towards this ambiguity. We then

argue that the resulting mechanism design problem under ambiguity is amenable to a formulation

as a distributionally robust optimization problem (Delage and Ye 2010, Wiesemann et al. 2014).

We use this insight to study three popular classes of ambiguity sets: (i) support-only ambiguity sets

containing all distributions supported on a hypercube, (ii) independence ambiguity sets comprising

symmetric and regular distributions supported on a hypercube under which the bidder values are

independent, and (iii) Markov ambiguity sets containing all distributions that are supported on a

hypercube and satisfy a first-order moment constraint.

The contributions of this paper to the three classes of ambiguity sets are summarized below.

1. For support-only ambiguity sets, we show that the Vickrey auction is not only optimal but also

Pareto robustly optimal over all (efficient and inefficient) mechanisms in the sense that there exists

no other feasible mechanism that generates higher revenues to the seller under some realization

of the bidders’ values while generating at least the same revenues under every other realization.

Moreover, we show that the Vickrey auction generates the highest revenues among all efficient

mechanisms under every possible realization of the bidders’ values.

2. For independence ambiguity sets, we prove that the Vickrey auction generates the highest

worst-case expected revenue among all efficient (but not necessarily inefficient) mechanisms. We

also show that the added value of the (to date unknown) optimal mechanism over the Vickrey

auction is offset by attracting just one additional bidder.

3. For Markov ambiguity sets, we specify the best second price auction with reserve price. We

show that while this auction asymptotically maximizes the worst-case expected seller revenues as

the number of bidders grows, it may extract an arbitrarily small fraction of the optimal mechanism’s

revenues for a finite number of bidders. We also propose a new class of auctions—the highest-bidder-

lotteries—in which the seller offers the highest bidder a lottery that determines the allocation
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of the good as well as the payment. We analytically determine the best highest-bidder-lottery,

and we show that it can generate significantly higher revenues than the best second price auction

with reserve price. Specifically, we show that the proposed mechanism is a 2-approximation of

the (unknown) optimal one. We also prove that the revenues of the optimal highest-bidder-lottery

cannot be matched by any second price auction with a constant number of additional bidders.

Apart from the robust mechanism design literature, relaxations of the assumptions underlying

the information structure of auction problems have been studied in the related fields of prior-

free and prior-independent mechanism design. While the informational assumptions of prior-free

mechanisms are akin to those of our robust mechanisms in Section 3, their goal is to minimize the

worst-case regret (in terms of the actual revenues) over all scenarios relative to a judiciously chosen

benchmark, rather than to maximize the worst-case revenues. Notable examples are discussed by

Goldberg et al. (2006), who provide a 4-approximation to the revenues generated by the optimal

posted price in a digital goods environment, as well as Hartline and Roughgarden (2008), who derive

an O(1)-approximation to the maximum revenue achieved by any Bayesian optimal mechanism in

a general symmetric auction framework. For further details, we refer to Nisan et al. (2007).

In a similar spirit, prior-independent mechanisms aim to minimize the worst-case regret (now

in terms of the expected revenues) over all value distributions contained in an ambiguity set

and relative to the respective Bayesian optimal mechanism. Since the bidders’ values (and/or the

received signals) are assumed to be independent, this literature stream relates to the material in

Section 4. Closest to our work, Dhangwatnotai et al. (2015) propose the Single Sample mechanism,

which is a second price auction with a random reserve price, and show that this mechanism provides

constant-factor approximations in different auction settings. This mechanism has subsequently

been generalized by Roughgarden and Talgam-Cohen (2013) to an interdependent values setting,

where the bidders’ values are determined through private signals.

Finally, we note that there is a related but distinct branch of the mechanism design literature

that is also referred to as robust mechanism design, see, e.g., Bergemann and Morris (2005), Chung

and Ely (2007) and Bergemann et al. (2016). Contrary to our setting, which assumes that the

value distribution is ambiguous but the ambiguity set is common knowledge, this literature stream

exclusively works with non-ambiguous value distributions, but relaxes the common knowledge

assumption in the sense that the agents may be unsure about the (higher-order) beliefs of the

other agents. As a consequence, the findings in the two literature streams are complementary due

to the different informational assumptions made. For a review of this literature stream, we refer to

Bergemann and Morris (2013).

The remainder of the paper is structured as follows. Section 2 defines the auction design problem

of interest, it establishes preliminary results required in the remainder of the paper, and it shows
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that the assumption of Knightian preferences insures the seller against both the ambiguity in the

bidders’ values as well as their attitude towards this ambiguity. Sections 3, 4 and 5 study the

auction design problem for support-only, independence and Markov ambiguity sets, respectively,

and Section 6 concludes. Lengthy and technical proofs are deferred to the appendix.

Notation. For any v ∈ RI we denote by vi its ith component and by v−i =

(v1, . . . , vi−1, vi+1, . . . , vI) its subvector excluding vi. The vector of ones is denoted by e. Random

variables are designated by tilde signs (e.g., ṽ) and their realizations by the same symbols without

tildes (e.g., v). For any Borel set A ∈ B(RI) we use P0(A) to represent the set of all probabil-

ity distributions on A. The family of all bounded Borel-measurable functions from A∈ B(Rn) to

C ∈ B(Rm) is denoted by L∞(A,C). For A ∈ B(RI), Ai ∈ B(R), f, g ∈ L∞(A,R) and P ⊆ P0(A),

statements of the form infP∈P EP[f(ṽ)|ṽi = vi]≥ infP∈P EP[g(ṽ)|ṽi = vi] ∀vi ∈Ai, which are not well-

defined because conditional expectations under P are only defined up to sets of P-measure zero,

should be interpreted as infP∈P EP[f(ṽ)h(ṽi)] ≥ infP∈P EP[g(ṽ)h(ṽi)] ∀h ∈ L∞(Ai,R+). The latter

statement is well-defined but cumbersome.

2. Problem Formulation and Preliminaries

We consider the following mechanism design problem. A seller aims to sell an indivisible good which

is of zero value to her. There are I ≥ 2 potential buyers (or bidders) indexed by i∈ I = {1, . . . , I}.

The buyers’ values for the good are modeled as a random vector ṽ that follows a probability

distribution P0 in some ambiguity set P ⊆P0(RI+). We denote the realizations of ṽ by v and refer

to them as scenarios. The probability distribution P0 is unknown to the agents, but the ambiguity

set P is common knowledge. We assume that the smallest closed set that has probability 1 under

every distribution P ∈P is of the form VI = V × · · · × V with marginal projections V ⊆R+; this is

a standard assumption in the mechanism design literature (McAfee and McMillan 1987).

The seller aims to determine a mechanism for selling the good. A mechanism (B1, . . . ,BI ,q,m)

consists of a set Bi of messages (or bids) available to each buyer i, an allocation rule q :B1× · · ·×

BI → RI+ and a payment rule m : B1 × · · · × BI 7→ RI . Depending on his value vi, each buyer i

reports a message bi ∈Bi to the seller. Once all messages are collected, the seller allocates the good

to buyer i with probability qi(b) and charges this buyer an amount mi(b), where b= (b1, . . . , bI).

Example 1 (First Price Sealed Bid Auction). The first price sealed bid auction is a

widely used mechanism, where bidders simultaneously report their bids bi ∈ Bi = R+, i ∈ I. The

highest bidder wins the good with probability 1 and pays an amount equal to his bid, whereas

all other bidders win the good with probability 0 and do not make a payment. If there is a tie

(the highest bidder is not unique), then the winner is determined at random (or by some other

tie-breaking rule).
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We assume that all agents are risk-neutral with respect to the uncertainty of the allocation.

Definition 1 (Ex-post Utility). The ex-post utility of bidder i with value vi and reporting

message bi is defined as

ui(bi;vi,b−i) = qi(bi,b−i)vi−mi(bi,b−i),

where b−i denotes the vector of messages reported by the other bidders.

The ex-post utility of a bidder quantifies his expected payoff after all messages are revealed. Note

that the ex-post utility depends critically on the allocation and payment rules of the mechanism

at hand. We will suppress this dependence notationally, however, in order to avoid clutter.

We assume that the buyers have incomplete preferences as in Knightian decision theory, see,

e.g., Knight (1921) and Bewley (2002). In this setting, a buyer prefers an action to another one if

it results in a higher expected utility to him under every distribution P∈P.

Given a mechanism, the buyers play a game of incomplete information and select their bids

strategically to induce the most desirable outcome in view of their individual preferences. Recall

that buyer i selects a message depending on his value vi. Thus, his strategy must be modeled as

a function βi : V →Bi that maps each of his possible values to a message. An I-tuple of strategies

β= (β1, . . . , βI) constitutes an equilibrium for a given mechanism if no agent i has an incentive to

unilaterally change his strategy βi.

Definition 2 (Knightian Nash Equilibrium). An I-tuple of strategies βi : V → Bi, i ∈ I,

constitutes a Knightian Nash equilibrium for a mechanism (B1, . . . ,BI ,q,m) if

inf
P∈P

EP [ui(βi(vi);vi,β−i(ṽ−i))−ui(bi;vi,β−i(ṽ−i)) | ṽi = vi] ≥ 0 ∀i∈ I, ∀vi ∈ V, ∀bi ∈Bi.

In the absence of ambiguity, that is, for P = {P0}, a Knightian Nash equilibrium collapses to a

Bayesian Nash equilibrium as introduced by Harsanyi (1967). If P = P0(VI), on the other hand,

then the Knightian Nash equilibrium reduces to an ex-post Nash equilibrium (Fudenberg and Tirole

1991, Section 1.2). Note also that every ex-post Nash equilibrium is automatically a Knightian

Nash equilibrium, but the converse implication is generally wrong.

The mechanism design problem is the decision problem of the seller. We assume that the seller

is ambiguity averse in the sense that she aims to maximize the worst-case expected revenue in

view of all distributions P ∈ P. However, she may not know how ambiguity is perceived by the

bidders and may wish to hedge against uncertainty in the buyers’ preferences. We will argue later

that this is achieved by adopting the view that the buyers have Knightian preferences, which in

a sense represent the worst-case buyer preferences from the seller’s perspective. Hence, the seller

is interested in selecting allocation and payment rules that maximize her worst-case expected
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revenue, anticipating that the buyers’ strategies will be in a Knightian Nash equilibrium. Note

that a mechanism is of interest only if it has a Knightian Nash equilibrium because, otherwise, its

outcome is unpredictable.

We assume that bidder i with value vi ∈ V will walk away from a mechanism if his expected

utility under a Knightian Nash equilibrium is negative for some P∈P. Nevertheless, the seller only

needs to consider mechanisms that attract all buyers. Indeed, imagine that bidder i with value

vi prefers to walk away under the mechanism (q,m). The same outcome is achieved by setting

qi(βi(vi),β−i(v−i)) = 0 and mi(βi(vi),β−i(v−i)) = 0 for all v−i ∈ VI−1, which results in an ex-post

utility of zero to him so that participating remains weakly dominant.

The set of all mechanisms is extremely large. An important subset is the family of direct mech-

anisms in which the set of messages available to buyer i is equal to the set of his values, that is,

Bi = V for all i∈ I. Yet a smaller subset is the family of truthful direct mechanisms, in which it is

optimal for each buyer to report his true value. In fact, due to the celebrated revelation principle by

Myerson (1981), we can restrict attention to truthful direct mechanisms without loss of generality.

Theorem 1 (The Revelation Principle). Given any mechanism (B1, . . . ,BI ,q,m) with a

corresponding Knightian Nash equilibrium βi : V → Bi, i ∈ I, there exists a truthful direct mech-

anism resulting in the same ex-post utilities for the bidders and the same ex-post revenue for the

seller for every v ∈ VI .

The proof is a straightforward adaptation of the proof of Proposition 5.1 in Krishna (2009).

The intuition is as follows. Consider any mechanism (B1, . . . ,BI ,q,m) as well as an equilibrium

β for this mechanism. Then, the seller can construct an equivalent truthful direct mechanism

(V, . . . ,V,q′,m′) by asking the bidders to report their true values, allocating the good according

to the rule q′(v) = q(β(v)) and charging payments m′(v) =m(β(v)) as if the bidders had imple-

mented their equilibrium strategies for the original mechanism. In this case, the bidders have no

incentive to misreport their true values because truthful bidding is the equilibrium strategy for the

new mechanism by construction. Also, the ex-post revenue of the seller and the ex-post utilities of

the bidders do not change.

From now on, we focus exclusively on truthful direct mechanisms and use the shorthand (q,m)

to denote (V, . . . ,V,q,m) because the set of messages available to each buyer is always equal to

the interval of his possible values. A direct mechanism is truthful under Knightian preferences if

and only if it is distributionally robust incentive compatible.

Definition 3 (Distributionally Robust Incentive Compatibility).

A mechanism (q,m) is called distributionally robust incentive compatible if

inf
P∈P

EP [ui(vi;vi, ṽ−i)−ui(wi;vi, ṽ−i) | ṽi = vi] ≥ 0 ∀i∈ I, ∀vi,wi ∈ V. (IC-D)
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Distributionally robust incentive compatibility ensures that reporting the true value vi ∈ V is a

dominant strategy for bidder i under Knightian preferences.

Recall that the seller only needs to consider mechanisms that attract all bidders. If the bidders

are willing to participate in a given mechanism, the corresponding truthful direct mechanism will

be distributionally robust individually rational.

Definition 4 (Distributionally Robust Individual Rationality).

A mechanism (q,m) is called distributionally robust individually rational if

inf
P∈P

EP [ui(vi;vi, ṽ−i) | ṽi = vi] ≥ 0 ∀i∈ I, ∀vi ∈ V. (IR-D)

Distributionally robust individual rationality ensures that the expected utility of bidder i condi-

tional on his own value vi is non-negative under truthful bidding for any possible value vi ∈ V and

any possible probability distribution P∈P.

We can now formalize the seller’s problem of finding the best truthful direct mechanism as

sup
q∈Q,m∈M

inf
P∈P

EP

[∑
i∈I

mi(ṽ)

]
s.t. (IC-D), (IR-D),

(MDP)

where

Q = {q ∈L∞(VI ,RI+) |
∑
i∈I

qi(v) ≤ 1 ∀v ∈ VI}

is the set of all possible allocation rules of direct mechanisms. The definition of Q captures the

idea that the seller can sell the good at most once. Similarly, M= L∞(VI ,RI) denotes the set of

all possible payment rules of direct mechanisms. By the revelation principle, solving (MDP) is

equivalent to finding the best mechanism among all direct and indirect mechanisms.

Sometimes we will further restrict problem (MDP) to optimize only over efficient mechanisms.

Definition 5 (Efficiency). A mechanism (q,m) is called efficient if q ∈Qeff, where

Qeff =
{
q ∈Q | qi(v)> 0 =⇒ vi = max

j∈I
vj ∀i∈ I ,

∑
i∈I

qi(v) = 1 ∀v ∈ VI
}
.

An efficient mechanism allocates the good with probability 1 to a bidder who values it most.

Hence, it maximizes the ex-post total social welfare across all agents (seller and bidders), which

coincides with the highest bidder value because the payments of the bidders and the revenue of the

seller cancel each other. Recall that the good has zero value to the seller. Allocative efficiency plays

a crucial role in the sale of public goods such as railway lines, plots of public land or specific bands

of the electromagnetic spectrum. Efficient allocations do not normally emerge from mechanisms

with inefficient allocation rules, even if we allow for the existence of an aftermarket with zero

transaction costs (Krishna 2009, Section 1.4).
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We will now demonstrate that distributionally robust incentive compatible mechanisms protect

the seller against uncertainty in the bidders’ attitude towards ambiguity. Indeed, depending on the

bidders’ preferences, one can envisage other types of incentive compatibility.

Definition 6. A mechanism (q,m) is called

(i) ex-post incentive compatible if for all i∈ I, v ∈ VI , wi ∈ V,

ui(vi;vi,v−i) ≥ ui(wi;vi,v−i),

(ii) maxmin incentive compatible if for all i∈ I, vi,wi ∈ V,

inf
P∈P

EP [ui(vi;vi, ṽ−i) | ṽi = vi] ≥ inf
P∈P

EP [ui(wi;vi, ṽ−i) | ṽi = vi] ,

(iii) Hurwicz incentive compatible with respect to α∈ (0,1) if for all i∈ I, vi,wi ∈ V,

α inf
P∈P

EP [ui(vi;vi, ṽ−i) | ṽi = vi] + (1−α) sup
P∈P

EP [ui(vi;vi, ṽ−i) | ṽi = vi]

≥ α inf
P∈P

EP [ui(wi;vi, ṽ−i) | ṽi = vi] + (1−α) sup
P∈P

EP [ui(wi;vi, ṽ−i) | ṽi = vi] ,

(iv) Bayesian incentive compatible with respect to a Borel distribution Q on P (where P is

equipped with its weak topology) if for all i∈ I, vi,wi ∈ V,

EQ

[
EP̃ [ui(vi;vi, ṽ−i) | ṽi = vi]

]
≥ EQ

[
EP̃ [ui(wi;vi, ṽ−i) | ṽi = vi]

]
,

where P̃∼Q is a random value distribution.

One can define individual rationality with respect to other preferences analogously.

Proposition 1. Ex-post incentive compatibility implies distributionally robust incentive com-

patibility, whereas distributionally robust incentive compatibility implies maxmin incentive compat-

ibility, Hurwicz incentive compatibility and Bayesian incentive compatibility.

Using similar arguments as in Proposition 1, one can verify that ex-post individual rationality

implies distributionally robust individual rationality, and that distributionally robust individual

rationality implies maxmin, Hurwicz and Bayesian individual rationality. Thus, agents have no

incentive to walk away from a distributionally robust individually rational mechanism or to mis-

report their values in a distributionally robust incentive compatible mechanism even if they have

maxmin, Bayesian or Hurwicz preferences. Hence, adopting a distributionally robust perspective

allows the seller to hedge against uncertainty about the bidders’ attitude towards ambiguity. Use

of ex-post individual rationality and incentive compatibility would provide even stronger protec-

tion against uncertainty in the bidders’ preferences, but it would also lead to more conservative

mechanisms that do not benefit from any distributional information that might be available.
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So far, the literature on mechanism design has used almost exclusively the maxmin criterion to

model the ambiguity aversion of the bidders. However, while being less conservative, the resulting

mechanism design problems may fail to protect against the uncertainty about the bidders’ attitude

towards ambiguity.

Example 2. Consider an auction with two bidders whose values are governed by a probability

distribution from the ambiguity set P = {P1,P2} over V2 = {0,4}×{0,4}. The probabilities of the

four scenarios under P1 and P2 are given in the following table.

v (0,0) (4,0) (0,4) (4,4)

P1
1
5

1
2

1
5

1
10

P2
1
4

1
4

1
4

1
4

We consider an all-pay mechanism where the highest bidder wins, and every bidder pays half of

his bid (irrespective of whether the bid was successful or not). Ties are broken lexicographically,

i.e., the first bidder wins if there is a tie. One can verify that this mechanism is maxmin incentive

compatible over P. Below we list the expected utilities of bidder 1 with true value 4 with respect

to P1 and P2 when he reports the values 4 and 0, respectively.

EP1
[u1(4; ṽ1, ṽ2) | ṽ1 = 4] = EP2

[u1(4; ṽ1, ṽ2) | ṽ1 = 4] = 2

EP1
[u1(0; ṽ1, ṽ2) | ṽ1 = 4] =

10

3
, EP2

[u1(0; ṽ1, ṽ2) | ṽ1 = 4] = 2

Hence, we have

EP1
[u1(4; ṽ1, ṽ2) | ṽ1 = 4] = 2 <

10

3
= EP1

[u1(0; ṽ1, ṽ2) | ṽ1 = 4] ,

that is, the all-pay mechanism is not distributionally robust incentive compatible.

For α= 1/2, Hurwicz incentive compatibility is violated because

α inf
P∈P

EP [u1(4; ṽ1, ṽ2) | ṽ1 = 4] + (1−α) sup
P∈P

EP [u1(4; ṽ1, ṽ2) | ṽ1 = 4] = 2

<
8

3
= α inf

P∈P
EP [u1(0; ṽ1, ṽ2) | ṽ1 = 4] + (1−α) sup

P∈P
EP [u1(0; ṽ1, ṽ2) | ṽ1 = 4] .

One similarly verifies that Bayesian incentive compatibility is violated if Q(P1) =Q(P2) = 1/2.

In the following sections, we will investigate the optimal mechanisms, which maximize the worst-

case expected revenues without any restrictions on the allocation rule, and the best efficient mecha-

nisms, which maximize only over efficient allocation rules, for different classes of ambiguity sets P.

Before that, we review and extend some important results from the literature that will be used

throughout the paper.
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2.1. The Revenue Equivalence

We first review a cornerstone result from the mechanism design literature stating that the payment

rule of an ex-post incentive compatible mechanism is uniquely determined by the allocation rule up

to an additive constant for each bidder. In addition, we derive a related result for distributionally

robust incentive compatible mechanisms. When applicable, these results will help us to simplify

problem (MDP) by substituting out the payment rule. For ease of exposition, we will henceforth

assume that V = [v, v].

We first define monotonicity of allocation rules.

Definition 7 (Monotone Allocation Rule). An allocation rule is called

(i) ex-post monotone if it belongs to the set

Qm-p = {q ∈Q | qi(vi,v−i)− qi(wi,v−i) ≥ 0 ∀i∈ I, ∀vi,wi ∈ V : vi ≥wi, ∀v−i ∈ VI−1},

(ii) distributionally robust monotone if it belongs to the set

Qm-d = {q ∈Q | inf
P∈P

EP[qi(vi, ṽ−i)− qi(wi, ṽ−i)] ≥ 0 ∀i∈ I, ∀vi,wi ∈ V : vi ≥wi}.

Ex-post monotonicity implies that bidder i’s probability to win the good is non-decreasing in his

value vi if v−i is kept constant. On the other hand, distributionally robust monotonicity ensures

that the expected allocation to bidder i is non-decreasing in vi under all distributions P∈P. Note

that Qm-p ⊆Qm-d by construction.

Some results below will rely on the assumption that the bidders’ values are independent.

Definition 8 (Independence). We say that the bidders’ values are independent if the random

variables ṽi, i∈ I, are mutually independent under every P∈P.

From now on, we use the shorthand ui(vi,v−i) to denote the ex-post utility ui(vi;vi,v−i) under

truthful bidding. The next proposition shows that the actual (expected) payment of each bidder

under an ex-post (distributionally robust) incentive compatible mechanism is completely deter-

mined by the allocation rule and the ex-post (expected) utility of the bidder under his lowest

value.

Proposition 2. We have the following equivalent characterizations of incentive compatibility.

(i) A mechanism (q,m) is ex-post incentive compatible if and only if q ∈Qm-p and

mi(vi,v−i) = qi(vi,v−i)vi−ui(v,v−i)−
∫ vi

v

qi(x,v−i)dx ∀i∈ I,∀v ∈ VI . (1)

(ii) If the bidders’ values are independent, then a mechanism (q,m) is distributionally robust

incentive compatible if and only if q ∈Qm-d and

EP[mi(vi, ṽ−i)] = EP

[
qi(vi, ṽ−i)vi−ui(v, ṽ−i)−

∫ vi

v

qi(x, ṽ−i)dx
]
∀i∈ I,∀vi ∈ V,∀P∈P. (2)
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Proof. Assertion (ii) follows directly from Krishna (2009, Section 5.1.2), and thus its proof is

omitted. Assertion (i), on the other hand, is an immediate consequence of assertion (ii). This can

be seen by defining P as the set of all distributions supported on VI under which the bidders’

values are independent. Since P contains all Dirac distributions supported on VI , equation (2)

implies equation (1). �

Proposition 2 is the main ingredient for the following generalized revenue equivalence theo-

rem, which is an extension of the revenue equivalence theorem by Myerson (1981) and Riley and

Samuelson (1981).

Theorem 2 (The Revenue Equivalence). If the bidders’ values are independent, then all

distributionally robust individually rational and incentive compatible mechanisms with the same

allocation rule q, for which the ex-post utility of each bidder under his lowest value is 0, result in

the same worst-case expected revenue for the seller.

The revenue equivalence theorem naturally extends to all indirect mechanisms by virtue of the

revelation principle (see Theorem 1). Note that the assertion (ii) of Proposition 2 ceases to hold if

the bidders’ values are dependent, even if the ambiguity set is a singleton, which implies that the

revenue equivalence breaks down (Milgrom and Weber 1982).

2.2. Second Price Auctions with Reserve Prices

The most widely used incentive compatible mechanisms are the second price auctions with reserve

prices. From now on, we let W i, i ∈ I, be any partition of VI such that W i contains scenarios v

for which i is among the highest bidders. In scenarios where there are multiple highest bidders, an

arbitrary tie-breaking rule may be applied (e.g., the lexicographic tie-breaker assigns v to W i if

and only if i= min arg maxj∈I vj).

Definition 9 (Second Price Auction with Reserve Price). A mechanism (qsp,msp) is

called a second price auction with a reserve price r if ∀i∈ I, ∀v ∈ VI ,

qsp
i (vi,v−i) =

1 if v ∈W i and vi ≥ r,

0 otherwise,

and

msp
i (vi,v−i) =


max

{
max
j 6=i

vj, r

}
if qsp

i (vi,v−i) = 1,

0 otherwise.

The allocation rule qsp depends on the tie-breaker that was used in the definition of the sets

W i, i ∈ I. Our subsequent results will not depend on the particular choice of the tie-breaker.

Intuitively, in a second price auction with a reserve price, the good is allocated to the highest
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bidder provided that his value exceeds the reserve price r, and the winner pays an amount equal

to the maximum of the second highest bid and r. Second price auctions with reserve prices are

known to be incentive compatible and individually rational at the ex-post stage (Krishna 2009,

Section 2.2). Since ex-post individual rationality and incentive compatibility imply distributionally

robust individual rationality and incentive compatibility (see Proposition 1 and the subsequent

discussion), second price auctions with reserve prices are feasible in (MDP).

A second price auction with a reserve price is not necessarily efficient. Indeed, the seller may

keep the object for herself if the highest bid falls short of the reserve price. The Vickrey mechanism

is an instance of an efficient second price auction.

Definition 10 (Vickrey Mechanism). The Vickrey mechanism is the second price auction

(qv,mv) with reserve price r= 0.

Under the Vickrey mechanism, the highest bidder always receives the good (using any tie-

breaking rule). As the Vickrey mechanism is a special instance of a second price auction with

reserve price, it is ex-post individually rational and incentive compatible.

Corollary 1. The Vickrey mechanism is ex-post individually rational and incentive compatible.

Proof. The claim follows from Section 2.2 in Krishna (2009). �

3. Robust Mechanism Design

Assume that the seller and the bidders only know the support VI of the values that are possible but

have no information about their probabilities. In this case, the ambiguity set reduces to P =P0(VI).

Proposition 3. If P = P0(VI), then the optimal mechanism design problem (MDP) reduces

to the robust optimization problem

sup
q∈Q,m∈M

inf
v∈VI

∑
i∈I

mi(vi,v−i)

s.t. ui(vi;vi,v−i)−ui(wi;vi,v−i) ≥ 0 ∀i∈ I, ∀v ∈ VI , ∀wi ∈ V

ui(vi;vi,v−i) ≥ 0 ∀i∈ I, ∀v ∈ VI .

(RMDP)

The proof of Proposition 3 is elementary and therefore omitted. Note that under a support-only

ambiguity set, distributionally robust individual rationality and incentive compatibility reduce to

ex-post individual rationality and incentive compatibility, respectively.

Bandi and Bertsimas (2014, Section 3) show that the Vickrey mechanism solves (RMDP). Thus,

(RMDP) admits an optimal mechanism that is efficient even though efficiency was not imposed.

This is unusual because requiring efficiency generically reduces revenues (see, e.g., Krishna 2009,

Section 2.5). We formalize this result in the following theorem.
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Theorem 3 (Bandi and Bertsimas (2014)). The Vickrey mechanism is optimal in

(RMDP).

Bandi and Bertsimas (2014) show that Theorem 3 generalizes to any non-rectangular bounded

support sets. However, the rectangularity assumption is essential for Propositions 4 and 5 below,

which establish that the Vickrey mechanism is not only efficient but also happens to display two

other useful properties that were not imposed in (RMDP). First, we demonstrate that the Vickrey

mechanism is Pareto robustly optimal with respect to the theory of Pareto optimality in robust

optimization due to Iancu and Trichakis (2013).

Definition 11 (Pareto Robust Optimality). An ex-post individually rational and incen-

tive compatible mechanism (q,m) is called Pareto robustly optimal if there exists no ex-post

individually rational and incentive compatible mechanism (q′,m′) such that∑
i∈I

m′i(v)≥
∑
i∈I

mi(v) ∀v ∈ VI

and the above inequality is strict for at least one v ∈ VI .

Proposition 4. The Vickrey mechanism is Pareto robustly optimal.

The idea of the proof can be summarized as follows. If the Vickrey mechanism was not Pareto

robustly optimal, then there would exist a mechanism (q,m) that generates higher revenues to

the seller under some scenario v′ while generating at least the same revenues under every other

scenario. Note that the revenues generated by the Vickrey mechanism equal the second highest

value under every scenario. At the same time, (q,m) cannot charge any bidder more than his value

due to individual rationality. Thus, in order to generate higher revenues than the Vickrey auction

in scenario v′, the mechanism (q,m) must allocate the item with strictly positive probability to

the highest bidder i1 and charge him more than the probability of him winning times the second

highest value.

Given that scenario v′ exists, we can construct another scenario w in which we reduce the value

of i1 (while ensuring that his bid remains the highest one) but keep all other values unchanged.

In scenario w, the probability of i1 winning cannot have increased due to the assumed incentive

compatibility of (q,m), see Proposition 2(i). Due to individual rationality, on the other hand, i1’s

payment has to decrease in scenario w. Thus, to match the revenues generated by the Vickrey

auction, the mechanism (q,m) has to assign the good to the second highest bidder i2 with a strictly

positive probability.

Finally, we construct a third scenario w′ in which we increase the value of i2 to the value of i1. In

scenario w′, the probability of i2 winning cannot have decreased due to Proposition 2(i). To match

the revenues of the Vickrey auction, the mechanism (q,m) has to charge bidder i2 his probability



Distributionally Robust Mechanism Design
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Figure 1 Visualization of v′,w and w′. The gray rectangle represents V2 whereas v′i1 and v′i2 are the values of

the highest bidder i1 and the second highest bidder i2 in scenario v′, respectively.

of winning the good times his value. Thus, the utility of bidder i2 is 0 in scenario w′. Since i2 would

have also won the good with a positive probability when reporting wi2 (while being charged less

due to individual rationality), however, he receives a strictly positive utility when he misreports his

value. Since this contradicts incentive compatibility, we conclude that no such mechanism (q,m)

can exist. Figure 1 visualizes the scenarios v′,w and w′.

Pareto optimality is important in classical robust optimization because there are typically mul-

tiple optimal solutions. Too see this, consider the mechanism that allocates the good to the first

bidder with probability 1 and that charges this bidder v. One can show that this mechanism is

ex-post individually rational and incentive compatible. Moreover, it generates the same worst-case

revenue v for the seller as the Vickrey mechanism and is thus optimal in (RMDP). However, the

Vickrey mechanism generates weakly higher revenues in every fixed scenario v ∈ VI , and strictly

higher revenues in every scenario in which the second highest bid exceeds v.

The Vickrey mechanism also displays a powerful Pareto dominance property among all efficient

ex-post individually rational and incentive compatible mechanisms.

Proposition 5. Among all efficient ex-post individually rational and incentive compatible mech-

anisms, the Vickrey mechanism generates the highest revenues in every fixed scenario v ∈ VI .

Proposition 5 provides a stronger result than Pareto robust optimality. It shows that among all

efficient solutions to (RMDP) the Vickrey mechanism offers the highest revenues in every fixed

scenario. One can show that the Pareto dominance property of Proposition 5 ceases to hold if

we compare the Vickrey mechanism against every (not necessarily efficient) ex-post individually

rational and incentive compatible mechanism.

Theorem 3, Proposition 4 and Proposition 5 imply the following corollary.

Corollary 2. The Vickrey mechanism is the unique mechanism that is optimal, efficient and

Pareto robustly optimal.
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4. Mechanism Design under Independent Values

Throughout this section, we assume that the bidders’ values are independent in the sense of Defi-

nition 8. Some results of this section will further require that each P∈P is symmetric and regular.

Definition 12 (Symmetry). A distribution P∈P0(VI) is called symmetric if the random vari-

ables ṽi, i∈ I, share the same marginal distribution under P.

Definition 13 (Regularity). A distribution P∈P0(VI) is called regular if the marginal den-

sity ρPi (vi) of ṽi under P exists and is strictly positive for all vi ∈ V, while the virtual valuation

ψP
i (vi) = vi−

1−
∫ vi
v
ρPi (x)dx

ρPi (vi)

is non-decreasing in vi for all i∈ I.

Independence, symmetry and regularity are standard assumptions of the benchmark model for

auctions as defined by McAfee and McMillan (1987). The virtual valuations can be interpreted as

marginal revenues (see Krishna 2009, Section 5.2.3). They were first introduced by Myerson (1981)

in order to solve the optimal mechanism design problem in the absence of ambiguity. Note that a

sufficient condition for regularity is that the hazard function
ρPi (vi)

1−
∫ vi
v ρPi (x) dx

is non-decreasing in vi.

Proposition 6. If the bidders’ values are independent, then the optimal mechanism design

problem (MDP) reduces to

sup
q∈Qm-d,m∈M

inf
P∈P

∑
i∈I

EP

[
qi(ṽi, ṽ−i)ṽi−ui(v, ṽ−i)−

∫ ṽi

v

qi(x, ṽ−i)dx
]

s.t. EP [ui(vi, ṽ−i)]

= EP

[
ui(v, ṽ−i) +

∫ vi

v

qi(x, ṽ−i)dx
]
∀i∈ I, ∀vi ∈ V, ∀P∈P

EP [ui(v, ṽ−i)] ≥ 0 ∀i∈ I, ∀P∈P.

(IMDP)

Proof. By Proposition 2(ii), distributionally robust incentive compatibility is equivalent to the

first constraint of (IMDP) and the requirement that q ∈Qm-d. The first constraint in (IMDP)

then implies that distributionally robust individual rationality simplifies to

EP [ui(vi, ṽ−i)] = EP

[
ui(v, ṽ−i) +

∫ vi

v

qi(x, ṽ−i)dx
]
≥ 0 ∀i∈ I, ∀vi ∈ V, ∀P∈P

⇐⇒ EP [ui(v, ṽ−i)] ≥ 0 ∀i∈ I, ∀P∈P,

where the equivalence holds because the integral in the first line is always non-negative.

To see that the objective function of (MDP) reduces to the objective function of (IMDP), we

proceed as in the proof of Theorem 2. Details are omitted for brevity. �

We now show that the Vickrey mechanism is the best efficient mechanism in (IMDP).
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Theorem 4. The Vickrey mechanism generates the highest worst-case expected revenue in

(IMDP) among all efficient mechanisms.

Proof. By Corollary 1, the Vickrey mechanism is ex-post individually rational and incentive

compatible. Hence, by Proposition 1, it is also distributionally robust individually rational and

incentive compatible. We conclude that the Vickrey mechanism is feasible in (MDP) and thus, by

Proposition 6, in (IMDP).

We now show that the ex-post utility of each bidder i with value v vanishes under the Vickrey

mechanism. If bidder i with value v does not win the good, then he does not have to make a

payment, and his ex-post utility is zero. Otherwise, if he wins the good, then we have

ui(v,v−i) = qi(v,v−i)v−mi(v,v−i) = v−max
j 6=i

vj = v− v = 0,

where the third equality holds because v ≤ maxj 6=i vj ≤ vi = v. Thus, the ex-post utility of each

bidder i with value v is always zero.

Next, we show that the Vickrey mechanism generates a weakly higher worst-case expected rev-

enue than any other efficient mechanism (q′,m′) ∈Qeff×M that is feasible in (IMDP). Indeed,

as the ex-post utility of each bidder i with value v vanishes under the Vickrey mechanism, the

objective value of the Vickrey mechanism in (IMDP) satisfies

inf
P∈P

EP

[∑
i∈I

qi(ṽi, ṽ−i)ṽi−
∫ ṽi

v

qi(x, ṽ−i)dx
]

= inf
P∈P

EP

[∑
i∈I

q′i(ṽi, ṽ−i)ṽi−
∫ ṽi

v

q′i(x, ṽ−i)dx
]

≥ inf
P∈P

EP

[∑
i∈I

q′i(ṽi, ṽ−i)ṽi−
∫ ṽi

v

q′i(x, ṽ−i)dx
]
−EP

[∑
i∈I

q′i(v, ṽ−i)v−m′i(v, ṽ−i)
]
.

Here, the first equality follows from efficiency, which implies that
∑

i∈I qi(v) =
∑

i∈I q
′
i(v) = 1 and

that
∑

i∈I qi(v)vi =
∑

i∈I q
′
i(v)vi = maxi∈I vi, while the inequality is due to the second constraint

of (IMDP). The claim then follows because the last line of the above expression represents the

objective function value of (q′,m′) in (IMDP). �

In order to examine the properties of the optimal (not necessarily efficient) mechanism, we

reformulate problem (IMDP) in terms of the virtual valuations introduced in Definition 13. The

following proposition extends Lemma 3 by Myerson (1981) to ambiguous value distributions. Its

proof is relegated to the appendix.

Proposition 7. If the bidders’ values are independent and each P∈P is regular, then problem

(IMDP) is equivalent to

sup
q∈Qm-d

inf
P∈P

EP

[∑
i∈I

ψP
i (ṽi)qi(ṽi, ṽ−i)

]
. (3)
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We now review a celebrated result by Myerson (1981), which asserts that in the absence of

ambiguity (P = {P}), a second price auction with a reserve price is optimal if the bidders’ values

are independent and the distribution P is symmetric and regular.

Theorem 5 (Myerson (1981)). If P = {P}, the bidders’ values are independent, and the dis-

tribution P is symmetric and regular, then the allocation rule

q?i (v) =

1 if v ∈W i and ψP
1(vi)≥ 0,

0 otherwise,

for all i∈ I and v ∈ VI , is optimal in (3) and generates expected revenues of

EP

[
max

{
max
i∈I

ψP
1(ṽi),0

}]
. (4)

The allocation rule q? can be used to construct a payment rule m? defined through

m?
i (vi,v−i) = q?i (vi,v−i)vi−

∫ vi

v

q?i (x,v−i)dx ∀i∈ I, ∀v ∈ VI .

One can show that the mechanism (q?,m?) is optimal in (IMDP) when P is a singleton.

Note that if the virtual valuation ψP
1 is continuous, then the optimal mechanism (q?,m?) is the

second price auction with reserve price r= inf{v1 ∈ V : ψP
1(v1)≥ 0}. Note also that this mechanism

can be inefficient because ψP
1(v1) can be negative.

Koçyiğit et al. (2018) show that second price auctions with reserve prices are generally sub-

optimal as soon as P contains two distributions, even if the bidders’ values are independent and

each P∈P is symmetric and regular. Unfortunately, we are unable to solve problem (3) analytically

unless P is a singleton. Even though the optimal mechanism remains elusive, Dhangwatnotai

et al. (2015) have identified a mechanism, called the modified Single Sample mechanism, which

is guaranteed to generate at least half of the expected revenue of the optimal mechanism under

every distribution P∈P. This mechanism can be viewed as a second price auction with a random

reserve price, and the corresponding constant-factor approximation guarantee critically relies on

the independence of the bidder values. As we will argue below, a simple second price auction

without reserve price also offers compelling optimality guarantees, which suggest that the added

value of the unknown optimal mechanism is negligible.

In the absence of ambiguity, Bulow and Klemperer (1996) demonstrate that the second price

auction without reserve price for I + 1 bidders yields higher expected revenues than the optimal

auction for I bidders. In the non-ambiguous case, the optimal mechanism for I bidders is known to

be a second price auction with a reserve price (see Theorem 5). The following theorem generalizes

the result by Bulow and Klemperer (1996) to mechanism design problems under ambiguity even

though the optimal mechanism remains unknown in this setting.
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Theorem 6. Assume that the bidders’ values are independent and that each distribution in the

ambiguity set is symmetric and regular. Then, a second price auction without reserve price for I+1

bidders yields a weakly higher worst-case expected revenue than an optimal auction for I bidders.

Theorem 6 shows that the added value of the optimal mechanism over a simple second price

auction without reserve price is offset by just attracting one additional bidder. Theorem 6 critically

relies on the independence of the bidders’ values, which facilitates the reformulation (3). In the next

section, we will investigate the mechanism design problem under moment ambiguity sets where

the bidders’ values may be correlated. In this case, the added value of the optimal mechanism over

even the best second price auction can be significant.

5. Mechanism Design under Moment Information

While commonly employed in the mechanism design literature, the assumption of independent

bidder values can be restrictive in practice, where bidders may interact with one another or share

common information sources. This motivates us to investigate settings where the bidders’ values can

be dependent. Specifically, we assume that the agents have information about some (generalized)

moments of the value distribution. We thus consider moment ambiguity sets of the form

P =
{
P∈P0(RI+) : P(ṽ ∈ VI) = 1, EP [h(ṽ)] ≥ µ

}
, (5)

where h= (h1, . . . , hJ) represents a vector of generalized moment functions hj : VI → R, and µ=

(µ1, . . . , µJ) denotes a vector of given moment bounds µj ∈R. The following non-restrictive technical

condition will be assumed to hold throughout this section.

Assumption 1 (Slater Condition). There exists a Slater point Ps ∈P with EPs [h(ṽ)] > µ.

The following proposition shows that if P is of the form (5), the bidders will require ex-post

individual rationality and incentive compatibility.

Proposition 8. If P is a moment ambiguity set of the form (5) and Assumption 1 holds,

then distributionally robust individual rationality and incentive compatibility simplify to ex-post

individual rationality and incentive compatibility, respectively.

Proof. Select an arbitrary bidder i ∈ I with value vi ∈ V, and note that the inequality

infP∈P EP [ui(vi, ṽ−i) | ṽi = vi]≥ infv−i∈VI−1 ui(vi,v−i) is trivially satisfied. To establish the converse

inequality, we use Assumption 1, whereby there exists Ps ∈P with EPs [h(ṽ)] > µ. By the Richter-

Rogosinski theorem, we can assume without loss of generality that Ps is discrete and representable as

Ps =
J+1∑
j=1

pjδv(j) with
J+1∑
j=1

pj = 1, pj ≥ 0 and v(j) ∈ VI ∀j = 1, . . . , J + 1,
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where δv(j) denotes the Dirac point mass at v(j), see Theorem 7.23 in Shapiro et al. (2014). More-

over, by a standard perturbation argument, we can assume without loss of generality that v
(j)
i 6= vi

for all j = 1, . . . , J + 1.

Select now an arbitrary v−i ∈ VI−1 and set v = (vi,v−i) as usual. As EPs [h(ṽ)]>µ, there exists

λ∈ (0,1) small enough such that the distribution Pv−i = λδv + (1−λ)Ps satisfies

EPv−i [h(ṽ)] = λh(v) + (1−λ)EPs [h(ṽ)]≥µ.

Hence, Pv−i ∈P. This implies that

inf
P∈P

EP [ui(vi, ṽ−i) | ṽi = vi] ≤ EPv−i [ui(vi, ṽ−i) | ṽi = vi] = ui(vi,v−i),

where the inequality holds because Pv−i ∈ P and the equality holds due to construction of

Pv−i . Since v−i was chosen arbitrarily, the above inequality holds for all v−i ∈ VI−1, that

is, infP∈P EP [ui(vi, ṽ−i) | ṽi = vi] ≤ infv−i∈VI−1 ui(vi,v−i). Thus, distributionally robust individual

rationality simplifies to ex-post individual rationality.

Using similar arguments, one can also prove the assertion about incentive compatibility. Details

are omitted for brevity. �

We now use the above proposition to simplify problem (MDP).

Proposition 9. If P is a moment ambiguity set of the form (5) and Assumption 1 holds, then

the optimal mechanism design problem (MDP) reduces to

sup
q∈Qm-p,m∈M

inf
P∈P

∑
i∈I

EP

[
qi(ṽi, ṽ−i)ṽi−ui(v, ṽ−i)−

∫ ṽi

v

qi(x, ṽ−i)dx
]

s.t. ui(vi,v−i) = ui(v,v−i) +

∫ vi

v

qi(x,v−i)dx ∀i∈ I, ∀v ∈ VI

ui(v,v−i)≥ 0 ∀i∈ I, ∀v−i ∈ VI−1.

(MMDP)

Proof. By Proposition 8, distributionally robust individual rationality and incentive compatibil-

ity simplify to ex-post individual rationality and incentive compatibility, respectively. By Proposi-

tion 2 (i), ex-post incentive compatibility is equivalent to the first constraint of (MMDP) and the

requirement that q ∈Qm-p. The reformulation of the objective function immediately follows from

the first constraint in (MMDP). This constraint also implies that ex-post individual rationality

simplifies to

ui(vi,v−i) = ui(v,v−i) +

∫ vi

v

qi(x,v−i) ≥ 0 ∀i∈ I, ∀v ∈ VI

⇐⇒ ui(v,v−i) ≥ 0 ∀i∈ I, ∀v−i ∈ VI−1,

where the equivalence holds because the integral in the first line is always non-negative. �
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Theorem 7. The Vickrey mechanism generates the highest worst-case expected revenue in

(MMDP) among all efficient mechanisms.

Proof. The proof is immediate from Proposition 5 and Proposition 8. �

5.1. Markov Ambiguity Sets

If the efficiency condition is relaxed, then the Vickrey mechanism is suboptimal for generic moment

ambiguity sets. To show this, we will henceforth focus on Markov ambiguity sets with first-order

moment information of the form

P =
{
P∈P0(RI+) : P(ṽ ∈ [0,1]I) = 1, EP [ṽi]≥ µ, ∀i∈ I

}
, (6)

where µ ∈ [0,1]. The Markov ambiguity set stipulates that the bidder values range over the unit

interval [0,1] and are not smaller than µ in expectation. Markov ambiguity sets are intuitively

appealing as they only require the specification of the smallest, the highest and the most likely

bidder value for the good. As the seller’s revenue is non-decreasing in the bidder values, we could

actually require EP [ṽi] = µ, i ∈ I, without affecting the objective function of problem (MMDP).

We prefer to work with inequality constraints, however, to ensure that P admits a Slater point.

Note also that, although the description of the Markov ambiguity set (6) is permutation symmetric,

it contains distributions that are not symmetric.

It is instructive to investigate what would happen if the seller knew the bidder values from the

outset. In this case, the seller’s optimal strategy would be to give the good to the highest bidder

and to charge him an amount equal to his value. In this manner, the seller could both maximize

and appropriate the total social welfare. In other words, the seller could extract full surplus.

Definition 14 (Worst-Case Expected Full Surplus). The worst-case expected full sur-

plus corresponding to an ambiguity set P is infP∈P EP [maxi∈I ṽi].

The worst-case expected full surplus clearly provides an upper bound on the worst-case expected

revenue the seller can obtain by implementing any ex-post individually rational and incentive

compatible mechanism. This is because, by ex-post individual rationality, the seller cannot charge

the winner more than his value.

Proposition 10. If P is a Markov ambiguity set of the form (6), then the worst-case expected

full surplus is equal to µ.

Proof. Let δµe be the Dirac point mass at µe. Since δµe ∈P, we have

µ = Eδµe [max
i∈I

ṽi] ≥ inf
P∈P

EP [max
i∈I

ṽi] ≥ inf
P∈P

EP [ṽ1] = µ,

and thus the claim follows. �
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If µ= 1, then the Markov ambiguity set is a singleton that contains only the Dirac distribution

at v = e. In this case, the seller can implement a second price auction without reserve price to

extract the worst-case full surplus µ. On the other hand, if µ = 0, then the Dirac distribution

at v = 0 is contained in the Markov ambiguity set. In this case, the worst-case expected revenue

is 0 independent of the mechanism implemented. To exclude these trivial special cases, we will

henceforth assume that µ∈ (0,1).

We now offer two equivalent reformulations of the worst-case expected revenues in (MMDP)

when P is a Markov ambiguity set.

Proposition 11. If P is a Markov ambiguity set of the form (6) and µ∈ (0,1), then the objec-

tive function value of a fixed allocation rule q ∈ Qm-p in (MMDP) coincides with the (equal)

optimal values of the primal and dual semi-infinite linear programs

inf
P∈P

∑
i∈I

∫
[0,1]I

[
qi(vi,v−i)vi−

∫ vi

0

qi(x,v−i)dx
]

dP(v) (7)

and

sup
σ∈RI+,λ∈R

λ+
∑
i∈I

σiµ

s.t.
∑
i∈I

[
qi(vi,v−i)vi−

∫ vi

0

qi(x,v−i)dx
]
≥ λ+

∑
i∈I

σivi ∀v ∈ [0,1]I .

(8)

Proof. Note that ui(v,v−i) = 0 for all i ∈ I, v−i ∈ [0,1]I−1 because v = 0. Hence, the objective

value of q ∈Qm-p in (MMDP) is equal to (7).

By the definition of the Markov ambiguity set in (6), problem (7) can be represented as the

generalized moment problem

inf
P∈P0(RI+)

∑
i∈I

∫
[0,1]I

[
qi(ṽi, ṽ−i)ṽi−

∫ ṽi

0

qi(x, ṽ−i)dx
]

dP(v)

s.t.

∫
[0,1]I

dP(v) = 1∫
[0,1]I

vi dP(v) ≥ µ ∀i∈ I.

The Lagrangian dual of this moment problem is given by the semi-infinite linear program (8).

Strong duality holds due to Proposition 3.4 in Shapiro (2001), which is applicable because µ∈ (0,1).

Hence, problems (7) and (8) share the same optimal value. �

Note that, by Proposition 11, two equivalent reformulations of problem (MMDP) are obtained

by maximizing (7) or (8) over q ∈Qm-p. Solving either of these problems yields an optimal allocation

rule. The corresponding optimal payment rule can then be recovered from the first constraint in

(MMDP).



Distributionally Robust Mechanism Design
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5.2. The Optimal Second Price Auction with Reserve Price

Consider problem (MMDP) with a Markov ambiguity set of the form (6) with µ ∈ (0,1), and

assume for now that the seller aims to find the best second price auction (qsp,msp) with reserve price

r ∈ [0,1]. Recall that all second price auctions with reserve prices are indeed ex-post individually

rational and incentive compatible and thus feasible in (MMDP), see Section 2.2 in Krishna (2009).

As v= 0 for all i∈ I, it follows from Proposition 2(i) that

msp
i (vi,v−i) = qsp

i (vi,v−i)vi−
∫ vi

0

qsp
i (x,v−i)dx ∀i∈ I, ∀v ∈ [0,1]I . (9)

The correctness of (9) can also be checked directly. Imagine that bidder i wins the good in scenario

v. Thus, the first term on the right-hand side of (9) reduces to vi. As qsp
i (x,v−i) = 1 only if x≥

max{maxj 6=i vj, r} and qi(x,v−i) = 0 whenever x<max{maxj 6=i vj, r}, the integral in (9) evaluates

to the difference between vi and max{maxj 6=i vj, r}. As expected, the payment of bidder i is therefore

equal to the maximum of the second highest value and the reserve price.

We now calculate the worst-case expected revenue generated by a fixed second price auction

(qsp,msp) with reserve price r ∈ [0,1], which coincides with the (equal) optimal values of the

problems (7) and (8) for q= qsp (see Proposition 11).

Assume first that r > µ. In this case, the worst-case expected revenue is 0, which is attained

by the Dirac distribution at v = µe. Therefore, the seller will only consider reserve prices r ≤ µ.

The subsequent discussion is based on the following partition of the interval [0, µ] of all reasonable

candidate reserve prices.

R1 =
{
r ∈R+ : min

{1

I
,
Iµ− 1

I − 1

}
≥ r

}
R2 =

{
r ∈R+ : min

{
µ,

1

I

}
≥ r >

Iµ− 1

I − 1

}
R3 =

{
r ∈R+ : µ ≥ r >

1

I

}
One can verify that

µ ≥ Iµ− 1

I − 1
∀µ∈ (0,1), I ∈N, (10)

which ensures that R1 ⊆ [0, µ] as desired. Later in this section, we will show that R1,R2 and R3

indeed form a partition of the interval [0, µ].

We now show that the structure of the worst-case distribution in problem (7) depends on whether

the reserve price belongs to R1, R2 or R3. To this end, consider the semi-infinite constraint in

the dual problem (8). By equation (9), the left-hand side of this constraint quantifies the total

revenue in scenario v. On the other hand, the right-hand side represents a linear function of v.

The objective function of (8) tries to push this linear function upwards. At optimality, the linear

function touches the total revenue function at a finite number of points in VI . By complementary
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Çağıl Koçyiğit, Garud Iyengar, Daniel Kuhn, Wolfram Wiesemann 25

(a) r ∈R1 (b) r ∈R2 (c) r ∈R3

Figure 2 Complementary slackness between the distribution P in (7) and the semi-infinite constraint in (8) for

two bidders and µ= 5
8

. The green (dark shaded) area and the yellow (light shaded) area represent the left-hand

side and right-hand side values of the semi-infinite constraint in (8), respectively. The atoms of the distribution P

in (7) are visualized by the red dots.

slackness, the support of the worst-case distribution that solves (7), if it exists, is confined to these

discrete points. The following propositions provide explicit formulas for these extremal distributions

and the corresponding worst-case expected revenues.

Proposition 12. If P is a Markov ambiguity set of the form (6) and µ∈ (0,1), then the worst-

case expected revenue of a second price auction with reserve price r ∈R1 amounts to

inf
P∈P

EP

[∑
i∈I

msp
i (ṽ)

]
=
Iµ− 1

I − 1

and is attained by the extremal distribution

Q(1) =

(
1− I(µ− 1)

(I − 1)(r− 1)

)
δe +

∑
i∈I

µ− 1

(I − 1)(r− 1)
δei+re−i .

The atoms of the distribution Q(1) are visualized by the red dots in Figure 2a. Note that the worst-

case expected revenue is independent of the reserve price r as long as r ∈R1. This independence

emerges because two opposite effects offset each other: When r increases, the probability of the

scenario v= e, in which the seller earns the highest payments, decreases so that the expected value

of ṽi is preserved at µ. At the same time, the payments in all other scenarios increase due to the

change in r.

Proposition 13. If P is a Markov ambiguity set of the form (6) and µ∈ (0,1), then the worst-

case expected revenue of a second price auction with reserve price r ∈R2 is equal to

inf
P∈P

EP

[∑
i∈I

msp
i (ṽ)

]
= Ir

µ− r
1− r

,
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which is attained asymptotically by the sequence of distributions

Q(2)
ε =

(
1− I(µ− (r− ε))

1− (r− ε)

)
δ(r−ε)e +

∑
i∈I

µ− (r− ε)
1− (r− ε)

δei+(r−ε)e−i

for ε ↓ 0.

The atoms of the distribution Q(2)
ε (for ε close to 0) are visualized by the red dots in Figure 2b.

Note that the probabilities assigned to the scenarios ei + (r− ε)e−i, i ∈ I, are independent of the

number of bidders. These scenarios each contribute an ex-post revenue of r. This explains why the

worst-case expected revenue increases linearly in the number of bidders.

Proposition 14. If P is a Markov ambiguity set of the form (6) and µ∈ (0,1), then the worst-

case expected revenue of a second price auction with reserve price r ∈R3 amounts to

inf
P∈P

EP

[∑
i∈I

msp
i (ṽ)

]
=
µ− r
1− r

,

which is attained asymptotically by the sequence of distributions

Q(3)
ε =

(
1− 1−µ

1− (r− ε)

)
δe +

1−µ
1− (r− ε)

δ(r−ε)e

for ε ↓ 0.

The atoms of the distribution Q(3)
ε (for ε close to 0) are indicated by the red dots in Figure 2c.

In this case, the worst-case expected revenue does not depend on the number of bidders because

Q(3)
ε is itself independent of the number of bidders.

We are now ready to determine the optimal reserve price as a function of µ and the number of

bidders I. Recall from (10) that µ is always larger than or equal to Iµ−1
I−1

. However, 1
I

can be larger

than µ, between Iµ−1
I−1

and µ or smaller than Iµ−1
I−1

. As 1
I

is greater (smaller) than or equal to Iµ−1
I−1

if

and only if 2I−1
I2 is greater (smaller) than or equal to µ, the interval (0,1) of possible mean values

µ can be partitioned into the following disjoint subsets.

M1 =
{
µ∈R+ : 0 < µ ≤ 1

I

}
M2 =

{
µ∈R+ :

1

I
< µ ≤ 2I − 1

I2

}
M3 =

{
µ∈R+ :

2I − 1

I2
< µ < 1

}
The intervals M1, M2 and M3, and their relations to R1, R2 and R3 are visualized in Figure 3.

If µ ∈M1, then Iµ−1
I−1

is non-positive. Hence, R1 is empty unless µ = 1
I
, in which case we have

R1 = {0}. Moreover, R2 is nonempty and R3 is empty. If µ ∈M2, then Iµ−1
I−1
≤ 1

I
, which implies

that R1, R2 and R3 are all nonempty. Finally, if µ∈M3, then Iµ−1
I−1

> 1
I
, in which case R2 is empty

while R1 and R3 are nonempty. In particular, Figure 3 illustrates that R1, R2 and R3 form a

partition of [0, µ] for any value of µ.
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(a) µ∈M1

(b) µ∈M2

(c) µ∈M3

Figure 3 Relation between R1,R2,R3 and M1,M2,M3.

Theorem 8. Assume that P is a Markov ambiguity set of the form (6) with µ ∈ (0,1), and

let r? and z? denote the optimal reserve price and the corresponding worst-case expected revenue,

respectively.

(i) If µ∈M1 ∪M2, then r? = 1−
√

1−µ and z? = I(1−
√

1−µ)2.

(ii) If µ∈M3, then any reserve price r? ∈R1 is optimal and z? = Iµ−1
I−1

.

Recall from Theorem 5 that a second price auction with reserve price is optimal in (MDP)

if P = {P} is a singleton, the bidders’ values are independent and P is symmetric and regular.

Moreover, in this case, the optimal reserve price is independent of the number of bidders. In

contrast, Theorem 8 asserts that, for a Markov ambiguity set, the optimal reserve price depends

on the number of bidders through the sets M1, M2 and M3. Specifically, for µ ∈M1 ∪M2, the

optimal reserve price depends on µ but not on the number of bidders I. However, as I increases,

M3 will eventually cover µ, which results in a decrease of the optimal reserve price. In this case, an

interval of the reserve prices becomes optimal. We note that while each reserve price in this interval

maximizes the worst-case revenues, the choice r? = 0 is preferable in practice as it additionally

ensures efficiency.

We close this section by proving that the second price auction without reserve price is asymp-

totically optimal in (MMDP) as the number of bidders tends to infinity.

Proposition 15. If P is a Markov ambiguity set of the form (6) with µ∈ (0,1), then for every

ε > 0 there exists Iε ∈N such that the second price auction without reserve price is ε-suboptimal in

(MMDP) for all I ≥ Iε.

Proof. Fix any ε > 0 and select Iε ∈N such that Iεµ−1
Iε−1

≥max{µ− ε,0}. Thus, 0∈R1 whenever

I ≥ Iε. This implies via Proposition 12 that the objective value of the second price auction without
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reserve price in (MMDP) is at least µ−ε for all I ≥ Iε. The claim then follows because the optimal

value of (MMDP) is at most µ by Proposition 10. �

Proposition 15 does not imply that second price auctions are optimal when the number of bidders

is finite. Indeed, this is not the case as we will see in the next section.

5.3. The Optimal Highest-Bidder-Lottery

Consider again problem (MMDP) with a Markov ambiguity set of the form (6) and µ ∈ (0,1).

Assume that the seller aims to optimize over all mechanisms in which only the highest bidder has a

chance to win the good. Note that these mechanisms are not necessarily efficient because the seller

can keep the good or assign the good to the highest bidder with some probability smaller than 1.

By Proposition 11, the mechanism design problem (MMDP) can thus be reformulated as

sup
q∈Qm-p,σ∈RI+,λ∈R

λ+
∑
i∈I

σiµ (11a)

s.t.
∑
i∈I

[
qi(vi,v−i)vi−

∫ vi

0

qi(x,v−i)dx
]
≥ λ+

∑
i∈I

σivi ∀v ∈ [0,1]I (11b)

qi(v) = 0 ∀i∈ I , ∀v ∈ [0,1]I : v 6∈W i, (11c)

where the last constraint ensures that only the highest bidder (with respect to some prescribed

tie-breaker) has a chance to win the good. Thus, we refer to the mechanisms feasible in (11) as

highest-bidder-lotteries.

Theorem 9. Assume that P is a Markov ambiguity set of the form (6) with µ ∈ (0,1), and

set σ? =−(W−1(−µIe−I) + 1)−1, where W−1 denotes the lower branch of the Lambert-W function

(Corless et al. 1996). Moreover, set r= e(I−1− 1
σ?

), λ? = −σ?r and

q?i (v) =



σ? log
( vi

max
j 6=i

vj

)
+ Iσ?− σ?r

max
j 6=i

vj
if v ∈W i and vi ≥max

j 6=i
vj ≥ r, (12a)

σ? log(vi) + 1 if vi ≥ r >max
j 6=i

vj, (12b)

(I − 1)σ? if v ∈W i and r > vi ≥max
j 6=i

vj, (12c)

0 if v 6∈W i. (12d)

Then, (q?, σ?e, λ?) is optimal in (11) with corresponding objective value r= e(I−1− 1
σ?

).

By Proposition 2(i), we can construct a payment rule m? from the allocation rule q? by

m?
i (v) = q?i (v)vi−

∫ vi

0

q?i (x,v−i)dx ∀i∈ I, ∀v ∈ [0,1]I . (13)

Theorem 9 implies that the mechanism (q?,m?) is an optimal highest-bidder-lottery in (MMDP).

The optimal allocation rule q? is randomized and can be interpreted as follows. The highest bidder
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Figure 4 Optimal highest-bidder-lottery versus optimal second price auction.

i earns the right to participate in a lottery, which allows him to win the object with probability

q?i (v). The probability q?i (v) is increasing in vi if vi ≥ r and constant otherwise. Moreover, q?i (v)

is constant in v−i if maxj 6=i vj ≤ r. Finally, q?i (v) is decreasing in the second highest bid as long as

both exceed r. It is perhaps surprising that the optimal allocation rule is randomized. As shown

by Delage et al. (2016), however, agents with maxmin preferences can derive substantial benefits

from randomization when facing a discrete choice (such as choosing a buyer out of I bidders).

Proposition 16. As the number of bidders tends to infinity, the optimal highest-bidder-lottery

(q?,m?) converges uniformly to the second price auction without reserve price.

Figure 4 compares the optimal highest-bidder-lottery against the best second price auction.

Figure 4a shows the worst-case expected revenues generated by the optimal highest-bidder-lottery

and the optimal second price auction with reserve price as a function of the number of bidders

for µ = 0.5. The gap between them relative to the worst-case expected revenue of the optimal

highest-bidder-lottery is visualized in Figure 4b. We observe that the optimal highest-bidder-lottery

generates substantially higher revenues when µ or I are small.

Even though the optimal highest-bidder-lottery was derived under the restriction that the good

can be allocated only to the highest bidder, Proposition 15 implies that it is asymptotically optimal

in (MMDP). Next, we show that the optimal highest-bidder-lottery also offers a constant-factor

approximation guarantee, which holds for any number of bidders.

Theorem 10. The optimal highest-bidder-lottery extracts at least 50% of the worst-case expected

revenue of the unknown optimal mechanism.

Theorem 10 shows that the disadvantage of the optimal highest-bidder-lottery relative to the

unknown optimal mechanism is bounded. On the other hand, the seller can be arbitrarily worse

off by using the best second price auction instead of the optimal highest-bidder-lottery.
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Theorem 11. For every ε > 0 and every fixed I ∈N, there exists µ∈ (0,1) such that the optimal

second price auction extracts less than ε · 100% of the worst-case expected revenue of the optimal

highest-bidder-lottery.

Since the worst-case expected revenue of the optimal highest-bidder-lottery provides a lower

bound on the worst-case expected revenue of the optimal mechanism, the following corollary holds.

Corollary 3. For every ε > 0 and every fixed I ∈N, there exists µ∈ (0,1) such that the optimal

second price auction extracts less than ε · 100% of the worst-case expected revenue of the unknown

optimal mechanism.

In Section 4 we have seen that if the bidders’ values are independent and each distribution in

the ambiguity set is symmetric and regular, then the added value of the optimal mechanism over a

simple second price auction without reserve price is offset by just attracting one additional bidder.

We now demonstrate that this result ceases to hold if the bidders’ values can be dependent, as is

the case under some distributions in a Markov ambiguity set. To this end, we denote by ∆(I)∈N
the least number of additional bidders needed by the best second price auction (which generates

higher revenues than the second price auction without reserve price) to outperform the optimal

highest-bidder-lottery with I bidders (which may be suboptimal in (MMDP)). Figure 5 shows

that ∆(I) can be much larger than 1. In fact, we can even prove that there does not exist any

finite upper bound on ∆(I) that holds uniformly across all I ∈N.

Proposition 17. If µ∈ (0,1), then the set {∆(I) : I ∈N} does not have a finite upper bound.

Proposition 17 suggests that a Bulow and Klemperer (1996) type result does not hold in the

setting of this section even if it is relaxed to any finite additional number of bidders.

Unlike q?, the optimal payment rule m? is deterministic, implying that the highest bidder has

to make a payment even if he is unlucky in the lottery. That is, he is charged a fee for the right to

participate in the lottery. In the following, we construct a new mechanism (q′,m′) equivalent to

(q?,m?), where both the allocation rule and the payment rule are randomized, and which charges

the highest bidder only if he actually receives the good. To this end, we assume that the seller

has access to a randomization device which generates a uniformly distributed sample ũ from the

interval [0,1] that is independent of ṽ. Then, we define the new mechanism (q′,m′) through

q′i(v, u) =

1 if v ∈W i and u≤ q?i (v)

0 otherwise

and

m′i(v, u) =


vi−

∫ vi

0

q?i (x,v−i)

q?i (vi,v−i)
dx if v ∈W i and u≤ q?i (v)

0 otherwise
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Figure 5 The minimum number of additional bidders necessary to outperform the optimal

highest-bidder-lottery with the best second price auction.

for every i ∈ I, v ∈ [0,1]I , and u ∈ [0,1]. Note that both the allocation rule q′ and the payment

rule m′ depend on the outcome u of the randomization device and are thus randomized. By

construction, however, the winner is not required to pay unless he receives the good in the lottery.

It is easy to verify that (q′,m′) is equivalent to (q?,m?). Indeed, we have

E[q′i(v, ũ)] = q?i (v), E[m′i(v, ũ)] = q?i (v)vi−
∫ vi

0

q?i (x,v−i)dx = m?
i (v) ∀i∈ I, ∀v ∈ [0,1]I ,

which implies that the expected revenues of the seller and the expected utilities of the bidders are

identical under (q′,m′) and (q?,m?), irrespective of the value distribution P∈P.

In this section, we introduced the optimal highest-bidder-lottery, a randomized mechanism that

offers to the seller significantly higher revenues than the best second price auction. Based on numer-

ical experiments, we conjecture that the best second price auction from Section 5.2 is also the best

deterministic mechanism for problem (MMDP).We emphasize that Theorem 11, Corollary 3 and

Proposition 17 remain valid even if the bidders display maxmin preferences instead of Knightian

preferences. Indeed, relaxing the Knightian incentive compatibility to maxmin incentive compati-

bility constraints increases the set of admissible mechanisms in (MMDP); see Proposition 1. As

all second price auctions are ex-post incentive compatible, however, this relaxation does not alter

the best second price auction. Thus, the highest-bidder-lottery (q?,m?) continues to outperform

the best second price auction if the bidders have maxmin preferences.

6. Conclusion

The standard assumption in the classical mechanism design literature whereby the seller has full

knowledge of the bidders’ value distribution is not tenable in practice. This prompts us to question

whether the popular second price auctions remain optimal in the presence of distributional ambi-

guity. If not, we aim to identify the optimal mechanism or, if that is not possible, a near-optimal
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mechanism that offers strong performance guarantees. If only the range of all possible bidder values

is known, we prove that the Vickrey auction is the unique optimal, efficient and Pareto robustly

optimal mechanism. Thus, sellers who have no information about the bidders’ values or have little

trust in their information, as is typically the case for one-off auctions, might settle for a simple

second price auction without reserve price. If the seller lacks information about the distribution

but knows that the bidders’ values are independent, the globally optimal auction is unknown,

but second price auctions remain near-optimal: there exists a second price auction with a random

reserve price that offers a 2-approximation for the mechanism design problem, and even the näıve

second price auction without reserve price generates higher revenues than the unknown optimal

mechanism if the former attracts only one additional bidder. However, independence can rarely

be ascertained in reality as the bidders might interact with each other or might share common

information sources. This concern motivates us to study Markov ambiguity sets, which allow the

bidders’ values to be correlated. Markov ambiguity sets capture the knowledge of more informed

sellers who not only know the range of possible bidder values but are also aware of the expected or

‘most likely’ values. In this setting, which makes honest assumptions about the information that

is realistically available to the seller, the performance of second price auctions drops significantly.

Indeed, we prove that even the best second price auction, which we can characterize analytically,

fails to offer any constant-factor approximation guarantee. While the globally optimal mechanism

remains unknown, we can explicitly construct a randomized near-optimal mechanism, the optimal

highest-bidder-lottery, which offers a 2-approximation for the mechanism design problem. More-

over, we demonstrate that the number of additional bidders needed by the best second price auction

to match the revenues of the optimal highest-bidder-lottery (and, a fortiori, of the unknown globally

optimal mechanism) is unbounded. Under realistic assumptions about the available distributional

information, second price auction can therefore be severely suboptimal.
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Appendix. Proofs

Proof of Proposition 1. It is easy to verify that ex-post incentive compatibility implies distributionally

robust incentive compatibility.

For any fixed i∈ I and vi,wi ∈ V, distributionally robust incentive compatibility requires that

EP [ui(vi;vi, ṽ−i) | ṽi = vi] ≥ EP [ui(wi;vi, ṽ−i) | ṽi = vi] ∀P∈P. (14)

Since (14) holds for all P∈P, we have

EP [ui(vi;vi, ṽ−i) | ṽi = vi] ≥ inf
Q∈P

EQ [ui(wi;vi, ṽ−i) | ṽi = vi] ∀P∈P.

Now, taking the infimum over P∈P on the left-hand side yields

inf
P∈P

EP [ui(vi;vi, ṽ−i) | ṽi = vi] ≥ inf
Q∈P

EQ [ui(wi;vi, ṽ−i) | ṽi = vi] . (15)

This establishes maxmin incentive compatibility.

Note that (14) implies

sup
Q∈P

EQ [ui(vi;vi, ṽ−i) | ṽi = vi] ≥ EP [ui(wi;vi, ṽ−i) | ṽi = vi] ∀P∈P.

Since this condition holds for all P ∈ P, we can take the supremum over P ∈ P on the right-hand side to

obtain

sup
Q∈P

EQ [ui(vi;vi, ṽ−i) | ṽi = vi] ≥ sup
P∈P

EP [ui(wi;vi, ṽ−i) | ṽi = vi] . (16)

Summing α times (15) and 1−α times (16) for any α∈ (0,1) yields Hurwicz incentive compatibility.

By taking expectations on both sides of (14) with respect to the distribution Q on P, finally, one concludes

that Bayesian incentive compatibility holds as well. �

Proof of Theorem 2. By Proposition 2(ii) and by the assumption that ui(v,v−i) = 0 for all i ∈ I and

v−i ∈ V, we have

EP [mi(vi, ṽ−i)] = EP

[
qi(vi, ṽ−i)vi−

∫ vi

v

qi(x, ṽ−i) dx
]
∀i∈ I, ∀vi ∈ V, ∀P∈P. (17)

Hence, the expected revenue of the seller with respect to some P∈P is equal to

EP

[∑
i∈I

mi(ṽi, ṽ−i)
]

=
∑
i∈I

EP

[
EP[mi(ṽi, ṽ−i)|ṽi]

]
=
∑
i∈I

EP

[
qi(ṽi, ṽ−i)ṽi−

∫ ṽi

v

qi(x, ṽ−i) dx
]
,

where the second equality follows from (17). This indicates that the seller’s expected revenue under any P

is determined solely by the allocation rule q. Hence, the seller earns the same worst-case expected revenue

from all mechanisms with identical allocation rules. �

Proof of Proposition 4. We will prove the claim by contradiction. Assume that the Vickrey mechanism is

not Pareto robustly optimal. Thus, there exists a mechanism (q,m) feasible in (RMDP) with
∑

i∈Imi(v)≥∑
i∈Im

v
i (v) for all v ∈ VI , and there exists v′ ∈ VI with

∑
i∈Imi(v

′) >
∑

i∈Im
v
i (v
′). Let i1 ∈ I be the

winning bidder in the Vickrey mechanism under scenario v′, which implies that i1 ∈ arg maxj∈I v
′
j , and let

i2 ∈ arg maxj 6=i1 v
′
j be any second highest bidder.
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If v′i1 = v′i2 , then we have∑
j∈I

mj(v
′) >

∑
j∈I

mv
j (v
′) = v′i2 = v′i1 ≥

∑
j∈I

qj(v
′)v′j ,

where the last inequality holds because
∑

j∈I qj(v
′)≤ 1. This contradicts ex-post individual rationality, which

is imposed in (RMDP) and which implies that
∑

j∈Imj(v
′)≤

∑
j∈I qj(v

′)v′j .

Assume from now on that v′i1 > v
′
i2 . Our analysis is divided into three steps. In the first step, we construct a

scenario w ∈ VI such that wi1 = v′i2 + δ for a judiciously chosen δ > 0 and wj = v′j for all j 6= i1. In the second

step, we show that the mechanism (q,m) has to assign the good to a second highest bidder i2 with strictly

positive probability under scenario w in order to satisfy individual rationality and incentive compatibility

at the ex-post stage. In the third step, we construct a scenario w′ ∈ VI such that w′i1 = w′i2 = v′i2 + δ and

w′j = v′j for all j 6∈ {i1, i2}. Leveraging the results from Steps 1 and 2, we then show that if (q,m) satisfies

ex-post individual rationality in scenario w′, then it has to violate ex-post incentive compatibility because

bidder i2 has an incentive to misreport his value as wi2 instead of w′i2 . We will conclude that the mechanism

(q,m) cannot simultaneously satisfy individual rationality and incentive compatibility at the ex-post stage,

which contradicts our assumption that (q,m) is feasible in (RMDP). Figure 1 visualizes the scenarios v′,w

and w′ constructed below.

Step 1: Let ε=
m
i1

(v′)

q
i1

(v′)
−v′i2 and γ = ε/2v′i1 . Note that ε is well-defined since qi1(v′)> 0 must hold for (q,m)

to generate higher revenues than the Vickrey mechanism in scenario v′. Note also that γ is well-defined due

to assumption v′i1 > v′i2 and because the bidders’ values are non-negative. Define w such that wi1 = v′i2 + δ

and wj = v′j for all j 6= i1, where

δ = min

{
ε

2
,

v′i2 − v′i3
qi1(v′)(1− γ)

− (v′i2 − v′i3)

}
(18)

and i3 ∈ arg maxj∈I{vj : vj < v
′
i2}. If arg maxj∈I{vj : vj < v

′
i2}= ∅, in which v′ accounts only for two different

bids, we may set v′i3 = 0. In this step, we show that δ ∈ (0, v′i1 − v′i2), which ensures that w ∈ VI . Specifically,

we show that both terms inside the minimum in (18) are positive and that the first term is smaller than

v′i1 − v′i2 .

We start by showing that ε
2
∈ (0, v′i1 − v′i2). By assumption, we have

∑
j∈Imj(v

′) >
∑

j∈Im
v
j (v
′) = v′i2 .

Moreover, by individual rationality, for all j 6= i1, we have

mj(v
′) ≤ qj(v

′)v′j ≤ qj(v
′)v′i2 ,

where the second inequality holds because v′j ≤ v′i2 . As
∑

j∈J qj(v
′) ≤ 1, our initial assumption that∑

j∈Imj(v
′) > v′i2 can hold only if mi1(v′) > qi1(v′)v′i2 . Thus ε =

m
i1

(v′)

q
i1

(v′)
− v′i2 > 0. We also have that ε

2
<

v′i1 − v′i2 because ε
2
< ε=

m
i1

(v′)

q
i1

(v′)
− v′i2 ≤ v′i1 − v′i2 as individual rationality requires that mi1(v′)≤ qi1(v′)v′i1 .

Finally, the second term inside the minimum in (18) is greater than 0 since

v′i2 − v′i3
qi1(v′)(1− γ)

>
v′i2 − v′i3
qi1(v′)

≥ v′i2 − v′i3 ,

where the first inequality holds because 0<γ < 1 as 0< ε
2
< v′i1 −v′i2 < v′i1 , and the second inequality follows

from 0 < qi1(v′) ≤ 1. As both terms inside the minimum in (18) are positive and the first term is smaller

than v′i1 − v′i2 , we conclude that δ ∈ (0, v′i1 − v′i2).
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Step 2: Assume without loss of generality that amongst all second highest bidders, i2 has the highest

probability to win under scenario w. In this step, we show that qi2(w) > 0. Assume to the contrary that

qi2(w) = 0, which implies that the probability to win for any second highest bidder equals 0. By ex-post

individual rationality and the assumption that the Vickrey mechanism is not Pareto robustly optimal, we

have

qi1(w)wi1 +
∑
j 6=i1

qj(w)wj = qi1(w)(v′i2 + δ) +
∑
j 6=i1

qj(w)wj ≥
∑
j∈I

mj(w) ≥
∑
j∈I

mv
j (w) = v′i2 . (19)

Since qi2(w) = 0, equation (19) can only hold if qi1(w)(v′i2 + δ)+(1−qi1(w))v′i3 ≥ v′i2 . Reordering term, this

implies that

δ ≥ v′i2 − v′i3
qi1(w)

− (v′i2 − v′i3). (20)

We next prove that (20) contradicts the definition of δ if (q,m) is ex-post individually rational and incentive

compatible. Note that we have mi1(w)≤ qi1(w)(v′i2 +δ)< qi1(v′)(v′i2 +ε) =mi1(v′), where the first inequality

follows from individual rationality, and the second inequality holds because ε > δ by definition and qi1(v′)≥

qi1(w) by Proposition 2(i). Combining the inequality mi1(w)<mi1(v′) with the incentive compatibility of

(q,m), which requires that qi1(v′)v′i1 −mi1(v′) ≥ qi1(w)v′i1 −mi1(w), implies that 1≥ qi1(v′)> qi1(w) and

qi1(v′)− qi1(w) ≥ mi1(v′)−mi1(w)

v′
i1

>
qi1(v′)ε

2v′
i1

= qi1(v′)γ, (21)

where the second inequality holds because mi1(v′) = qi1(v′)(v′i2 + ε) by definition of ε and mi1(w) ≤

qi1(w)(v′i2 + δ)< qi1(v′)(v′i2 + ε
2
) due to qi1(v′)> qi1(w) and δ≤ ε

2
. The inequalities (20) and (21) imply that

δ ≥ v′i2 − v′i3
qi1(w)

− (v′i2 − v′i3)>
v′i2 − v′i3

qi1(v′)(1− γ)
− (v′i2 − v′i3),

which contradicts the definition of δ. Thus qi2(w)> 0, which concludes Step 2.

Step 3: Define w′ such that w′i1 =w′i2 = v′i2 + δ and w′j = v′j for all j 6∈ {i1, i2}. Note that w′ ∈ VI because

V = [v, v̄] and v′i2 + δ≤ v′i1 ≤ v̄ by construction. Note that we have

qi2(w)(v′i2 + δ)−mi2(w) > qi2(w)v′i2 −mi2(w) ≥ 0, (22)

where the first inequality holds because δ > 0 due to Step 1 and qi2(w) > 0 due to Step 2, and

the second inequality holds due to ex-post individual rationality at scenario w. Next, we prove that

qi2(w′)(v′i2 + δ) − mi2(w′) = 0 if (q,m) is ex-post individually rational at scenario w′. By Propo-

sition 2(i), we have that qi2(w′) ≥ qi2(w) > 0. Moreover, by ex-post individual rationality, we have

that
∑

j∈Imj(w
′) ≤

∑
j∈I qj(w

′)w′j ≤
∑

j∈I qj(w
′)(v′i2 + δ). Since

∑
j∈I qj(w

′) ≤ 1, the assumption∑
j∈Imj(w

′) ≥
∑

j∈Im
v
j (w

′) = v′i2 + δ thus can hold only if mi2(w′) = qi2(w′)(v′i2 + δ), which contradicts

the incentive compatibility of (q,m) as we have

qi2(w′)(v′i2 + δ)−mi2(w′) = 0 < qi2(w)(v′i2 + δ)−mi2(w),

where the inequality follows from (22). The claim thus follows. �
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Proof of Proposition 5. Select any efficient ex-post individually rational and incentive compatible mech-

anism (q,m). Suppose that
∑

j∈Imj(v) >
∑

j∈Im
v
j (v) for some fixed v ∈ VI , and note that v ∈W i for

some i∈ I. Then, we have ∑
j∈I

mj(v) >
∑
j∈I

mv
j (v) = mv

i (v) = max
j 6=i

vj .

We will show that if the above strict inequality holds, then (q,m) cannot simultaneously satisfy ex-post

individual rationality, ex-post incentive compatibility and efficiency.

If the second highest bid equals the highest bid vi, then we have∑
j∈I

mj(v) > max
j 6=i

vj = vi =
∑
j∈I

qj(v)vi ≥
∑
j∈I

qj(v)vj ,

where the second inequality holds because
∑

j∈I qj(v) = 1. This contradicts ex-post individual rationality,

which implies that
∑

j∈Imj(v)≤
∑

j∈I qj(v)vj .

If there is no tie such that vi > maxj 6=i vj , then mi(v) =
∑

j∈Imj(v) >
∑

j∈Im
v
j (v) = mv

i (v), where the

first equality holds because the mechanism (q,m) is efficient and ex-post individually rational. Select ε > 0

small enough such that ε < vi−maxj 6=i vj and ε <mi(v)−mv
i (v). Moreover, set v′i = maxj 6=i vj + ε and note

that v′i < vi and that (v′i,v−i)∈ VI because V = [v, v̄]. Then, the mechanism (q,m) violates ex-post incentive

compatibility because

qi(v)vi−mi(v) < vi− v′i ≤ qi(v
′
i,v−i)vi−mi(v

′
i,v−i),

where the first inequality holds because mi(v) −mv
i (v) > ε, which implies that mi(v) > v′i. The second

inequality holds because v′i > maxj 6=i vj , which implies that qi(v
′
i,v−i) = 1 due to efficiency, and because

mi(v
′
i,v−i) ≤ qi(v′i,v−i)v′i = v′i due to ex-post individual rationality. Thus (q,m) violates ex-post incentive

compatibility if it is ex-post individually rational and efficient. �

We need the following auxiliary result to prove Proposition 7.

Lemma 1. For each mechanism (q,m) feasible in (IMDP), there exists a mechanism (q′,m′) with

EP[q′i(v, ṽ−i)v−m′i(v, ṽ−i)] = 0 ∀i∈ I, ∀P∈P (23)

that is also feasible in (IMDP) and results in a weakly higher worst-case expected revenue to the seller.

Proof. Construct (q′,m′) by setting q′ = q and

m′i(vi,v−i) = q′i(vi,v−i)vi−
∫ vi

v

q′i(x,v−i) dx ∀i∈ I, ∀v ∈ VI . (24)

Note that the ex-post utility under mechanism (q′,m′) satisfies q′i(v,v−i)v −m′i(v,v−i) = 0 for all i ∈ I,

v−i ∈ VI−1, which implies that EP[q′i(v, ṽ−i)v −m′i(v, ṽ−i)] = 0 for all i ∈ I, P ∈ P. Thus, (q′,m′) satisfies

the second constraint in (IMDP). Moreover, we have

q′i(vi,v−i)vi−m′i(vi,v−i) =

∫ vi

v

q′i(x,v−i) dx ∀i∈ I, ∀v ∈ VI ,

which implies that (q′,m′) satisfies also the first constraint in (IMDP).
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We next show that (q′,m′) results in a weakly higher worst-case expected revenue to the seller than (q,m).

As the ex-post utility satisfies q′i(v,v−i)v−m′i(v,v−i) = 0 for all i ∈ I, v−i ∈ VI−1, the objective function of

(q′,m′) in (IMDP) reduces to

inf
P∈P

∑
i∈I

EP

[
q′i(ṽi, ṽ−i)ṽi−

∫ ṽi

v

q′i(x, ṽ−i) dx
]

≥ inf
P∈P

∑
i∈I

EP

[
qi(ṽi, ṽ−i)ṽi−

∫ ṽi

v

qi(x, ṽ−i) dx
]
−EP[qi(v, ṽ−i)v−mi(v, ṽ−i)],

where the inequality holds because q′ = q and EP[qi(v, ṽ−i)v −mi(v, ṽ−i)] ≥ 0 for all i ∈ I and P ∈ P due

to the second constraint in (IMDP). The statement now follows from the fact that right-hand side of this

equation coincides with the objective function value of (q,m) in (IMDP). �

Proof of Proposition 7. Denote by ρP the density function of ṽ and by ρPi the marginal density function of

ṽi, i∈ I, under P∈P. By Lemma 1, without loss of generality, we can restrict the feasible set of (IMDP) to

mechanisms that satisfy (23). Fix now an arbitrary mechanism (q,m) feasible in this restriction of (IMDP).

Proposition 2(ii) implies that the expected payment of bidder i under P can be expressed as

EP

[
qi(ṽi, ṽ−i)ṽi−

∫ ṽi

v

qi(x, ṽ−i) dx
]

=

∫
VI−1

∫
V
qi(vi,v−i)vi ρ

P(v) dvi dv−i−
∫
VI−1

∫
V

∫ vi

v

qi(x,v−i) dxρP(v) dvi dv−i.

Using Fubini’s theorem, we can re-write the second term as∫
VI−1

∫
V

∫ vi

v

qi(x,v−i) dxρP(v) dvi dv−i =

∫
VI−1

∫ v̄

v

qi(x,v−i)
(∫ v̄

vi

ρP(v) dx
)

dvi dv−i.

Thus, the expected payment of bidder i under P simplifies to∫
VI−1

∫
V

(
vi−

∫ v̄
vi
ρP(x,v−i) dx

ρP(v)

)
qi(vi,v−i)ρ

P(v) dvi dv−i

=

∫
VI−1

∫
V

(
vi−

1−
∫ vi
v
ρPi (x) dx

ρPi (vi)

)
qi(vi,v−i)ρ

P(v) dvi dv−i,

where the equality holds because the bidders’ values are independent.

Recalling the definition of the virtual valuation

ψP
i (vi) = vi−

1−
∫ vi
v
ρPi (x) dx

ρPi (vi)
,

we can now rewrite the objective function of (q,m) in (IMDP) as

inf
P∈P

∑
i∈I

[∫
VI−1

∫
V
ψP
i (vi)qi(vi,v−i)ρ

P(v) dvi dv−i

]
= inf

P∈P
EP

[∑
i∈I

ψP
i (ṽi)qi(ṽi, ṽ−i)

]
.

Thus, the claim follows. �

Proof of Theorem 6. Throughout this proof, we write Qm-d
I instead of Qm-d and PI instead of P in order

to highlight the dependence on the number of bidders. Moreover, we denote by fI(q,P) the objective function

value of an allocation rule q ∈Qm-d
I and distribution P∈PI in problem (3).
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Select an arbitrary ε > 0. Assume first that the seller attracts I + 1 bidders, and denote by qsp ∈ Qm-d
I+1

the allocation rule of the second price auction without reserve price for I + 1 bidders. Then, there exists an

ε-worst-case distribution Pε ∈PI+1 such that

fI+1(qsp,Pε) < inf
P∈PI+1

fI+1(qsp,P) + ε. (25)

Denote by ρPε1 the common marginal density function of the values ṽi under the distribution Pε, i ∈ I.

Note that the virtual valuation ψPε
1 (vi) is non-decreasing in vi because Pε ∈PI+1 is regular. As second price

auctions allocate the good to the highest bidder, Proposition 7 implies that

fI+1(qsp,Pε) = EPε

[
max

{
max
i∈I

ψPε
1 (ṽi),ψ

Pε
1 (ṽI+1)

}]
.

Next, we derive a lower bound on fI+1(qsp,Pε) by conditioning the above expectation separately on the

events maxi∈I ψ
Pε
1 (ṽi)≥ 0 and maxi∈I ψ

Pε
1 (ṽi)< 0. First, we have

EPε

[
max

{
max
i∈I

ψPε
1 (ṽi),ψ

Pε
1 (ṽI+1)

}∣∣∣max
i∈I

ψPε
1 (ṽi)≥ 0

]
≥ EPε

[
max
i∈I

ψPε
1 (ṽi)

∣∣∣max
i∈I

ψPε
1 (ṽi)≥ 0

]
= EPε

[
max

{
max
i∈I

ψPε
1 (ṽi),0

}∣∣∣max
i∈I

ψPε
1 (ṽi)≥ 0

]
.

(26)

Similarly, we find

EPε

[
max

{
max
i∈I

ψPε
1 (ṽi),ψ

Pε
1 (ṽI+1)

}∣∣∣max
i∈I

ψPε
1 (ṽi)< 0

]
≥ max

{
EPε

[
max
i∈I

ψPε
1 (ṽi)

∣∣∣max
i∈I

ψPε
1 (ṽi)< 0

]
,EPε

[
ψPε

1 (ṽI+1)
]}

= max
{
EPε

[
max
i∈I

ψPε
1 (ṽi)

∣∣∣max
i∈I

ψPε
1 (ṽi)< 0

]
,0
}

= 0

= EPε

[
max

{
max
i∈I

ψPε
1 (ṽi),0

}∣∣∣max
i∈I

ψPε
1 (ṽi)< 0

]
,

(27)

where the inequality follows from Jensen’s inequality and the independence of the bidders’ values. In the

third line, we use the fact that EPε [ψ
Pε
1 (ṽI+1)] = 0, which can be verified through a direct calculation using

integration by parts. By combining (26) and (27), we then obtain

fI+1(qsp,Pε) = EPε

[
max

{
max
i∈I

ψPε
1 (ṽi),ψ

Pε
1 (ṽI+1)

}]
≥ EPε

[
max

{
max
i∈I

ψPε
1 (ṽi),0

}]
. (28)

Consider now the mechanism design problem with I bidders. There exists an ε-suboptimal allocation rule

qε ∈Qm-d
I with

inf
P∈PI

fI(qε,P) > sup
q∈Qm-d

I

inf
P∈PI

fI(q,P)− ε. (29)

Denote by P−ε the marginal distribution of (ṽ1, . . . , ṽI) under Pε, and observe that P−ε ∈ PI because the

bidders’ values are independent and Pε is symmetric. Let qP
−
ε ∈Qm-d

I be the allocation rule that maximizes

the expected revenues in problem (3) under the distribution P−ε . Note that this allocation rule exists due to

Theorem 5. Thus, we have

sup
q∈Qm-d

I

inf
P∈PI

fI(q,P)− ε < inf
P∈PI

fI(qε,P) ≤ fI(qε,P−ε ) ≤ sup
q∈Qm-d

I

fI(q,P−ε ) = fI(q
P−ε ,P−ε ).
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Here, the first inequality holds by the construction of qε, and the equality follows from the optimality of qP
−
ε

for the given distribution P−ε . Hence,

fI(q
P−ε ,P−ε ) = EP−ε

[
max

{
max
i∈I

ψ
P−ε
1 (ṽi),0

}]
= EPε

[
max

{
max
i∈I

ψPε
1 (ṽi),0

}]
≤ fI+1(qsp,Pε) < inf

P∈PI+1

fI+1(qsp,P) + ε,

where the first equality holds due to Theorem 5, the second equality follows from the definition of P−ε , and

the inequalities follow from (28) and (25), respectively.

Since ε was chosen arbitrarily, the above implies that

sup
q∈Qm-d

I

inf
P∈PI

fI(q,P) ≤ inf
P∈PI+1

fI+1(qsp,P),

and thus the claim follows. �

We need the following auxiliary results to prove Proposition 12.

Lemma 2. If r ∈R1 and P is a Markov ambiguity set of the form (6) with µ∈ (0,1), then Q(1) ∈P and

EQ(1)

[∑
i∈I

msp
i (ṽ)

]
=
Iµ− 1

I − 1
.

Proof. Using the inequalities 0≤ r≤ Iµ−1
I−1

< 1, which hold because r ∈R1, one can show that the atoms

of Q(1) have non-negative probabilities that add up to 1. Moreover, we have

EQ(1) [ṽi] = 1
(

1− I(µ− 1)

(I − 1)(r− 1)

)
+ 1

(µ− 1)

(I − 1)(r− 1)
+ r(I − 1)

(µ− 1)

(I − 1)(r− 1)

= 1− (I − 1)(µ− 1)

(I − 1)(r− 1)
+
r(I − 1)(µ− 1)

(I − 1)(r− 1)
= 1 +

(r− 1)(µ− 1)

(r− 1)
= µ ∀i∈ I.

This confirms that Q(1) ∈P. A direct calculation further yields

EQ(1)

[∑
i∈I

msp
i (ṽ)

]
= 1− I(µ− 1)

(I − 1)(r− 1)
+ I

(µ− 1)

(I − 1)(r− 1)
r = 1 +

I(r− 1)(µ− 1)

(I − 1)(r− 1)

=
(I − 1) + I(µ− 1)

(I − 1)
=
Iµ− 1

I − 1
,

and thus the claim follows. �

Lemma 3. If r ∈R1 and P is a Markov ambiguity set of the form (6) with µ ∈ (0,1), then σ(1) = 1
I−1

e

and λ(1) = 1− I
I−1

are feasible in (8) with objective value Iµ−1
I−1

.

Proof. Select an arbitrary v ∈ VI and assume without loss of generality that v ∈ W i. Due to (9) and

the convention that in a second price auction only the winner makes a payment, the left-hand side of the

semi-infinite constraint in (8) reduces to msp
i (v). Moreover, by construction of σ(1) and λ(1), the right-hand

side of the semi-infinite constraint reduces to

λ(1) +
∑
j∈I

σ
(1)
j vj = 1− I

I − 1
+
∑
j∈I

( 1

I − 1

)
vj .

If vi < r, we then have

msp
i (v) = 0 ≥ Ir− 1

I − 1
= 1− I

I − 1
+ I
( 1

I − 1

)
r ≥ 1− I

I − 1
+
∑
j∈I

( 1

I − 1

)
vj ,
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where the first inequality holds because r≤ 1
I
. If vi ≥ r, on the other hand, we have

msp
i (v) = max{max

j 6=i
vj , r} ≥ 1− I

I − 1
+
( 1

I − 1

)
vi + (I − 1)

( 1

I − 1

)
max{max

j 6=i
vj , r}

≥ 1− I

I − 1
+
∑
j∈I

( 1

I − 1

)
vj ,

where the first inequality exploits that vi ≤ 1. Finally, the objective value of (σ(1), λ(1)) in (8) amounts to

λ(1) +
∑
i∈I

σ
(1)
i µ = 1− I

I − 1
+ I
( 1

I − 1

)
µ =

Iµ− 1

I − 1
,

and thus the claim follows. �

Proof of Proposition 12. The distribution Q(1) is feasible in (7) due to Lemma 2, and (σ(1), λ(1)) is

feasible in (8) due to Lemma 3. Since the objective value of Q(1) in (7) is equal to the objective value of

(σ(1), λ(1)) in the dual problem (8) (see Lemmas 2 and 3), Q(1) is optimal in (7) by weak duality, implying

that the worst-case expected revenue amounts to Iµ−1
I−1

. �

The proof of Proposition 13 requires the following auxiliary results.

Lemma 4. If r ∈R2 and P is a Markov ambiguity set of the form (6) with µ ∈ (0,1), then Q(2)
ε ∈ P for

every sufficiently small ε > 0, and we have

lim
ε↓0

EQ(2)
ε

[∑
i∈I

msp
i (ṽ)

]
= Ir

µ− r
1− r

.

Proof. One can show that the atoms of Q(2)
ε have non-negative probabilities that add up to 1 for every

ε≤ r− Iµ−1
I−1

. Note that this upper bound on ε is strictly positive because r ∈R2. Moreover, we have

EQ(2)
ε

[ṽi] = (r− ε)
(

1− I(µ− (r− ε))
1− (r− ε)

)
+ 1

µ− (r− ε)
1− (r− ε)

+ (r− ε)(I − 1)
µ− (r− ε)
1− (r− ε)

= (r− ε)− (r− ε) (µ− (r− ε))
1− (r− ε)

+
µ− (r− ε)
1− (r− ε)

= (r− ε) + (1− (r− ε)) (µ− (r− ε))
1− (r− ε)

= µ ∀i∈ I.

This confirms that Q(2)
ε ∈P for every sufficiently small ε > 0.

Note that the ith bidder receives the good only in scenario v= ei + (r− ε)e−i, in which case he has to pay

the reserve price r. Note also that all other bids are below r in this scenario. Thus, we find

lim
ε↓0

EQ(2)
ε

[∑
i∈I

msp
i (ṽ)

]
= lim

ε↓0
Ir
µ− (r− ε)
1− (r− ε)

= Ir
µ− r
1− r

.

This observation completes the proof. �

Lemma 5. If r ∈R2 and P is a Markov ambiguity set of the form (6) with µ ∈ (0,1), then σ(2) = r
1−re

and λ(2) = Ir2

r−1
are feasible in problem (8) with objective value Ir µ−r

1−r .

Proof. Select an arbitrary v ∈ VI and assume without loss of generality that v ∈W i. Recall from the

proof of Lemma 3 that the left-hand side of the semi-infinite constraint in (8) reduces to msp
i (v). Using the

definitions of σ(2) and λ(2), we can further rewrite the right-hand side of the semi-infinite constraint as

λ(2) +
∑
j∈I

σ
(2)
j vj =

Ir2

r− 1
+
∑
j∈I

( r

1− r

)
vj .
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If vi < r, then we have

msp
i (v) = 0 =

Ir2

r− 1
+ I
( r

1− r

)
r ≥ Ir2

r− 1
+
∑
j∈I

( r

1− r

)
vj .

If vi ≥ r, on the other hand, note that

r ≤ max{max
j 6=i

vj , r} = msp
i (v)

⇐⇒ (1− Ir)r ≤ (1− Ir)msp
i (v)

⇐⇒ r

1− r
[(1− Ir) + (I − 1)msp

i (v)] ≤ msp
i (v),

where the first equivalence holds because r≤ 1
I
. Hence, we obtain

msp
i (v) ≥ r

1− r
[(1− Ir) + (I − 1)msp

i (v)] ≥ Ir2

r− 1
+

r

1− r
vi + (I − 1)

( r

1− r

)
max{max

j 6=i
vj , r}

≥ Ir2

r− 1
+
∑
j∈I

( r

1− r

)
vj ,

where the second inequality holds because vi ≤ 1 and mi(v) = max{maxj 6=i vj , r}.

Finally, the objective value of (σ(2), λ(2)) in problem (8) amounts to

λ(2) +
∑
i∈I

σ
(2)
i µ =

Ir2

r− 1
+ Iµ

r

1− r
= Ir

µ− r
1− r

,

and thus the claim follows. �

Proof of Proposition 13. For every ε > 0 small enough, the discrete distribution Q(2)
ε is feasible in (7) by

Lemma 4, and (σ(2), λ(2)) is feasible in (8) by Lemma 5. Since the limiting objective value of the distributions

Q(2)
ε in (7) for ε ↓ 0 coincides with the objective value of (σ(2), λ(2)) in the dual problem (8) (see Lemmas

4 and 5), we conclude via weak duality that the distributions Q(2)
ε , ε ↓ 0, are asymptotically optimal in (7),

implying that the worst-case expected revenue amounts to Ir µ−r
1−r . �

To prove Proposition 14, we will need the following results.

Lemma 6. If r ∈R3 and P is a Markov ambiguity set of the form (6) with µ ∈ (0,1), then Q(3)
ε ∈ P for

every ε > 0, and we have

lim
ε↓0

EQ(3)
ε

[∑
i∈I

msp
i (ṽ)

]
=
µ− r
1− r

.

Proof. One can show that the atoms of Q(3)
ε have non-negative probabilities that add up to 1 because

r ∈R3 implies that r≤ µ< 1. Moreover, we have

EQ(3)
ε

[ṽi] = 1
(

1− 1−µ
1− (r− ε)

)
+ (r− ε)

( 1−µ
1− (r− ε)

)
= 1− (1− (r− ε))(1−µ)

1− (r− ε)
= µ ∀i∈ I.

This confirms that Q(3)
ε ∈P for every ε > 0.

Note that the good is allocated only if v = e, in which case the winner pays an amount equal to 1, that

is, the second highest bid. Therefore, we find

lim
ε↓0

EQ(3)
ε

[∑
i∈I

msp
i (ṽ)

]
= lim

ε↓0
1− 1−µ

1− (r− ε)
= lim

ε↓0

µ− (r− ε)
1− (r− ε)

=
µ− r
1− r

.

This observation completes the proof. �
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Lemma 7. If r ∈R3 and P is a Markov ambiguity set of the form (6) with µ∈ (0,1), then σ(3) = 1
I(1−r)e

and λ(3) = r
r−1

are feasible in problem (8) with objective value µ−r
1−r .

Proof. Select an arbitrary v ∈ VI and assume without loss of generality that v ∈W i. Recall from the

proof of Lemma 3 that the left-hand side of the semi-infinite constraint in (8) reduces to msp
i (v). Using the

definitions of σ(3) and λ(3), we can rewrite the right-hand side of the semi-infinite constraint as

λ(3) +
∑
j∈I

σ
(3)
j vj =

r

r− 1
+
∑
j∈I

1

I(1− r)
vj .

If vi < r, then we find

msp
i (v) = 0 =

r

r− 1
+ I

1

I(1− r)
r ≥ r

r− 1
+
∑
j∈I

1

I(1− r)
vj .

If vi ≥ r, on the other hand, we have

1 ≥ max{max
j 6=i

vj , r} = msp
i (v)

⇐⇒ 1− Ir ≤ (1− Ir)msp
i (v)

⇐⇒ 1

I(1− r)
[1− Ir+ (I − 1)msp

i (v)] ≤ msp
i (v),

where the first equivalence holds because r > 1
I
, which implies that (1− Ir)< 0. Hence, we have

msp
i (v) ≥ 1

I(1− r)
[1− Ir+ (I − 1)msp

i (v)]

≥ r

r− 1
+

1

I(1− r)
vi + (I − 1)

1

I(1− r)
max{max

j 6=i
vj , r} ≥

r

r− 1
+
∑
j∈I

1

I(1− r)
vj .

Finally, the objective value of (σ(3), λ(3)) in problem (8) amounts to

λ(3) +
∑
i∈I

σ
(3)
i µ =

r

r− 1
+

Iµ

I(1− r)
=
µ− r
1− r

,

and thus the claim follows. �

Proof of Proposition 14. For every ε > 0, the discrete distribution Q(3)
ε is feasible in (7) by Lemma 6, and

(σ(3), λ(3)) is feasible in (8) by Lemma 7. Since the limiting objective value of the distributions Q(3)
ε , ε ↓ 0,

in (7) coincides with the objective value of (σ(3), λ(3)) in the dual problem (8) (see Lemmas 6 and 7), we

conclude via weak duality that the distributions Q(3)
ε , ε ↓ 0, are asymptotically optimal in (7), implying that

the worst-case expected revenue amounts to µ−r
1−r . �

Proof of Theorem 8. As for (i), assume first that µ∈M1. In this case R3 is empty. Moreover, the interval

R1 is nonempty only if µ = 1
I
, which implies that Iµ−1

I−1
= 0 and leads to a worst-case expected revenue

of 0. By the definition of second price auctions, their worst-case expected revenue is at least 0 since msp is

non-negative. Hence, the optimal reserve price must reside within R2.

We know from Proposition 13 that, for r ∈ R2, the worst-case expected revenue amounts to Ir µ−r
1−r .

Elementary calculus shows that

d

dr

(
Ir
µ− r
1− r

)
= I − I(1−µ)

(1− r)2
and

d2

dr2

(
Ir
µ− r
1− r

)
=

2(r− 1)I(1−µ)

(1− r)4
.
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Thus, the worst-case expected revenue is strictly concave and maximized by r? = 1−
√

1−µ. Note that r?

is indeed an element of R2 and results in a worst-case expected revenue of I(1−
√

1−µ)2.

Assume next that µ∈M2. In this case, the sets R1, R2 and R3 are all nonempty. If r ∈R1, by Proposi-

tion 12, the seller’s worst-case expected revenue amounts to Iµ−1
I−1

irrespective of r. If r ∈R3, on the other

hand, by Proposition 14 the worst-case expected revenue is given by µ−r
1−r , which is a decreasing function

of r because µ < 1. Hence, the highest possible worst-case expected revenue corresponding to any reserve

price r ∈ R3 is given by Iµ−1
I−1

, which is attained asymptotically as r tends to 1
I
, the left boundary of R3.

If r ∈R2, finally, by Proposition 13 the worst-case expected revenue amounts to Ir µ−r
1−r . At both boundary

points r= Iµ−1
I−1

and r= 1
I

of R2, this function evaluates to Iµ−1
I−1

. Inside interval R2 this function is concave

and attains its maximum at r? = 1−
√

1−µ, resulting in a worst-case expected revenue of I(1−
√

1−µ)2.

Hence, the seller obtains a worst-case expected revenue of I(1−
√

1−µ)2 by imposing the optimal reserve

price r? = 1−
√

1−µ whenever µ∈M1 ∪M2.

As for (ii), recall that R2 is empty if µ∈M3. We already know that for r ∈R3, the worst-case expected

revenue amounts to µ−r
1−r which is decreasing in r and attains its maximum Iµ−1

I−1
as r tends to 1

I
. For r ∈R1

the worst-case expected revenue Iµ−1
I−1

does not depend on the reserve price. Hence, if µ ∈M3, the seller

earns a worst-case expected revenue of Iµ−1
I−1

by imposing any reserve price r ∈R1. �

Before proving Theorem 9, we first show that (q?, σ?e, λ?) is feasible in problem (11). To this end, we need

the following auxiliary result.

Lemma 8. For any fixed µ∈ (0,1), σ? =−(W−1(−µIe−I) + 1)−1 is the unique solution of the equation(1 +σ

Iσ

)
e(I−1− 1

σ
) = µ, (30)

in the interval (0, 1
I−1

), where W−1 denotes the lower branch of the Lambert-W function.

Proof. Set f(σ) = 1+σ
σ
e(I−1− 1

σ
), and note that limσ↓0 f(σ) = 0, which follows from L’Hôpital’s rule, and

that f( 1
I−1

) = 1. Moreover, we have

d

dσ
f(σ) =

1

Iσ3
e(I−1− 1

σ
) > 0 ∀σ ∈

(
0,

1

I − 1

)
.

Thus, for any µ∈ (0,1) the equation f(σ) = µ has a unique solution in the interval (0, 1
I−1

).

Equation (30) is equivalent to

−
(1 +σ

σ

)
e−

1+σ
σ = −µIe−I ⇐⇒ 1 +σ

σ
= W (−µIe−I) ⇐⇒ σ=− 1

W (−µIe−I) + 1
,

where the first equivalence follows from the definition of the Lambert-W function (Corless et al. 1996). As we

are interested in finding a solution of (30) in the interval (0, 1
I−1

) and as the lower branch of the Lambert-W

function is at most −1, we thus have that σ? =−(W−1(−µIe−I) + 1)−1. �

Lemma 9. The solution (q?, σ?e, λ?) is feasible in problem (11).

Proof. Note that r ∈ [0,1] because σ? ∈ [0, 1
I−1

]. Note also that constraint (11c) trivially holds by the

construction of q?. Similarly, it is easy to see that q?i (v) is non-decreasing in vi for every i ∈ I. Thus, we
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only have to show that the proposed solution satisfies constraint (11b) and that the elements of q?(v) are

non-negative and sum up to at most 1.

Select an arbitrary v ∈ VI and assume without loss of generality that v ∈W i so that bidder i is the winner.

We denote the second highest bid by vj? = maxj 6=i vj , where j? represents an arbitrary second highest bidder,

i.e., j? ∈ arg maxj 6=i vj . Using the definitions of λ? and the highest-bidder-lottery allocation rule q?, we can

rewrite (11b) in scenario v as

q?i (vi,v−i)vi−
∫ vi

vj?

q?i (x,v−i) dx ≥ σ?
(∑
j∈I

vj

)
−σ?r. (31)

In the remainder of the proof, we show that (q?, σ?e, λ?) satisfies (31), q?(v) ≥ 0 and e>q?(v) ≤ 1 when

scenario v satisfies the conditions in (12a), (12b) and (12c), respectively.

Case 1 (vj? ≥ r): In this case, q?i (v) is given by (12a). Using integration by parts, we can rewrite (31) as

q?i (vi,v−i)vi−xq?i (x,v−i)
∣∣∣vi
vj?

+

∫ vi

vj?

x∂xq
?
i (x,v−i) dx = vj?

[
σ? log(1) + Iσ?− σ?r

vj?

]
+σ?(vi− vj?)

= σ?(vi + (I − 1)vj?)−σ?r ≥ σ?
(∑
j∈I

vj

)
−σ?r.

The first equality holds because the allocation q?i (x,v−i) is of the form (12a) for all x ∈ [vj? , vi]. The last

inequality holds as vj? ≥ vj for all j 6= i.

Next, we prove that q?j (v)≥ 0 for all j ∈ I. By construction, we have q?j (v) = 0 for all j 6= i. To prove that

q?i (v)≥ 0, we observe that

q?i (v) = σ? log
( vi
vj?

)
+ Iσ?− σ?r

vj?
= σ? log

( vi
vj?

)
+σ?

(Ivj? − r
vj?

)
≥ 0,

where the inequality holds because σ? ≥ 0, vi ≥ vj? , and vj? ≥ r.

To prove that the sum of the allocation probabilities is at most 1, we note that∑
j∈I

q?j (v) = q?i (v) = σ?[log(vi)− log(vj?)] + Iσ?− σ?r

vj?

= σ? log(vi)−σ?
(vj? log(vj?) + r

vj?

)
+ Iσ?

≤ Iσ?−σ?
(vj? log(vj?) + r

vj?

)
≤ Iσ?−σ?

(
I − 1

σ?

)
= 1,

where the first equality follows from the definition of the highest-bidder-lottery allocation rule q?, the first

inequality holds because vi ≤ 1, and the second inequality holds because the expression in the third line is

non-increasing in vj? ∈ [r, vi], while r= e(I−1− 1
σ?

).

Case 2 (vi ≥ r > vj?): In this case, q?i (v) is of the form (12b), whereby (31) reduces to

q?i (vi,v−i)vi−
∫ r

vj?

q?i (x,v−i) dx−
∫ vi

r

q?i (x,v−i) dx ≥ σ?
(∑
j∈I

vj

)
−σ?r. (32)

Note that q?i (x,v−i) is of the form (12c) for all x ∈ [vj? , r) and of the form (12b) for all x ∈ [r, vi]. Using

integration by parts and recalling that r= e(I−1− 1
σ?

), we thus obtain∫ r

vj?

q?i (x,v−i) dx = xq?i (x,v−i)
∣∣∣r
vj?
−
∫ r

vj?

x∂xq
?
i (x,v−i) dx = (I − 1)σ?(r− vj?)
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and

q?i (vi,v−i)vi−
∫ vi

r

q?i (x,v−i) dx = q?i (vi,v−i)vi−xq?i (x,v−i)
∣∣∣vi
r

+

∫ vi

r

x∂xq
?
i (x,v−i) dx

= r
[
σ?
(
I − 1− 1

σ?

)
+ 1
]

+σ?(vi− r) = σ?vi + (I − 2)σ?r.

Hence, the left-hand side of (32) is equal to

σ?vi + (I − 2)σ?r− (I − 1)σ?(r− vj?) = σ?vi + (I − 1)σ?vj? −σ?r.

The inequality (32) then follows because vj? ≥ vj for all j 6= i.

To show that the allocation probabilities are non-negative and that their sum is at most 1, we first note

that q?j (v) = 0 for all j 6= i. Moreover, we have

q?i (v) = σ? log(vi) + 1 ≥ σ?(I − 1) ≥ 0,

where the first inequality holds because vi ≥ r and r = e(I−1− 1
σ?

), while the last inequality follows from

Lemma 8. Finally, since vi ≤ 1, we obtain∑
j∈I

q?j (v) = q?i (v) = σ? log(vi) + 1 ≤ 1.

Case 3 (r > vi ≥ vj?): In this case, q?i (v) is given by (12c). Moreover, q?i (x,v−i) is of the form (12c) for

all x∈ [vj? , vi]. Using integration by parts, we can thus rewrite the left-hand side of (31) as

q?i (vi,v−i)vi−xq?i (x,v−i)
∣∣∣vi
vj?

+

∫ vi

vj?

x∂xq
?
i (x,v−i) dx = q?i (vj? ,v−i)vj? = (I − 1)σ?vj? .

We conclude that the inequality (31) is equivalent to

(I − 1)σ?vj? ≥ σ?
(∑
j∈I

vj

)
−σ?r ⇐⇒ 0 ≥ σ?

(
vi− r− (I − 1)vj? +

∑
j 6=i

vj

)
,

which is manifestly satisfied because σ? ≥ 0, vi < r and vj? ≥ vj for all j 6= i.

As σ? ∈ [0, 1
I−1

] by Lemma 8, it is easy to see that the allocation probabilities are non-negative and their

sum is at most 1. �

Lemma 10. The objective value of (q?, σ?e, λ?) in problem (11) amounts to r.

Proof. By using (30) and the definition of r, we find

µ=
(1 +σ?

Iσ?

)
e(I−1− 1

σ?
) =
(1 +σ?

Iσ?

)
r.

Recalling that λ? =−σ?r, the objective value of (q?, σ?e, λ?) in (11) can then be expressed as

λ? +
∑
j∈I

σ?µ = Iσ?
(1 +σ?

Iσ?

)
r−σ?r = r,

and thus the claim follows. �

To prove Theorem 9, we first ignore the monotonicity condition on the allocation rule and show that

(q?, σ?e, λ?) is an optimal solution to the relaxed problem (11) where Qm-p is replaced with Q. As q? happens

to be ex-post monotone, we may then conclude that this solution is also optimal in (11).
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Lemma 11. The Lagrangian dual of problem (11) with Q in lieu of Qm-p is equal to

inf
α∈L∞(V,R+)

∫
[0,1]I

max
{

0,
∑
i∈I

1Wi(v)
(
α(v)vi−

∫ 1

vi

α(x,v−i) dx
)}

dv

s.t.

∫
[0,1]I

α(v) dv = 1∫
[0,1]I

α(v)vi dv = µ ∀i∈ I.

(33)

Proof. The Lagrangian dual of problem (11) with Q in lieu of Qm-p is given by

inf
α,β∈L∞(V,R+)

∫
[0,1]I

β(v) dv

s.t. α(v)vi−
∫ 1

vi

α(x,v−i) dx ≤ β(v) ∀v ∈W i, ∀i∈ I∫
[0,1]I

α(v) dv = 1∫
[0,1]I

α(v)vi dv = µ ∀i∈ I.

It is clear that β plays the role of an epigraphical variable. Indeed, for any v ∈W i, β(v) will be equal to the

maximum of 0 and α(v)vi −
∫ 1

vi
α(x,v−i) dx at optimality. We can thus eliminate β and rewrite the above

dual problem as (33). �

Note that α can be viewed as the density function of some probability distribution on [0,1]I with mean µ.

Theorem 12. The optimal objective value of problem (33) is asymptotically attained by the sequence of

density functions

αε(v) =


ρε

r

I v2
i ε

(I−1)
+ δε

r

I εI
if ∃i∈ I with v ∈W i, 1≥ vi ≥ 1− ε and r≥ vj ≥ r− ε ∀j 6= i,

ρε
r

I v2
i ε

(I−1)
if ∃i∈ I with v ∈W i,1− ε > vi ≥ r and r≥ vj ≥ r− ε ∀j 6= i,

0 otherwise,

(34)

where

δε =
1− r

(
1
σ?
− (I − 2)

)
− (I−1)

2
(1− r−1)ε

1− ε
2
− r
(

1
σ?
− ε

2
− (I − 2)

) and ρε =
1− δεr
1− r

for ε ↓ 0.

One can verify that δε > 1 and 0<ρε < 1 for small enough ε > 0. Figure 6 visualizes αε.

We prove Theorem 12 together with Theorem 9. The proof relies on the following auxiliary results.

Lemma 12. The function αε defined in (34) is feasible in (33) for every ε > 0 small enough.

Proof. Note first that δε and ρε are positive for ε > 0 small enough because r ∈ [0,1]. Thus, we have

αε(v)≥ 0 for all v ∈ [0,1]I . It remains to be shown that αε satisfies the normalization and mean constraints

in (33).
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(a) (b)

Figure 6 Visualization of αε.

As for the normalization constraint, we have∫
[0,1]I

αε(v) dv =
∑
i∈I

∫
Wi

αε(v) dv =
∑
i∈I

∫ 1

r

∫
[r−ε,r]I−1

αε(v) dv−i dvi =
∑
i∈I

∫ 1

r

ε(I−1)αε(v) dvi

=
∑
i∈I

[∫ 1

r

ρε
r

I v2
i

dvi +

∫ 1

1−ε
δε
r

I ε
dvi

]
=

∫ 1

r

ρε
r

v2
1

dv1 +

∫ 1

1−ε
δε
r

ε
dv1. (35)

The second equality holds because, for v ∈W i, αε(v) is non-zero only if vi ∈ [r,1] and v−i ∈ [r− ε, r](I−1),

while the third equality holds because α(v) is constant in v−i as long as v ∈W i. The last equality exploits

the permutation symmetry of αε. By explicitly calculating the integrals, (35) simplifies to

I
(
ρε

(1− r)
I

+ δε
r

I

)
=

1− δεr
1− r

(1− r) + δεr = 1,

where the first equality follows from the definition of ρε.

Next, we verify that αε satisfies the mean constraint. For an arbitrary i∈ I, we have∫
[0,1]I

αε(v)vi dv =
∑
j∈I

∫
Wj

αε(v)vi dv =

∫ 1

r

∫
[r−ε,r]I−1

αε(v)vi dv−i dvi +
∑
j 6=i

∫ 1

r

∫
[r−ε,r]I−1

αε(v)vi dv−j dvj

=

∫ 1

r

ρε
r

I vi
dvi +

∫ 1

1−ε
δε
r

I ε
vi dvi +

∑
j 6=i

[∫ 1

r

∫ r

(r−ε)
ρε

r

I v2
j ε
vi dvi dvj +

∫ 1

1−ε

∫ r

(r−ε)
δε

r

I ε2
vi dvi dvj

]
. (36)

The second equality holds because, for v ∈Wj , αε(v) is non-zero only if vj ∈ [r,1] and v−j ∈ [r− ε, r](I−1),

while the last equality holds because αε(v) is constant in v−j as long as v ∈Wj .

An explicit calculation yields∫ 1

r

ρε
r

I vi
dvi +

∫ 1

1−ε
δε
r

I ε
vi dvi = ρε

r

I

( 1

σ?
− I + 1

)
+ δε

r

I

(
1− ε

2

)
, (37a)

where we use the relation log(r) = I−1− 1
σ?

, which follows from the definition of r. Similarly, for an arbitrary

j 6= i, we find ∫ 1

r

∫ r

(r−ε)
ρε

r

I v2
j ε
vi dvi dvj =

∫ 1

r

ρε
r

I v2
j

(
r− ε

2

)
dvj = ρε

(1− r)
I

(
r− ε

2

)
(37b)
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and ∫ 1

1−ε

∫ r

(r−ε)
δε

r

I ε2
vi dvi dvj =

∫ 1

1−ε
δε
r

I ε

(
r− ε

2

)
dvj = δε

r

I

(
r− ε

2

)
. (37c)

Substituting (37) into (36) and using the permutation symmetry of αε, we obtain

ρε
r

I

( 1

σ?
− I + 1

)
+ δε

r

2I
(2− ε) + (I − 1)

[
ρε

(1− r)
I

(
r− ε

2

)
+ δε

r

I

(
r− ε

2

)]
=

1

I
ρε

(
r
( 1

σ?
− (I − 1)r+ (I − 1)

ε

2

)
− (I − 1)

ε

2

)
+

1

I
δεr
(

1− Iε

2
+ (I − 1)r

)
=

1

I

(
1

1− r

)(
r
( 1

σ?
− (I − 1)r+ (I − 1)

ε

2

)
− (I − 1)

ε

2

)
+

1

I
δεr

(
1

1− r

)(
1− ε

2
− r
(

2− I − ε

2
+

1

σ?

))
=

1

I

(
1

1− r

)(
r
( 1

σ?
− (I − 1)r+ (I − 1)

ε

2

)
− (I − 1)

ε

2

)
+

1

I

(
1− r

( 1

σ?
− (I − 2)

)
− (I − 1)

2
(1− r−1)ε

)
r

(
1

1− r

)
=

1

I

(
1

1− r

)[
r
( 1

σ?
+ 1− r

( 1

σ?
+ 1
))]

=
1

I
r
( 1

σ?
+ 1
)

= µ.

Here, the first equality follows from grouping terms that involve ρε and terms that involve δε. The second

equality follows from replacing ρε with its definition and rearranging terms. Similarly, the fourth equality

follows from replacing δε with its definition. The remaining reformulations are based on elementary alge-

bra. �

Lemma 13. As ε tends to zero, the objective value of αε in (33) converges to r.

Proof. Throughout the proof we assume that ε < 1
2
. Substituting αε into the objective function of (33)

yields ∫
[0,1]I

max
{

0,
∑
i∈I

1Wi(v)
(
αε(v)vi−

∫ 1

vi

αε(x,v−i) dx
)}

dv

=
∑
i∈I

∫
Wi

max
{

0, αε(v)vi−
∫ 1

vi

αε(x,v−i) dx
}

dv

= I

∫ 1

r

∫
[r−ε,r]I−1

max
{

0, αε(v)v1−
∫ 1

v1

αε(x,v−1) dx
}

dv−1 dv1. (38)

Here, the first equality is obtained by partitioning the integration domain into the subsets W i, i ∈ I. The

second equality follows from symmetry and because, for v ∈ W i, αε(v) is non-zero only if vi ∈ [r,1] and

v−i ∈ [r− ε, r](I−1). We can decompose the integral in (38) into the two terms∫ 1−ε

r

∫
[r−ε,r]I−1

max
{

0, αε(v)v1−
∫ 1

v1

αε(x,v−1) dx
}

dv−1 dv1

+

∫ 1

1−ε

∫
[r−ε,r]I−1

max
{

0, αε(v)v1−
∫ 1

v1

αε(x,v−1) dx
}

dv−1 dv1,

which we investigate separately below. The first integral reduces to∫ 1−ε

r

∫
[r−ε,r]I−1

max
{

0, αε(v)v1−
∫ 1

v1

αε(x,v−1) dx
}

dv−1 dv1

=

∫ 1−ε

r

∫
[r−ε,r]I−1

max
{

0, ρε
r

I v1 ε(I−1)
−
∫ 1

v1

ρε
r

I x2 ε(I−1)
dx−

∫ 1

1−ε
δε

r

I εI
dx
}

dv−1 dv1

=

∫ 1−ε

r

∫
[r−ε,r]I−1

max
{

0, ρε
r

I ε(I−1)
− δε

r

I ε(I−1)

}
dv−1 dv1 = 0,
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where the last equality holds because ρε ≤ 1≤ δε. Similarly, the second integral can be rewritten as∫ 1

1−ε

∫
[r−ε,r]I−1

max
{

0, αε(v)v1−
∫ 1

v1

αε(x,v−1) dx
}

dv−1 dv1

=

∫ 1

1−ε

∫
[r−ε,r]I−1

max
{

0, ρε
r

I v1 ε(I−1)
+ δε

r

I εI
v1−

∫ 1

v1

(
ρε

r

I x2 ε(I−1)
+ δε

r

I εI

)
dx
}

dv−1 dv1. (39)

The second argument of the max function in (39) is equal to

ρε
r

I v1 ε(I−1)
+ δε

r

I εI
v1 + ρε

r

I x ε(I−1)

∣∣∣1
v1

−δε
r

I εI
x
∣∣∣1
v1

= 2 δε
r

I εI
v1 + ρε

r

I ε(I−1)
− δε

r

I εI
=

r

IεI
(δε(2v1− 1) + ρεε) .

Note that the last expression is non-negative for all v1 ∈ [1− ε,1] because ρε and δε are non-negative and

because ε < 1
2
. In summary, (39) thus reduces to∫ 1

1−ε

∫
[r−ε,r]I−1

r

IεI
(δε(2v1− 1) + ρεε) dv−1 dv1 =

∫ 1

1−ε

r

Iε
(δε(2v1− 1) + ρεε) dv1

=
r

Iε
δε(v

2
1 − v1)

∣∣∣1
1−ε

+
r

I
ρεv1

∣∣∣1
1−ε

=
r

I
δε(1− ε) +

r

I
ρεε.

Therefore, the asymptotic objective value of αε for small ε is given by

lim
ε↓0

r δε(1− ε) + rρεε = r

because both δε and ρε converge to 1 as ε tends to 0. �

We are now ready to prove Theorems 9 and 12.

Proof of Theorems 9 and 12. By Lemmas 9 and 10, (q?, σ?e, λ?) is feasible in (11) with the objective

value r. By Lemmas 12 and 13, on the other hand, αε is feasible in problem (33) and asymptotically attains

the objective value r for ε ↓ 0. As (33) is the dual of a relaxation of (11) (obtained by replacing Qm-p with

Q), it is a restriction of the dual of (11). Thus, αε is a feasible solution in the dual of (11) that certifies via

weak duality that (q?, σ?e, λ?) is optimal in (11). The corresponding worst-case expected revenue amounts

to r= e(I−1− 1
σ?

). �

Proof of Proposition 16. For the purpose of this proof we let σ?(I) =− 1
W−1(−µIe−I)+1

denote the value

of σ? from Theorem 9 for a fixed number of bidders I. We first show that Iσ?(I) converges to 1 as I tends

to infinity. Since −µIe−I drops to 0 as I grows, we obtain

W−1(−µIe−I) = log(µIe−I)− log(− log(µIe−I)) + o(1) = −I + log(µI)− log(− log(µI) + I) + o(1), (40)

where the first equality follows from a well-known asymptotic expansion of the Lambert-W function (see

Corless et al. 1996). Thus, we have

lim
I→∞

Iσ?(I) = lim
I→∞

I

I − log(µI) + log(− log(µI) + I) + o(1)
= 1,

which implies that σ?(I) converges to 0 as I tends to infinity. By (12a)-(12d) and (13), it is immediate that

the optimal highest-bidder-lottery (q?,m?) converges uniformly to the second price auction without reserve

price. �
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To prove Theorem 10, we first derive an upper bound on the supremum of problem (MMDP). Note that

(MMDP) is equivalent to problem (11) without the constraint (11c) that restricts attention to highest-

bidder-lotteries. An upper bound on (MMDP) is thus obtained by solving problem (11) without the con-

straint (11c) and by ignoring the monotonicity condition on q, which is tantamount to relaxing Qm-p to Q.

By weak duality, the dual of this relaxation also provides an upper bound on (MMDP).

Lemma 14. The Lagrangian dual of problem (11) without the constraint (11c) and with Q in lieu of Qm-p

is equivalent to

inf
α∈L∞(V,R+)

∫
[0,1]I

max
{

0,max
i∈I

(
α(v)vi−

∫ 1

vi

α(x,v−i) dx
)}

dv

s.t.

∫
[0,1]I

α(v) dv = 1∫
[0,1]I

α(v)vi dv = µ ∀i∈ I.

(41)

Proof. The proof widely parallels that of Lemma 11. Details are omitted for brevity. �

The feasible set of (41) is equivalent to that of (33). Thus, by Lemma 12, αε defined in (34) is feasible in

(41). We can now use the objective value of αε in (41) as an upper bound on the supremum of (MMDP).

Lemma 15. The objective value of problem (MMDP) is bounded above by r(2− r), where r denotes the

worst-case expected revenue of the optimal highest-bidder-lottery as defined in Theorem 9.

Proof. By Lemma 12 and Lemma 14, αε defined in (34) is feasible in (41) and its objective value in

(41) provides an upper bound on the supremum of problem (MMDP). Throughout the proof we assume

that ε≤ 1−
√
r

2
. Note that r≤ µ by Proposition 10 and because the worst-case expected full surplus provides

an upper bound on the optimal objective value of (MMDP). Recall also that µ < 1 by assumption. This

implies that 1−
√
r

2
> 0. Substituting αε into the objective function of (41) yields∫
[0,1]I

max
{

0,max
j∈I

(
αε(v)vj −

∫ 1

vj

αε(x,v−j) dx
)}

dv

=
∑
i∈I

∫
Wi

max
{

0,max
j∈I

(
αε(v)vj −

∫ 1

vj

αε(x,v−j) dx
)}

dv

= I

∫ 1

r

∫
[r−ε,r]I−1

max
{

0,max
j∈I

(
αε(v)vj −

∫ 1

vj

αε(x,v−j) dx
)}

dv−1 dv1. (42)

Here, the first equality is obtained by partitioning the integration domain into the subsets W i, i ∈ I. The

second equality follows from symmetry and because, for v ∈ W i, αε(v) is non-zero only if vi ∈ [r,1] and

v−i ∈ [r− ε, r](I−1). We can decompose the integral in (42) into the two terms∫ 1−ε

r

∫
[r−ε,r]I−1

max
{

0,max
j∈I

(
αε(v)vj −

∫ 1

vj

αε(x,v−j) dx
)}

dv−1 dv1

+

∫ 1

1−ε

∫
[r−ε,r]I−1

max
{

0,max
j∈I

(
αε(v)vj −

∫ 1

vj

αε(x,v−j) dx
)}

dv−1 dv1,

(43)

which we will investigate separately. We first consider the first integral. To this end, select an arbitrary

v ∈W1 such that v1 ∈ [r,1− ε) and vj ∈ [r− ε, r] for all j 6= 1. We have

αε(v)v1−
∫ 1

v1

αε(x,v−1) dx = ρε
r

Iv1ε(I−1)
−
∫ 1

v1

ρε
r

Ix2ε(I−1)
dx−

∫ 1

1−ε
δε

r

IεI
dx

= ρε
r

Iε(I−1)
− δε

r

Iε(I−1)
≤ 0,
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where the last equality holds because ρε ≤ δε. For any j 6= 1, we have

αε(v)vj −
∫ 1

vj

αε(x,v−j) dx ≤ αε(v)vj ≤ αε(v)r = ρε
r2

Iv2
1ε

(I−1)
.

In summary, for the first integral in (43), we have∫ 1−ε

r

∫
[r−ε,r]I−1

max
{

0,max
j∈I

(
αε(v)vj −

∫ 1

vj

αε(x,v−j) dx
)}

dv−1 dv1

≤
∫ 1−ε

r

∫
[r−ε,r]I−1

max
{

0, ρε
r2

Iv2
1ε

(I−1)

)}
dv−1 dv1

=

∫ 1−ε

r

ρε
r2

Iv2
1

dv1 = −ρε
r2

Iv1

∣∣∣1−ε
r

= ρε
r(1− ε− r)
I(1− ε)

.

We now investigate the second integral in (43). To this end, select an arbitrary v ∈W1 such that v1 ∈ [1−
ε,1] and vj ∈ [r− ε, r] for all j 6= 1. We have

αε(v)v1−
∫ 1

v1

αε(x,v−1) dx = ρε
r

I v1 ε(I−1)
+ δε

r

I εI
v1−

∫ 1

v1

(
ρε

r

I x2 ε(I−1)
+ δε

r

I εI

)
dx

= ρε
r

I v1 ε(I−1)
+ δε

r

I εI
v1 + ρε

r

I x ε(I−1)

∣∣∣1
v1

−δε
r

I εI
x
∣∣∣1
v1

= 2 δε
r

I εI
v1 + ρε

r

I ε(I−1)
− δε

r

I εI
=

r

IεI
(δε(2v1− 1) + ρεε) .

Similarly, for any j 6= 1, we have

αε(v)vj −
∫ 1

vj

αε(x,v−j) dx ≤ αε(v)vj ≤ αε(v)r =
r2

Iε(I−1)

(
ρε

1

v2
1

+ δε
1

ε

)
.

It is easy to show that r
IεI

(δε(2v1− 1) + ρεε) ≥ r2

Iε(I−1)

(
ρε

1
v21

+ δε
1
ε

)
as the coefficients of δε and ρε on the

left-hand side are greater than or equal to the respective coefficients on the right-hand side, which follows

from ε≤ 1−
√
r

2
. Thus, the second integral in (43) simplifies to∫ 1

1−ε

∫
[r−ε,r]I−1

max
{

0,max
j∈I

(
αε(v)vj −

∫ 1

vj

αε(x,v−j) dx
)}

dv−1 dv1

=

∫ 1

1−ε

∫
[r−ε,r]I−1

max
{

0, αε(v)v1−
∫ 1

v1

αε(x,v−1) dx
}

dv−1 dv1

=

∫ 1

1−ε

∫
[r−ε,r]I−1

r

IεI
(δε(2v1− 1) + ρεε) dv−1 dv1 =

∫ 1

1−ε

r

Iε
(δε(2v1− 1) + ρεε) dv1

=
r

Iε
δε(v

2
1 − v1)

∣∣∣1
1−ε

+
r

I
ρεv1

∣∣∣1
1−ε

=
r

I
δε(1− ε) +

r

I
ρεε.

As both δε and ρε converge to 1 when ε tends to 0, the asymptotic objective value of αε for small ε is

lim
ε↓0

ρε
r(1− ε− r)

(1− ε)
+ r δε(1− ε) + rρεε = r(2− r).

Moreover, as (41) is the dual of a relaxation of (MMDP), we conclude via weak duality that the optimal

value of (MMDP) is bounded above by r(2− r). �

We are now ready to prove Theorem 10.

Proof of Theorem 10. By Lemma 15, the supremum of problem (MMDP) is bounded above by r(2−r),
where r denotes the worst-case expected revenue of the optimal highest-bidder-lottery. Thus, the ratio of

worst-case expected revenues of the optimal highest-bidder-lottery and the unknown optimal mechanism is

at least r
r(2−r) = 1

2−r ≥
1
2
. �
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Proof of Theorem 11. Fix a number of bidders I ∈N. By Theorem 8, the worst-case expected revenue of

the best second price auction amounts to I(1−
√

1−µ)2 for any µ ∈M1 = (0, 1
I
]. By Theorem 9, we also

know that the worst-case expected revenue of the optimal highest-bidder-lottery equals e(I−1− 1
σ?

), where

σ? =−(W−1(−µIe−I) + 1)−1.

We will show that, as µ approaches zero, the ratio of worst-case expected revenues of the best second price

auction and the optimal highest-bidder-lottery becomes arbitrarily small. Indeed, we have

lim
µ↓0

I(1−
√

1−µ)2

e(I−1− 1
σ?

)
= lim

µ↓0

I(1−
√

1−µ)2

e(log(µI)−log(− log(µI)+I)+o(1))
= lim

µ↓0

(1−
√

1−µ)2(I − log(µI))

µeo(1)
,

where the first equality follows from the definition of σ? and the asymptotic expansion (40) of the Lambert-W

function. As limµ↓0 e
o(1) = 1, the last expression equals

lim
µ↓0

(1−
√

1−µ)2

µ

(I−log(µI))

= lim
µ↓0

1−
√

1−µ√
1−µ

I+1−log(µI)

(I−log(µI))2

= lim
µ↓0

1

2(1−µ)(3/2)

µ(I − log(µI))3

(I + 2− log(µI))
= 0,

where the first and the second equalities both follow from L’Hôpital’s rule. The last equality holds because

limµ↓0 µ(I − log(µI))3 = 0, which can also be derived using L’Hôpital’s rule. Thus the claim follows. �

Proof of Proposition 17. By Theorem 9, the worst-case expected revenue of the optimal highest-bidder-

lottery amounts to

e
(I−1− 1

σ?(I)
)

= e(I+W−1(−µIe−I)).

Moreover, as µ∈ (0,1), there exists Iµ such that µ∈M3 for all I ≥ Iµ. By Theorem 8, the worst-case expected

revenue generated by the best second price auction thus amounts to Iµ−1
I−1

for all I ≥ Iµ. This implies that

∆(I) = min
{

∆∈N :
(I + ∆)µ− 1

(I + ∆)− 1
≥ e(I+W−1(−µIe−I))

}
=
⌈1− e(I+W−1(−µIe−I))− I(µ− e(I+W−1(−µIe−I)))

µ− e(I+W−1(−µIe−I))

⌉
for all I ≥ Iµ. Assume now that there exists an upper bound ∆∈N on ∆(I) for all I ∈N. Any such ∆ must

satisfy

∆ ≥ lim
I→∞

1− e(I+W−1(−µIe−I))− I(µ− e(I+W−1(−µIe−I)))

µ− e(I+W−1(−µIe−I)) . (44)

As the best second price auction is an instance of a highest-bidder-lottery, we have

Iµ− 1

I − 1
≤ e(I+W−1(−µIe−I)) ≤ µ (45)

for all I ≥ Iµ, which implies that e(I+W−1(−µIe−I)) converges from below to µ as I grows. Next, we show that

limI→∞ I(µ− e(I+W−1(−µIe−I))) < 1− µ, which implies that the limit in (44) evaluates to infinity and that

there cannot exist any uniform upper bound ∆ on ∆(I). Specifically, we have

lim
I→∞

I(µ− e(I+W−1(−µIe−I))) = lim
ε↓0

µ− e( 1
ε
+W−1(−µ

ε
e
− 1
ε ))

ε

= lim
ε↓0

(
1

ε2
+

(ε− 1)W−1(−µ

ε
e−

1
ε )

ε2(W−1(−µ

ε
e−

1
ε ) + 1)

)
e(ε−1+W−1(−µ

ε
e
− 1
ε ))

≤ lim
ε↓0

(
1

ε2
+

(ε− 1)W−1(−µ

ε
e−

1
ε )

ε2(W−1(−µ

ε
e−

1
ε ) + 1)

)
µ,
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where the second equality holds by L’Hôpital’s rule and the analytical formula for the derivative of the

Lambert-W function (see Corless et al. 1996), while the inequality follows from (45). As −µ

ε
e−

1
ε drops to 0

when ε tends to 0, we have

W−1(−µ

ε
e−

1
ε ) = log(µ

ε
e−

1
ε )− log(− log(µ

ε
e−

1
ε )) + o(1)

= −1

ε
+ log(µ

ε
)− log(− log(µ

ε
) + 1

ε
) + o(1),

(46)

where the first equality follows from a well-known asymptotic expansion of the Lambert-W function (see

Corless et al. 1996). We thus have

lim
ε↓0

(
1

ε2
+

(ε− 1)W−1(−µ

ε
e−

1
ε )

ε2(W−1(−µ

ε
e−

1
ε ) + 1)

)
µ = lim

ε↓0
(log(− log(µ

ε
) + 1

ε
))− log(µ

ε
))µ

= lim
ε↓0

log

(
( 1
ε
− log(µ

ε
))ε

µ

)
µ = lim

I→∞
log
( 1

µ
− ε

log(µ
ε
)

µ

)
µ = log

( 1

µ

)
µ < 1−µ,

where the first equality follows from (46) and elementary rearrangements, while the last inequality holds

because µ∈ (0,1). This implies that limI→∞ I(µ− e(I+W−1(−µIe−I)))< 1−µ, and thus the claim follows. �
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