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Abstract— Numerous automatic sleep staging approaches
have been proposed to provide an eHealth alternative to the
current gold-standard – hypnogram scoring by human experts.
However, a majority of such studies exploit data of limited scale,
which compromises both the validation and the reproducibility
and transferability of such automatic sleep staging systems
in the real clinical settings. In addition, the computational
issues and physical meaningfulness of the analysis are typically
neglected, yet affordable computation is a key criterion in
Big Data analytics. To this end, we establish a comprehensive
analysis framework to rigorously evaluate the feasibility of
automatic sleep staging from multiple perspectives, including
robustness with respect to the number of training subjects,
model complexity, and different classifiers. This is achieved
for a large collection of publicly accessible polysomnography
(PSG) data, recorded over 515 subjects. The trade-off between
affordable computation and satisfactory accuracy is shown to
be fulfilled by an extreme learning machine (ELM) classifier,
which in conjunction with the physically meaningful hidden
Markov model (HMM) of the transition between the different
sleep stages (smoothing model) is shown to achieve both fast
computation and highest average Cohen’s kappa value of
κ = 0.73 (Substantial Agreement). Finally, it is shown that
for accurate and robust automatic sleep staging, a combination
of structural complexity (multi-scale entropy) and frequency-
domain (spectral edge frequency) features is both computation-
ally affordable and physically meaningful.

I. INTRODUCTION

Polysomnography (PSG) is the gold standard for mon-
itoring sleep and evaluating patients’ sleep disorders in a
clinic. The recorded physiological data are visually reviewed
and manually scored by a human expert, according to some
given guidelines, such as the American Academy of Sleep
Medicine (AASM) guideline [1]. Automatic sleep staging
approaches aim to replicate human scoring based on PSG
data, which both provides economic savings, and normally
utilise supervised machine learning (ML) techniques with
fine-tuned feature extraction for PSG data, and such studies
typically propose novel combinations of features and classi-
fiers [2]. Prediction performances of such ML techniques are
evaluated using either publicly available datasets (such as [3],
[4]) or proprietary data recorded as part of research projects
[5]. However, only very few studies have demonstrated the
feasibility of automatic classification, while catering rigor-
ously for the generalisation ability for new data.

The obstacles which prevent more widespread generalisa-
tion of findings in automatic sleep staging include numerous
issues starting with the recording configuration during data
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acquisition; there are not always the same as the current
standard – the AASM. For example, one of the most widely
used datasets in automatic sleep staging research is Sleep-
EDF [4], however, their EEG montage is Fpz-Cz and Pz-Oz
(cf. C3-A2 and C4-A1 in AASM). Next, the size of data is
usually small, typically recorded from less than 100 subjects;
In other words, to become a robust substitution for labour-
intensive human scoring, an ideal automatic scoring system
needs to accurately capture not only the sleep patterns in its
training data, but also to generalise well for unseen sleep
data coming from different acquisition montages, different
nights of the same subjects and different subjects.

Recently, some large-scale and heterogeneous sleep PSG
datasets have been made publicly available [6]. Such ‘Big
Data’ were created with the aim to validate the performance
of ML methods when predicting sleep stages based on
EEG from diverse patients; some automatic sleep staging
approaches have also been rigorously validated using large-
scale data [7], [8]. For analyses with large-scale data, the
level of scalability of the algorithm becomes a critical issue,
together with the computational cost (e.g. execution time,
resources), which increase with the size of data. Therefore,
for automatic sleep staging in the real-world to become a
reality, it is not only the performance of an algorithm but also
the computational costs that need to be scrutinised among
different methods.

Here, we revisit our recent automatic sleep staging frame-
works from the viewpoints of feasibility and compatibility
with the Big Data paradigms. This is achieved over the fol-
lowing aspects, which are fundamental for working systems
in eHealth but almost ignored in the open literature:

1) Utilise a large-scale sleep data (from 515 individuals)
to validate the feasibility of classification methods;

2) Conduct comparative classification over multiple fea-
ture extraction methods and classifiers, including the
technique proposed in [9], which was validated using
the Sleep-EDF dataset (from 61 individuals, the chan-
nel configuration was not C3-A2 and C4-A1);

3) Investigate the variability of performance based on
the number of training data and model complexity,
following suggestions in [8];

4) Compare the performance not only in terms of the
accuracy but also the computation time, both of which
are critical for Big Data analyses.

Through these comprehensive and fair analyses, we have
confirmed the viability of automatic sleep staging with both
structural complexity and frequency domain features.



Fig. 1. The flowchart of this study

TABLE I
PROPORTION OF SLEEP STAGES. NO. OF EPOCHS (RATIO %)

Training – Ntr = 258 Testing – Nte = 257
W 32557 (11.9%) 35095 (13.0%)
N1 9694 (3.5%) 9278 (3.4%)
N2 125703 (45.8%) 122423 (45.4%)
N3 55737 (20.3%) 54133 (20.1%)
R 50531 (18.4%) 48765 (18.1%)

II. METHODS

A. Data sets

We used the dataset from the Cleveland Children’s Sleep
and Health Study (CCSHS) [10]. It contains PSG recordings
from 515 individuals. Two EEG channels (C3-A2 and C4-
A1) are used for this study. The data were ordered according
to their ID numbers; the first 258 PSGs (from ID001 to
ID460) were assigned as training data whereas the rest of
257 PSGs (from ID464 to from ID906) were used for testing.

B. Preprocessing

Some recordings in the CCSHS dataset contain both a
large number of pre-sleep wake epochs and post-sleep wake
epochs since some of the recordings were conducted over
both a day and night period. First, we only extracted ‘sleep-
related’ data; we considered periods between 20 minutes
before the first scored sleep epoch, and 20 minutes after the
last scored sleep epoch. The so-extracted two channels of
EEG data were filtered using a fourth-order Butterworth filter
with the passband 0.5-30 Hz. We then deployed another EEG
rejection method based on the signal amplitude. Any epoch
with absolute voltage of more than 500µV was removed
from further analyses. In total, 1.4 % of the epochs were
removed from further analyses. Table I shows the proportion
of sleep data in this study.

C. Feature Extraction

For a fair comparison with latest automatic sleep staging
results with large scale data [8] and our previous study [9],
we extracted features from each 30-second epoch in the same
way as in [8] (Setup-S) and [9] (Setup-N): Setup-S), with
time domain features (line length, kurtosis, sample entropy),
frequency domain features (spectrogram and kurtosis of
spectrogram), Setup-N), with multi-scale permutation en-
tropy (MSPE) and spectral edge frequency (SEF). The details
of features extraction can be found in the Supplemental
materials1 and [8], [9]. From the two EEG channels with 30-
seconds epoch, 34 features were extracted as Setup-S, while

1https://sites.google.com/site/tkshnakamura/home/materials

82 features were extracted for Setup-N. Each feature value,
x, was transformed as sign(x) log10(|x+1|), and normalised
to [0, 1], for each subject.

D. Classifier

After comprehensive testing for accuracy and computa-
tional demands, we employed an extreme learning machine
(ELM) classifier [11], while linear discriminant analysis
(LDA), random forests (RF), and support vector machine
(SVM) were used for comparison of prediction performance
and computational time. The details of the parameters and
setups can be found in the online Supplement1.

E. Smoothing

The hidden Markov model (HMM) was reported as being
effective in improving the prediction accuracy using such
sleep transitional information [8]. We assumed that the
hidden states were hypnogram scored by a human in the
training data, whilst the observations were predicted labels
of the same training data. The transition matrix was given by
counting the transition of the hypnogram in the training data,
and the emission matrix was the obtained confusion matrix
of training data (hypnogram vs prediction). We used the
Viterbi algorithm to find the sequence of hidden states, which
corresponds to ‘smoothed’ prediction by the algorithm.

III. RESULTS

The preprocessing, feature extraction, and smoothing anal-
yses were performed in Matlab 2016b, and the classifier was
implemented in Python 2.7.12, operated on an iMac with
2.8GHz Intel Core i5, and 16GB of RAM. The versions of
sklearn and hpelm were respectively 0.19.1 and 1.0.10.

A. ELM and the number of training subjects

First, we conducted experiments using the ELM classifier
and by changing the number of training subjects (Ntr),
ranging from 10 to 258. For each experiment with the
selected number of training subjects, Ntr, we repeated the
simulation ten times; this was achieved independently and for
randomly chosen subsets from training data (except for the
experiment of Ntr = 258, since all training data were used).
The initial hidden weights and bias of ELM were randomly
generated. For each simulation, we trained the ELM model
and computed the Cohen’s Kappa value using the confusion
matrix derived from the same training subset (training per-
formance); and then, the testing performance was evaluated
by computing the kappa values of the confusion matrix,
which were derived from all testing data (Nte = 257). The



Fig. 2. Cohen’s kappa values for different numbers of training subjects in
Setup-S and Setup-N (L = 5000). The error bar shows standard deviation
of over 10 independent iterations.

Fig. 3. Cohen’s kappa values for different numbers of hidden nodes in
Setup-S and Setup-N (Ntr = 258). The error bar shows standard deviation
of over 10 independent iterations.

statistical significance was evaluated by the Wilcoxon signed-
rank test. The p-values were computed by comparing to the
kappa values for each testing subjects from ten independent
simulations (2570 samples).

Figure 2 shows the kappa values for different numbers of
training subjects Ntr, ranging from 10 to 258 subjects, using
different features based on [8] (Setup-S) and [9] (Setup-
N). The number of hidden nodes within ELM, L = 5000,
was fixed. The highest averaged testing kappa values were
obtained with Ntr = 258, the values of which were 0.61 and
0.69 in Setup-S and Setup-N, respectively. To evaluate the
statistical significance of increasing the number of training
subjects, we compared the testing performances. In Setup-
S, increasing the number of subjects until 200 led to the
improvement of the performance: (p-values: 100 vs 150 –
4.6×10−06, 150 vs 200 – 0.032, 200 vs 258 – 0.14), whereas
there was no statistical significance between 150 and 200
in Setup-N: (p-values: 100 vs 150 – 0.011, 150 vs 200 –
0.14, 200 vs 258 – 0.31). The computational time of training
increased with the number of training subjects (Ntr = 10:
8 s, Ntr = 258: 165 s in Setup-N), whereas the times for
testing were the same regardless of Ntr, as shown in Table
II.

B. ELM and the number of hidden nodes

We next conducted experiments by changing the number
of hidden nodes, L, of ELM, ranging from 500 to 20000, in

TABLE II
COMPUTATIONAL TIME OF DIFFERENT ANALYSES

Training/ Setup-N Setup-S
Testing (sec) L = 500 5000 20000 5000
Ntr = 10 -/- 8/51 -/- 8/50

150 -/- 98/51 -/- 97/50
258 7/3 165/51 1679/202 164/50

order to evaluate the performance against model complexity.
The number of training subjects was fixed to Ntr = 258 (all
training data were used). Figure 3 illustrates the kappa values
for different numbers of hidden nodes, L, in Setup-S and
Setup-N. In both setups, the highest averaged kappa values
were achieved with L = 5000, while increasing the number
of hidden nodes to more than 5000 negatively affected
the performance, which contradicts the results in [8]. The
number of hidden nodes, L, also affects computational time,
especially for training, as shown in Table II; the averaged
training time of L = 20000 was 1679 s (≈ 28 mins), which
was approximately 10 times larger than simulation, with
L = 5000 (165 s).

C. HMM smoothing

The predictions after HMM smoothing are given in Figure
2 (bold solid lines). Using all training data (Ntr = 258), the
achieved kappa values were 0.69 (cf. 0.61 before smoothing)
in Setup-S, and 0.73 (cf. 0.69 before smoothing) in Setup-
N. Among 257 testing subjects, the prediction performance
was improved by smoothing for 96 % of subjects in Setup-S,
whereas for 93 % of subjects in Setup-N.

Figure 4 depicts the confusion matrices obtained with
different settings of ELM, upon changing the number of
training subjects Ntr, the number of hidden nodes L, and
applying smoothing. The upper confusion matrices were
results for Setup-S whilst lower ones were for Setup-N.
Comparing to the matrices in the second column (i.e. Ntr =
258, L = 5000, before smoothing) and the third column
(the same Ntr and L, but after smoothing), the sensitivities
of each class improved with smoothing, especially for the
N1 stage (from 4.0 % to 20.6 % in Setup-S, and from 0.8 %
to 20.3 % in Setup-N). In the hypnogram plot, the advan-
tage of smoothing was also confirmed. Figure 5 depicts an
overnight hypnogram of one subject; the upper graph shows
the manually scored hypnogram based on the PSG recordings
(black) whereas the bottom panel shows the automatically
predicted label based on the ELM (Ntr = 258, L = 5000)
before smoothing (blue) and after smoothing (red). The
smoothing successfully took account of neighbouring epochs
and eliminated fragmentation in prediction. The kappa value
for this subject was 0.81 after smoothing, improved from
0.67 before.

D. Performance with different classifiers

Finally, we tested the performance using different clas-
sifiers, the LDA, RF and SVM. Table III summarises the
prediction performance and computational time (Training
time/Testing time) for different classifiers in Setup-N. The



Fig. 4. The averaged confusion matrices over all 257 testing subjects for different scenarios. The title of each confusion matrix denotes: [Setup-{S,N},
(Ntr, L), Cohen’s kappa value κ]. Observe that the sensitivities of each class improved after HMM smoothing.

Fig. 5. Scored hypnogram of one subject (black), and the automatically predicted label before/after smoothing (blue/red).

highest kappa value, κ, was obtained by RF (0.695), whereas
the RF required the longest training time (878 s).

TABLE III
COMPUTATIONAL TIME OF DIFFERENT CLASSIFIERS

LDA RF SVM ELM
κ 0.67±0.11 0.69±0.11 0.67±0.11 0.69±0.10

Time (sec) 2/0.1 878/23 308/0.1 165/51

IV. CONCLUSION

We have examined the feasibility of automatic sleep
staging using a publicly available large-scale dataset, CC-
SHS. Extensive experiments have been conducted to evaluate
the scalability of the proposed methods by changing the
number of training subjects, model complexity, and choice
of classifiers; these analyses were inspired by [8]. Another
virtue of this current work is the use of an HMM state
machine for physically meaningful discrimination between
‘state transition’ associated with the evolution of the scored
sleep stages, resulting in much smoother and more accurate
automatic sleep scores. The extracted features in both struc-
tural complexity and frequency domains have been classified
by a computationally cheap ELM algorithm, and the achieved
average kappa value was 0.73 with the HMM smoothing. The
hypnogram from patients with sleep disorder is less ‘smooth’
than that from the healthy subjects – the smoothing approach
for the clinical data will be the subject of future work.
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