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Abstract—Microservices based architectures are increasingly
widespread in the cloud software industry. Still, there is a
shortage of auto-scaling methods designed to leverage the unique
features of these architectures, such as the ability to indepen-
dently scale a subset of microservices, as well as the ease of
monitoring their state and reciprocal calls.

We propose to address this shortage with ATOM, a model-
driven autoscaling controller for microservices. ATOM instanti-
ates and solves at run-time a layered queueing network model of
the application. Computational optimization is used to dynami-
cally control the number of replicas for each microservice and its
associated container CPU share, overall achieving a fine-grained
control of the application capacity at run-time.

Experimental results indicate that for heavy workloads ATOM
offers around 30%-37% higher throughput than baseline model-
agnostic controllers based on simple static rules. We also find that
model-driven reasoning reduces the number of actions needed to
scale the system as it reduces the number of bottleneck shifts
that we observe with model-agnostic controllers.

Index Terms—microservices, autoscaling, layered queueing
network, performance optimization

I. INTRODUCTION

Microservices define a cloud-native architecture for soft-

ware development [1] that is increasingly accepted in the

software industry thanks to their synergy with DevOps [2].

Microservices have evolved from service oriented architecture

with the aim of delivering a set of scalable services by

decentralizing business logic among fine-grained services [3].

This property results, among other benefits, in greater control

of performance since scaling needs for a system can be

addressed by adding capacity only to the sections of an appli-

cation that actually need the extra capacity. In addition, using

containers for deploying microservices inherently improves the

underpinning performance management thanks to fast start-up

times [4] and ease of replication and reconfiguration.

In this paper, we have considered an autoscaling scenario

from the context of microservices. For autoscaling cloud appli-

cations, rule based approaches are common in the industry [5].

Such approaches usually scale stateless services horizontally

and stateful services vertically. However, recent studies [6],

[7] have shown that where both horizontal and vertical scaling

are applicable, they can provide different performance gains

based on the current workload. Thus, depending on the current

workload, a scaling decision should be based on the potential

performance improvement after applying both vertical and

horizontal scaling, either separately or in a combination. This

can be achieved using the concepts of queueing models.

However, using such concepts for microservices involve multi-

ple research challenges. For accurate performance estimations

of microservices, a queueing model should both abstract its

explicit properties, like fractional CPU share, and the implicit

properties inherited from service oriented architecture, like

operating simultaneously as a server and client.

Researchers have proposed multiple methods for autoscaling

cloud applications based on meta-heuristics [8], application

profiling [9], and analytical methods [10]. However, these

methods are not particularly suitable for microservices as they

do not consider such platform specific metrics like container

start-up time [11] and message queue status [12]. Moreover,

it remains the problem on how to tune the capacity estimation

process for microservices. Recently, a number of rule based

autoscalers have been proposed for microservices [12]–[15].

Some of these scalers utilize message queue metrics [12],

which can provide better insights of the system state than

traditional container level metrics used in [13]–[15]. However,

prior work focuses only on horizontal scaling, whereas we

consider both vertical and horizontal scaling.

To aid in this autoscaling context, we present ATOM, a

model-driven autoscaler for microservices. For any partic-

ular workload, ATOM assesses the effect of the workload

on each individual microservice and potential performance

improvement after applying various horizontal and vertical

scaling configurations. The scaling configurations include the

number of replicas for each of the microservices and the

allocated CPU capacity (we also used the term “CPU share”

interchangeably) for those replicas. To abstract a microservices

application and reason on the potential performance gain,

ATOM leverages a Layered Queueing Network (LQN) [16],

[17] model. Such models are instantiated by host demands

determined by monitoring the traffic between microservices.

By applying various configurations on a model, ATOM aims

to provide a scaling strategy that maximizes the revenue of

the system with minimal CPU shares. We have formulated

this scaling scenario as a non-linear mixed-integer program

using the weighted sum method [18]. To search for an optimal

solution for a given workload, considering the non-linear

nature of the problem and the presence of integer variables,

we have used a genetic algorithm (GA).

Overall, our contributions can be summarized as follows:

• an autoscaling controller that maximizes the revenue of
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Fig. 1. The architecture of the sock shop application

a microservices application without violating the service

level agreement (SLA)

• LQN models to estimate the performance of a microser-

vices application with different number of replicas and

CPU shares

• a GA based method that searches a sample space of LQN

models to provide an optimal scaling strategy

• an experimentation, using real measurements from a

microservices application Sock Shop1, demonstrating that

ATOM outperforms the rule based approaches for heavy

workloads

The rest of the paper is organized as follows: Section

II presents a motivating example for our work. Section III

presents the performance modeling aspect of microservices

with LQN. Section IV discusses about our proposed autoscaler

ATOM. Section V presents the experiments and results. Sec-

tion VI discusses the state of the art autoscalers for cloud ap-

plications. The paper is finally concluded with future research

directions in section VII.

II. MOTIVATING EXAMPLE

A. Running case

In this example we want to illustrate that scaling strategies

for microservices should not be solely based on static rules,

such as ‘always scale a stateless microservices horizontally” or

“always apply either vertical or horizontal scaling to a specific

microservice”. Instead, if a service can be both vertically and

horizontally scaled the scaling decision should be driven by

workload characteristics. To illustrate this point, we have used

a microservices application named Sock Shop. It is an e-

commerce website that allows one to view and buy different

types of socks. The architecture of the Sock Shop running

case, deployed on two Docker2 swarm nodes, is illustrated

in Figure 1. The front-end, catalog and carts services can

have up to M,N and K replicas, respectively, which are

load balanced by a router service. In addition, the catalog and

carts services persist data on private database services. These

database services and the router service are stateful, whereas

the other services are stateless.

1Microservice Demo: Sock Shop [microservices-demo.github.io]
2Docker: Enterprise Container Platform [www.docker.com]

TABLE I
TWO CASES WHERE THE FRONT-END MICROSERVICE IS THE BOTTLENECK

Case
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Fig. 2. Effect of vertical and horizontal scaling over the front-end microser-
vice in two different cases

We have considered a browsing workload in this application,

which creates a scenario where a user can visit the website

and add or remove items in the cart. In this scenario, we have

investigated two cases where the front-end microservice is the

bottleneck and requires additional capacity. The workload and

system setup used in the two cases are summarized in Table

I. The workload is specified by the mix of requests, i.e, the

number and types of concurrent users issuing synchronous

requests, and their think times, the times in-between a request

completion and issue of the next request. The system config-

uration includes the CPU share and the replica number of the

front-end microservice. A CPU share of 0.2 means that the

microservice can at most utilize 20% of a CPU core, even if

the rest of the CPU remains idle. The cases, A and B, represent

a light and heavy workload respectively.

B. Comparing scaling rules

For the evaluation of the two cases, vertical scaling was ap-

plied by doubling the CPU share of the front-end microservice

(the bottleneck); horizontal scaling was applied by doubling

the number of replicas of the front-end. The results in Figure 2,

for Cases A and B, show clearly that it is better to tailor

the choice of vertical and horizontal scaling strategy to the

workload rather than always depending on one strategy or the

other.

In the light-workload case (A), Figure 2a shows that

both strategies gave increased throughput, but vertical scaling

responded more quickly and reached a higher steady-state

throughput (about 10% higher). The more rapid response is

due to a faster ramp-up of capacity, and the higher steady-

state capacity is due to the well-known inefficiency of multiple

servers sharing a light or moderate load, compared to a more

powerful single server [19]. This inefficiency is captured in

the queueing model used by ATOM for decision-making.

In the heavy-workload case (B), Figure 2b shows that

vertical scaling is much less effective at increasing steady-state

capacity, about 20% less. The two strategies respond about

2
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Fig. 3. An LQN model of the Sock Shop application. The boxes, nested
boxes and circles represent tasks, entries and processors respectively. Calls are
shown by arrows, which are associated with a call mean, fan-in and fan-out.
The values between square, curly and angle brackets specify service demands,
multiplicity and number of replicas respectively.

equally quickly in heavy load, so horizontal scaling is overall

much more effective. Vertical scaling gave lower throughput

in heavy traffic because the front-end microservice code is not

internally parallel, thus it cannot leverage the availability of

the extra CPU cores. This is not uncommon in software, as

demonstrated by the Sock Shop implementation itself.

Summarizing, our results suggest that, when a service can

both be vertically or horizontally scaled, an optimal runtime

autoscaler would reason on which of the two scaling actions

to take based on workload, individual microservice features,

and overall software system architecture. In the next sections,

we adopt a queueing-based approach to address this problem.

III. PERFORMANCE MODEL

This section illustrates the use of Layered Queueing Net-

work (LQNs) for performance modeling of microservices,

together with service demand estimation methods required to

instantiate such models in concrete systems.

A. LQN Modeling

LQN models can naturally abstract scenarios where a mi-

croservice can sometimes also work as a client to another

microservice. This property often leads to the use of LQN in

modeling distributed systems [20]–[22] and can motivate the

adoption of these models in microservice autoscalers. For ease

of illustration, the LQN model we have derived for the running

case is shown in Figure 3. In the LQN model, microservices

are abstracted by tasks3. The reference task (Client) represents

the system workload. The entries of the task, which are

3LQN Notation and Solvers [www.sce.carleton.ca/rads/lqns]
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Fig. 4. Service demand estimation using two different techniques

equivalent to service classes in a queueing network, hosts the

features or APIs exposed by the microservices to their clients

(entries). The tasks are placed in a processor, which in this

case represents the CPUs in the host servers.

In a LQN model, the performance impact of vertical or hori-

zontal scaling can then be assessed either by scaling the service

demands of the activities in a processor according to the CPU

share (vertical scaling) or, for horizontal scaling, by increasing

the level of replication of a task. This inherently increases

the number of service queues for that task. An autoscaler can

then reason on expected performance by analyzing the LQN

with standard solvers [23], [24] and obtaining corresponding

metrics such as throughput, utilization and response times

expected for each microservice after performing the scaling

action.

B. Service Demand Estimation

The tasks of an LQN model can include one or more

activities. An activity consumes a CPU time which is repre-

sented by its service demand, which needs to be estimated to

parameterize an LQN. A common method is to use a linear re-

gression model based on the utilization law Ui =
∑

kXkDi,k,

where Ui means the utilization of resource i, Xk means the

throughput of class k and Di,k means the service demand of

a job of class k in resource i [25]. To get the service demand,

initially some utilization and throughput samples are collected

from system measurements. The utilization function is then

fitted by ordinary Least Square (LSQ) regression, possibly

with non-negativity constraints, to obtain the service demands.

The regression method assumes some variability in the

observed throughputs, which is not always present in ob-

servations on microservices. To illustrate this, in Figure 4a,

we have plotted the estimation data of View item feature

of the Sock Shop application. The data do not show strong

correlation between the variables, which in turn means that

accurate estimates of demand cannot be found this way. The

latter issues can occur frequently for microservices as they

are finely grained and contains a simple business logic. This

makes microservices less resource intensive than traditional

applications. Thus estimating their service demands based on

utilization becomes more difficult.

More accurate estimates can be found using more fine-

grained observations on the system, of the response time of

individual operations or groups of operations versus as a func-

3



TABLE II
WORKLOAD PATTERNS FOR MODEL VALIDATION

#
Request Distribution Concurrent

Users
Think
TimeHome Catalog Carts

1 57% 29% 14% 1000, 2000, 3000
7 sec

2 34% 33% 33% 1000, 2000, 3000

3 57% 29% 14% 1500, 2500, 4000
10 sec

4 34% 33% 33% 1000, 2000, 3000

tion of the queue length at their arrival [26]. This technique

is based on the formula for estimating response time using

the mean-value analysis arrival theorem [26]. When applied

to the previous case, the results are shown in Figure 4b. From

the figure, it is seen that the variability in data is significantly

higher than the data for utilization samples, simplifying the

estimate of demands. It is also evident that the estimate will

be insensitive to anomalies in the data. This suggests that the

technique is applicable for microservices.

C. Validation

To validate the LQN model output against real system

measurements, we have performed multiple experiments. We

have considered a subset of the Sock Shop application from

Figure 1 that contains business logic. The workloads for the

experiments are presented in Table II. The request mix and the

number of concurrent users have been selected such that they

create light, normal and heavy load in the system. The think

times are set as suggested in literature for such studies [27],

[28]. For workload 2 and 4, we have deployed the microser-

vices in Docker compose mode, creating a scenario with a

single host server. For workload 1 and 3 we have deployed

the microservices in two Docker swarm nodes, creating a

scenario with multiple host servers, where server 1 hosts the

front-end and cart services and server 2 hosts the other three

services. Within these servers, to avoid the approximation error

of multiserver queueing nodes, we have kept a single CPU

online. For workload generation, we have used the Locust4

tool with a distributed load testing configuration. The models

are solved using the LQN simulator (LQSIM).

The percent errors, considering the TPS and utilization,

between the model and system measurement are presented in

Table III. We presented the minimum, maximum and average

errors for both TPS and utilization. From the table, it is seen

that all the average errors are less than 5.05%, and even

the maximum error, observed in the utilization of front-end

microservice, is only 9.98%. These errors are well accepted

for performance modeling [21], [29]. To further investigate the

model accuracy, we have considered the total CPU utilization

of the two servers participating in Docker swarm. From the

results, as presented in Figure 5, it is seen that, for all the

workloads, the model estimations are close to the system

measurement. To further demonstrate accuracy of individual

service, we have used a heavy workload (workload 1 in Table

II) with 3000 users. From the results, as presented in Table IV,

4Locust - A modern load testing framework [www.locust.io]

TABLE III
PERCENT ERROR BETWEEN MODEL AND SYSTEM MEASUREMENT

Service
Name

TPS % Error Util. % Error
min max avg min max avg

Front-End 0.05 7.68 2.26 1.06 9.98 5.05

Carts Svc. 0.04 6.08 2.17 0.37 4.08 1.89

Catalog Svc. 0.09 7.83 2.79 0.66 4.01 2.04

Catalog Db. 0.43 7.75 2.81 0.05 1.7 0.95

Carts Db. 0.06 4.29 1.71 0.58 7.45 3.5
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Fig. 5. Utilization of different servers according to model estimation and
system measurement for workload pattern 1 and 3

it can be seen that for all of the components, the throughput

and utilization values are within the acceptable range of 5%

to 10% [21], [29]. These results indicate that the model can

be used for further performance analysis.

IV. ATOM: AUTOSCALING MICROSERVICES

In this section we discuss the details of our autoscaler

ATOM. Initially, we present how a user can use ATOM,

the system considered by ATOM and its components. Subse-

quently, we formulate the problem that is addressed in ATOM.

Finally, we present the optimization method incorporated in

ATOM to find solutions for the problem and suggest optimal

scaling configurations.

A. Context and Architecture

To use ATOM, the user needs a deployed microservice

application and its LQN model. The LQN model can be

obtained in two ways. If the UML design of the application is

available, it can be used to automatically generate a model

following a transformation technique similar to [30]. This

is a likely scenario for an in-house application, deployed in

a private cloud. If the application is deployed in a public

cloud, the service provider may not have access to a model-

based specification. However, due to the fine-grained nature of

microservices, a suitable model may be developed in principle

4



TABLE IV
FEATURE AND MICROSERVICE SPECIFIC TPS AND UTILIZATION FROM

MODEL AND MEASUREMENT FOR WORKLOAD 1 WITH 3000 USER

Service
Name

Feature
Name

Model
TPS

Measu-
red TPS

%
Error

Model
Util.

Measu-
red Util.

%
Error

Front-end
Home 236.3 221.3 6.3

75.2 65.9 9.3Catalog 120.2 110.9 7.7
Cart 58 55.6 4.1

Carts Svc.
Get 19.1 18.5 3.1

16 14.2 1.8Add 19.1 18.5 3.1
Delete 19.7 18.5 6.1

Catalog
Svc.

List 60.2 55.5 7.8
19.2 15.4 3.8

Item 60.1 55.5 7.7

Catalog Db. Query 120.2 110.9 7.7 12 12.6 0.6

Cart Db. Query 58.1 55.6 4.3 48.2 44.3 3.9
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Fig. 6. Overview of ATOM’s components and their interactions

by only monitoring the communication among the microser-

vices. As mentioned earlier, service demands are important

parameters for LQN models. In this work, we have assumed

that service demands are estimated offline, we plan in future

work to add an online demand estimation method.

ATOM considers a system which executes different trans-

actions using microservices. Each transaction type combines

a set of features of the microservices and yields different

revenue. Thus, the transactions can be prioritized based on

their revenue. ATOM acts periodically. At a moment when it is

invoked, suppose the system has previously been optimized but

has experienced an increase or other change in the workload.

ATOM aims to estimate a scaling strategy for each of the

microservices so that the revenue of the system is still optimal.

The components of ATOM, as shown in Figure 6, are

aligned with the MAPE-K (monitor, analyze, plan and execute

with a shared knowledge base) [31] control model. The

workload monitor counts the user requests for each feature of

the system, using a set of time intervals within a monitoring

window [32] to obtain a set of samples for each feature.

These samples are forwarded to the workload analyzer after

a monitoring window is completed. Based on the monitoring

data, the workload analyzer needs to update two things in the

LQN model: the concurrent number of users in the system (N )

and the request mix. Since we are using a workload generator,

the system that we consider is a closed loop system. Thus,

we assume that we know the value of N . To calculate the

request mix, the workload analyzer initially determines the

average request count for each type of feature in a monitoring

window. From these average request counts, the request mix

is determined as the fraction of requests for different system

features. The analyzer then updates the LQN model with the

value of N and new request mix. To update the model, the

value of N is set as the multiplicity of client task and the

request mix is used to update the call parameters among the

entries of the model.

The analyzer uses a search strategy, described in Section

IV-B and IV-C, to vary the number of replicas (representing

horizontal scaling) and the host demands (representing vertical

scaling) and find the best combination. This result is forwarded

to the scaling planner. Initially, the planner translates the

received result from modeling to system perspective using a

map between the LQN model and the microservices. After

that, the planner decides the scaling strategies (number of

replicas and CPU share of each replica) for each microservices.

The planner also includes an option to use the previous scaling

configurations as a reference to prevent a drastic change in the

current monitoring window. This can be achieved either from

the perspective of TPS or total allocated CPU capacity. If the

option is chosen, the planner does not change a configuration

in the current monitoring window unless the TPS improves

or total CPU share does not change more than a threshold

value. After that, the planner creates a scaling script for the

scaling command executor. Finally, the executor component

runs the scaling commands specific to each microservice. All

these components share a knowledge base that includes the

LQN model, list of microservices and their mapping to LQN

and scaling configurations from the previous iteration.

B. Problem Statement

ATOM provides the scaling decisions by solving multiple

LQN models. To generate these models, ATOM needs to

decide the number of replicas for each microservice and

the CPU shares for all the replicas of each microservice.

Considering there are N microservices, these decisions are

represented by the following variables.

• r(t) = [r
(t)
i ], r

(t)
i = 1, . . . , Qi, ∀i = 1, . . . , N . Replica

vector: denotes the number of replicas for each of the

microservices i for the time interval t, where Qi is the

upper bound of replicas that a microservice can have.

• s(t) = [s
(t)
i ], slbi ≤ s

(t)
i ≤ s

ub
i , ∀i = 1, . . . , N . CPU share

vector: denotes the CPU share for each of the replicas

of a microservice i for the time interval t. The share is

bounded by upper and lower bound subi and slbi .

Our objective is to determine the values of r(t) and s(t)

that maximize the revenue B(t) and minimize total allocated

CPU capacity C(t) for the next time interval t. The revenue

is defined as the number of transactions completed per unit

time. The transactions are weighted by a numerical coefficient

expressing their business value. These weights vary according

to the priority of a feature of the application. The features are

associated with the service classes of different microservices.

We consider that a microservice i has Ei number of service
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classes. The number of transactions per unit time for a given

period t and a particular service class j of microservice i is

denoted by X
(t)
ij . The weight of the transactions is denoted

by ψij . In calculating the revenue, it is common to ignore the

transactions of a particular set of services. Thus we define a

set of revenue calculation services I = {i ∈ N|i ∈ {1...N} ∧
φ(i) 6= 0}, where φ(i) = 0 if a microservice i is ignored.

We also define the set of replication values and CPU share

vector as R = {r ∈ N
N |∀i = 1 . . . N, ri = 1 . . . Qi} and

S = {s ∈ R
N |∀i = 1, . . . , N, slbi ≤ si ≤ subi }, Considering

these variables, we can calculate B(t) according to (1).

B(t) =
∑

i∈I

Ei∑

j=1

ψijX
(t)
ij (1)

The total CPU share C(t) can be defined simply as the sum

of CPU shares of all the replicas of the microservices. This

can be calculated as C(t) =
∑

i risi. With these definitions

of B(t) and C(t), we express the objective function for our

optimization problem as a weighted sum in (2).

Θ(t) = max
(r(t),s(t))

τ1B̂
(t) − τ2Ĉ

(t) (2)

s.t: W
(t)
ij (r(t), s(t)) ≤Wmax

ij , ∀i ∈ I, j = 1, . . . , Ei (3)

C
(t)
k (r(t), s(t)) ≤ Cmax

k , ∀k (4)

U
(t)
i (r(t), s(t)) ≤ Umax

i , ∀i (5)

r(t) ∈ R, s(t) ∈ S

In (2), B̂(t) and Ĉ(t) represents the normalized value of

B(t) and C(t). These are normalized since it is suggested for a

weighted sum method if the magnitudes of the objectives differ

significantly [18], which is our case. The relative importance

of revenue and total CPU share are defined by the weights

τ1 and τ2. The constraints for the optimization problem are

presented in (3)-(5). The function W
(t)
ij , in (3), estimates the

response time for a service class j of microservice i for a

time period t. The estimated response time cannot be higher

than the maximum limit Wmax
ij mentioned in the SLA. The

function C
(t)
k , in (4), calculates the total allocated CPU share

of a server k for a time period t. This value must not exceed the

server’s capacity Cmax
k . In (5), U

(t)
i , represents the utilization

value of a microservice i for a time period t, which must not

exceed its limit Umax
i .

C. Optimization Method

To find the optimal scaling strategy, ATOM needs to gener-

ate a set of solution candidates and evaluate their quality. The

steps for solution candidate generation is presented in Algo-

rithm 1. The algorithm requires three parameters: the LQN

model, time limit for algorithm execution and the constraint

tolerance value.

Initially, the algorithm generates a random set of config-

urations (r ∈ R,s ∈ S). This initial set should satisfy the

constraints in (4). For a given r and s, the total CPU share Ck

Algorithm 1 Solution Candidate Generation

Input: LQN Model Γ, timeLimit and tolerance

Output: Set of solution candidates G

1: Init: generate initial config set

2: while time ≤ timeLimit do

3: currentCandidates← ∅

4: for each (r, s) ∈ config do

5: Γ′ ← updateReplication(r,Γ)
6: Γ′′ ← updateCalls(r,Γ′)
7: Γ′′′ ← updateHostDemand(s,Γ′′)
8: (fval, c)← solveModel(Γ′′′)
9: if c ≤ tolerance then

10: currentCandidates ∪ {(r, s), fval}
11: end if

12: end for

13: config ← generateConfig(currentCandidates)
14: G ∪ currentCandidates
15: end while

allocated in a server k can be calculated as
∑

i risizik, ∀i
where zik ∈ {0, 1} represents whether the replicas of a

microservice i is placed in server k. After that, a time bounded

searching starts to find an optimal solution. This bound should

be less than the monitoring window to execute a scaling

strategy before receiving the data of the next monitoring

window. Thus, for a 5 minute monitoring window, we have

used a 2 minute time bound.

The search process is as follows. For each r and s pair, the

LQN model is updated. This update process has three steps.

At first, the updateReplication function updates the replica

number of a task-processor pair according to the replicas of the

corresponding microservice. After that the fan-in and fan-out

values of the tasks and the calls parameter among the entries

is updated by the updateCalls function. Considering a chain

of tasks A → B → C, the fan-in of task B is FB
in = rA and

the fan-out is FB
out = rC , where rB and rC is the number

of replicas of task B and C. According to the current request

mix, if the value of a call parameter from B to C is DB,C , it is

updated as
DB,C

rC
. Finally, the updateHostDemand function

scales the host demands of the activities of a task by dividing

the host demands by the CPU share of the corresponding

microservice for that task.

After completing the update process, the model is solved.

Since we need to solve a large number of models at runtime,

we need to get the solutions quickly. Thus, we have invoked an

analytic solver LQNS [23], with option for Bard-Schweitzer

single step mean value analysis (MVA) [33], allowing faster

model solving. We have checked the solution provided by

LQNS to verify that the estimated r and s satisfy the response

time and utilization constraint in (3) and (5) considering the

given tolerance. The response time Wij is obtained from

the residence time for the corresponding call to the entry

(representing a service class j) of a task (representing a

microservice i). The residence time is defined as the sum

of queueing and service time for a call to an entry. In LQN
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context, the service time is an output that represents the time

a server remains busy to serve a request, including the nested

service calls. The utilization value U t
i for a microservice i

is estimated from the utilization value of its corresponding

processor in the model. If the constraints are satisfied, the

throughput values of the tasks, corresponding to the features

of the microservices, and the configuration (r and s) is added

to the set of current candidate solutions. This set is used to

generate a set of new configuration for the next iteration.

Since it is infeasible to evaluate all the scaling configura-

tions at runtime, we will end up with a subset of solution

candidates. In such cases, a meta-heuristic approach is com-

monly used to generate a sufficiently good set of solution

candidates. Here, we have used the genetic algorithm (GA) for

this purpose. GA can provide optimal solutions for highly non-

linear problems [34] and is a powerful approach for problems

with integer variables [35]. This is important in our case as we

have a non-linear mixed-integer program. The integer variables

in our case is the number of replicas. The non-linearity

originates from the reason that simply increasing the number

of replicas and CPU share may not provide an optimal scaling

strategy. It is important that how these numbers are increased

depending on the characteristics of the current workload. In

ATOM, we used the MATLAB implementation of genetic

algorithm5. At every iteration, we have used GA to generate

a set of scaling configurations, to be evaluated in the next

iteration, based on the current set of solution candidates. After

this generation, the current candidate solutions are merged

with the set of all solution candidates. The algorithm continues

until it reaches the time limit. Finally, these solution candidates

are forwarded to the scaling planner.

Since we are running GA at runtime with time constraints,

it is possible that the scaling strategy provided by it can

be further improved. This can be both from the perspective

of revenue maximization and CPU share minimization. To

address this, the planner uses two quick fixes. Firstly, to

minimize CPU shares, it checks whether a microservice was

allocated less CPU share in the previous monitoring window.

If so, it replaces the current configuration for that microservice

with the previous one. If this change does not affect the

TPS significantly the previous configuration is chosen for

that microservice, otherwise the current configuration is kept.

Secondly, to increase the TPS, ATOM reduces the number of

replicas while increasing the CPU share of each replica, keep-

ing the total CPU share same. It then checks again whether the

TPS is affected significantly and if not, it keeps the modified

configuration. This improves the TPS since reducing the

number of replicas also reduces the parallelization overhead.

Before sending the scaling strategy, the planner also checks for

a drastic change in total CPU share, as mentioned in section

IV-A, if that option is chosen. After that, the planner creates

the scaling configurations from the best solution candidate,

which are executed by the scaling executor.

5Genetic Algorithm - MATLAB & Simulink - [www.mathworks.com/
discovery/genetic-algorithm.html]

TABLE V
DOCKER SWARM SERVER CONFIG. FOR PERFORMANCE EVALUATION

#
Deployed

Microservices
Online
CPU

CPU
Freq.

Memory

1
Router, Front-end,

Carts Db. 4
1.2 GHz. 64 GB

2
Catalog Svc., Carts Svc.,

Catalog Db.
0.8 GHz. 16 GB

TABLE VI
WORKLOADS CONSIDERED IN EVALUATING THE AUTOSCALERS

Name
Request Distribution Concurrent

Users
Think
TimeHome Catalog Carts

Browsing Mix 63% 32% 5% 1000, 2000, 3000
7 secShopping Mix 54% 26% 20% 1000, 2000, 3000

Ordering Mix 33% 17% 50% 1000, 2000, 3000

V. EVALUATION

In this section we present the evaluation of ATOM. We

initially provide the details of our experimental setup and the

baseline autoscalers that we have developed to compare with

ATOM. After that, the performance comparison is presented

according to different elasticity and performance metrics.

A. Experimental Setup

For ATOM’s performance evaluation, we have deployed the

Sock Shop application in Docker swarm mode in two servers.

The details of the servers are provided in Table V. We reduced

the CPU frequency in those servers to create high resource

contention. The CPU frequency that has been presented in

Table V is the reduced CPU frequency. We have developed

two rule based autoscalers to compare their performance with

ATOM. Such autoscalers are common in industry [5] for

example Amazon Web Services (AWS)6 and Kubernetes7.

Both autoscalers monitor the CPU utilization of the mi-

croservices. If the CPU utilization level reaches the current

limit, the autoscalers double the amount of CPU share cur-

rently allocated to the microservices. The first scaler (UH)

allocates the resource horizontally and the second one (UV)

vertically. For example, if the CPU utilization reaches 35%,

a value near to the limit of 40%, UH creates 2 replicas each

having 0.4 CPU share and UV increases the CPU share of the

replica to 0.8. UH operates only on the stateless microservices

whereas UV operates on both stateful and stateless microser-

vices. Thus, for UH scenarios we have allocated a full CPU

core for each of the stateful microservices.

Here we have configured the Sock Shop application to

handle 500 concurrent users in a browsing workload. After

this initial setting, we have evaluated UH, UV and ATOM con-

sidering an increase in workload in multiple combinations of

request mix and concurrent number of users (N ). The request

mix is similar to the suggested mix in TPC-W benchmark

[27]. The values of N are chosen to create scenarios ranging

6Amazon EC2 Auto Scaling - [aws.amazon.com/ec2/autoscaling]
7Horizontal Pod Autoscaler - [kubernetes.io/docs/tasks/run-application/

horizontal-pod-autoscale]
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Fig. 7. Performance comparison of ATOM with its conservative versions:
ATOM-S and ATOM-T

from moderate to heavy increase in the current workload. The

details of the workload is provided in Table VI.

Before comparing ATOM with the baseline scalers, we

have compared different variations of ATOM. The variations

are based on ATOM’s likelihood to change the CPU shares

at each monitoring window. As mentioned in section IV-A,

this has been controlled by the planner by being conservative

about changing the system configuration on each monitoring

window. It provides two options for achieving this: not allow-

ing a large change in CPU share or discarding the current

configuration if the potential improvement in TPS is not

significant. We call these versions a conservative version of

ATOM. The conservative version that changes CPU shares by

looking potential improvement in TPS is named ATOM-T and

the one that allows only a small change to the total allocated

CPU capacity is named ATOM-S.

For performance comparisons, we have chosen two work-

loads from the light browsing mix and heavy ordering mix

with N = 3000. It is seen from Figure 7 that all the versions

of ATOM produce nearly identical improvement in TPS for the

browsing workload. In case of ordering mix, ATOM-T yields

slightly higher average TPS whereas ATOM-S yields slightly

less TPS than ATOM. Although the TPS for ATOM increases

slowly at the beginning, later it increases sharply and achieves

a higher value than ATOM-T. For ATOM, such sharp increases

can occur, possibly with a sharp and short decrease period

before, whereas for ATOM-T and ATOM-S the improvement

is more steady. An issue for the conservative versions is that it

can be difficult to determine the threshold value that gradually

improves the scaling strategy rather than completely stopping

the improvement. This is bad if the system experiences the

increase in workload for a long period. Thus, for the latter

experiments we have used ATOM.

B. Results

For all the workloads in Table VI, we have run the experi-

ments for 40 minutes where the first 25 minutes represent the

increase in workload. The effect on the TPS by ATOM and

the baseline autoscalers is presented in Figure 8. From the

figure, it is seen that there is a delay in the scaling action for

ATOM. In these experiments, the monitoring window has been

set to 5 minutes for all the scalers. In addition to this delay,

ATOM has on average a 2.5 minute delay for its optimization

and planning, whereas the other autoscalers initiate scaling
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Fig. 8. The effect over time on the TPS by ATOM and baseline autoscalers
under different workload

actions immediately after the monitoring window. However,

from the figure it is seen that the delay does not effect the

performance of ATOM significantly compare to others. This is

because, although there is a step by step improvement in TPS

for the baseline autoscalers, the TPS improves significantly

in case of ATOM in the first step. This is expected as

ATOM monitors the workload and then provide an optimal

scaling configuration for that workload. On the other hand,

the baseline scalers monitor the current utilization and cannot

estimate the maximum amount of required CPU share from

this information only. Thus, they improve the TPS in a step

by step basis.

For a quantitative evaluation, we have used the following

metrics: total under-provisioned time (Tu) [36], [37], total

under-provisioned area (Au) [36], [37] and TPS. The metrics

indicate how an autoscaler performs when there is a increase

in the workload. In the context of microservices, Tu can

be defined as
∑

i T
(i)
u , where T

(i)
u is the total time for a

microservice i in an under-provisioned state. Similarly, Au

can be defined as
∑

iA
(i)
u where A

(i)
u is the total under-

provisioned area for an microservice i. The under-provisioned

area represents the extent of under provisioning for a time

period t. It is defined as the product of an under-provisioned

period and the difference of required and allocated CPU

capacity for a microservice in that period. TPS is defined as the

total number of transactions completed per second. We have

considered the TPS during the increased load period since

the TPS is affected in that period and the autoscalers aim to

resolve this issue. For Tu and Au a lower value is expected,

which is the opposite case for TPS.

In Figure 9 we compared the performance of the scalers,
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Fig. 9. Comparison of the autoscalers for different elasticity and performance
metrics with the increase of concurrent users
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Fig. 10. Comparison of the autoscalers for different elasticity and performance
metrics with change in request mix

according to the considered metrics, with increase in con-

current number of users (N ). The results are considering

3 microservices since UH does not scale the router and 2

database services. The results show that ATOM outperforms

UH and UV considering all the metrics, particularly for higher

values of N . It is seen that with the increase of N , Tu
and Au increases for all the scalers though lower is better

in this case. However, this increase is expected as with the

increase in N , the initial gap between required and allocated

CPU capacity also increases. Among these values, the values

for ATOM is the lowest because it can reduce the CPU

capacity gap significantly after the first monitoring window.

This helps ATOM in improving the TPS than the other scalers.

Considering N = 3000, the improvement in TPS is 30%

higher for ATOM than the next best approach UV.

We also present the results from the perspective of change

in request mix in Figure 10. In the figure, we can see that, in

terms of TPS, ATOM by far outperforms both UH and UV

in ordering mix, while performing similar in browsing and

shopping mix. For the ordering mix, the TPS is 37% higher

than UV, which is the second best approach. From Figure 10a,

we see that ATOM has a very low Tu comparing to UH and

UV in all the mixes. However, as seen in Figure 10b, since

the difference in Au is not as high as it is in Tu for browsing

and shopping mix, the TPS is nearly similar for all the scalers

in browsing and shopping mix.

Besides being able to reason on horizontal and vertical scal-

ing choices, another reason for ATOM’s better performance is

that it addresses layered bottlenecks [38], [39] better than UH

and UV. A layered bottleneck scenario can cause a delay in

reducing the difference between required and allocated CPU

capacity for a microservice. We present one such scenario

in Figure 11 for the ordering mix with N = 2000, where

a layered bottleneck has evolved among 3 microservices -
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Fig. 11. The demand vs. supply in CPU capacity for 3 microservices, involved
in a layered bottleneck, after each scaling action by UV and ATOM. The
microservices are: A - Router, B - Front-end and C - Cart Svc.

router, front-end and cart service. For UV, from Figure 11a, it

is seen that the router remains in starvation up to window 3

as the front-end does not receive an additional capacity until

window 3. The front-end remains in starvation up to window

4 as the cart service’s requirement is fulfilled in window 3 and

from there the front-end’s large capacity gap cannot be reduced

solely in window 4. On the other hand, ATOM starts to remove

all the bottlenecks at once in window 2 since it has obtained

the whole picture of the system’s capacity requirement after

window 1. The bottlenecks are partially resolved in window

2 due to ATOM’s delay in optimization, affecting the average

CPU allocation in that window. Continuing from window 3,

the bottlenecks are resolved by ATOM.

To observe the effect of a monitoring window over the

scalers’ performance, we have considered 3 different windows

and evaluated them using an ordering mix with N = 2000.

Since UH is outperformed by UV, in these experiments, we

have only considered UV. From the results, as presented

in Figure 12, it is seen that Tu and Au remains almost

same for ATOM in all cases. This is because those values

for ATOM are dominated by its optimization time, which

has been bounded by a fixed value of 2 minute in these

experiments. The results show that ATOM outperforms UV

for the 5 and 10 minute window. For the 2 minute window,

they perform similarly. However, such performance for a short

monitoring window is not guaranteed for two reasons. Firstly,

for a large number of layered bottlenecks, which is likely for

microservices, even with a short window that allows quick

changes in system configuration, the time for resolving those

bottlenecks can be significantly high. Secondly, such quick

shifts in system configuration can affect the system steady

state if new replicas are created or a microservice needs to be

restarted. This case is not applicable to UV as it only scales

vertically. However, vertical scaling is not an effective option

in all scaling scenarios [6], which is also evident from our

experiments.

It is important for an autoscaler to work with workload hav-

ing burstiness. We have created such workloads by injecting

burstiness in the ordering mix with N = 500 using the index

of dispersion I [40]. We have used two values, I = 400
and I = 4000, representing moderate and high burstiness.

We have evaluated the performance of UV and ATOM with

these two workloads. From the results, we have not observed
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Fig. 12. Performance comparison of UV and ATOM with change in
monitoring window size
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Fig. 13. TPS yielded by the scalers with high burstiness in workload

any significant difference for moderate burstiness. However,

for high burstiness, ATOM has outperformed UV. We have

presented the results in Figure 13. It is seen that when using

ATOM as an autoscaler, the traffic surges are also reflected

in the system TPS, which is not exactly the case of UV.

This also results in a better cumulative TPS of the system

yielded by ATOM, which is 28% higher than UV. The reason

for UV being outperformed is that since the CPU capacity is

bounded, the utilization values do not reflect the traffic surges.

In addition, the low load periods affect the average utilization.

Thus, UV does not get an appropriate picture of the workload

intensity and cannot scale accordingly.

VI. RELATED WORK

Researchers have long been working with different autoscal-

ing issues in the cloud [5]. They have suggested multiple ap-

proaches which are usually based on meta-heuristic algorithms

[8], [41], application profiling [9], [42] or analytical modeling

[10], [43]–[45]. The meta-heuristic approaches rely on meth-

ods like genetic algorithm [41] or ant colony optimization [8]

to search a sample space of scaling configurations and suggest

the optimal configuration. Application profiling approaches

aim to establish a relation between QoS, workload intensity

and the amount of required software and hardware resources.

This relation is then used for dynamic resource provisioning.

The analytical methods focus on using a performance model

to gain performance insights of the system. These performance

insights are commonly leveraged to minimize a cost function

for autoscaling [43], [44]. For performance model, abstractions

like LQN [10], [43] or traditional queueing network is used

[44], [45]. Such analytical methods mostly address the issue

regarding the amount of required resource share and allocating

that share either horizontally or vertically. However, recent

researches [6], [7] have highlighted that it is important to make

an assessment combining both horizontal and vertical scaling

before deciding a scaling strategy.

The issue with these approaches are that their capacity

estimation technique is not orchestrated for microservices. It

has been already suggested that for autoscaling microservices,

it is important to consider container level metrics [11] and

message queue metrics [12]. This is particularly applicable to

profiling and meta-heuristic based techniques as they provide

poor estimates if appropriate metrics are not used. The ana-

lytical methods also need to incorporate the properties of mi-

croservices, like its fractional CPU share, and assess whether

the common performance assumptions regarding vertical and

horizontal scaling holds for them.

Recently, researchers have proposed different rule based

autoscalers for microservices [12]–[15]. Most of these scalers

[13]–[15] consider simple container level metrics, like CPU

and memory usage, rather than exploring new dimensions with

metrics like container start-up time [11]. The researchers in

[12] focused on that aspect and used different conditions of

the message queues as a measure of system state. Considering

such metrics makes these works applicable to microservices.

However, these scalers only consider horizontal scaling though

vertical scaling can outperform horizontal scaling depending

on the nature of the workload [6].

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented ATOM, a model-driven au-

toscaler tailored to microservices application. Leveraging the

ease of scaling and replicating microservices in Docker-based

deployments, we have first demonstrated that if a services

can be both vertically and horizontally scaled the workload

characteristics need to be taken into account to decide which

one of the two scaling actions is better. We have then proposed

an autoscaler that leverages layered queueing network models

to scale application capacity in the presence of time-varying

workloads, including those affected by burstiness. Results

indicate that ATOM can significantly improve over scalers

based on horizontal or vertical scaling actions only.

Possible lines of future research include online profiling of

service demands, which are in the present work assuming to be

statically profiled via testing, and an extension of the method

to include microservice migration and support for cloud-based

serverless functions.

ACKNOWLEDGMENT

A. Gias is a commonwealth scholar, funded by the UK

government. The work of G. Casale is partially supported

by RADON, funded by the European Union’s Horizon 2020

research and innovation program under grant agreement No.

825040. The research of M. Woodside was supported by a

Discovery Grant from the Natural Sciences and Engineering

Research Council of Canada. We would like to thank Lulai

Zhu for his feedback on the optimization program. The data

referenced in this paper is available at https://doi.org/10.5281/

zenodo.2640909, released under the CC BY 4.0 license.

10



REFERENCES

[1] N. Kratzke and P.-C. Quint, “Understanding cloud-native applications
after 10 years of cloud computing - A systematic mapping study,”
Journal of Systems and Software, vol. 126, pp. 1–16, 2017.

[2] L. Zhu, L. Bass, and G. Champlin-Scharff, “DevOps and Its Practices,”
IEEE Software, vol. 33, no. 3, pp. 32–34, 2016.

[3] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis,
“Microservices in Practice, Part 1: Reality Check and Service Design,”
IEEE Software, vol. 34, no. 1, pp. 91–98, 2017.

[4] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Stein-
der, “Performance Evaluation of Microservices Architectures Using
Containers,” in Proc. of Int’l. Symposium on Network Computing and

Applications. IEEE, 2015, pp. 27–34.
[5] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-Scaling Web Applications

in Clouds: A Taxonomy and Survey,” ACM Computing Surveys, vol. 51,
no. 4, p. 73, 2018.

[6] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang, “Model-
driven optimal resource scaling in cloud,” Software & Systems Modeling,
vol. 17, no. 2, pp. 509–526, 2018.

[7] E. Incerto, M. Tribastone, and C. Trubiani, “Combined Vertical and
Horizontal Autoscaling Through Model Predictive Control,” in Proc.

of European Conference on Parallel Processing. Springer, 2018, pp.
147–159.

[8] T. Chen and R. Bahsoon, “Self-Adaptive Trade-off Decision Making for
Autoscaling Cloud-Based Services,” IEEE Trans. on Services Comput-

ing, vol. 10, no. 4, pp. 618–632, 2017.
[9] C. Qu, R. N. Calheiros, and R. Buyya, “A reliable and cost-efficient auto-

scaling system for web applications using heterogeneous spot instances,”
Journal of Network and Computer Applications, vol. 65, pp. 167–180,
2016.

[10] C. Barna, M. Litoiu, M. Fokaefs, M. Shtern, and J. Wigglesworth, “Run-
time Performance Management for Cloud Applications with Adaptive
Controllers,” in Proc. of Int’l. Conference on Performance Engineering.
ACM, 2018, pp. 176–183.

[11] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare,
C. Pahl, S. Schulte, and J. Wettinger, “Performance Engineering for
Microservices: Research Challenges and Directions,” in Proc. of Int’l.

Conference on Performance Engineering Companion. ACM, 2017, pp.
223–226.
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